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1 Introduction

1 Introduction

1.1 Spintronics

”Spintronic” is a compound word out of ”spin” and ”electronic”. In regular electronic devices,
the information is transported and stored by electronic charge. In the field of spintronic
devices, the information is transported and stored by spin (or magnetization) and no longer
by electronic charge. One benefit of this technology is that one needs less energy to transport
information by spin than by electronic charge. A requirement of this technology is, that one
has to find materials in which the electronic spin is stable for a long time and does not flip to
equilibrium. A spin current can be generated in a conductor or semiconductor, when more
electrons with spin up than with spin down move to one direction. Thus, the current for
spin up electrons and the current for spin down electrons are different. Hence, there is a net
spin current.

One milestone in the field of spintronic research was the discovery of the giant magneto
resistance as reported in between 1986 and 1989 [1, 2, 3]. In 2007, Albert Fert and Peter
Grünberg got the Nobel price for the parallel discovery. Here, one considers a junction out
of a normal metal, a ferromagnet, a normal metal, another ferromagnet and again a normal
metal. For electrons with a spin polarization parallel to the majority electron spin orientation
in the ferromagnets, the resistance is small, and large for antiparallel configuration. One has
to mention that the magnetic moment of the electrons is anti parallel to the spin orientation.
Thus, when both magnets are polarized in the same direction, the resistance is small, because
the electrons with parallel spin orientation are able to propagate easily through both of the
magnets. If the magnets are polarized antiparallel, for every electron there is a magnet
with a high resistivity and the entire resistivity is very large. Without an external magnetic
field, the magnetization of the magnets tends to be anti parallel. On the other hand, the
magnetization of the magnets becomes parallel by an applied external magnetic field. The
difference between the resistance in these two cases divided by the resistance without a
magnetic field is called giant magneto resistance (GMR). The GMR-effect is used in hard
disk drives or in sensors for magnetic fields.

The discovery of the Spin Hall effect marks another milestone in the field of spintronic
research. If one applies an electric field on a conductor or a semiconductor, an electrical
current will be induced. When the spin polarization is perpendicular to the current direction,
a spin current will be induced in perpendicular direction because of spin-orbit interaction.
The spin current direction is perpendicular to the electrical current and perpendicular to the
spin-polarization. This effect was theoretically predicted in 1971 by M. I. D’yakonov and V.
I. Perel’ [4, 5]. In 1999, J. E. Hirsch gave the name to this effect [6]. The first observation
of the Spin Hall effect at 30 Kelvin was reported in 2004 by Kato et al. [7]. Later, in 2005,
other experiments from Wunderlich et al. [8] and Sih et al. [9] confirmed the existence of the
Spin Hall effect. It is also able to invert the Spin Hall effect, called inverse Spin Hall effect. If
there is a spin current with perpendicular spin-polarization, a charge current will be induced
perpendicular to the direction of the spin current and perpendicular to the polarization of
the spin current. This effect was first observed in 1984 by Bakun et al. [10]. Later, there
were several measurements of the Spin Hall effect as well as of the inverse Spin Hall effect in
semiconductors [11] and in metals [12, 13, 14]. The inverse spin Hall effect will be important
in this thesis. Besides, the spin Hall effect is used in spin batteries and in spin transistors.
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1.2 Spin Caloritronics and Spin Seebeck effect

1.2 Spin Caloritronics and Spin Seebeck effect

1.2.1 Seebeck effect

In 1822, Thomas Johann Seebeck developed the thermoelectric effect or Seebeck effect [15]
[16, p. 2 ff]. If one applies a temperature gradient to a conducting material, an electrical
voltage U can be measured between the hot end and the cold end of the material. It is

U = S ·∆T , (1.1)

where ∆T denotes the temperature difference between the two ends of the material and S
denotes the material and size dependent Seebeck coefficient.

At first, there is a diffusion contribution to the Seebeck effect. The distribution of the
charge carriers in general follows a Fermi-Dirac distribution (cf. Eq. (2.2)). On the hot
end, in comparison to the cold end, there are more electrons with higher energy as well as
there are less electrons with lower energy. There is a spatial diffusion of the charge carriers
between the hot end and the cold end. Charge carriers with high energy also keep a higher
kinetic energy and thus, the diffusion proceeds faster than for charge carriers with low kinetic
energy. In the net effect, there are more charge carriers traveling from the hot end to the
cold end than in the opposite direction. This force is called electromotoric force. Thus, if
the charge carriers are not able to leave the material, there will be a charge accumulation. If
the charge carriers are negatively charged electrons, there will be negative charge at the cold
end and positive charge at the hot end. This will induce an electric field, driving against the
electromotoric force until an equilibrium is reached.

Additionally, there is another effect, which drives the Seebeck voltage. This is a phonon
drag contribution. When the temperature difference is applied, phonons are propagating
from the hot end to the cold end. When they scatter with electrons, momentum and energy
will be transfered to the electrons. Thus, the electrons also start to propagate in the direction
of the cold end. Similarly, there will be a charge accumulation at the cold end and a lack of
charge at the hot end.

In practical experiments, one takes two different metals as shown in figure 1a and connects
them thermally at the hot end. The two cold ends will be at the same temperature and
the voltage is measured between the cold ends. Thus, one is measuring the difference of the
Seebeck voltage in metal A and the Seebeck voltage in metal B. The benefit of this measuring
method is, that the two ends of the voltmeter are at the same temperature.

1.2.2 Spin Seebeck effect

In the same way as for the Hall effect, there exists a spin dependent version for the Seebeck
effect, called Spin Seebeck effect. This effect was first observed by Uchida et al. at 300 K
as reported in 2008 [17] and later in 2010 [18]. The setup for this experiment is depicted in
figure 1b. Since there are different Seebeck coefficients for spin down and spin up conduction
electrons, the net electromotoric force will be different for spin up and spin down electrons.
Thus, a spin up accumulation will be found at the one end and a spin down accumulation at
the other end. The chemical potential is a measure for the number of charge carriers. Thus,
the chemical potentials for spin up electrons and for spin down electrons differ from each
other at the ends of the magnet. The spin Seebeck coefficient is defined as [19]

Sxy =
Ey

∇xT
. (1.2)
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1 Introduction

The value of this coefficient for a ferromagnetic semiconductor can be found in figure 2e
of Ref. [19]. There is a behavior as a hyperbolic sine dependent on the position of the
ferromagnetic stripe. A review of the experiments and theories reported until end of 2011
was written by Uchida et al. [20].

V

Spin Seebeck effect

Metallic magnet

b

T2

T1

a Thermocouple Metal A

Metal B

∇T

E

E

T2

T1

∇T

μ↑ – μ↓

Figure 1: Figure taken from Uchida et al. [17]. (a) A thermocouple consists of two different
metals, which are connected at the hot end at temperature T1. The two cold ends are both at
temperature T2 and a voltage is measured between them. The resulting voltage is the difference
between the Seebeck voltage of metal A and B. (b) Here, a temperature gradient is applied to a
metallic ferromagnet resulting in a difference for the spin dependent chemical potentials.

Experimentally, the spin accumulation at the ends of the metal is detected via the in-
verse spin Hall effect. In figure 2a, the setup of the experiment by Uchida et al. in 2008 [17]
including platinum stripes for the measurement of the inverse spin Hall voltage is shown.
On top of the sapphire substrate, there is a ferromagnetic film, which consists of Ni81Fe19

(permalloy). In addition, on top of the ferromagnet, there are two platinum stripes. The
experimental setup, where the generated spin current is perpendicular to the applied tem-
perature gradient, is called transverse spin Seebeck effect. When it is parallel to the applied
temperature gradient, it is called longitudinal spin Seebeck effect. In case of the transverse
spin Seebeck effect, there will be a spin down accumulation at the one end and a spin up
accumulation at the other end. Uchida et al. state that the outcome of this accumulation
is a spin current from the metallic magnet into the platinum. This spin current induces a
charge current via the inverse spin Hall effect. Thus, there will be an electric field ESHE

along the platinum stripe which is perpendicular to the spin current and to the polarization
σ of the electrons. This electric field induces an electric voltage which can be measured. In
figure 2b the chemical potential for spin up and spin down electrons is shown.

The spin current, which flows from the ferromagnet into the platinum, is dependent on
the difference of the chemical potential for spin up electrons and spin down electrons. In
figure 2b, one finds a linear behavior and a sign change in the middle of the sample. Since this
chemical potential difference is proportional to the inverse spin Hall voltage, the behavior
remains in the inverse spin Hall voltage as one can find in figure 3. Uchida et al. also found
a linear spatial variation and a sign change in the middle of the setup. The magnitude
of the observed Spin Seebeck voltage increases when the applied temperature difference is
enhanced. One has to emphasize, that the resulting transverse spin Seebeck voltage is at the
order of microvolts. This is roughly the same order as for the normal Seebeck effect.
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b

Figure 2: Figure taken from Uchida et al. [17]. (a) The experimental setup is shown in this
figure. The external field H drives the magnetization of the ferromagnet. The spin current from
the metal (gray) into the platinum (blue) induces an electric field ESHE via the inverse spin Hall
effect. The dimensions of the ferromagnet are dFM = 20 nm thickness, LFM = 6 mm length
and wFM = 4 mm width. The platinum stripes are dPt = 10 nm thick, LPt = 100 µm long and
wPt = 4 mm wide. (b) The space dependent chemical potential is plotted for spin up electrons
and spin down electrons.

0

3

–3 ∇T ∇T

ΔT = 20 K

V
(µ

V
)

0

–5

5

–3

H

ΔT = 0 K

ΔT = 10 K

PtH H

1 2 30–1–2
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Figure 3: Figure taken from Uchida et al. [17]. Here, one finds the voltage V from the inverse
spin Hall effect dependent on the position xp of the platinum stripe on the magnet and for
different applied temperature differences. The larger the temperature difference is the larger the
inverse spin Hall voltage is.

At the same time, as reported in 2010, Uchida et al. [21] made measurements on the
transverse spin Seebeck effect using an insulating ferrimagnet. It is remarkable, that the
transverse spin Seebeck effect is also present in ferrimagnetic insulators. The ferrimagnet
consists of LaY2Fe5O12, wherein only phonons and magnons are able to propagate. Thus,
the effect can not be caused by a difference in the spin chemical potential for spin up and spin
down electrons. It must be mediated by magnons in the ferrimagnet. This was unexpected
until then. Electrons are not able to propagate. As the substrate, they used Gd3Ga5O12,
which is insulating and non magnetic. Thus, only phonons are able to propagate in the
substrate. On top of the LaY2Fe5O12-film, there are stripes of platinum for detecting the
spin Seebeck voltage. The setup of the experiment is shown in figure 4. In this figure,
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1 Introduction

the conversion mechanism is shown. The magnetization of the LaY2Fe5O12 is directed into
the negative x-direction. Since the magnetization of magnons is polarized into the opposite
direction, here their magnetization is polarized into the positive x-direction. The magnetic
moment is transfered to the electrons in the platinum. Since the magnetic moment of the
electron is antiparallel to their spin, the spin of the electrons is polarized in the negative
x-direction, propagating in the z-direction. Via the inverse spin Hall effect, the electrons in
the platinum are driving into the negative y-direction. Thus, an electric field will build up
in the positive y-direction as shown in figure 4.

LaY2Fe5O12

LaY2Fe5O12

H

Pt V

T + ΔT 

T (300 K)

x
y

z

a

b

Pt

M

-

σ

V

xy

z

HI

LO

Δ

T

Δ

T

EISHE

Js

Figure 4: Figure taken from Uchida et al. [21] and modified. This is a schematical setup for
measuring the transverse spin Seebeck effect by using an insulating material as ferrimagnet
(here LaY2Fe5O12). On top, there is a platinum stripe. The spin current is sketched and the
transformation to the transverse spin Seebeck voltage via the inverse spin Hall effect is shown.
The dimensions of the ferrimagnet are dFM = 3.9 µm thickness, LFM = 8 mm length and
wFM = 4 mm width. The platinum stripes are dPt = 15 nm thick, LPt = 0.1 mm long and
wPt = 4 mm wide.

Later, as reported in 2010, the transverse spin Seebeck effect was also observed in ferro-
magnetic semiconductors by Jaworski et al. [19]. Here, they took Ga1−sMssAs as magnetic
semiconductor and semi insulating GaAs as substrate. In order to obtain some informa-
tion about the mechanism of the Spin Seebeck effect, Jaworski et al. made a scratch on the
ferromagnetic semiconductor as shown in figure 5a. The scratch is only present in the ferro-
magnetic insulator and not present in the substrate. In figure 5b, the spin Seebeck coefficient
with and without the scratch is shown. The difference in the results is small, which is at first
glance inconsistent to explanations to previous experiments. Jaworski et al. explained the
effect, either there is a magnetic dipole coupling over the scratch or there is a coupling via
the phonons in the substrate. This is a first hint, that the substrate is very important for the
explanation of the transverse spin Seebeck effect, as we will see later. In the present thesis,
we will explicitly consider the role of the substrate for the Spin Seebeck effect. In chapter
3 we will calculate the phonon temperature distribution in the substrate and then analyze
the local influence on the magnon temperature distribution in an insulating ferrimagnet in
chapter 4.
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1.2 Spin Caloritronics and Spin Seebeck effect

a

b

Figure 5: Figure taken from Jaworski et al. [19]. (a) This is a setup of the experiment including
a scratch on the ferromagnetic semiconductor. The scratch is not present in the substrate. The
dimensions of the ferromagnet is dFM = 30 nm thickness, LFM = 10 − 25 mm length and
wFM = 3− 5 mm width. The platinum stripes are dPt = 20 nm thick, LPt = 0.25 mm long and
wPt = 3 − 5 mm wide. (b) Spatial variation for the spin Seebeck coefficient without (Before)
and with (After) the scratch. The gray line represents the scratch area.

As discussed above, Jaworski et al. [19] investigated the transverse spin Seebeck effect
and made a scratch in the ferromagnetic layer. There were no differences in the results with
and without the scratch. This initiated Uchida et al. [22] to make measurements, where the
ferromagnetic film has the same small surface as the platinum stripe. In figure 6 one finds
the setup of their experiment. They again used conducting Ni81Fe19 as the ferromagnetic
layer and sapphire as substrate.

Pt
Phonon

Sapphire T

Δ

EISHE

Js

MNi81Fe19

σ

Figure 6: Figure taken from Uchida et al. [22]. This is a setup of the experiment, while the stripe
of the conducting ferromagnet Ni81Fe19 has the same area as the platinum stripe on top of it.
The length of the sapphire is much larger than the length of the Ni81Fe19 and the platinum. The
substrate is Lsp = 10 mm long, wsp = 3 mm wide and dsp = 0.5 mm thick. The length of the
ferromagnet and the platinum is LFM = LPt = 0.1 mm, its width is wFM = wPt = 3 mm. The
thickness of the ferromagnet is dFM = 20 nm and the thickness of the platinum is dPt = 10 nm,
respectively.

If they compare their result [22] with previous work [17] with a setup as in figure 2,
they found a 10 times smaller result for the spin Seebeck voltage, but they are still finite.
Additionally, they performed the same experiment again and replaced the substrate by glass.
There, they found nearly no spin Seebeck voltage (cf. figure 3c of Ref. [22]). This is an
important hint that the substrate plays an important role for the transverse spin Seebeck
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1 Introduction

effect.
In figure 3 of Ref. [21], the results for the transverse spin Seebeck voltage V are shown

dependent on the position xPt of the platinum stripe on the LaY2Fe5O12-film. Uchida et al.
[21] also found a linear behavior and the sign change in the middle of the setup. The larger
the applied temperature difference is, the larger the spin Seebeck voltage is.

As reported in 2010, Xiao et al. [23] formulated a first theory for explaining the transverse
spin Seebeck effect. They considered a setup where a ferrimagnetic insulator of length L is
positioned between two insulating and non-magnetic normal metals. Thus, magnons are only
allowed to propagate in the ferrimagnet. In the calculation, one does not have to include
conduction electrons. In all setups for the transverse Spin Seebeck effect, magnons are able
to propagate in the magnet. On top of the magnet, there is a platinum stripe, while the
width w of the insulating ferrimagnet and the platinum stripe are the same. The length LPt

of the stripe is much smaller than the length of the insulating ferrimagnet (LPt < L). In
figure 1 of Ref. [23] one can find a figure of the setup. They made use of the Landau-Lifschitz-
Gilbert equation and considered first the contact between the insulating ferrimagnet and the
platinum stripe. Due to spin pumping there is a spin current from the ferrimagnet into
the normal metal (platinum). Contrary, there is a fluctuation spin current in the opposite
direction. Xiao et al. calculated the net spin current 〈Iz〉 and found the relation [23]

〈Iz〉 = L′s(T
m
F − TN) , (1.3)

where L′s denotes a material dependent parameter. Details to L′s can be found in Ref. [23].
Furthermore, TN denotes the temperature of the electrons in the normal metal (platinum),
which is assumed to be equal to the phonon temperature due to strong electron-phonon
coupling. Additionally, Tm

F denotes the temperature of the magnons in the ferrimagnet. Xiao
et al. assumed a strong coupling between the phonons in the ferrimagnet and the phonons
in the platinum. Thus, their temperatures are equal and only the magnon temperature in
the ferrimagnet deviates. The main result is, that the spin current is dependent on the
temperature difference of magnons in the ferrimagnet and the electrons in the normal metal.

Subsequently, they considered the ferrimagnetic insulator of length L to be positioned
between two insulating and non-magnetic normal metals. Extending the calculation of D. J.
Sanders and D. Walton [24] and Xiao et al. [23], one finds

∆Tmp(z) =η
sinh z

λ

sinh L
2λ

∆T (1.4)

VH =ξ
sinh zc

λ

sinh L
2λ

∆T , (1.5)

where ∆Tmp(z) denotes the z-dependent (−L/2 < z < L/2) difference between magnon
temperature and phonon temperature. The spin Seebeck voltage is denoted by VH , while
the platinum stripe sits at position zc (−L/2 < zc < L/2). The contact to the heat reservoirs
are located at z = ±L/2. ∆T is the phonon temperature difference between the left and
right contact. The parameters ξ, η and λ are material dependent and the expressions can
be found in Ref. [23]. The authors claim, that λ is in the order of millimeters (0.85 mm -
8.5 mm). This theory from Xiao et al. [23] is able to explain the experiments of Uchida et
al. [17, 18, 21]. But in the experiment of Jaworski et al. [19], they made a scratch in the
ferromagnetic film. Additionally, Uchida et al. [22] considered a very short ferromagnetic
film. In both cases, this theory is not able to explain the measured transverse Spin Seebeck
voltage, because they need a magnon push parallel to the z-axis. Later, there will be other
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1.2 Spin Caloritronics and Spin Seebeck effect

experiments which cannot be explained by this theory. This motivates us, to find a theory
which is valid by including the scratch.

Adachi et al. [25, 26] formulated a linear response theory for an insulating ferrimag-
net for the transverse spin Seebeck effect without a scratch. They found that the phonon
contribution to the spin current Idrag

s is proportional to the phonon lifetime τph

Idrag
s ∝ τph . (1.6)

This gives a hint to the discrepance of the spin Seebeck results for sapphire and glass as a
substrate. The thermal phonon conductivity is proportional to the phonon lifetime. Thus,
the curve progression of the spin Seebeck voltage follows the curve progression of the thermal
phonon conductivity (cf. figure 3 of Ref. [25]). One has to mention, that the boundaries of
the substrate and the ferrimagnetic film play an important role in their modeling. This
motivates us to consider the boundaries as perfect heat reservoirs in our calculations in
chapter 3. Adachi et al. also give a thought, how a finite spin Seebeck voltage will be
generated, if one makes a scratch in the ferromagnetic film. Then, the phonon mediated
effect will also be present in this case.

In 2011 Ohe et al. [27] reported about numerical calculations on the transverse spin
Seebeck effect with a large film of a ferromagnetic insulator. They made use of the Landau-
Lifshitz-Gilbert equation and found a linear spin Seebeck voltage with a sign change in the
middle of the setup.

Uchida et al. [22, 28, 29] also investigated another setup of experiment. Here, the tem-
perature gradient is perpendicular to the boundary surface area. The induced spin current
in the platinum film is parallel to the temperature gradient. This effect in this configura-
tion is called longitudinal spin Seebeck effect. The temperature gradient is created by two
thermal heat baths with a different temperature [28, 29]. In another experiment Uchida et
al. [22] used a piezoelectric actuator for producing phonons. The longitudinal spin Seebeck
effect is better understood and more stable than the transverse Spin Seebeck effect. Thus,
we concentrate on the transverse Spin Seebeck effect in this thesis.

As reported in 2011, Jaworski et al. [30] made measurements on the transverse spin
Seebeck effect using a magnetic semiconductor (GaMnAs) film without a scratch. If one
compares the temperature dependence of the spin Seebeck coefficient with the temperature
dependence of the thermal conductivity of the insulating and non magnetic substrate (GaAs),
one finds qualitatively the same curve progression. This is again a hint, that the effect is
mainly influenced by the phonons of the substrate and we will analyze this in chapter 3.

As reported in 2013, Agrawal et al. [31] made a direct measurement of the magnon
temperature in the transversal Spin Seebeck effect setup. They used the insulating and non
magnetic gallium gadolinium garnet (GGG) as a substrate and yttrium iron garnet (YIG)
as the ferrimagnetic and insulating film. A picture of the setup can be found in figure
1 of Ref. [31]. There are no platinum stripes on top of it. Both ends of the substrate
are connected to Peltier elements, which generate the temperature difference and thus the
temperature gradient. The equilibrium distribution of magnons is determined by the Bose-
Einstein distribution (cf. Eq. (2.8)). Thus, when the temperature of the magnons becomes
larger, there are more magnons present in the analyzed area. The presence of one magnon
reduces the magnetization of the ferrimagnet by one Bohr magneton.

The magnon temperature is measured by using Brillouin light scattering. There, a laser
light is spotted on the position, where one wants to measure the magnon temperature.
One photon of the laser light absorbs one magnon out of the magnetic film and will be
reflected. By measuring the frequency of the reflected photon, one can conclude how large
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the temperature is, because the dispersion relation of the magnons is temperature dependent.
In figure 7 one finds the results for the measured phonon and magnon temperature.
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Figure 7: Figure taken from Agrawal et al. [31]. The measured phonon and magnon temperature
dependent on the position at the sample are plotted. Additionally, the fit curve of the phonon
temperature data is plotted. They calculated and plotted the magnon temperature by using the
model out or Ref. [23] and used λ = 0.47 mm. The length of YIG-film and GGG substrate
are LYIG = LGGG = 10 mm, its width are wYIG = wGGG = 3 mm. The thickness of the
GGG-substrate is dGGG = 0.5 mm, while the thickness of the YIG-film is dYIG = 6.7 µm.

Surprisingly, the difference between magnon and phonon temperature is much smaller
than predicted by Xiao et al. [23]. Xiao et al. predicted that λ is in the order of millimeters
(0.85 mm - 8.5 mm). Here, they found a maximal value of λ = 0.47 mm, which is one
magnitude smaller. If one would set in this measured parameter by Agrawal et al. into Eq.
(25) of Ref. [23], one would find a voltage, which is more than one magnitude smaller and has
a different curve progression than measured in experiments by Uchida et al. with a magnetic
insulator [21]. This motivates us to neglect the effect described by Xiao et al. [23] or by
D. J. Sanders and D. Walton [24] and search for other contributions to the transversal spin
Seebeck effect.

Agrawal et al. [31] state, that their method is only applicable to detect short wavelength
magnons (km & 106 rad cm−1). They cannot detect the temperature for long wavelength
magnons (km < 105 rad cm−1), which could be different to the short wavelength magnons
and may drive the spin Seebeck voltage. This motivates us to analyze the wave-vector
dependent phonon temperature in chapter 3. After that in chapter 4 and 5 we will analyze
how the magnons are influenced by the phonons. There, we will find that long wavelength
phonons will have a different temperature than short wavelength phonons. This influences
the magnons, that long wavelength magnons will have a different temperature than short
wavelength magnons. Hence, our calculations will qualitatively agree with the measurement
of Agrawal et al..

The role of the substrate is very important, just as reported by Tikhonov et al. [32] in
2013. They investigated the transverse spin Seebeck effect and made the first wave vector
dependent calculations. A spatial non uniform phonon distribution in the substrate was
found, which leads to a spatial non uniform temperature distribution. This non uniformity
holds in the proximity of the heat bath reservoirs and leads to a finite longitudinal spin
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Seebeck voltage. They estimated the transverse spin Seebeck voltage to be at the order of
microvolts. Again, this is a hint that we have to consider the role of the substrate.

As reported in 2013, Schmid et al. [33] made measurements on the transverse spin Seebeck
effect. Their results are at the order of nanovolts, which is much smaller than microvolts mea-
sured by Uchida et al. in Ref. [17, 22]. Among other things, they used permalloy (Ni80Fe20)
as conducting ferromagnet onto insulating and non magnetic GaAs or MgO as substrate. On
figure 4 of Ref. [33] one finds the results for the spin Seebeck voltage. Furthermore Schmid
et al. found finite values when there is no temperature difference applied to the substrate.
Thus, they claim, there must be a different thermoelectric mechanism, which explains the
result.

To investigate the role of the substrate, Schmid et al. made the same measurements with
GaAs as a substrate and taking the same size for the substrate (see supplemental material
of Ref. [33]). The results for the spin Seebeck voltage are not different to using MgO as a
substrate. Additionally they made measurements on MgO as a substrate, but with copper
stripes in lieu of platinum stripes (see supplemental material of Ref. [33]). Copper has a
much lower spin Hall angle, why one would expect a much smaller signal for the spin Seebeck
voltage. But again, they found the same magnitude and behavior in the spin Seebeck voltage.
This emphasizes, that there must be a different thermoelectric mechanism, which explains
the behavior of the result. Schmid et al. state [33], that the transversal spin Seebeck effect
cannot be detected in their detection limit. This contradiction to previous measurements
motivates us to investigate the transversal spin Seebeck effect theoretically.

Actually, there are more publications reporting a small or a vanishing transverse spin
Seebeck voltage. Huang et al. [34] did not reproduce the results in a metal from Uchida et
al. [17]. They found, that the voltage is strongly dependent on the distance to the heater.
This approves us to include the heat baths in our calculation and we will model them as
perfect heat reservoirs.

Avery et al. [35] claim, that their transverse spin Seebeck voltage in a permalloy and
nickel films is at least one order of magnitudes smaller than measured in experiments before.
Meier et al. [36] made measurements with metallic and ferromagnetic permalloy (Ni80Fe20)
film on insulating MgO or sapphire as substrate. In the platinum stripes on top, they
just found a voltage which can be attributed to the planar Nernst effect and not to the
transverse Spin Seebeck effect. Beyond, they found when there is a temperature gradient
which is perpendicular to the permalloy area, then there will be a finite voltage. Bui et al.
[37] investigated the transverse spin Seebeck effect by using half-metallic and ferromagnetic
La2/3Sr1/3MnO3 and SrTiO3 as a substrate (see supplemental material of Ref. [37]). Only
the planar and anomalous Nernst effect was observed in their experiments. They claim, that
they did not find a contribution from the transverse spin Seebeck effect. The transverse spin
Seebeck effect with semi-conductors (GaMnAs) was also investigated by Soldatov et al. [38].
Here, GaAs is used as a substrate. On top, there are platinum stripes. They claim, that the
contribution from the transverse spin Seebeck effect to the measured voltage is negligible.

Meier et al. [39] investigated the transverse spin Seebeck effect by using ferrimagnetic
and insulating YIG (Y3Fe5O12) as well as NFO (NiFe2O4). Here, GGG (Gd3Ga5O12) is used
as a substrate. First, they made measurements by using gold bonding wires which is 25 µm
thin to detect the spin Seebeck voltage. Then, no signal was found in the order of microvolts.
After that, they used wolfram needles with a contact area of 0.003 mm2 for detecting the
spin Seebeck voltage. Again, there was no spin Seebeck voltage in the order of microvolts.
Surprisingly, when they increased the contact area of the wolfram needles up to 0.27 mm2,
there was a voltage measured in the order of microvolts. Meier et al. [39] found, that the
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signal becomes larger, when the temperature difference of the contact needles is larger as well
as the signal also becomes larger, when the contact area of the wolfram needles is increased.
Because the wolfram needles have a temperature other than that in the substrate, there
is a temperature gradient perpendicular to the area of the ferromagnet. This temperature
gradient influences a longitudinal spin Seebeck effect, which then can be measured. The
signature of the measured signal can look like a transverse spin Seebeck effect. Besides, one
has to mention, that this effect would hold, if one makes a scratch into the ferromagnetic
film. Thus, one really should be careful when interpreting spin Seebeck voltage signals.

Shestakov et al. [40] investigated the transversal spin Seebeck effect and found that a
parasitic external magnetic field leads to a signature which can be wrongly interpreted as
transverse spin Seebeck signal. Normally in the experiment, the direction of the external
magnetic field is fixed. Starting at a large positive magnetic field intensity, the intensity
will be reduced, passing through the zero and finishing at a large negative magnetic field
intensity and an antiparallel direction. When there is an additional magnetic field showing
in a fixed direction and not varied in the field strength, the summation of both fields is not
passing through the zero. In addition the starting direction of the summation fields is not
antiparallel to the summation of the finishing field.

The contradictory measurements of the transverse spin Seebeck voltage in experiments
motivate us, to find a theory which clarifies the contradictions. There are also theories,
which only explain a part of the experiments. Here, we want to fill the gap. This we do by
using the Boltzmann equation.

The theories of Sanders and Walton [24] and Xiao et al. [23] only explain the effect with
a continuous film of ferromagnet as done by Uchida et al. [17, 18, 21]. Their theories do not
explain the transverse spin Seebeck voltage if one makes a scratch in the ferromagnetic film
as done by Jaworski et al. [19] and later in similar ways by Uchida et al. [22]. Additionally,
measurements of Agrawal et al. [31] claim the effect to be small. In reports of Schmid et
al. [33] and in other reports, the measured transverse spin Seebeck effect is small. This is a
contradiction to the experiments of Uchida et al. [17, 18, 21]. Because of that, we want to
develop a theory to find out, how large the transverse spin Seebeck voltage should be.

1.3 Outline of this thesis

In chapter 2, we present methods of transport theory, which we will use in this thesis. The
method of quasi particles and the Boltzmann equation are introduced. After that, we present
the relaxation time approximation, which is a useful approximation to solve the Boltzmann
equation. We will use these methods in chapter 3, where we will investigate the pure phonon
problem. There, a temperature difference is applied to a insulating and non-magnetic sub-
strate and we will calculate the space dependent temperature and phonon density. In chapter
4, we will investigate a thin and insulating but ferrimagnetic film (out of Y3Fe5O12) on top of
the substrate. Since the ferrimagnetic film is thin compared to the substrate, we claim that
the phonons are approximately not influenced by the magnons. Instead, the magnons are
influenced by the phonons via phonon-magnon interaction. This influence will be calculated
in chapter 4. Beyond, we will add the magnon-magnon interaction. Its influence will be
calculated in chapter 5. In chapter 6, we will investigate a junction out of a ferrimagnet
and a normal metal. The spin current will be calculated, which is created by magnons at
a different temperature. The results are presented and discussed in chapter 7. Finally in
chapter 8, we will summarize the results and give an outlook on potential future research
related to the content of this thesis.

18



2 Methods of transport theory

2.1 Method of quasi particles

In the entire thesis we work with the Boltzmann equation. The Boltzmann equation is a
statistical equation and describes the evolution of the phase space density inside a medium
and finds application in many fields of physical research. Especially, the Boltzmann equation
is appropriate to describe transport phenomena of quasi particles in solids. A quasi particle
is a theoretical exemplary description of an elementary excitation in a many-body-system,
for instance inside a solid. The benefit of quasi particles is, that you can describe them as
classical particles. They exhibit a quasi particle mass and are able to scatter with other
particles and quasi particles. Additionally in these scattering events, conservation of energy
and momentum needs to be fulfilled like in classical mechanics. But for some quasi parti-
cles, there is a small difference in momentum conservation. The quasi particle momentum
conservation needs to be fulfilled up to a reciprocal lattice vector. Quasi particles also ex-
hibit a dispersion relation, which can be different for different types of quasi particles. Lew
Dawidowitsch Landau was the first physicist, who introduced the concept of quasi particles.

In the thesis, we will work with electrons, phonons and magnons. Electrons will be
described with the theory of the free electron gas. In this theory, which is appropriate for a
metallic conductor, the solid is composed out of metal ions and valence electrons. The ions
are fixed and the valence electrons are able to propagate through the solid like free particles.
A homogeneous background charge is created by the ions. The valence electrons have an
energy level close to the Fermi energy. In the model, the electrons have a quadratic energy
dispersion relation

ε~k =
|~p|2
2m∗

=
~2|~k|2
2m∗

, (2.1)

while ~p denotes the momentum of the electron and ~k = ~p/~ the corresponding De Broglie
wave vector of the electron. The reduced mass is described by m∗ and is a model parameter
depending on the specific band structure of the metal. This parameter will be fixed in that
way, that electrons close to the Fermi surface are well described. In statistics, electrons will
be described by the Fermi-Dirac distribution for fermions. This reads

f
(0)
~k

=
1

e(ε~k−µ)/(kBT0) + 1
, (2.2)

while f
(0)
~k

is the equilibrium electron particle density, µ denotes the chemical potential, kB

the Boltzmann constant and T0 the average temperature for the electrons. The energy ε~k is
taken from Eq. (2.1).

Phonons are described by the method of quasi particles. In a solid, the atoms are arranged
in a lattice structure, which is repetitive. Thus, the atoms are able to oscillate around their
position in the lattice structure. These oscillation can be described by a quantum mechanical
harmonic oscillator. In this model, the excitation energy is quantized. A phonon describes
elementary excitation of a wave, which propagates through the solid using the atoms as a
medium. In that way, energy, heat and sound can be transported through the solid. In our
calculations, we are working with a simple dispersion relation. It is

ω~p = cPh |~p| , (2.3)

where ~p denotes the wave vector and cPh denotes the sound velocity. This linearity is true,
as long as excitations are low enough. The statistics of the phonon is described by the
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Bose-Einstein distribution for bosons. This reads

n
(0)
~p =

1

eω~p/(kBT0) − 1
, (2.4)

where n
(0)
~p is the equilibrium phonon particle density and T0 the average temperature for

the phonons. For a deeper study of phonons, we refer to the book by G. P. Srivastava [41],
especially to the chapter two, or the book by N. W. Ashcroft and N. D. Mermin [42].

In the model, every atom of the ferromagnet, ferrimagnet or other magnets carries a spin,
which has an orientation. The spins are coupled to their nearest neighbor by dipole-dipole
interaction and exchange interaction. Thus, the spins form a grind, in which spin waves are
able to propagate. An elementary excitation of such a spin wave is called magnon. Magnons
are also described by the method of quasi particles. In our case, we only consider magnons
inside a ferrimagnet. The exact magnon dispersion is dependent on an external magnetic
field and the local magnetization, see Eq. (7.9) on page 181 in Ref. [43].

ε~k =

√
(ωH +Dexk2)(ωH +Dexk2 + ωM sin2(ϑk)) . (2.5)

The parameter ϑk denotes the angle between the direction of the magnetization ~M and the
vector ~k. In our case, the dispersion of ferrimagnetic magnons will approximated by an
quadratic term plus an offset ωoff. It is

ε~k ≈ ωoff +Dexk
2 ωoff =

√
ωH(ωH + ωM sin2(ϑk)) . (2.6)

This equation is valid if ωoff � Dexk
2 and when ωoff � Dexk

2. If one sets k = 0 into
Eq. (2.5) and into Eq. (2.6), one will find the same result. Additionally, if one assumes
ωoff � Dexk

2 or ωH, ωM � Dexk
2, both expressions in Eq. (2.5) and in Eq. (2.6) can be

approximated to ε~k ≈ Dexk
2. Later, when we set in numbers into this expression, we will

see good accordance for all wave numbers k between the exact result and the approximation.
The other parameters in the dispersion relation are [43, p. 12 and 15]

ωH = γH0 ωM = 4πγM0 . (2.7)

The parameter H0 denotes the field strength of an external magnetic field. M0 denotes
the field strength of the local magnetization of the ferrimagnet. Beyond, γ denotes the
gyromagnetic ratio for the electron. Since magnons will be treated as bosons, the equilibrium
magnon density is Bose-Einstein distributed. It is [43, p. 203]

f
(0)
~k

=
1

eε~k/(kBT0) − 1
, (2.8)

while f
(0)
~k

denotes the magnon equilibrium particle density and T0 the average temperature
for the magnons. For a deeper study of magnons, we refer to the book by A. G. Gurevich
and G. A. Melkov [43].

2.2 Boltzmann equation

The Boltzmann equation was developed by Ludwig Boltzmann in 1872 [44]. In quantum me-
chanics, position and momentum cannot be determined exactly, which is known as Heisen-
berg’s uncertainty relation. Since the Boltzmann equation uses position and momentum
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as well, the position and momentum must be that large, that the uncertainty from the
Heisenberg’s uncertainty relation becomes small. This is expressed in a formula [45]

p� ∆p ≥ ~
∆r
� ~

l
, (2.9)

while p denotes the momentum of a (quasi-)particle, ∆p the uncertainty of the momentum,
~ the Planck constant, l the length between two scattering events of a particle and ∆r
its uncertainty in the position. As introduced in the subsection 2.1, we assume that there
is a (quasi-)particle distribution n~k dependent of the position, momentum and time. The
Boltzmann equation describes the development of this distribution function. The distribution
function can change by three different mechanisms: diffusion, external fields and scattering
[46, p. 264 f]. One can evaluate the total time derivative of the distribution function

dn

dt
=
∂n

∂t
+
∂~r

∂t
· ~∇~r n+

∂~k

∂t
· ~∇~k n =

∂n

∂t

∣∣∣∣
scattering

, (2.10)

while ~∇~r denotes the gradient in ~r-space and ~∇~k the gradient in ~k-space. In the stationary
case, the partial derivative of the time vanishes ∂n/∂t = 0. Additionally, we use ∂~r/∂t = ~v~k.
Thus, the equation reads

~v~k · ~∇~r n+
∂~k

∂t
· ~∇~k n =

∂n

∂t

∣∣∣∣
scattering

, (2.11)

which is the standard form of the Boltzmann equation. The term on the right hand side
of the Boltzmann equation is the collision term. This term describes the changing of the
particle distribution due to scattering events. The first summand of this equation is the
diffusion-term, where a local imbalance of the particle distribution tends to equalize itself.
The second summand of this equations is the external field term. In [46, p. 97 and p. 264],
one finds the expression for ∂~k/∂t. It reads

∂~k

∂t
=

1

~
∂~p

∂t
=

1

~
~F

∂~k

∂t
=
e

~

(
~E +

1

c
~v~k × ~H

)
, (2.12)

while e denotes the elementary charge, ~ the Planck constant, ~E the strength of an external
electrical field, c the velocity of light, ~v~k the ~k-dependent velocity of the particle and ~H the
strength of an external magnetic field. The equation is valid for positive charge carriers. In
case of electrons, one has to replace e by −e. The diffusion term can further be expressed
by an external temperature gradient. It is

~∇~r n =
∂n

∂T
~∇~rT = −ε~k

T

∂n

∂ε~k

~∇~rT , (2.13)

which is valid for bosons as well as for fermions. Thus, an external temperature gradient
can also cause an deviation in the particle density. Later, we will take the temperature as
an open parameter, which will be determined in a resulting differential equation.

Now, we have to write down the collision term. This term is strongly dependent on the
predominant interaction processes. There exists an recipe to set up the collision term for any
interaction processes, which is a first order approximation in the interaction strength. We
will exemplify this recipe in case of electron-phonon interaction. At the beginning, one has
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to write down all the transition probabilities of the certain interaction. The collision term
will be set up for a certain particle state f~k. All interaction processes, which increase the
particle distribution f~k arise with a positive sign inside the collision term. Consequentially,
all interaction processes, which decrease the particle distribution f~k arise with a negative
sign. The collision term for electron-phonon interaction reads [47, p. 19]

∂f~k
∂t

∣∣∣∣
scattering

=
∑
~p

{
W (e~k+~p

→ e~k + Ph~p) +W (e~k+~p
+ Ph−~p → e~k)

− W (e~k + Ph~p → e~k+~p
)−W (e~k → e~k+~p

+ Ph−~p)
}
, (2.14)

while f~k denotes the electron distribution function and W (e~k+~p
→ e~k + Ph~p) denotes the

transition rate for the scattering process, where an incoming electron with momentum ~k+ ~p
is converted into one electron with momentum ~k by emitting a phonon with momentum ~p.
Since this interaction increases the number of electrons with momentum ~k, it arises with a
plus sign. Analogously, we are able to write down the collision term for phonons. Thus, we
find [47, p. 19]

∂n~p
∂t

∣∣∣∣
scattering

=
∑
~k

{
W (e~k+~p

→ e~k + Ph~p)−W (e~k + Ph~p → e~k+~p
)
}
, (2.15)

while n~p denotes the phonon distribution function. For writing out the transition probability,
there also exists an recipe. The electron-phonon Hamilton operator in second quantization
reads [47, p. 6]

Hel-ph =
∑
σ,~k,~p

M~k,~p
(a†
−~p + a~p)c

†
~k+~p,σ

c~k,σ , (2.16)

where M~k,~p
denotes the strength of the electron-phonon-coupling, a~p is an operator annihi-

lating a phonon with momentum ~p, a†
−~p is an operator creating a phonon with momentum

−~p, c~k,σ is an operator annihilating an electron with momentum ~k and spin σ and c†~k+~p,σ
is an

operator creating an electron with momentum ~k + ~p and spin σ. The transition probability
then follows Fermi’s golden rule [47, p. 7]

W =
2π

~
|〈f|Hel-ph|i〉|2 δ(Ef − Ei) , (2.17)

while 〈f| denotes the final state with its energy Ef and |i〉 denotes the initial state with its
energy Ei.

For writing down the matrix element with particle densities, there exist a recipe. We will
explain this recipe by means of the electron phonon interaction in Eq. (2.18). Let f~k denote

the electron distribution function for wave vector ~k and n~p denote the phonon distribution
function for wave vector ~p. In Eq. (2.18), the transition from one incoming electron with
wave vector ~k+~p to one outgoing electron with wave vector ~k and one outgoing phonon with
wave vector ~p is described. In general, for the incoming particle, its particle distribution
occurs. The larger one state is occupied, the larger will be the transition probability. If
there are two types of particle states involved in the incoming state, the product of both
particle densities will arise. This is attended by the principle, that the interaction tends
to equilibrate the states. In our example Eq. (2.18), the electron density f~k+~p

with wave

vector ~k + ~p occurs. For the outgoing state, it will be the same rule unless the particle
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2.3 Relaxation time approximation

densities arise with (1− f~k) for fermions and with (1 + n~p) for bosons. Because of the Pauli
principle for fermions, a state can be occupied maximal one time and the density (1 − f~k)
is always positive. Thus, for fermions, the larger the state is occupied, the lower will be
the transition probability. This is similarly attended by the principle, that the interaction
tends to equilibrate the states. In our example Eq. (2.18), for the outgoing electron, we write
(1− f~k) and for the outgoing phonon we write (1 +n~p). The recipe tells us, that both terms
have to occur as factors. Now, we are able to write down, the transition probabilities out of
Eq. (2.14) and find

W (e~k+~p
→ e~k + Ph~p) =

2π

~

∣∣∣M~k,~p

∣∣∣2 f~k+~p
(1− f~k)(1 + n~p)δ(ε~k+~p

− ε~k − ω~p) (2.18)

W (e~k+~p
+ Ph−~p → e~k) =

2π

~

∣∣∣M~k,~p

∣∣∣2 f~k+~p
n−~p(1− f~k)δ(ε~k+~p

+ ω−~p − ε~k) (2.19)

W (e~k + Ph~p → e~k+~p
) =

2π

~

∣∣∣M~k,~p

∣∣∣2 f~kn~p(1− f~k+~p
)δ(ε~k + ω~p − ε~k+~p

) (2.20)

W (e~k → e~k+~p
+ Ph−~p) =

2π

~

∣∣∣M~k,~p

∣∣∣2 f~k(1− f~k+~p
)(1 + n−~p)δ(ε~k − ε~k+~p

− ω−~p) . (2.21)

Thus, we are able to write down the collision term for the electrons. We set Eq. (2.18) until
Eq. (2.21) into Eq. (2.14) and find

∂f~k
∂t

∣∣∣∣
scattering

=
2π

~
∑
~p

∣∣∣M~k,~p

∣∣∣2 [{f~k+~p
+ f~k+~p

n~p − f~k+~p
f~k − f~kn~p

}
δ(ε~k+~p

− ε~k − ω~p)

+
{
f~k+~p

n−~p + f~kf~k+~p
− f~k − f~kn−~p

}
δ(ε~k+~p

+ ω−~p − ε~k)
]
.

(2.22)

Additionally, we are able to write down the collision term for phonons. We set Eq. (2.18)
and Eq. (2.20) into Eq. (2.15) and find

∂n~p
∂t

∣∣∣∣
scattering

=
2π

~
∑
~k

∣∣∣M~k,~p

∣∣∣2 [f~k+~p
+ f~k+~p

n~p − f~k+~p
f~k − f~kn~p

]
δ(ε~k+~p

− ε~k − ω~p) . (2.23)

2.3 Relaxation time approximation

Often, there does not exist an exact analytic solution to the Boltzmann equation out of the
upper section. We are able to write down the Boltzmann equation in a short way, called
relaxation time approximation. It is

∂f~k
∂t

= −δf~k
τ~k

= −
f~k − f

(0)
~k

τ~k
, (2.24)

where f
(0)
~k

is the equilibrium density functions for the considered particles with wave vector

~k. Additionally, τ~k denotes the relaxation time. In principle, one can write down a relaxation
time approximation for many interaction processes. Often, this can be done by linearizing the
collision integral. Here, one divides the distribution function in the sum of one equilibrium
part and one deviation part. In Ref. [47, p. 20 ff], the relaxation time is calculated for
the electron-phonon interaction in a solid. The Boltzmann equation (2.24) is now solvable
analytically. One finds

f~k = f
(0)
~k

+ C · e−t/τ~k , (2.25)

while C is an open parameter, which needs to be fixed by boundary conditions.
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2 Methods of transport theory

2.3.1 Electrical conductivity

Using the relaxation time approximation, we are able to solve simple transport applications.
We will apply an electric field to a metal and calculate the electrical current and the electrical
conductivity. We are taking Eq. (2.10), Eq. (2.12) and Eq. (2.24) by using f~k for the electron
density distribution. Since Eq. (2.12) is composed for positive charge carriers, one has to
replace e by −e for electrons. Thus, the Boltzmann equation for electrons reads

− e

~
~E · ~∇~k f

(0)
~k

= −δf~k
τ~k

. (2.26)

It is

~∇~k f
(0)
~k

=
∂f

(0)
~k

∂ε~k

~∇~k ε~k =
∂f

(0)
~k

∂ε~k
~~v~k , (2.27)

while this uses the expression for the quasi particle velocity [46, p. 92]

~v~k =
1

~
~∇~k ε~k . (2.28)

Thus, one finds for the Boltzmann equation

− e
∂f

(0)
~k

∂ε~k

(
~E · ~v~k

)
= −δf~k

τ~k
. (2.29)

Since the equilibrium electron distribution function f
(0)
~k

does not depend on the direction of

~k and only depend on the absolute value, the following relation is true

B.Z.∑
~k

e~v~k f
(0)
~k

= 0 . (2.30)

The charge current ~jel will be measured for positive charge carriers, that is in technical
current direction. Electrons will flow into the opposite direction. The charge current will
then be calculated by

~jel =
B.Z.∑
~k

e~v~k f~k =
B.Z.∑
~k

e~v~k δf~k = e2
B.Z.∑
~k

τ~k ~v~k

(
~E · ~v~k

) ∂f (0)
~k

∂ε~k
. (2.31)

Remember, the term (∂f
(0)
~k

)/(∂ε~k) is always negative. Ohm’s law is

~jel =
↔
σ · ~E . (2.32)

Thus, we can write down the expression for the electrical conductivity

↔
σ= e2

B.Z.∑
~k

τ~k ~v~k ⊗ ~v~k
∂f

(0)
~k

∂ε~k
, (2.33)

while the operator ⊗ denotes the outer product. The final electron distribution function

consists of two summands, first the equilibrium density f
(0)
~k

(cf. Eq. (2.2)), and second the

deviation δf~k (cf. Eq. (2.29)). The second summand is linear dependent on the electric field.

It is f~k = f
(0)
~k

+ δf~k. In figure 8, the influence of an electric field on the band structure for
the electrons is shown.
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2.3 Relaxation time approximation
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Figure 8: This figure is taken from [45], showing a band structure for an electronic system and
demonstrating the impact of an applied electrical field on the occupation of electrons. The

distribution function f~k = f
(0)
~k

+ δf~k denotes, which state is occupied and which is not occupied.
The thick line marks occupied states as well as the thin line marks unoccupied states. On the
left picture, no electric field is applied. Thus, δf~k = 0 and the electrons are filled symmetrically
up to the Fermi energy. The velocity of the electrons is v = p/m. Since for every electron there
is always a partner with opposite momentum, the net momentum and net velocity are zero. On
the middle picture, a small electric field is applied, which is directed to the left. Thus, there
is a momentum shift δf~k like described in Eq. (2.29). In that equation, the scalar product of

electric field and velocity occurs. The term (∂f
(0)
~k

)/(∂ε~k) is always negative. Hence, when both
vectors are parallel, the electron distribution is decreased and when both vectors are antiparallel,
the electron distribution is increased. There are electrons, which do not have a partner with
opposite momentum. Thus, for the electrons, there is a net momentum and a net velocity to the
right. Since electrons carry negative charge, the positive net charge current is directed to the left.
On the right picture, the electric field is increased again. Thus, the deviation from equilibrium
becomes larger and the net current becomes larger too.

2.3.2 Thermal conductivity

Now, we want to consider a system, which is heated on the left side at temperature TL and
cooled on the right side at temperature TR. In chapter 3, we consider a material, where only
phonons are able to propagate. Hence we assume, that only phonons contribute to the heat
transport. Thus, there will be a temperature gradient, which affects the phonon distribution
function. The easiest description would be a one-dimensional Boltzmann approach on the
thermodynamic level. The 1D-Boltzmann equation in relaxation time approximation form
reads for phonons

∂n
(0)
p

∂t
=
∂n

(0)
p

∂T

∂T

∂x

∂x

∂t
= −ωp

T0

∂n
(0)
p

∂ωp
vp
∂T

∂x
= −δnp

τp
, (2.34)

while ωp denotes the phonon dispersion energy, vp the phonon velocity, τp the phonon re-
laxation time, T the phonon temperature, T0 = (TL + TR)/2 the room temperature and

n
(0)
p the unperturbed phonon distribution, which is of Bose-Einstein form like in Eq. (2.4).
δnp denotes the deviation from the Bose-Einstein distribution. One has to mention, that
derivatives of this deviation are assumed to be small in the upper formula. The heat current
can be calculated by

jtot =
B.Z.∑
p

ωpvpnp =

B.Z.∑
p

ωpvp(n
(0)
p + δnp) =

B.Z.∑
p

ωpvp(δnp) =
B.Z.∑
p

v2
pτp

ω2
p

T0

∂n
(0)
p

∂ωp

∂T

∂x
= −κ∂T

∂x
,

(2.35)
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2 Methods of transport theory

with

κ = −
B.Z.∑
p

v2
pτp

ω2
p

T0

∂n
(0)
p

∂ωp
. (2.36)

Remember, the term (∂n
(0)
p )/(∂ωp) is always negative. Here, vp denotes the absolute value

for the sound velocity. The sum over ωpvpn
(0)
p vanishes, because n

(0)
p , vp are even and ωp is

odd in momentum p. By current conservation, the current derivative has to vanish

∂jtot
∂x

= 0 . (2.37)

Thus, there is only a constant or linear solution to the differential equation for the temper-
ature. Including the two boundary conditions T (−L/2) = TL = T0 + ∆T and analogously
T (L/2) = TR = T0 −∆T , one finds for the temperature

T (x) = T0 −
2∆T

L
x . (2.38)

The current can then be calculated out of Eq. (2.35).

jtot =
2∆T

L
κ . (2.39)

In this simple model, there will be no perpendicular net current of phonons. Besides, in
this calculation the temperature is uniform and not wave vector dependent. And there is no
mechanism, which causes the sign change in the measured spin current.

2.3.3 Thermal conductivity in three dimensions

Now, we consider a three-dimensional Boltzmann approach on the level of temperatures.
Here, we consider the temperature to be independent on the wave vector. But, the tem-
perature will be space dependent. If one assumes the walls of the substrate to be perfect
reflectors, they work as mirrors for the system. The mirrors are located opposite to each
other. Furthermore, the mirrors at y = 0 and y = B are modeled as perfect reflecting walls.
This corresponds to the Eqs. (3.23) and (3.24). Analogously, one finds equations for the
mirrors at z = 0 and z = D. Because of these mirror-walls, the system becomes periodic in
2B and 2D. Since the boundary conditions at the heat reservoir is independent in y and z,
the system becomes translation invariant in y and z. Thus, the system can be described ef-
fectively as infinite system in y- and z-direction with a periodicity and period length 2D and
2B. At x = −L/2, there is one contact area to the ideal thermal heat bath at temperature
TL. Respectively, at x = L/2, theta is another contact area to the ideal thermal heat bath at
temperature TR. The 3D-Boltzmann equation with the relaxation time approximation reads

∂n~p
∂t

=
∂n

(0)
~p

∂T

[
∂T

∂x

∂x

∂t
+
∂T

∂y

∂y

∂t
+
∂T

∂z

∂z

∂t

]
= −ω~p

T0

∂n
(0)
~p

∂ω~p
~v~p · ~∇T = −δn~p(~r)

τ~p
, (2.40)

while ω~p denotes the phonon dispersion energy, ~v~p the phonon velocity, τ~p the phonon relax-

ation time, T the phonon temperature, T0 = (TL + TR)/2 the room temperature and n
(0)
~p

the unperturbed phonon distribution, which is of Bose-Einstein form (cf. Eq. (2.4)). The
function δn~p denotes the deviation of the Bose-Einstein distribution, so

n~p = n
(0)
~p + δn~p . (2.41)
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2.3 Relaxation time approximation

One has to mention, that derivatives of this deviation δn~p are assumed to be small in Eq.
(2.40). Now, we assume delta scatterers as the main and only scattering process in the bulk
material. This implies

τ~p = τp . (2.42)

Because ω~p and n
(0)
~p are only dependent on the absolute value of ~p, the following relation

holds

B.Z.∑
~p

ω~p~v~pn
(0)
~p =

B.Z.∑
~p

ωpn
(0)
p ~v~p =

B.Z.∑
~p

ωpn
(0)
p vp · êr = 0 , (2.43)

while êr denotes the unit vector in ~p direction in spherical coordinates. For the last trans-
formation we transformed the sum into spherical coordinates and used∫ 2π

0

∫ π

0
sin(ϑ) êr dϑ dφ = 0 . (2.44)

Now, v0 denotes the sound velocity of the phonons. By writing ~v~p = v0 ê~p = v0 ~p/p and using
Eq. (2.40), the heat current can be calculated by

~jtot =
B.Z.∑
~p

ω~p~v~pn~p =
B.Z.∑
~p

ω~p~v~p(n
(0)
~p + δn~p) =

B.Z.∑
~p

ω~pv~p(δn~p)

=
B.Z.∑
~p

τp
ω2
~p

T0

∂n
(0)
~p

∂ω~p
~v~p

(
~v~p · ~∇T

)

=
B.Z.∑
~p

τp
ω2
~p

T0

∂n
(0)
~p

∂ω~p
~v~p

1

p

[
∂T

∂x
v0px +

∂T

∂y
v0py +

∂T

∂z
v0pz

]
. (2.45)

If one now investigates the terms of being even or odd under inversion of px, py and pz, one
may cancel odd terms. Then, one finds

jtot,i =
B.Z.∑
~p

τp
ω2
~p

T0

∂n
(0)
~p

∂ω~p

v2
0p

2
i

p2

∂T

∂xi
= −κ3D

∂T

∂xi
, (2.46)

with

κ3D = −
B.Z.∑
~p

τp
ω2
~p

T0

∂n
(0)
~p

∂ω~p
v2

0

p2
i

p2
= −1

3

B.Z.∑
~p

τp
ω2
~p

T0

∂n
(0)
~p

∂ω~p
v2

0 . (2.47)

At the heat reservoirs, one finds the following property because of translational invariance
of the system

∂T (−L/2)

∂y
=
∂T (−L/2)

∂z
= 0

∂T (L/2)

∂y
=
∂T (L/2)

∂z
= 0 . (2.48)

This property must be conserved and the translation symmetry makes

∂jtot
∂y

= 0
∂jtot
∂z

= 0 . (2.49)
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2 Methods of transport theory

Thus, the solution becomes the same as in one dimension, which was calculated in section
2.3.2. Including the two boundary conditions T (−L/2) = TL = T0 + ∆T and analogously
T (L/2) = TR = T0 −∆T , one finds for the temperature

T (x) = T0 −
2∆T

L
x . (2.50)

The current can then be calculated out of Eq. (2.46).

jtot,x =
2∆T

L
κ3D . (2.51)

In this simple model, there will be no perpendicular net current of phonons. The system is
translational invariant. Thus, if there is a perpendicular net current. This current would also
be translational invariant. Thus, the origin of this current must placed at infinity, which we
exclude in our calculation. If one now has a closer look at the phonon-distribution-function
at the boundaries, one finds that the resulting function is not of Bose-Einstein form for
incoming and outgoing particles. The function reads

n~p =n
(0)
~p + δn~p

=
1

eω~p/(kBT ) − 1
+ τp

ω~p
T0

∂n
(0)
~p

∂ω~p

(
~v~p · ~∇T

)
=

1

eω~p/(kBT ) − 1
− τp

ω~p
T0

∂n
(0)
~p

∂ω~p
v~p,x ·

2∆T

L
. (2.52)

For a fixed absolute momentum |~p|, the Bose-Einstein-term is independent of the orientation.
If one tries to find an effective temperature for the whole phonon-distribution function, both
terms have to have this feature. Since the absolute value for the velocity v~p is constant and
equal to the sound velocity, its x-component depends on the orientation of the momentum
vector.

v~p,x = v0 · sin(ϑ) · cos(ϕ) . (2.53)

Thus, the phonon-distribution-function is not Bose-Einstein like. But, if one assumes ideal
reservoirs, the distribution function for the outgoing particles out of the two reservoirs has
to be Bose-Einstein like. Because of that, we need a more detailed investigation of the effect.

2.4 Summary

In this section, we have introduced the methods, which will be used in the entire thesis. At
the beginning, the concept of quasi particles is introduced. Phonons, which are elementary
excitations of a wave in the lattice structure of the solid, will be treated in the concept of quasi
particles. Similarly, magnons will be treated in the concept of quasi particles. Every atom of
the lattice of the solid carries a spin, which can be oriented in a different direction. Magnons
are elementary excitations of a spin wave inside the solid. Furthermore, we introduced
the Boltzmann equation, which is appropriate to consider transport phenomena. By way of
example, we set the collision term, which is part of the Boltzmann equation, for the electron-
phonon interaction and explained the exact rules to write down the collision term in general.
Electrons will be described with the theory of free electron gas. After that, we introduced
the relaxation time approximation. This approximation can be used, when the deviation of
the particle distribution from equilibrium is small. Then, the collision term can be linearized
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2.4 Summary

and one finds a quotient between the deviation function from equilibrium and a short written
relaxation time. With this relaxation time approximation, we calculated in a simple model
the electrical conductivity for a metal and a phonon-mediated thermal conductivity.
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3 Phonon-temperature in a cuboid

3 Phonon-temperature in a cuboid

In this chapter, we investigate the phonon propagation in a cuboid (a Gd3Ga5O12 crystal),
where only phonons are able to propagate. This cuboid is positioned between two heat baths
at different temperatures. By making use of the Boltzmann equation, we will calculate the
wave number dependent phonon density and temperature profiles.

We start with a motivation to this calculation in section 3.1. In this motivation, we first
introduce the full problem of the transverse spin Seebeck effect and than argue, why we need
to solve the phonon only problem, first.

The cuboid is enclosed between two ideal heat reservoirs. The left reservoir is a bit
warmer and the right reservoir is a bit colder than the average temperature, respectively.
The difference in temperature (∆T ) is much smaller than the average temperature T0. This
treatment of the cuboid is needed for the understanding of the transversal Spin-Seebeck effect,
which will be treated in later chapters. The setup for the full transversal Spin-Seebeck effect
is shown in figure 9. On top of the GGG (Gd3Ga5O12) there is an insulating ferrimagnet,
here YIG (Y3Fe5O12), where phonons and magnons are able to propagate as well. Electrons
are not able to propagate in the YIG film and in the GGG substrate. Above that, there is
a small stripe of platinum and a voltmeter at the ends of the stripe. Here, electrons and
phonons are able to propagate. This can be seen in figure 4.

Since the thickness of the YIG is much smaller than the thickness of the GGG crystal,
phonons are propagating in the GGG substrate most of the time. There, magnons do not
exist. Additionally, the heat reservoirs are non-magnetic reservoirs, where only phonons are
able to propagate. Hence, the influence from the magnons on the distribution function of
the phonons can assumed to be small. Only phonon-phonon interaction as well as impurity
scattering takes place in the GGG substrate. Based on these phonon-only interactions, we
first calculate the phonon density and temperature profiles in this chapter.

T +ΔT T -ΔT0 0

YIG
Pt

GGG

Figure 9: Schematical setup for measuring the transverse spin Seebeck effect. Two thermal heat
reservoirs are attached to the gallium gadolinium garnet crystal (Gd3Ga5O12). On top of the
GGG crystal, there is an evaporated YIG-film, whose thickness is much smaller than the thickness
of the GGG. Beyond that, there is a platinum stripe on top of the YIG-crystal. The voltage is
measured on the platinum stripe perpendicular to the plane of projection. The magnons in the
YIG-stripe are thermally not connected to the heat reservoirs.

This will be done by treating the phonon distribution to be wave vector dependent. We
will perform an approximation, where we assume that the angle averaged phonon distribu-
tion (proportional to the temperature deviation) to have a linear structure. We call this
approximation half-analytic method. With the above approximation we will calculate the
wave vector dependent phonon temperature in section 3.2 to use it in later chapters for cal-
culating the magnon temperature. In section 3.3 we will find out, that a simple calculation is
not enough. After that, we will justify the half-analytic approximation in section 3.4. There,
we will calculate the problem without the approximation but by separating the distribution
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3.1 Motivation - Complete treatment of the transverse spin Seebeck effect

functions into moments and using Chebyshev polynomials. Additionally we consider the full
phonon problem iteratively and numerically. By comparison of the three methods, we will
see, that the deviation in the temperature (or in the angle averaged phonon distribution) is
small.

3.1 Motivation - Complete treatment of the transverse spin Seebeck effect

In this thesis, we investigate the transversal spin Seebeck effect. The schematical setup of
this experiment is depicted in figure 9. In the middle, there is a GGG crystal, where only
phonons and no magnons as well as no electrons are able to propagate. For our calculation,
we take the sample size out of Ref. [21]. Here, the length of the GGG crystal is at LGGG = 8
mm, the width is at wGGG = 4 mm and the thickness is at dGGG = 0.5 mm. On the left side
on the long end of the crystal, there is an ideal heat reservoir at temperature T0+∆T attached
to the GGG crystal. Analogously, on the right side on the long end of the crystal, there
is an ideal heat reservoir at temperature T0 −∆T attached to the GGG crystal. Since the
heat reservoirs are non-magnetic, magnons are not able to enter or leave the heat reservoirs.
One has to mention, that only phonons are able to propagate into and out of the ideal heat
reservoirs. As we set ∆T > 0, the left heat reservoir is warmer than average temperature (as
depicted by red color) and the right reservoir is colder than average temperature (as depicted
by blue color). Both heat reservoirs are modeled as perfect phonon heat reservoirs, i.e. every
incoming phonon relaxes immediately to the equilibrium distribution. Besides, the outgoing
phonons are distributed by the equilibrium Bose-Einstein distribution (cf. Eq. (2.4)).

For a better visualization, we introduce the concept of a Bose sphere. This view is
comparable to the concept of the Fermi sphere. Therefore, we pick out a certain absolute
value of ~k. For a certain direction, we read out the quasi-particle density and draw a line from
the origin in that direction, which length is proportional to the density of quasiparticles in this
direction with absolute value of ~k. In general, the Bose-Einstein distribution is independent
of the direction of the particle, which is called isotropic. Thus, this would give us a sphere,
which we call Bose sphere. The two black semi circles in figure 9 demonstrate a magnitude
of outgoing phonon density in a certain direction.

On top of the GGG crystal, there is an evaporated YIG-film, where magnons and phonons
but no electrons are able to propagate. The thickness of the YIG-film is much smaller than
the thickness of the GGG crystal. In the GGG substrate, only phonons are able to propagate,
while in the YIG-film, phonons and magnons are able to propagate. Electrons are not able
to propagate in the GGG as well as in the YIG-film. We assume, that magnons are not
able to leave or enter the YIG-film. The quasi-particle density distributions are composed
as follows

f~k =f
(0)
~k

+ f̃~k = f
(0)
~k

+ f0,k + δf~k (3.1)

n~p =n
(0)
~p + ñ~p = n

(0)
~p + n0,p + δn~p . (3.2)

The first summand in both equations which has a zero in superscript denotes the equilibrium

density distribution f
(0)
~k

for magnons and n
(0)
~p for phonons at temperature T0, respectively.

When there is an index or a parenthesis with p, the quantity is dependent on the wave
vector. For them, we take Eq. (2.8) for magnons and Eq. (2.4) for phonons, respectively.
The summand in both equations which has a zero in subscript denotes the zeroth moment
of the distribution function. This zeroth moment is independent on the direction of the
wave vector and only dependent on its absolute value. The functions δf~k and δn~p include
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3 Phonon-temperature in a cuboid

all higher moments. The n-th moments in three dimensions by using spherical coordinates
are in general defined as

fn,k =
1

2

∫ π

0
sin(ϑ) cos(nϑ)f̃~k dϑ (3.3)

nn,p =
1

2

∫ π

0
sin(ϑ) cos(nϑ)ñ~p dϑ . (3.4)

We assume, that the density functions f̃~k and ñ~p are not dependent on φ. With that, we
can write down the coupled phonon and magnon Boltzmann equations. These equations are
valid in the ferrimagnetic YIG-film. In the GGG substrate, only the pure phonon terms of
the equation are valid. It is for the magnons with wave vector ~k and phonons with wave
vector ~p

− ε~k
T0

∂f
(0)
~k

∂ε
(~v~k · ~∇TM) + ~v~k · ~∇δf~k =

∂f~k
∂t

∣∣∣∣
St,mag-pho

+
∂f~k
∂t

∣∣∣∣
St,mag-mag

(3.5)

−ω~p
T0

∂n
(0)
~p

∂ω
(~u~p · ~∇TPh) + ~u~p · ~∇δn~p =

∂n~p
∂t

∣∣∣∣
St,pho-mag

+
∂n~p
∂t

∣∣∣∣
St,pho-pho

, (3.6)

with

TM = TM(x,~k) f~k =f~k(x,
~k) δf~k = δf~k(x,

~k) (3.7)

TPh = TPh(x, ~p) n~p =n~p(x, ~p) δn~p = δn~p(x, ~p) , (3.8)

while TM denotes the spatial and wave vector dependent magnon temperature and TPh the
spatial and wave vector dependent phonon temperature. T0 is the average temperature. The
wave vector dependent magnon energy dispersion is denoted by ε~k (cf. Eq. (2.6)). Alike, the
wave vector dependent phonon energy dispersion is denoted by ω~p (cf. Eq. (2.3)). The param-
eter ~v~k denotes the wave vector dependent magnon velocity and analogously the parameter
~u~p denotes the wave vector dependent phonon velocity. In general one finds their absolute
value, by taking the wave vector derivative of the energy dispersion. One has to mention,
that the quasi particle temperature is coupled to the zeroth moment in the following way

f0,k(x) = − ε~k
T0

∂f
(0)
~k

∂ε
(TM(x)− T0) (3.9)

n0,p(x) = −ω~p
T0

∂n
(0)
~p

∂ω
(TPh(x)− T0) . (3.10)

Later, we will suppress the spatial dependence. This correspondence is only valid, because
the temperature differences are much smaller than the average temperature

|TM − T0| � T0 |TPh − T0| � T0 . (3.11)

Additionally, one has to mention, that (∂k
(0)
~k

)/(∂ε) < 0 and (∂n
(0)
~p )/(∂ω) < 0. The geometry

of the setup can be found in figure 10.
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3.2 Calculation with translational symmetry in three dimensions

T +ΔT T -ΔT0 0
Φ

Figure 10: This is the geometry for the cuboid. The angle φ is the angle between the x-axis
(dashed line) and the projection of the wave-vector on the x-y-plane (plane of projection). The
angle ϑ is the angle between the wave-vector and its projection on the x-y-plane.

The first summand on the right hand side of the Eq. (3.5) determines the collision integral
of the magnon-phonon-interaction. It will be derived in section 4.3 and reads

∂f~k
∂t

∣∣∣∣
St,mag-pho

=
B.Z.∑
~p

{
1

τmppk

TPh(p)− TM(k)

T0
− 1

τ̃mppk

TPh(p)− TM(|~k − ~p|)
T0

}
, (3.12)

while the abbreviations are given in Eqs. (4.56) and (4.57). In the same way, the collision
term for the magnon-magnon interaction will be derived in section 5. The result can be
found in Eqs. (5.11) and (5.63) and reads as follows

∂f~k
∂t

∣∣∣∣
St,mag-mag

=

B.Z.∑
~k′

(
|V |2
τmmA

TM(~k)

T0
+
|V |2
τmmB

TM(~k′)

T0
+
|V |2
τmmC

TM(~k ± ~k′)
T0

)

+

B.Z.∑
~q ~k′

{
|V |2
τM1

TM(~k)

T0
+
|V |2
τM2

TM(~k′)

T0
+
|V |2
τM3

TM(~k − ~q)
T0

+
|V |2
τM4

TM(~k′ + ~q)

T0

}
,

(3.13)

while the abbreviations are given in Eqs. (5.12), (5.16), (5.20), (5.64), (5.65), (5.66) and
(5.67). The scattering amplitude |V | will be calculated in section 5. The results can be
found in Eqs. (5.29) and (5.72). The abbreviations for the phonon Boltzmann equation (3.6)
read

∂n~p
∂t

∣∣∣∣
St,pho-pho

≈ −δn~p
τp

, (3.14)

and

∂n~p
∂t

∣∣∣∣
St,pho-mag

=
B.Z.∑
~k

{
1

τmppk

TPh(p)− TM(k)

T0
− 1

τ̃mppk

TPh(p)− TM(|~k − ~p|)
T0

}
. (3.15)

Again, the abbreviations can be found in Eqs. (4.56) and (4.57). The thickness of the YIG-
film is much smaller than the thickness of the GGG crystal (i.e. dYIG � dGGG). Typically,
the thickness of the YIG-film is at the order of micrometers. For our calculations, only the
order of magnitude of the YIG-thickness is important, the exact value must not be specified.
Phonons are propagating in the GGG substrate most of the time, where magnons are not
able to propagate. Because of that, the influence from the magnons onto the phonons is
assumed to be small. Thus, the term (3.15) can be approximated to be zero, when one is
calculating the phonon-temperature.

3.2 Calculation with translational symmetry in three dimensions

We consider a three-dimensional model of the GGG substrate. At the beginning, we have a
look at one single GGG (Gd3Ga5O12) substrate without any installation on it. The x-axis
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3 Phonon-temperature in a cuboid

is put parallel to the temperature gradient out of figure 10 (marked by dashed line) and is
placed (as above) at −L/2 < x < L/2. The GGG substrate is of finite size and placed at
0 < y < B and 0 < z < D.

Now, we assume the left and right boundary to be perfect thermal reservoirs at different
temperatures. A thermal reservoir features the fact, that every incoming phonon will be
thermalized. Outcoming phonons are distributed by the Bose-Einstein-distribution function
for the certain temperature of the thermal reservoir. Thus, we know half of the phonon
distribution function at the thermal reservoir

n

(
x = −L

2

)
Θ
(
|π − φ| − π

2

)
= (n0,p(T0) + (∆N)p) Θ

(
|π − φ| − π

2

)
(3.16)

n

(
x =

L

2

)
Θ
(π

2
− |π − φ|

)
= (n0,p(T0)− (∆N)p) Θ

(π
2
− |π − φ|

)
, (3.17)

with 0 < φ ≤ 2π. The choice of the coordinate system is different to Eqs. (3.3) and (3.4) but
will end up in the same results. The constant (∆N)p features the increase or decrease of the
temperature at the left and right reservoir, respectively. Outgoing particles are Bose-Einstein
distributed with temperature T + ∆T at the left hand side and temperature T −∆T at the
right hand side. By making use of Eq. (3.10), one can convert the temperature difference
into a particle density difference (∆N)p in the following way

(∆N)p = −ω~p
T0

∂n
(0)
~p

∂ω
∆T . (3.18)

One has to mention, that ∆T is independent of the wave vector, but (∆N)p is dependent on
the absolute value of the wave vector. This implies for 0 ≤ φ ≤ π/2 and for 3π/2 ≤ φ ≤ 2π
i.e. for right moving particles

np,φ,right(x = −L/2) =
1

eωp/(kBTL) − 1
≈ 1

eωp/(kBT0) − 1
+ (∆N)p = N0,p + (∆N)p , (3.19)

with TL as fixed temperature for the left thermal reservoir at x = −L/2. Similarly, one
writes for the other reservoir for π/2 ≤ φ ≤ 3π/2 i.e. for left moving particles

np,φ,left(x = L/2) =
1

eωp/(kBTR) − 1
≈ 1

eωp/(kBT0) − 1
− (∆N)p = N0,p − (∆N)p , (3.20)

with TR as fixed temperature for the right thermal reservoir at x = L/2. Thus, we find

ñp,φ,right(x = −L/2) =(∆N)p (3.21)

ñp,φ,left(x = L/2) =− (∆N)p . (3.22)

In this thesis, we will consider two different cases. First, the boundaries at y = 0, y = B =
wGGG, z = 0 and z = D = dGGG are modeled as perfectly reflecting walls. Second, they are
modeled as rough walls.

In case of perfectly reflecting walls, every incident particle will be completely reflected in
the same angle measured to the plummet. The parallel component of the incident direction
of propagation will be conserved, while the perpendicular component of the incident direction
will be turned to the opposite direction.

ñp,φ(y = 0) = ñp,2π−φ(y = 0) . (3.23)
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3.2 Calculation with translational symmetry in three dimensions

Similarly, the other wall is reflecting too

ñp,φ(y = B) = ñp,2π−φ(y = B) . (3.24)

A similar equation holds for the boundaries at z = 0 and z = D. Because of these mirror-
walls, the system becomes periodic in 2B and 2D. Since the boundary conditions at the
heat reservoirs are independent in y and z, the system becomes translation invariant in y
and z. Thus, the model is qualitatively congruent with an infinite GGG substrate in the y-
and z-direction with translation symmetry in the y- and z-direction. Of course, this only
works if also the boundary conditions fulfill this translational symmetry, which is the case.
This brings us to an effective one dimensional calculation, which features different angles
for particle propagation. There will be three different ways of treating the problem. The
first method, which we perform now and denote as half-analytic, uses an approximation,
where the zeroth moment of the phonon density is assumed to have linear structure. The
second method splits the distribution function in several moments of propagation direction
and makes use of the Chebyshev polynomials. The resulting integrals and infinite sums need
to be solved numerically. The third method uses an iterative and converging ansatz to the
original Boltzmann equation.

When we include boundary scattering, we assume roughly reflecting walls at y = 0,
y = B, z = 0 and z = D. This will be modeled by introducing an effective relaxation length
which is the geometric mean of the sizes of the GGG substrate

Leff = 3
√
LGGG · wGGG · dGGG =

3
√

8 mm · 4 mm · 0.5 mm ≈ 2.51984 mm , (3.25)

while we took the numbers out of Ref. [21]. In this thesis, we will consider the case with and
without boundary scattering.

3.2.1 Half-analytic method

At the beginning, we write down the Boltzmann equation in three dimensions for the phonon-
only problem. We take Eq. (3.6) and replace the phonon-temperature by the zeroth moment
via Eq. (3.10). Additionally, we exclude the phonon-magnon interaction because the ferri-
magnetic YIG-stripe is assumed to be much smaller than the GGG substrate, as already
discussed above. One finds

cos(ϑ)
∂ñ~p
∂z

+ sin(ϑ) sin(φ)
∂ñ~p
∂y

+ sin(ϑ) cos(φ)
∂ñ~p
∂x

= − ñ~p − n0,p

lp
. (3.26)

It is for the relaxation length lp = τp · vp. We model the left and right reservoirs to be ideal
heat reservoirs. Here, we us Eqs. (3.21) and (3.22) for the boundary conditions at the heat
reservoirs. Phonons with 0 < φ ≤ π/2 and 3π/2 < φ ≤ 2π are propagating to the right and
phonons with π/2 < φ ≤ 3π/2 are propagating to the left. Since the system is effectively
invariant in y- and z-direction, the corresponding derivatives in Eq. (3.26) vanish. We make
an ansatz containing a linear term for the average density

n0,p = (∆N)pβx . (3.27)

In subsections 3.4.1 and 3.4.2 we will see why this approximation is appropriate, when we
compare the results with the methods of Chebyshev polynomials and the iterative method.
One finds for the Boltzmann equation

sin(ϑ) cos(φ)
∂ñ~p
∂x

= − ñ~p − n0,p

lp
≈ − ñ~p − (∆N)pβx

lp
, (3.28)
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3 Phonon-temperature in a cuboid

while β still has to be found. This differential equation can be solved analytically. One finds

ñ~p =De
− x
rp cos(φ) sin(ϑ) + (∆N)pβx− (∆N)pβ lp cos(φ) sin(ϑ) . (3.29)

The variable D is still open and will be determined by the boundary conditions at the heat
reservoirs (cf. Eq. (3.21) and (3.22)). Calculate the boundary conditions at the reservoir
and setting them back into the phonon density function results in

ñ~p,right =(∆N)pβx− (∆N)plpβ cos(φ) sin(ϑ)

+
1

2
(∆N)p(βL+ 2β lp cos(φ) sin(ϑ) + 2)e

− (L+2x) sec(φ)
2lp sin(ϑ) , (3.30)

and

ñ~p,left =(∆N)pβx− (∆N)plpβ cos(φ) sin(ϑ)

− 1

2
(∆N)p(βL− 2β lp cos(φ) sin(ϑ) + 2)e

(L−2x) sec(φ)
2lp sin(ϑ) . (3.31)

The parameter β still has to be found. Additionally, we need

n0,p =
1

4π

∫ 2π

0

∫ π

0
sin(ϑ)ñ~p dϑ dφ , (3.32)

which is similar to Eq. (3.4) for n = 0. We have performed the iterative solution by
using above equation and Eqs. (3.30) and (3.31) and starting with some random parameters.
Another option, we have done, is to perform a single-point approximation, which is sketched
in the next subsection. At the end, we will see that both methods will converge in good
agreement.

3.2.2 Single-Point approximation

By now, we perform a single-point approximation. The name for this approximation origi-
nates from the procedure to evaluate the zeroth moment calculation at one single point in
the GGG substrate. In the following, we evaluate both sides of the Eq. (3.32) on a single
point at x = −L/2. Additionally, we take Eqs. (3.30) and (3.31). With that equation, we
are able to determine the open parameter β. This approximation is still in good agreement.
we find

−(∆N)pβ
L

2
=n0,p(−L/2)

=
1

4π

∫ 2π

0

∫ π

0
sin(ϑ)ñ~p(−L/2) dϑ dφ

=
1

2π

∫ π/2

0

∫ π

0
sin(ϑ)ñ~p,right,approx(−L/2) dϑ dφ

+
1

2π

∫ π

π/2

∫ π

0
sin(ϑ)ñ~p,left,approx(−L/2) dϑ dφ . (3.33)
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3.2 Calculation with translational symmetry in three dimensions

This is

−(∆N)pβ
L

2
=

1

2π

∫ π/2

0

∫ π

0
sin(ϑ)(−(∆N)pβ

L

2
− (∆N)p lpβ cos(φ) sin(ϑ)) dϑ dφ

+
1

2π

∫ π/2

0

∫ π

0
sin(ϑ)(+

1

2
(∆N)p(βL+ 2β lp cos(φ) sin(ϑ) + 2)e

− (L−L) sec(φ)
2lp sin(ϑ) ) dϑ dφ

+
1

2π

∫ π

π/2

∫ π

0
sin(ϑ)(−(∆N)pβ

L

2
− (∆N)plpβ cos(φ) sin(ϑ)) dϑ dφ

+
1

2π

∫ π

π/2

∫ π

0
sin(ϑ)(−1

2
(∆N)p(βL− 2βlp cos(φ) sin(ϑ) + 2)e

(L+L) sec(φ)
2lp sin(ϑ) ) dϑ dφ

=
1

2π

∫ π

0

∫ π

0
sin(ϑ)(−(∆N)pβ

L

2
− (∆N)plpβ cos(φ) sin(ϑ)) dϑ dφ

+
1

2π

∫ π/2

0

∫ π

0
sin(ϑ)

1

2
(∆N)p(βL+ 2β lp cos(φ) sin(ϑ) + 2) dϑ dφ

− 1

2π
β

(∆N)p
2

∫ π

π/2

∫ π

0
sin(ϑ)(L− 2lp cos(φ) sin(ϑ))e

L sec(φ)
lp sin(ϑ) dϑ dφ

− 1

2π
(∆N)p

∫ π

π/2

∫ π

0
sin(ϑ)e

L sec(φ)
lp sin(ϑ) dϑ dφ

=− (∆N)p
βL

2
+ (∆N)p

βL

4
+ (∆N)p

β lp
4

+ (∆N)p
1

2
− β(∆N)pI1 − (∆N)pI2 ,

(3.34)

with

I1 =
1

2π

∫ π

π/2

∫ π

0
sin(ϑ)

(
L

2
− lp cos(φ) sin(ϑ)

)
e
L sec(φ)
lp sin(ϑ) dϑ dφ (3.35)

I2 =
1

2π

∫ π

π/2

∫ π

0
sin(ϑ)e

L sec(φ)
lp sin(ϑ) dϑ dφ . (3.36)

The integrals in I1 and I2 will be determined numerically. The upper equation can be
transformed and one finds

β = − 2− 4I2

L+ lp − 4I1
. (3.37)

The same result would be obtained by evaluating Eq. (3.32) with Eqs. (3.30) and (3.31) for
x = +L/2 instead for x = −L/2. If one takes a point between x = −L/2 and x = L/2,
the result would be a little different. The results for n0, the difference of the angle averaged
phonon density with respect to equilibrium, is plotted in figure 11. As suspected, if the
relaxation length lp is larger than the system length L, the slope is very small, because
the phonons propagate nearly hitchless through the GGG crystal. Left and right moving
phonons average to the equilibrium density. There is also a large density / temperature jump
at the edges. If the relaxation length is smaller than the system length, the slope is very
large, because these phonons scatter only with neighboring phonons and thus, the jump at
the edges becomes small.

3.2.3 Diffusive regime approximation

If the relaxation length is much smaller than the system length (i.e. lp � L), one can perform
an approximation for the phonon density. Inside the Eqs. (3.35) and (3.36), the exponent in
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3 Phonon-temperature in a cuboid

x / L

n  / (∆N)0 p

Figure 11: Difference of the angle averaged phonon density with respect to equilibrium n0 is
plotted dependent on the position inside the cuboid for different relaxation length lp. The
phonon density for the phonons inside the heat reservoir are denoted as black circles. They are
at n0 = (∆N)p for x = −L/2 and at n0 = −(∆N)p for x = +L/2. Thus, there is a density
jump (or temperature jump) at the edges of the heat reservoirs.

the exponential function becomes close to zero, because sec(φ) < 0. Thus, I1 and I2 become
close to zero. The result reads

β ≈ − 2

L+ lp
. (3.38)

The phonon density n0 at the left end of the substrate (i.e. x = −L/2) is plotted in figures
12 and 13 for different methods. For the ”half-analytic” method, we have done this iter-
atively by using first Eq. (3.30) and (3.31) and second Eq. (3.32) and starting with some
random parameters. For performing the single point approximation and the diffusive regime
approximation, we used Eq. (3.27) and Eq. (3.37) for the single point approximation or Eq.
(3.38) for the diffusive regime approximation. Here, we plot the calculated ratio n0/(∆N)p.
Since Eq. (3.10) and (3.18) hold, we find the same ratio to be

n0,p

(∆N)p
=
TPh(p)− T0

∆T
. (3.39)

When there is an index or a parenthesis with p, the quantity is dependent on the wave vector.
Generally, particles are only influenced by the particle density in the proximity of length

lp. Here, we consider phonons. For large relaxation length (i.e. lp & L), out coming phonons
from the left lead are able to propagate to the right end nearly without any scattering and
thus keep their particle density as well as the temperature. Phonons coming out of the
right lead are also propagating to the left lead and keep their particle density as well as
temperature. The average particle density and temperature for those phonons is nearly the
same in the whole substrate. The average temperature is the mean value T0 of the left and
right thermal baths. For phonons with a short relaxation length (if the relaxation length
is smaller than the sample length) it is the opposite. Because they scatter very often, out
coming particles from the right lead relax before they reach the left end. Because of that,
those particles are only influenced by the phonon density in the proximity.
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3.2 Calculation with translational symmetry in three dimensions

Figure 12: Deviation of phonon density from equilibrium at x = −L/2 for different methods and
relaxation length lp in three dimensions at 300 Kelvin without boundary scattering.

Figure 13: Deviation of phonon density from equilibrium at x = −L/2 for different methods and
relaxation length lp in three dimensions at 300 Kelvin without boundary scattering.

Now, we want to calculate the relaxation length lp dependent on the wave vector. Neel-
mani et al. [48] made temperature dependent phonon conductivity calculations for GGG.
They used Callaway’s model [49] for their calculations. The formula for the relaxation
length reads

lp = vτp =
v

τ−1
bd + τ−1

pt + τ−1
um

=
v

Ebd + Eptξ4T 4 + Eumξ2T 3e−TC/(bT )
, (3.40)

with

ξ =
~ω
kBT

=
~vp
kBT

. (3.41)

In this thesis, we will perform the calculation with and without boundary scattering. The
boundary scattering describes the scattering process of phonons at the boundary of the
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3 Phonon-temperature in a cuboid

system (or the cuboid). When one phonon reaches the boundary, it relaxes and gets the
local temperature of the diffusive phonons. Diffusive phonons are phonons with a small
relaxation length and as we will see with a large wave number. In the case without boundary
scattering, we use perfectly reflecting walls. Thus, we set the boundary scattering relaxation
length Ebd = v/Leff to zero. For including boundary scattering, the boundaries of the GGG
substrate are rough and we set the effective relaxation length to the geometric mean of the
sizes of the GGG substrate. This is Eq. (3.25). In all cases Ept = 5.0 s−1K−4 denotes the
point-defect scattering rate, Eum = 1.577 · 104s−1K−3 denotes the prefactor to the Umklapp
relaxation rate of the phonons. The critical temperature is denoted by TC = 125.7 K. The
parameters b = 2.0 and sound velocity v = 5.07 · 105 cm/s are given. These numbers are
taken from Ref. [48].

The Normal scattering relaxation length cannot be taken from Neelmani et al. [48]. For
that, we performed an estimation, which can be found in the appendix A.

In figures 14 and 15, the phonon relaxation length out of Eq. (3.40) and the Normal
scattering relaxation length dependent on the absolute value of the wave vector are plotted
at 300 K and 3 K, respectively. The phonon relaxation length’s are separated by their
origin. A short relaxation length corresponds to a dominant scattering process. For 3 K, the
impurity scattering and the boundary scattering are dominant.

0.0 0.2 0.4 0.6 0.8 1.0

0.01

100

106

lUmklapp

limpurities

lNormal

lboundary

L

l / cm

 / kF

T =300 K0

p

Figure 14: The relaxation length dependent on the absolute value of the wave vector is plotted
at 300 K. The phonon relaxation length’s are separated by their origin. It is lα = v · τα with
α ∈ {bd, pt, um, no}.
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Figure 15: The relaxation length dependent on the absolute value of the wave vector is plotted
at 3 K. The phonon relaxation length’s are separated by their origin. It is lα = v · τα with
α ∈ {bd, pt, um, no}.

With that, we will calculate the phonon density depending on the absolute value of the
wave vector. With Eq. (3.40) we are able to convert the absolute value of the wave vector
p into the relaxation length lp. In figures 16 and 17 the particle density at the left end of
the substrate (i.e. x = −L/2) is plotted dependent on the absolute value of the p-vector of
the phonons. Phonons with a large wave vector have a short relaxation length (cf. figure
14 and 15) and thus their density is influenced only by neighboring phonons in a range
of the relaxation length. Since the deviation from the equilibrium density of the emitting
particles on the left lead is fixed to (∆N)p, those phonons have nearly this temperature of
the reservoir and a density with a value close to 1 in the two plots. Phonons with a short
wave vector have a long relaxation length (cf. figure 14 and 15). Thus, they propagate nearly
without scattering through the substrate and thus have the average phonon density, because
we consider left and right moving phonons together.
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3 Phonon-temperature in a cuboid

Figure 16: Deviation of phonon density from equilibrium at x = −L/2 for different methods and
wave numbers k in three dimensions at 300 Kelvin without boundary scattering. The Fermi wave
number is kF = 3.10175 · 107 cm−1.

Figure 17: Zoom of figure 16: Deviation of phonon density from equilibrium at x = −L/2
for different methods and wave numbers k in three dimensions at 300 Kelvin without boundary
scattering. The Fermi wave number is kF = 3.10175 · 107 cm−1.

The wave vector dependent phonon temperature at the left lead (i.e. x = −L/2) is plotted
in figures 18 and 19 for different average temperatures T0. In figure 18 boundary scattering
is excluded, while in figure 19 boundary scattering is included. Here, we do not neglect the
relaxation length from Eq. (3.25).

In figures 18 and 19, the phonon temperature decreases for small wave numbers (or
large wave lengths). The smaller the average temperature T0 is, the greater the decrease of
temperature for the small wave number phonons is. When we include boundary scattering,
the phonon temperature does not decrease that much as by excluding boundary scattering.
The reason for this is, that small wavenumber phonons can no longer propagate hitchless in
the GGG substrate and relax to the diffusive temperature when they scatter at the boundary.
If one wants to construct the spatial temperature profile for one certain wave number, one
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3.2 Calculation with translational symmetry in three dimensions

has to take the value out of the figures 18 or 19 as one point of the profile at x = −L/2. All
temperature profiles are linear and crossing the value T0 at position x = 0. With these two
points, one is able to construct the linear temperature profile (cf. figure 11).

 / kFp

0Ph(T   -T ) / ΔT

smaller T0

Figure 18: Here, the p-dependent phonon temperature at position x = −L/2 is plotted for
different average temperatures T0. Boundary scattering is not included in this figure.

 / kFp

0Ph(T   -T ) / ΔT

smaller T0

Figure 19: Here, the p-dependent phonon temperature at position x = −L/2 is plotted for
different average temperatures T0. Boundary scattering is included in this figure.

In figures 20, 21 and 22, one can find polar plots of the angle ϕ of the phonon density
distribution out of Eqs. (3.30), (3.31) and (3.37) in units of (∆N)p at different positions in
the substrate and for different relaxation length. These plots are performed with a fixed angle
ϑ and with an offset of 2. For large relaxation length (cf. figure 22), the phonons propagate
nearly ballistic. Thus, the distribution function nearly does not change by propagating
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3 Phonon-temperature in a cuboid

through the substrate. In contrast, phonons with a small relaxation length (cf. figure 20)
propagate diffusive. Thus, the distribution function changes a lot by propagating through
the substrate.

x=-L/2 x=0 x=L/2
Figure 20: Polar plot of the angle ϕ of the phonon density distribution in units of (∆N)p at
different positions in the substrate. Here, the relaxation length is lp = 1

5L.

x=-L/2 x=0 x=L/2

Figure 21: Polar plot of the angle ϕ of the phonon density distribution in units of (∆N)p at
different positions in the substrate. Here, the relaxation length is lp = L.

x=-L/2 x=0 x=L/2
Figure 22: Polar plot of the angle ϕ of the phonon density distribution in units of (∆N)p at
different positions in the substrate. Here, the relaxation length is lp = 20L.
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3.3 Justification for the method

Now, we want to setup a simpler model than discussed above and show, why this simple
model is not appropriate to explain the investigated effects. We will use a strictly one
dimensional calculation, but with a wave vector dependent phonon density. At the end,
we will see, that we need a wave vector dependent temperature and a three dimensional
consideration.

3.3.1 Microscopic calculation in one dimension

Now, we take a closer look on the phonon distribution function and the role of the two heat
baths. The feature of a heat bath is, that it emits particles in a well defined and Bose-Einstein
distributed temperature and density distribution. The temperature, which will be used in the
Bose-Einstein distribution is the bath temperature and not the average temperature. This
distribution is unaffected by incoming particles, which are thermalized immediately (very
fast, for realistic setups). Thus, the boundary conditions can only be written down for one
half of the particle distribution, for the outgoing particles at the boundary. Thus, we consider
a one dimensional lead including impurity scattering. We investigate a one dimensional lead
of length L including impurity-interaction, but no phonon-phonon-interaction. The heat
reservoirs are located at the left side x = −L/2 and at the right side x = L/2 of the
substrate. The distribution function can be separated into left movers nL and right movers
nR. For the right movers, the distribution function is known at the left end of the lead
nR(−L/2) = NR and for the left movers analogous nL(L/2) = NL. The possibility to change
the direction by elastic scattering is denoted as W = 1/(2τp). The distribution function can
be separated into left movers nL and right movers nR. The Boltzmann equation reads

−vp
∂nL
∂x

=

∫
(W (R→ L)−W (L→ R))δ(pL − pR)dp = W (nR(nL + 1)− nL(nR + 1))

(3.42)

vp
∂nR
∂x

=

∫
(W (L→ R)−W (R→ L))δ(pL − pR)dp = W (nL(nR + 1)− nR(nL + 1)) ,

(3.43)

while W (R → L) denotes the possibility for a scattering event from a right moving into a
left moving particle. W (L→ R) denotes the possibility for the opposite scattering event. It
is W (R→ L) = W (L→ R) = W . At the end, we find

−vp
∂nL
∂x

= W (nR − nL) (3.44)

vp
∂nR
∂x

= W (nL − nR) . (3.45)

This system of differential equations has the following solution

nL(x) =
Wx

vp
(C1 − C2) + C1 (3.46)

nR(x) =
Wx

vp
(C1 − C2) + C2 . (3.47)

There are two open parameters C1 and C2, which can be fixed by the following boundary
conditions

nR(−L/2) = NR nL(L/2) = NL . (3.48)
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3 Phonon-temperature in a cuboid

The solution including these boundary condition reads

nL(x) =NL +
(NR −NL)W (L− 2x)

2(vp + LW )
(3.49)

nR(x) =NR −
(NR −NL)W (L+ 2x)

2(vp + LW )
. (3.50)

Now, temperature (or better particle distribution) can be calculated

n0(x) =
nR(x) + nL(x)

2
=
NR +NL

2
− (NR −NL)W

(vp + LW )
x , (3.51)

and the particle current

n1(x) =
nR(x)− nL(x)

2
=

(NR −NL)vp
2(vp + LW )

. (3.52)

It is W = 1/(2τp). Now, it is interesting, that if NR > NL, left moving phonons are
less populated than right moving phonons, or vice versa. In this simple model, there are
no particles propagating in a certain angle to the x-axis. These particles have a different
x-component for the relaxation length. For our treatment of the full problem, we also
need phonons, which do not propagate directly in the x-direction. Then, we find different
temperature or particle density profiles. This more exact calculation, we have done in section
3.2.

3.4 Justification for the approximation in two dimensions

By now, we want to justify the approximations, we performed in section 3.2. Thus, we
consider a two-dimensional model of the GGG substrate. In two dimensions, the effort for
the comparison is less than in three dimensions, especially for the iterative method.

The first method splits the distribution function in several moments of propagation di-
rection and makes use of the Chebyshev polynomials. The resulting integrals and infinite
sums need to be solved numerically. The second method uses an iterative and converging
ansatz to the original Boltzmann equation. And third, we will perform a calculation by using
the ”half-analytic” method out of section 3.2. These three methods will be compared in this
section.

The x-axis is put parallel to the temperature gradient out of figure 9 and 10 and is placed
(as above) at −L/2 < x < L/2. The GGG substrate is of finite size and placed at 0 < y < B.
The boundaries at y = 0 and y = B are modeled as perfectly reflecting walls.

3.4.1 Chebyshev polynomials

Again, we consider an effective one dimensional lead with two thermal baths with fixed
different temperatures on both sides. Only phonons are able to propagate. The system
is invariant in y-direction. Higher temperature will be translated into a higher density of
phonons via Bose-Einstein-distribution (see Eqs. (2.4) and (3.10)). The composition of the
phonon density function is given in Eq. (3.2). Thus, the Boltzmann equation reads

vp cos(φ)
∂n0,p

∂x
+ vp cos(φ)

∂δn~p
∂x

= −δn~p
τ~p

, (3.53)
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3.4 Justification for the approximation in two dimensions

with ~p = p cos(φ)êx + p sin(φ)êy. Now, we assume delta scatterers as the main and only
scattering process in the bulk material. This implies

τ~p = τp . (3.54)

We perform an expansion of the deviating part of the distribution function

δn~p = n1,p cos(φ) + n2,p cos(2φ) + n3,p cos(3φ) + ... . (3.55)

If we set this expansion into our Boltzmann equation, we arrive at

vp cos(φ)
∂n0,p

∂x
+ vp cos(φ)

∞∑
i=1

∂ni,p
∂x

cos(iφ) = −
∞∑
i=1

ni,p cos(iφ)

τp
. (3.56)

This differential equation can be separated by integration on both sides by 1
2π

∫ π
−π dφ cos(nφ)

for every non-negative integer n. This leads us to

1

2
vp
∂n1,p

∂x
= 0 (3.57)

1

2
vp
∂n0,p

∂x
+

1

4
vp
∂n2,p

∂x
= −1

2

n1,p

τp
(3.58)

1

4
vp
∂ni−1,p

∂x
+

1

4
vp
∂ni+1,p

∂x
= −1

2

ni,p
τp

∀ i ≥ 2 . (3.59)

For solving this system of equations, first we perform the following ansatz

n0,p(x) = −n1

lp
x+ c (3.60)

n1,p(x) = n1 (3.61)

ni,p(x) = 0 ∀ i ≥ 2 , (3.62)

with lp = vpτp. This ansatz fulfills the system of differential equations (3.57), (3.58) and
(3.59) with the open parameters n1 and c. Since n0,p is proportional to the temperature,
this expression corresponds to a linear temperature profile. Another solution can be set up
by the following ansatz

n0,p(x) = A0e
− x
rlp (3.63)

n1,p(x) = 0 (3.64)

ni,p(x) = Aie
− x
rlp ∀ i ≥ 2 . (3.65)

If we set in this ansatz into Eqs. (3.57), (3.58) and (3.59), we obtain the following system of
equations for Ai with i ∈ N0\{1}

0 = 0 (3.66)

−1

2
vp
A0

rlp
− 1

4
vp
A2

rlp
= 0 (3.67)

−1

4
vp
A3

rlp
= −1

2

A2

τp
(3.68)

−1

4
vp
Ai−1

rlp
− 1

4
vp
Ai+1

rlp
= −1

2

Ai
τp

∀ i ≥ 3 . (3.69)
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3 Phonon-temperature in a cuboid

Eq. (3.69) is analogue to the well known recursive definition for the Chebyshev polynomials
of the second kind [50, p. 771 ff]. The prefactor of the solution can be different for a different
parameter r. Thus, we introduce a prefactor B(r), which is dependent on the choice of r in
the solution. B(r) is a common prefactor for all Ai with i ∈ N0\{1}. Thus, the solution can
be written down in the following way

A0 = −1

2
B(r)U0(r) (3.70)

Ai = B(r)Ui−2(r) ∀ i ≥ 2 , (3.71)

while Ui(r) denotes the i-th Chebyshev polynomial of the second kind with argument r. At
the end, we have to sum all possible solutions. Hence, the complete solution reads

n0,p(x) = −1

2

∫ 1

−1
B(r)e

− x
rlp dr − n1

lp
x+ c (3.72)

n1,p(x) = n1 (3.73)

ni,p(x) =

∫ 1

−1
B(r)Ui−2(r)e

− x
rlp dr ∀ i ≥ 2 , (3.74)

with the open parameter B(r), n1, c and

n(x) =
∞∑
i=0

ni,p(x) cos(iφ) . (3.75)

Now, we assume the left and right boundary to be perfect thermal reservoirs at different
temperatures. A thermal reservoir features the fact, that every incoming phonon will be
thermalized. Outcoming phonons are distributed by the Bose-Einstein-distribution function
for the certain temperature of the thermal reservoir. Thus, we know half of the phonon
distribution function at the thermal reservoir. Here, we use Eqs. (3.16) and (3.17). Now,
we insert Eq. (3.75) into Eqs. (3.16). After that, we divide the equations by the following

integral 1
2π

∫ π/2
−π/2 dφ cos(nφ) for every non-negative integer n. If one would insert Eq. (3.75)

into Eq. (3.17) instead of Eq. (3.16), one finds the same system of equations, if the following
property is fulfilled

B(−r) = −B(r) . (3.76)

Using this identity, we perform the following transformation for all i ≥ 2 (and the integral
inside of n0,p)

ni,p(x) =

∫ 1

−1
B(r)Ui−2(r)e

− x
rlp dr (3.77)

=

∫ 1

0
B(r)Ui−2(r)e

− x
rlp dr +

∫ 0

−1
B(r)Ui−2(r)e

− x
rlp dr (3.78)

=

∫ 1

0
B(r)Ui−2(r)

(
e
− x
rlp ∓ e

x
rlp

)
dr (3.79)

=

∫ 1

0
C(r)Ui−2(r)

(
e
− x
rlp
− L

2rlp ∓ e
x
rlp
− L

2rlp

)
dr , (3.80)

while the upper sign is for even i and the lower sign for odd i. It is

C(r) = B(r)e
L

2rlp . (3.81)
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3.4 Justification for the approximation in two dimensions

To find C(r), we perform a discretization of the integral in the following way for all i ≥ 2
(and the integral inside of n0,p)

ni,p(x) =

∫ 1

0
C(r)Ui−2(r)

(
e
− x
rlp
− L

2rlp ∓ e
x
rlp
− L

2rlp

)
dr (3.82)

=
N∑
j=1

C(rj)Ui−2(rj)

(
e
− x
rjlp
− L

2rjlp ∓ e
x

rjlp
− L

2rjlp

)
, (3.83)

with rj = (2j − 1)/(2N). Now, we insert Eq. (3.75) into Eq. (3.16) by making use of Eqs.
(3.72), (3.73). For ni,p with i ≤ 2 and for the integral inside of n0,p, we use Eq. (3.83). Then,

we take the integral 1
2π

∫ π/2
−π/2 dφ cos(nφ) for the non-negative integer n. Every non-negative

integer n stays for one equation in the system of equations. Herein, the coefficients C(rj)
and n1 are the unknown parameters. We find the following system of equations

(∆N)pH(n, 0) =

(
−1

2
H(n, 0) +H(n, 2)

) N∑
j=1

C(rj)

(
1− e−

L
rjlp

)

+

(
L

2lp
H(n, 0) +H(n, 1)

)
n1

+

Nmax∑
i=3

N∑
j=1

H(n, i)C(rj)Ui−2(rj)

(
1− (−1)ie

− L
rjlp

)
, (3.84)

including the following integral

H(n,m) =
1

2π

∫ π

−π
cos(nφ) cos(mφ) Θ

(π
2
− |φ|

)
dφ

=


m sin(πm2 ) cos(πn2 )

π(m2−n2)
− n cos(πm2 ) sin(πn2 )

π(m2−n2)
m 6= n

1/4 m = n 6= 0
1/2 m = n = 0

. (3.85)

In the system of equations, we have N + 1 open parameters. To have a quadratic system of
equations, we need to take the same number of equations (which is denoted by n). Thus n
must be an integer and 0 ≤ n ≤ N . Additionally, we have to find a number for Nmax. The
most exact result, one would get by taking Nmax →∞, but in reality we need to break down
the summation at a certain value. The numerical error converges very slowly to zero, so that
we need to calculate until Nmax ≈ 5000 or larger and have to take a geometric average over
different solutions for different Nmax.

3.4.2 Iterative method

Now, we want to solve the Boltzmann equation iteratively without making any approximation
out of the upper sections. We start with a similar Boltzmann equation as in the upper section
in Eq. (3.53). It is

vp sin(φ)
∂n0,p

∂y
+ vp sin(φ)

∂δn~p
∂y

+ vp cos(φ)
∂n0,p

∂x
+ vp cos(φ)

∂δn~p
∂x

= −δn~p
τ~p

, (3.86)

with ~p = p cos(φ)êx + p sin(φ)êy. Again, we assume delta scatterers to be the main and only
scattering process in the bulk material. This implies

τ~p = τp . (3.87)
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3 Phonon-temperature in a cuboid

However, we perform a transformation and write (cf. Eq. (3.2))

n~p = n
(0)
~p + ñ~p = n

(0)
~p + n0,p + δn~p , (3.88)

with

n
(0)
~p =

1

eωp/(kBT0) − 1
, (3.89)

which is independent of x. The temperature T0 is here free to choose and will be fixed later
to be the average temperature of the system. Therewith, the new equation reads

sin(φ)
∂ñ~p
∂y

+ cos(φ)
∂ñ~p
∂x

= − ñ~p − n0,p

rp
, (3.90)

with lp = vpτp. Additionally, the following condition must be fulfilled

n0,p =
1

2π

∫ 2π

0
ñ~p dφ . (3.91)

The solution of (3.90) can directly be written down

ñ~p(x, y) = e
−x sec(φ)

lp

∫ x

1

sec(φ)e
sec(φ)s
lp n0,p(s, tan(φ)(s− x) + y)

lp
ds+ c1(y − x tan(φ))

 .

(3.92)
By labeling a particle trajectory with the labelm, the trajectory will be y = (m− (1/2)) sec(φ)+
x tan(φ). Thus, the upper expression can be rewritten

ñ~p(x,m) = e
−x sec(φ)

lp

∫ x

1

sec(φ)e
sec(φ)s
lp n0,p(s, tan(φ)s+

(
m− 1

2

)
sec(φ))

lp
ds+D(m, k)

 .

(3.93)
The open constant D(m, k) will be matched by the boundary conditions. By now, Eqs. (3.91)
and (3.93) form a system of integral equations. The strategy of finding the correct solution
for the upper system of integral equations contains a starting function for n0,p. Here, we take
the result out of section 3.3.1. As usual in numeric calculations, we discretize the functions
n0,p and ñ~p. After that, we alternately use Eqs. (3.91) and (3.93) as long as the result
converges. Additionally, the fixed temperatures have to fulfill the following inequalities

T0 =
TL + TR

2
|TL − T0| � T0 |TR − T0| � T0 . (3.94)

Perfectly reflecting walls

Now, the walls at y = 0 and y = B are modeled as perfect reflecting walls. This corresponds
to Eqs. (3.23) and (3.24). Because of these mirror-walls, the system becomes periodic in 2B.
Additionally, Eqs. (3.19) (3.20) (3.21) and (3.22) hold. Then Eq. (3.21) becomes

(∆N)p = e
L sec(φ)

2lp

∫ −L/2
1

sec(φ)e
sec(φ)s
lp n0,p(s, tan(φ)s+

(
m− 1

2

)
sec(φ))

lp
ds+D(m, k)

 .

(3.95)
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3.4 Justification for the approximation in two dimensions

Converted to

D(m, k) = −
∫ −L/2

1

sec(φ)e
sec(φ)s
lp n0,p(s, tan(φ)s+

(
m− 1

2

)
sec(φ))

lp
ds+ (∆N)pe

−L sec(φ)
2lp .

(3.96)
Setting this term into Eq. (3.93) brings us to

ñ~p,φ,right(x,m) =(∆N)p e
− (L+2x) sec(φ)

2lp

+ e
−x sec(φ)

lp

∫ x

−L/2

sec(φ)e
sec(φ)s
lp n0,p(s, tan(φ)s+

(
m− 1

2

)
sec(φ))

lp
ds .

(3.97)

Similarly Eq. (3.22), becomes

− (∆N)p = e
−L sec(φ)

2lp

∫ L/2

1

sec(φ)e
sec(φ)s
lp n0,p(s, tan(φ)s+

(
m− 1

2

)
sec(φ))

lp
ds+D(m, k)

 .

(3.98)
Converted to

D(m, k) = −
∫ L/2

1

sec(φ)e
sec(φ)s
lp n0,p(s, tan(φ)s+

(
m− 1

2

)
sec(φ))

lp
ds− (∆N)pe

L sec(φ)
2lp .

(3.99)
Setting this term into Eq. (3.93) brings us to

ñ~p,φ,left(x,m) =− (∆N)p e
− (2x−L) sec(φ)

2lp

− e−
x sec(φ)
lp

∫ L/2

x

sec(φ)e
sec(φ)s
lp n0,p(s, tan(φ)s+

(
m− 1

2

)
sec(φ))

lp
ds . (3.100)

Here, one has to consider sec(φ) < 0 for left moving particles. By now, Eqs. (3.97) and (3.100)
as well as Eq. (3.91) form the system of integral equations which can be solved iteratively.
For numerical calculation, we discretize the system. We sub-divide the GGG crystal into
a lattice of small squares. For faster calculation, we first set up a four dimensional tensor,
which fulfills the following identity

n0,p(x0, y0) =
∑
x,y

A(x0, y0, x, y)n0,p(x, y) +Aoffset(x0, y0) . (3.101)

The tensor A will be found by taking Eq. (3.91) and insert Eqs. (3.97) and (3.100) and then
read out the prefactors. The equations (3.97) and (3.100) are composed in a specific way. The
first summand describes the distribution of particles coming out of the thermal reservoir and
relaxed over the distance (x+L/2) or (L/2−x), respectively. The second summand contains
particles, which have been scattered by impurities in the bulk GGG crystal at position
(s, tan(φ)s +

(
m− 1

2

)
sec(φ)) and then propagating to the position (x, y) with relaxation

length lp. As a test for consistency, one may take a uniform additional particle density
(∆N)p on both sides of the boundaries (x = ±L/2). One would expect a uniform and overall
additional particle density (∆N)p. If one applies these boundary conditions, one has to
change the minus sign in front of (∆N)p in Eq. (3.22). This corresponds to change the minus
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3 Phonon-temperature in a cuboid

sign of (∆N)p in Eq. (3.100). If one takes a uniform particle density as a starting function
for the convergence process, i.e. one takes n0,p(s, tan(φ)s+

(
m− 1

2

)
sec(φ)) = +(∆N)p, then

Eqs. (3.97) and (3.100) reduce to (∆N)p.
By now, we compare the phonon distribution iterative numeric results for different thick-

nessesB. Because translation symmetry is present, the result should not change by increasing
or decreasing the thickness. This expectation will be found in figure 23. There, the particle
density along the GGG substrate is plotted for different thicknesses B.
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Figure 23: Phonon density for different thicknesses B by using Boltzmann iterative method.
Because the system is translational invariant, the results are identical for different B. For our
numerical simulation, we used a grid with site length of 1 and a length of L = 100. The relaxation
length is lp = 100.

The accordance of the particle density with different thicknesses B also holds, when the
relaxation time is smaller or larger than here.
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3.4 Justification for the approximation in two dimensions

3.4.3 Comparison of Chebyshev polynomials with iterative method

Furthermore, one may compare the iterative method out of section 3.4.2 with results from
Chebyshev-method out of section 3.4.1. The comparison can be found in figure 24. The
accordance is also given at other relaxation lengths.
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Figure 24: Phonon density by using Chebyshev polynomials and Boltzmann iterative method.
For our numerical simulation, we used a grid with site length of 1 and a length of L = 100. The
relaxation length is lp = 100.

Just as well, we calculate the phonon net current by making use of Chebyshev polynomials
and the iterative method. The result can be found in figure 25. We see, that the results are
the same for Chebyshev polynomials and iterative method. Also, the current conservation
law is fulfilled. Later, we will see that the phonon net current does not coincide with the
phonon net current out of the half-analytic method.
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Figure 25: Phonon net current with relaxation length lp = 100 and length of the system L = 100
by using Chebyshev polynomials method and Boltzmann iterative method.

Additionally, we analyze the phonon distribution dependent on the relaxation length lp,
which is plotted in figure 26. For ballistic particles, i.e. lp � L, we find a line with a
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3 Phonon-temperature in a cuboid

small slope and a large particle density jump (or temperature jump) at the edges. At the
reservoir edges (x = ±L/2), half of the phonon distribution is given (cf. Eqs. (3.21) and
(3.22)). Ballistic particles scatter rarely by propagating through the GGG substrate. Thus,
the phonon distribution does change marginal. If one would have fully ballistic particles, the
given distribution would not change in the field of the GGG substrate. The phonon density
n0 is always a mixture between left moving and right moving particles (cf. Eq. (3.91)) and
averages to zero for fully ballistic particles. If the phonon relaxation length decreases, the
slope of the phonon density n0 enlarges and the temperature jump at the edges reduces.
Diffusive particles (i.e. lp � L) scatter often by propagating through the substrate. Thus,
the phonon distribution does not change marginal and we can find a large slope for the
particle density (or temperature).
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Figure 26: Phonon density for different relaxation length rp = lp by using Boltzmann iterative
method.

3.4.4 Half-analytic method

By now, we want to develop the half-analytic method in two dimensions to compare the
results with the Chebyshev polynomial method and with the iterative method. Here, we will
proceed as already done for three dimensions in section 3.2.1. We start with Eq. (3.90) and
perform an approximation of the function n0,p. We make the same ansatz as already done
in Eq. (3.27). It is

n0,p = (∆N)pβx . (3.102)

It is rp = lp and we set in the upper ansatz into Eq. (3.90). We find for the Boltzmann
equation

sin(φ)
∂ñ~p
∂y

+ cos(φ)
∂ñ~p
∂x

= − ñ~p − n0,p

rp
≈ − ñ~p − (∆N)pβx

rp
, (3.103)

while β still has to be found. Again, the walls at y = 0 and y = B are modeled as perfect
reflecting walls (cf. Eq. (3.23) and (3.24)). Thus, the system is effectively translational
invariant in y-direction. Because of that, the y-derivative vanishes. The upper differential
equation can be solved analytically. One finds

ñ~p = De
− x
lp cos(φ) + β(∆N)px− β(∆N)plp cos(φ) . (3.104)
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3.4 Justification for the approximation in two dimensions

Again, the variable D will be determined by the boundary conditions at the heat reservoirs.
At the reservoir edges (x = ±L/2), the phonon distribution is given (cf. Eqs. (3.21) and
(3.22)).

ñp,φ,right(x = −L/2) =(∆N)p (3.105)

ñp,φ,left(x = L/2) =− (∆N)p . (3.106)

Calculate the boundary conditions at the reservoir, rearrange them for the parameter D and
setting them back into the phonon density function (Eq. (3.104)) results in

ñ~p,right =(∆N)pβx− (∆N)plpβ cos(φ)

+
1

2
(∆N)p(βL+ 2β lp cos(φ) + 2)e

− (L+2x) sec(φ)
2lp , (3.107)

and

ñ~p,left =(∆N)pβx− (∆N)plpβ cos(φ)

− 1

2
(∆N)p(βL− 2β lp cos(φ) + 2)e

(L−2x) sec(φ)
2lp . (3.108)

The parameter β still has to be found. We have done this iteratively by alternately using
above equations and Eq. (3.91) and starting with some random parameters. The half-analytic
method is compared to numerical calculations out of section 3.4.2. In figures 27, 28 and 29
the phonon distribution is plotted. Here we will find accordance between the iterative method
and the half-analytic method. If one would compare the phonon net current, there will be no
accordance in the results. For later chapters, we only need the phonon density distribution.
Because of that, we will use the results out of the half-analytic method out of section 3.2 for
further calculations.
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Figure 27: Phonon density for lp = 20L by using Boltzmann iterative method and half-analytic
method.
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Figure 28: Phonon density for lp = L by using Boltzmann iterative method and half-analytic
method.
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Figure 29: Phonon density for lp = 0.2L by using Boltzmann iterative method and half-analytic
method.

3.4.5 Single-Point approximation

Now, we perform a single-point approximation as already done in section 3.2.2. We approxi-
mate the average phonon density n0,p to be linear and evaluate both sides of Eq. (3.91) on a
single point at x = −L/2. If one performs the diffusive approximation, we take Eqs. (3.107)
and (3.108) and set in x = −L/2. We evaluate this equation and find

−(∆N)pβ
L

2
=n0,p(−L/2)

=
1

2π

∫ 2π

0
ñ~p(−L/2) dφ

=
1

π

∫ π/2

0
ñ~p,right,diffusive(−L/2) dφ+

1

π

∫ π

π/2
ñ~p,left,diffusive(−L/2) dφ

(3.109)
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This is

−(∆N)pβ
L

2
=

1

π

∫ π/2

0
(−(∆N)pβ

L

2
− (∆N)plpβ cos(φ)

+
1

2
(∆N)p(βL+ 2β lp cos(φ) + 2)e

− (L−L) sec(φ)
2lp ) dφ

+
1

π

∫ π

π/2
(−(∆N)pβ

L

2
− (∆N)plpβ cos(φ)

− 1

2
(∆N)p(βL− 2β lp cos(φ) + 2)e

(L+L) sec(φ)
2lp ) dφ

=− (∆N)p
βL

2
+ (∆N)p

βL

4
+ (∆N)p

β lp
π

+ (∆N)p
1

2
− β(∆N)pI1 − (∆N)pI2 , (3.110)

with

I1 =
1

π

∫ π

π/2

(
L

2
− lp cos(φ)

)
e
L sec(φ)
lp dφ (3.111)

I2 =
1

π

∫ π

π/2
e
L sec(φ)
lp dφ . (3.112)

The upper equation can be transformed and one finds

β = − 2π − 4πI2

πL+ 4lp − 4πI1
. (3.113)

The same result would be obtained by evaluating Eq. (3.91) for x = +L/2.

3.4.6 Diffusive regime approximation

If the relaxation length is much smaller than the system length (i.e. lp � L), one can perform
an approximation for the phonon density. This is already done in section 3.2.3. Inside the
Eqs. (3.111) and (3.112), the exponent in the exponential function becomes close to zero,
because sec(φ) < 0. Thus I1 and I2 become close to zero. The result reads

β ≈ − 2π

πL+ 4lp
. (3.114)

The phonon density at the left end of the substrate (i.e. x = −L/2) is plotted in figures 30
and 31. Generally, particles are only influenced by the phonon density in the proximity of
length lp.

For large relaxation length (i.e. lp & L), the average particle density and temperature
for those phonons is nearly the same in the whole substrate, i.e. they have a small slope.
The average temperature is the mean value T0 of the left and right thermal baths. If the
relaxation length is smaller than the sample length, out coming particles from the right lead
relax before they reach the left end. Then, those particles are only influenced by the phonon
density in the proximity, i.e. they have a large slope.

57



3 Phonon-temperature in a cuboid

Figure 30: Phonon density at x = −L/2 for different methods and relaxation length lp.

Figure 31: Phonon density at x = −L/2 for different methods and relaxation length lp.

Now, we want to calculate the relaxation length lp dependent on the phonon wave number.
In section 3.2.3, we already set up the relations between wave number and the relaxation
length. The formula for relaxation length are in Eqs. (3.40) and (3.41). We take the same
parameters as in section 3.2.3. In figures 32 and 33 the particle density in two dimensions
at the left end of the substrate (i.e. x = −L/2) is plotted dependent on the absolute value
of the k-vector of the phonons.
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3.4 Justification for the approximation in two dimensions

Figure 32: Phonon density at x = −L/2 for different methods and wave numbers k at 300
Kelvin. The Fermi wave number is kF = 3.10 · 107 · cm−1.

Figure 33: Zoom of figure 32: Phonon density at x = −L/2 for different methods and wave
numbers k at 300 Kelvin. The Fermi wave number is kF = 3.10 · 107 · cm−1.

In Eq. (3.40), we introduced the boundary scattering as a fixed relaxation time in the
relaxation time approximation. Now, we want to compare this relaxation time approximation
in the half-analytic approximation with a full numeric calculation of the phonon problem
in two dimensions. We consider a system of length L and width W = 0.2 · L. With that,
we have an effective relaxation length of Leff =

√
L ·W . For the numerical calculation, we

take the method out of subsection 3.4.2. Instead of perfectly reflecting walls, we will use
rough walls in our simulation. In figure 34, we compared the numerical calculation with the
relaxation time approximation for the boundary scattering.
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n  / (∆N)0 p

x / L

Figure 34: Comparison of numeric calculation (method from subsection 3.4.2 with rough walls)
and half-analytic relaxation time approximation for boundary scattering. Here the spatial phonon
density distribution is plotted.

3.5 Summary

In this chapter, we considered the phonon propagation in a cuboid when a temperature
difference is applied and for different average temperatures T0. The material is chosen to
be GGG (Gd3Ga5O12). On the left side, the cuboid is connected to an ideal heat reservoir
at temperature T0 + ∆T . Alike, on the right side, the cuboid is connected to an ideal heat
reservoir at temperature T0−∆T . Thus, there will be a net current of phonons flowing to the
right side and current conservation is fulfilled. Since the heat reservoirs are modeled to be
perfect heat reservoirs, outcoming phonons are Bose-Einstein distributed with temperature
T0 + ∆T for the left and T0 −∆T for the right reservoir, respectively. Here, we calculated
the resulting spatial phonon density dependent on the relaxation length and later dependent
on the wave number.

At the end, we calculate the slope of the temperature profile for different phonons.
Phonons with a large wave number have a small relaxation length and thus are diffusive
phonons. We will find a large slope of the phonon density / temperature for these diffu-
sive phonons. Diffusive phonons only scatter with phonons which are in the proximity in a
range of the relaxation length. Ballistic phonons have a large relaxation length. Typically,
phonons with a small wave number have a large relaxation length and thus are ballistic
phonons. These phonons have a small slope in the phonon density / temperature. Ballistic
phonons propagate nearly hitchless through the substrate and thus keep their phonon den-
sity / temperature. This means, that right moving phonons have the temperature T0 + ∆T
and left moving particles have temperature T0 −∆T . For calculating the density, one takes
the average, which is at T0 with the correspondent phonon density. If one decreases the
temperature T0, the ratio of ballistic phonons increases.

The calculation will be done by using the Boltzmann equation in relaxation time approx-
imation in three dimensions. At the beginning, we performed a half-analytic approximation.
That is, we approximate the angle averaged phonon density to have a linear structure. With
that, we are able to solve the Boltzmann equation analytically. The result is dependent on
the phonon relaxation length. For calculating the slope of the angle averaged phonon density,
we perform a single-point approximation. That is, we evaluate the function for the angle
average at a certain point, here at the border to the left heat reservoir. The result can also
be simplified for phonons with a shorter relaxation length lp compared to the cuboid length
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3.5 Summary

L. For calculating the connection between relaxation length and phonon wave number,
we use calculations from Neelmani et al. [48]. They made temperature dependent phonon
conductivity calculations for GGG and used Callaway’s model [49] for their calculations.

Furthermore, we performed a microscopic calculation in one dimension. We have shown,
that these simpler calculations are not appropriate to describe the phonon density distribu-
tion / temperature.

It is also possible to leave out the half-analytic approximation, but then one has to use
numeric methods to calculate the resulting phonon density / temperature. We developed
a method by making use of Chebyshev polynomials and another method with an iterative
algorithm. We compared these two methods in two dimensions with the half-analytic ap-
proximation in two dimensions. We found a good matching in the results by comparing the
phonon density for different phonon wave numbers.
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4 Coupled phonon-magnon system

4 Coupled phonon-magnon system

In this chapter, we consider a thin film out of a magnetic insulator on top of the GGG
(Gd3Ga5O12) substrate. This magnetic insulator is chosen to be YIG (Yttrium iron garnet,
Y3Fe5O12). This is a typical setup for the transverse spin Seebeck effect. We will analyze
the influence of the phonons onto the magnons inside the magnetic insulator by making use
of the Boltzmann equation. Since the thickness of the GGG substrate is much thicker than
the thickness of the YIG film, the phonons are rarely influenced by the magnons. Thus, the
phonon temperature profile out of chapter 3 will be used as an input parameter. The spatial
temperature profile of the magnons will be calculated.

For calculating the influence of the phonons onto the magnons, we will derive the Hamil-
ton operator in section 4.1 for dipolar magnons as well as for exchange magnons. In section
4.2, we will derive the Boltzmann equation of the coupled phonon-magnon system. The
collision integral to this Boltzmann equation will be calculated in section 4.3. Here, we will
make use of the prefactors in front of the creation and annihilation operators in the Hamilton
operator, which was derived in section 4.1. With that, we want to develop an integral equa-
tion for the wave vector dependent magnon temperature, which can be solved numerically.
The wave vector dependent phonon temperature will be treated as an input parameter and
cannot be changed. The magnon-magnon interaction will be included in section 5.

For our calculation, we take the sample size out of Ref. [21]. The GGG substrate is
dGGG = 0.5 mm thick, LGGG = 8 mm long and wGGG = 4 mm wide. On top of it, there
is a YIG-film, which is dYIG = 3.9 µm thick, LYIG = 8 mm long and wYIG = 4 mm wide.
One has to mention, that the length and the width of the GGG substrate are the same as
for the YIG-film. At the end, there will be a small Pt-stripe on top of the YIG-film. This is
dPt = 15 nm thick, LPt = 0.1 mm long and wPt = 4 mm wide. One has to mention, that the
width of the Pt stripe is the same as for the YIG-film and the GGG substrate. The length of
the Pt-stripe is smaller than of the YIG film. The schematical setup can be found in figure
4 in chapter 1 or figure 9 in chapter 3.

The thickness of the GGG substrate is much thicker than the thickness of the YIG film
(dYIG � dGGG). Because of that, propagating phonons are mostly propagating in an area,
where no magnons are present. Phonons with a large relaxation length, coming out of the
YIG-stripe will propagate nearly hitchless until they reach the thermal reservoir and relax
there. Only particles coming out of the YIG-stripe in a very small angular range, which is
close to perpendicular to the surface will be reflected at the opposite wall and then come
back into the stripe. Thus, the phonons are not much influenced by magnons and we can
neglect the influence from the magnons onto the phonons. In section 3, we calculated the
phonon density distribution. Based on this calculation, we will calculate the influence from
the phonons onto the magnons. This will be done in this chapter. Magnons are only able to
propagate in the YIG-film. In the whole YIG-film phonons are also able to propagate. Thus,
one has to write down the full Boltzmann equation for magnons and has to include phonon-
magnon interaction as well as magnon-magnon interaction. The phonon density distribution
here is treated as an input parameter and cannot be changed. We write down the Boltzmann
equation for the magnons as already done in Eq. (3.5). It is

− ε~k
T0

∂f
(0)
~k

∂ε
(~v~k · ~∇TM) + ~v~k · ~∇δf~k =

∂f~k
∂t

∣∣∣∣
St,mag-pho

+
∂f~k
∂t

∣∣∣∣
St,mag-mag

, (4.1)

while TM denotes the spatial and wave vector dependent magnon temperature. T0 is the
average temperature. The wave vector dependent magnon energy dispersion is denoted by
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4.1 Hamilton operators for magnon-phonon-interaction

ε~k, while we use Eq. (2.6). The parameter ~v~k denotes the wave vector dependent magnon
velocity. In general one finds their absolute value, by taking the wave vector derivative
of the energy dispersion. The magnon density distribution f~k is composed as in Eq. (3.1).
Additionally Eqs. (3.9) and (3.10) are valid. The first summand on the right hand side of Eq.
(4.1) determines the collision integral of the magnon-phonon-interaction. It will be derived
in section 4.3 and reads

∂f~k
∂t

∣∣∣∣
St,mag-pho

=
∑
~p

{
1

τmppk

TPh(p)− TM(k)

T0
− 1

τ̃mppk

TPh(p)− TM(|~k − ~p|)
T0

}
, (4.2)

while the abbreviations are given in Eqs. (4.56) and (4.57). TPh denotes the spatial and
wave vector dependent phonon temperature. In the same way, the collision term for the
magnon-magnon interaction will be derived in section 5. The result is the sum of the two
Eqs. (5.11) and (5.63).

4.1 Hamilton operators for magnon-phonon-interaction

The goal of this chapter is to calculate the collision integral for the magnon-phonon interac-
tion in the transverse spin Seebeck effect. To reach this goal, we start by writing down the
Hamilton operator for the magnon-phonon coupling. At first, we will consider dipole dipole
magnons and after that exchange magnons. The prefactor of the Hamilton operator will be
used for writing down the collision integral in the Boltzmann equation. In this section, we
will present a short calculation of the Hamilton operator. The detailed calculation can be
found in the appendix (chapter B).

4.1.1 Dipole-dipole interaction

Here, we want to calculate the Hamilton operator and read out its prefactors. We start with
the magnetoelastic energy for the magnon-phonon interaction with dipolar magnons [43, p.
315].

Umel =
B1

M2
0

3∑
p=1

M2
p epp +

B2

M2
0

3∑
p,q=1,q 6=p

MpMqepq , (4.3)

whileMp denotes the local magnetization in spatial direction p and epq denotes the symmetric
strain tensor. The indices are p, q ∈ {x, y, z}. We follow the calculation of Kaganov et al.
[51]. In our calculation, the YIG lattice structure will be modeled by a 3-dimensional cubic
lattice with identical unit cell volume (lattice constant a = 1.25 nm [52, 53]). The spin inside
one single unit cell will be modeled as one single spin with strength S = 14.2 [53]. In the
following we use the transformations

Mi =− γ~Si (4.4)

epq =
1

2

(
∂up
∂xq

+
∂uq
∂xp

)
(4.5)

~u(~r) =
∑
~p

e−i~p~ru~p ê~p =
∑
~p

√
~

2mNωp
(b~p + b†−~p)e

−i~p~r ê~p , (4.6)

while ωp denotes the angular frequency for phonons with wave number p (cf. Eq. (2.3)).

Additionally, ~S denotes the net spin and its orientation of all atoms in one YIG unit cell and
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4 Coupled phonon-magnon system

S denotes its absolute value. m denotes the mass of one unit cell and N denotes the number
of lattice points in the whole solid. ~u denotes the spatial dependent displacement vector of
the lattice atom. The operators b~q,i and b†~q,i denote the annihilation and the creation of one
phonon with wave vector ~q and mode i, respectively. The gyromagnetic ratio is denoted by
γ and the Planck constant by ~. We insert Eq. (4.4) into the magnetoelastic energy. The
spin operators Sx and Sy can be rewritten in the following way

S+ = Sx + iSy S− = Sx − iSy . (4.7)

On the other hand, we replace the spin operators with creation and annihilation operators.
This we do by using the Holstein-Primakoff transformation [54, p. 78]. To lowest order
approximation, we find

S+ ≈
√

2S a S− ≈
√

2S a† Sz ≈ S − a†a . (4.8)

The operators a and a† denote the annihilation and the creation of one magnon at position
~r, respectively. The operators are still dependent on position ~r. Thus, we need to Fourier
transform

a =
1√
N

∑
~k

a~ke
−i~k~r a† =

1√
N

∑
~k′

a†
~k′
ei
~k′~r , (4.9)

while N denotes the number of lattice points in three dimensions [54, p. 79]. The operators
a~k and a†

~k
denote the annihilation and the creation of one magnon with wave vector ~k,

respectively. The Hamilton operator is the summation of the energy in the whole solid. One
finds

H =

∫
V
d3~xUmel . (4.10)

We rearrange the terms by assuming b2 = b1 for an isotropic ferromagnet [43, p. 315]. Energy
conservation needs to be fulfilled. Terms with only annihilation- or creation-operators vanish,
because energy conservation is never fulfilled in these cases. After a long calculation, we find

H =Hconst +
6a3

π

√
N
∑
~p

b1
√

2SS

2i

√
~

2mNωp
(pz(a

†
~p(b~p e~p,x − ib~p e~p,y) + a−~p(b

†
−~p e~p,x + ib†−~p e~p,y))

+ (px + ipy)a
†
~pb~p e~p,z + (px − ipy)a−~pb†−~p e~p,z)

+
6a3

π

∑
~k~p

b1S

2i

√
~

2mNωp
(a~ka−~k−~p(px − ipy)(b

†
−~p e~p,x − ib

†
−~p e~p,y)

+ a†
~k
a†
−~k+~p

(px + ipy)(b~p e~p,x + ib~p e~p,y))

+
6a3

π

∑
~k~p

b1S

2i

√
~

2mNωp
a~ka

†
~k+~p

((px + ipy)(b~p e~p,x + b†−~p e~p,x − ib~p e~p,y − ib
†
−~p e~p,y)

+ (px − ipy)(b~p e~p,x + b†−~p e~p,x + ib~p e~p,y + ib†−~p e~p,y))

− 6a3

π

∑
~k~p

b1S

2i

√
~

2mNωp
a~ka

†
~k+~p

(4pz(b~p + b†−~p) e~p,z) . (4.11)

Now, we need to identify the prefactors of the different Hamilton operators. The first sum-
mand contains the conversion from one magnon into one phonon and vice versa. Energy
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4.1 Hamilton operators for magnon-phonon-interaction

and momentum conservation needs to be fulfilled. This is only the case, when the dispersion
relation for magnons and phonons intersect (cf. figure 39). Since this is true only for two
points of the dispersion relation, the first summand will be neglected in the upper expression
for the Hamilton operator. The second summand contains the transformation of one phonon
into two magnons and vice versa. Furthermore, the scattering from one magnon into one
magnon and one phonon and vice versa is contained in the third as well as in the fourth
summand. Now, we read out the prefactor to the second summand. Thus we have to identify
the prefactor to the phonon and magnon operators times the unit vector. Since e~p,x − i e~p,y
is not a unit vector, we need to take out a prefactor

√
2, that makes this vector to a unit

vector. We find

V2M =
6a3

π

√
2b1S

2i

√
~

2mNωp
(px − ipy) =

6a3

π

B1√
2iS

√
~

2mNωp
(px − ipy) . (4.12)

Thus

|V2M|2 =
36a6

π2

B2
1

2S2

~
2mNωp

(p2
x + p2

y) =
36a6

π2

~B2
1

4mNcPhS2
p sin2(ϑ) . (4.13)

The scattering amplitude, which is the prefactor to the third and fourth summand, reads

VSc =
6a3

π

b1S

2i

√
~

2mNωp
((px + ipy)

√
2 + (px − ipy)

√
2− 4pz) . (4.14)

Thus

|VSc|2 =
36a6

π2

~B2
1

4S2mNωp

1

2
(8p2 sin2(ϑ) cos2(ϕ)− 16

√
2 sin(ϑ) cos(ϕ) cos(ϑ) + 16 cos2(ϑ)) .

(4.15)

We perform an approximation, where we average over the angles ϑ and ϕ of the orientation
of the magnon magnetic moment. We get

|VSc,av|2 =
1

4π

∫ 2π

0

∫ π

0
sin(ϑ) |VSc|2dϑdϕ =

36a6

π2

~B2
1

4S2mNcPh

1

2
p

(
8

3
+ 0 +

16

3

)
, (4.16)

where ϑ denotes the angle between the magnetization direction and the vector ~p. It is
m = ρ · VEZ = ρ · a3 and Bges = B1 · a3. To calculate the prefactor, we take

~ =1.05457266 · 10−34 Js (4.17)

B1 =3.48 · 106 erg/cm3 = 0.348 J/cm3 [43, p. 315] (4.18)

ρ =5170 kg/m3 [52, 55] (4.19)

a =1.2376 nm [52, 53] (4.20)

cPh =3843 m/s [55] (4.21)

S =14.2 [53] . (4.22)

In the end, we find

|V2M|2 =V 2
melp sin2(ϑ) (4.23)

|VSc|2 =V 2
mel

1

2
(8p2 sin2(ϑ) cos2(ϕ)− 16

√
2 sin(ϑ) cos(ϕ) cos(ϑ) + 16 cos2(ϑ)) , (4.24)
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with

V 2
mel =

36a6

π2

~B2
1

4mNcPhS2
=

1

N
· 4.95482 · 10−8GHz2cm . (4.25)

The averages read

|V2M,av|2 =
1

4π

∫ 2π

0

∫ π

0
sin(ϑ) |V2M|2dϑdϕ =

2

3
· p
N
· 4.95482 · 10−8 GHz2 cm (4.26)

|VSc,av|2 =
1

4π

∫ 2π

0

∫ π

0
sin(ϑ) |VSc|2dϑdϕ = 4 · p

N
· 4.95482 · 10−8 GHz2 cm . (4.27)

4.1.2 Exchange interaction

Now, we have a look at the coupling of phonons with exchange magnons. Again, we want
to calculate the Hamilton operator and read out its prefactors. The magnetoelastic energy
reads [43, p. 315] [51]

Umel =
A1

M2
0

3∑
p,q,l=1,l 6=q

∂Mp

∂xq

∂Mp

∂xl
eql +

A2

M2
0

3∑
p,q=1

(
∂Mp

∂xq

)2

eqq +
A3

M2
0

3∑
p,q,l=1,l 6=q

(
∂Mp

∂xq

)2

ell ,

(4.28)
whileMp denotes the local magnetization in spatial direction p and epq denotes the symmetric
strain tensor. Again, we follow the calculation of Kaganov et al. [51]. The long calculation
can be found in the appendix (chapter B.2). We perform the transformations out of Eqs.
(4.4), (4.5) and (4.6). We insert (4.4) into the magnetoelastic energy. The spin operators
Sx and Sy can be rewritten. This we do by using Eqs. (4.7), (4.8) and (4.9). Additionally,
we calculate the Hamilton operator via Eq. (4.10). Now, we neglect higher order terms with
more than two annihilation or creation operators. If one assumes a2 = a1 (cf. Eq. (2) of Ref.
[51]), then one finds

H =
6a3

π

a1S

i

3∑
p=1

∑
~k~p

√
~

2mNωp
a~ka

†
~k+~p

(
kp((~k + ~p) · ~p) + (~k · ~p)(kp + pp)

)
(b~p + b†−~p) e~p,p

+
6a3

π

2a3S

i

3∑
p=1

∑
~k~p

√
~

2mNωp
a~ka

†
~k+~p

pp((~k + ~p) · ~k)(b~p + b†−~p) e~p,p . (4.29)

Let us assume a3 = a1 for simplicity. We have three phonon modes (one for each spatial
dimension). Thus, we find three coupling parameters

Vex,x =
6a3

π

a1S

i

√
~

2mNωp

(
kx((~k + ~p) · ~p) + (~k · ~p)(kx + px) + 2px((~k + ~p) · ~k)

)
(4.30)

Vex,y =
6a3

π

a1S

i

√
~

2mNωp

(
ky((~k + ~p) · ~p) + (~k · ~p)(ky + py) + 2py((~k + ~p) · ~k)

)
(4.31)

Vex,z =
6a3

π

a1S

i

√
~

2mNωp

(
kz((~k + ~p) · ~p) + (~k · ~p)(kz + pz) + 2pz((~k + ~p) · ~k)

)
. (4.32)
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Because these three interactions are different, the squares of absolute value are added in the
collision integral

|Vex,ges|2 =|Vex,x|2 + |Vex,y|2 + |Vex,z|2

=
36a6

π2

~A2
1

2mNS2ωp

(
(~k · ~k)((~k + ~p) · ~p)2 + (~k · ~p)2(~k + ~p)2 + 4(~p · ~p)((~k + ~p) · ~k)2

)
+

36a6

π2

~A2
1

2mNS2ωp

(
10(~k · (~k + ~p))((~k + ~p) · ~p)(~k · ~p)

)
. (4.33)

The average can be calculated in the following way. Let k′ = |~k + ~p|, ϑ1 = ](~p,~k + ~p), and
ϑ2 = ](~k,~k + ~p). Then

|Vex,ges|2 =
36a6

π2

~A2
1

2mNS2ωp

(
kk(k′p cos(ϑ1))2 + (kp cos(ϑ1 + ϑ2))2k′k′ + 4pp(k′k cos(ϑ2))2

+ 10(kk′ cos(ϑ2))(k′p cos(ϑ1))(kp cos(ϑ1 + ϑ2))
)
. (4.34)

The average coupling parameter read

|Vex,ges,av|2 =
1

(4π)2

∫ 2π

0

∫ 2π

0

∫ π

0

∫ π

0
sin(ϑ1)sin(ϑ2)|Vex,ges|2 dϑ1 dϑ2 dϕ1 dϕ2

=
36a6

π2

~A2
1

2mNS2ωp

10

3
k2k′2p2

=
A

N
k2k′2p . (4.35)

For calculating the numeric parameters, we use an identity out of [43, p. 333]. This is∣∣∣∣Vex,ges,av

VSc,av

∣∣∣∣ ∝ M0Dk
2

B
∝ 1 , (4.36)

for k = k′ ≈ 106cm−1. We make use of Eq. (4.27). From there, we get for k = k′

|Vex,ges,av|2
|VSc,av|2

=
(A/N)k2k′2p

4 · (1/N) · 4.95482 · 10−8 GHz2 cm p
=

Ak4

4 · 4.95482 · 10−8 GHz2 cm
= 1 ,

(4.37)
for k ≈ 106cm−1. Thus, we get

A =
4 · 4.95482 · 10−8 GHz2 cm

(106cm−1)4
= 1.98197 · 10−31 GHz2 cm5 . (4.38)

For further calculations, we will take Eqs. (4.35) and (4.38).

4.2 Boltzmann equation of phonon-magnon coupled system

For the calculation of the magnon temperature contribution, we write down the Boltzmann
equation for magnons including magnon-phonon interaction. We take Eq. (4.1) and neglect
the magnon-magnon collision term. The magnon-magnon interaction will be treated in
section 5. Furthermore, we use the effective translation symmetry in y- and z-direction.
Thus the derivatives in y- and z-direction vanish. Then, the Boltzmann equation reads

− ε~k
T0

∂f
(0)
~k

∂ε
v~k,x

∂TM

∂x
+ v~k,x

∂δf~k
∂x

=
∂f~k
∂t

∣∣∣∣
St

, (4.39)
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4 Coupled phonon-magnon system

while TM denotes the spatial dependent magnon temperature, f~k denotes the momentum
dependent magnon distribution function, ε~k the magnon-energy (cf. Eq. (2.6)), T0 the average
magnon-temperature, and ~v~k the magnon velocity. The magnon density distribution f~k is
composed as in Eq. (3.1). Additionally Eqs. (3.9) and (3.10) are valid.

First of all, Sanders and Walton [24] performed a calculation on a coupled magnon-
phonon system and calculated the space dependent magnon temperature. They considered a
ferromagnetic or ferrimagnetic stripe, where phonons and magnons are able to propagate. At
the endings of the stripe, only phonons are coupled to heat reservoirs with fixed temperatures.
Later, Xiao et al. [23] rarefied the calculation. They assumed weak coupling of the magnons
to the heat reservoirs. Because magnons cannot propagate into the heat reservoirs (or are
only weakly coupled), there will be a magnon accumulation at the one end and a lack of
magnons at the other end. Since the magnon temperature TM depends on the magnon
particle distribution via Bose-Einstein-distribution (c.f. Eq. (2.8))

f
(0)
~k

=
1

e
ε~k

kBTM − 1

, (4.40)

the temperature will be increased at the one end and decreased at the other end. Here kB

denotes the Boltzmann constant. Both authors found a length scale λ on which the deviation
of temperatures takes place. Xiao et al. claimed λ to be in the magnitude of millimeters [23].
Later, Agrawal et al. [31] performed direct measurements of the magnon temperature in a
comparable system. They found a very small difference between the magnon temperature
and the phonon temperature. Thus, the characteristic length λ achieves to be much smaller
than stated by Xiao et al.. Nevertheless Agrawal et al. themselves said, that their method
is only able to measure high wave vector (small wavelength) magnons. The density of small
wave vector (long wavelength) magnons cannot be measured and their temperature may still
deviate from the phonon temperature and affect the transverse spin Seebeck effect. This is
the case, as we will see later.

In our calculation we do not consider the effect described by Sanders and Walton. Beyond,
we approximate the deviation in magnon- and phonon-temperatures (TM and TPh) to be small
in comparison to the average temperature T0. That is

|TM − T0| � T0 |TPh − T0| � T0 . (4.41)

Now, we separate the Boltzmann equation (4.39) into moments of cos(0ϑ) and cos(1ϑ). Here,
we use spherical coordinates in a modified way. The angle ϑ is the angle between the x-axis
and the vector ~k. We want to emphasize, that the density functions and the collision integral
do not depend on the angle ϕ because of the rotational invariance of the system, which we
consider here. We assume

f~k(x) = f
(0)
~k

+ δf~k(x) = f
(0)
~k

+ δfk(x) cos(ϑ) . (4.42)

We rewrite the Boltzmann equation

− ε~k
T0

∂f
(0)
~k

∂ε

∂TM
∂x

vk cos(ϑ) +
∂δfk
∂x

cos(ϑ) vk cos(ϑ) =
∂f~k
∂t

∣∣∣∣
St

. (4.43)

The separation, we perform by integration over 1
2

∫ π
0 sin(ϑ) cos(nϑ)dϑ with n ∈ N0 (cf. Eq.
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(3.3)). We use Eq. (4.42) and find

1

3

∂δfk
∂x

vk =
1

2

∫ π

0
sin(ϑ)dϑ

∂f~k
∂t

∣∣∣∣
St

(4.44)

−1

3

ε~k
T0

∂f
(0)
~k

∂ε

∂TM
∂x

vk =
1

2

∫ π

0
sin(ϑ)dϑ cos(ϑ)

∂f~k
∂t

∣∣∣∣
St

≈ −δfk
3τk

. (4.45)

If one takes Eq. (4.45) and put it in Eq. (4.44), one finds

1

3

ε~k
T0

∂f
(0)
~k

∂ε

∂2TM
∂x2

v2
k τk =

1

2

∫ π

0
sin(ϑ)dϑ

∂f~k
∂t

∣∣∣∣
St

. (4.46)

Xiao et al. [23] as well as Sanders and Walton [24] calculated a magnon temperature profile,
which has a structure of an hyperbolic sine with the decay parameter λ. They assumed
this parameter to be at the order of the system length (centimeters). Agrawal et al. [31]
performed measurements and claimed the parameter λ to be much smaller than the system
length for large wave number phonons. Also other experiments found a linear behavior.

Figure 35: This is a sketch of the estimated spatial temperature profile for magnon and phonon
temperature. The Sanders and Walton effect takes place at the boundaries in a proximity of
length λ. In the middle region, we can estimate that (∂2TM )/(∂x2) = 0.

Thus, we approximate the magnon-temperature to be linear and the second derivative
vanishes. This simplifies the collision integral

0 =
1

2

∫ π

0
sin(ϑ)dϑ

∂f~k
∂t

∣∣∣∣
St

. (4.47)

In figure 18 and 19, one finds the phonon density at x = −L/2 for different wave numbers
p. The long wavevector (short wavelength) phonons, follow the major density (or phonon
temperature). Thus, the relaxation of them can be neglected, because they are already at
equilibrium. The short wavevector (long wavelength) phonons have a long relaxation length
(up to millimeters). The thickness of the YIG-stripe is at the order of micrometers. Thus,
nearly all of those phonons propagate through without any phonon-phonon collisions in the
YIG-stripe and will be reflected back into the substrate.

4.3 Collision integral

Now, we will write down the collision integral for the magnon-phonon interaction. With that
and with Eq. (4.47), we want to derive an integral equation for the wave vector dependent
magnon temperature. The wave vector dependent phonon temperature will be treated as
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4 Coupled phonon-magnon system

an input parameter and cannot be changed, as already discussed above. We perform some
analytic transformations to solve the resulting integral equation numerically.

If the phonon- and magnon-distribution do not depend on the orientation (or angle) of
the wave vector, one can write the distribution as Bose-Einstein distribution

f~k =
1

eε~k/(kBTM(~k)) − 1
n~p =

1

eω~p/(kBTPh(~p)) − 1
. (4.48)

Here TM(~k) denotes the momentum dependent magnon temperature and TPh(~p) denotes
the momentum dependent phonon temperature. If one compares the upper distributions
with Eqs. (3.1) and (3.2), they are comparable with δf~k = 0 and δn~p = 0. Thus, the upper
distributions can be separated in two summands, in the ground state plus the zeroth moment
of Eqs. (3.3) and (3.4). In the ground state, the distribution functions are Bose-Einstein
distributions with temperature T0 (cf. Eqs. (2.4) and (2.8))

f
(0)
~k

=
1

eε~k/(kBT0) − 1
n

(0)
~p =

1

eω~p/(kBT0) − 1
, (4.49)

for magnons and phonons, respectively. Here T0 denotes the overall average temperature.
The wave vector dependent magnon energy dispersion is denoted by ε~k, while we use Eq.
(2.6). Alike, the wave vector dependent phonon energy dispersion is denoted by ~ω~p, while
we use Eq. (2.3). From now on, we will leave out the prefactor ~ in the phonon energy
dispersion.

First, we have the scattering interaction. One phonon and one magnon are scattering into
one magnon ore vice versa by respecting energy and momentum conservation. The collision
integral for exchange and for dipole-dipole scattering reads

∂f~k
∂t

∣∣∣∣
St,mag-pho,1

=
B.Z.∑
~p

{
W (M~k−~p + Ph~p → M~k

) +W (M~k−~p → Ph−~p + M~k
)

−W (M~k
+ Ph−~p → M~k−~p)−W (M~k

→ Ph~p + M~k−~p)
}
, (4.50)

while W (M~k−~p + Ph~p → M~k
) denotes the probability for the scattering of one magnon with

wave vector ~k − ~p and one phonon with wave vector ~p into one magnon with wave vector
~k. In chapter 2.2 we introduced the procedure, how one has to set up the collision integral
for a given interaction. We will apply this procedure on the Hamilton operators with the
magnon-phonon interactions, which we have derived above. These are Eq. (4.11) for dipolar
magnons and Eq. (4.29) for exchange-magnons. Thus, we find

∂f~k
∂t

∣∣∣∣
St,mag-pho,1

=
2π

~

B.Z.∑
~p

|V |2δ(ε~k − ε~k−~p − ω~p)
[
f~k−~pn~p(1 + f~k)− f~k(1 + f~k−~p)(1 + n~p)

]

+
2π

~

B.Z.∑
~p

|V |2δ(ε~k − ε~k−~p + ω~p)
[
f~k−~p(1 + n~p)(1 + f~k)− f~k(1 + f~k−~p)n~p

]
,

(4.51)

while |V |2 denotes the scattering amplitude. This will be Eq. (4.27) and Eq. (4.35). For
the density functions, we take Eq. (4.48). There, the magnon and phonon temperature
arises. Since Eq. (4.41) holds, we perform a first order Taylor expansion in the magnon
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4.3 Collision integral

temperature TM as well as in the phonon temperature temperature TPh around the overall
average temperature T0. Thus we find

∂f~k
∂t

∣∣∣∣
St,mag-pho,1

≈2π

~

B.Z.∑
~p

|V |2δ(ε~k − ε~k−~p − ω~p)(1 + f0
~k

)f0
~k−~pn

0
~p

1

kBT 2
0

×
[
ε~k(TPh(p)− TM(k))− (ε~k − ω~p)(TPh(p)− TM(|~k − ~p|))

]
+

2π

~

B.Z.∑
~p

|V |2δ(ε~k − ε~k−~p + ω~p)f
0
~k

(1 + f0
~k−~p)n

0
~p

1

kBT 2
0

×
[
ε~k(TPh(p)− TM(k))− (ε~k + ω~p)(TPh(p)− TM(|~k − ~p|))

]
. (4.52)

The same procedure will be done for the conversion scattering from one phonon into two
magnons. Here only the dipole-dipole interaction occurs. The Hamilton operator is in Eq.
(4.11). The deduced collision integral reads

∂f~k
∂t

∣∣∣∣
St,mag-pho,2

=
B.Z.∑
~p

{
W (Ph~p → M~k

+ M−~k+~p
) +W (Ph~p → M−~k+~p

+ M~k
)

−W (M~k
+ M−~k+~p

→ Ph~p)−W (M−~k+~p
+ M~k

→ Ph~p)
}

=
2π

~

B.Z.∑
~p

|V |2δ(ε~k + ε−~k+~p
− ω~p)

[
n~p(1 + f~k)(1 + f−~k+~p

)− f~kf−~k+~p
(1 + n~p)

]

≈2π

~

B.Z.∑
~p

|V |2δ(ε~k + ε−~k+~p
− ω~p)f~kf−~k+~p

(1 + n~p)
1

kBT 2
0

×
[
ε~k(TPh(p)− TM(k))− (ε~k − ω~p)(TPh(p)− TM(|~k − ~p|))

]
. (4.53)

while the scattering amplitude |V |2 is given by Eq. (4.26). Since Eqs. (3.9) and (3.10) hold
and the quasi-particle energy is only dependent on the absolute value of the wave vector,
the temperature is dependent on the momentum, but independent on the orientation of
the momentum. At the end, the collision integral can be written down in relaxation time
notation

0 =
∂f~k
∂t

∣∣∣∣
St,mag-pho

=
∂f~k
∂t

∣∣∣∣
St,mag-pho,1

+
∂f~k
∂t

∣∣∣∣
St,mag-pho,2

=
B.Z.∑
~p

{
1

τmppk

TPh(p)− TM(k)

T0
− 1

τ̃mppk

TPh(p)− TM(|~k − ~p|)
T0

}
, (4.54)

or transposed

0 =
∂f~k
∂t

∣∣∣∣
St,mag-pho

=

B.Z.∑
~p

TPh(p)

T0

(
1

τmppk

− 1

τ̃mppk

)
− TM(k)

T0

B.Z.∑
~p

1

τmppk

+

B.Z.∑
~p

1

τ̃mppk

TM(|~k − ~p|)
T0

,

(4.55)
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with

1

τmppk

=
2π

~
(
|VSc,av|2 + |Vex,ges,av|2

)
δ(ε~k − ε~k−~p − ω~p)(1 + f0

~k
)f0
~k−~pn

0
~p

ε~k
kBT0

+
2π

~
(
|VSc,av|2 + |Vex,ges,av|2

)
δ(ε~k − ε~k−~p + ω~p)f

0
~k

(1 + f0
~k−~p)n

0
~p

ε~k
kBT0

+
2π

~
|V2M,av|2δ(ε~k + ε−~k+~p

− ω~p)f~kf−~k+~p
(1 + n~p)

ε~k
kBT0

, (4.56)

and

1

τ̃mppk

=
2π

~
(
|VSc,av|2 + |Vex,ges,av|2

)
δ(ε~k − ε~k−~p − ω~p)(1 + f0

~k
)f0
~k−~pn

0
~p

ε~k − ω~p
kBT0

+
2π

~
(
|VSc,av|2 + |Vex,ges,av|2

)
δ(ε~k − ε~k−~p + ω~p)f

0
~k

(1 + f0
~k−~p)n

0
~p

ε~k + ω~p

kBT0

+
2π

~
|V2M,av|2δ(ε~k + ε−~k+~p

− ω~p)f~kf−~k+~p
(1 + n~p)

ε~k − ω~p
kBT0

. (4.57)

Here, we have taken Eqs. (4.26), (4.27), (4.35) and (4.38) for the scattering amplitudes. To
evaluate the expression numerically, we need to perform analytic transformations. Especially,
evaluating the delta-distribution would be difficult numerically.

4.3.1 Numerical treatment

For avoiding numerical difficulties, we perform a transformation of the integration procedure.
We start with introducing some abbreviations

|VSc,av|2 =
1

N
|VSc,av,N|2 (4.58)

|Vex,ges,av|2 =
1

N
|Vex,av,N|2 (4.59)

|V2M,av|2 =
1

N
|V2M,av,N|2 , (4.60)

and

1

τmppk

=
1

N

(
1

τApk
δ(ε~k − ε~k−~p − ω~p) +

1

τBpk
δ(ε~k − ε~k−~p + ω~p) +

1

τCpk
δ(ε~k + ε−~k+~p

− ω~p)
)

(4.61)

1

τApk
=

2π

~
(
|VSc,av,N|2 + |Vex,av,N|2

)
(1 + f0

~k
)f0
~k−~pn

0
~p

ε~k
kBT0

(4.62)

1

τBpk
=

2π

~
(
|VSc,av,N|2 + |Vex,av,N|2

)
f0
~k

(1 + f0
~k−~p)n

0
~p

ε~k
kBT0

(4.63)

1

τCpk
=

2π

~
|V2M,av,N|2f~kf−~k+~p

(1 + n~p)
ε~k
kBT0

, (4.64)
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and

1

τ̃mppk

=
1

N

(
1

τ̃Apk
δ(ε~k − ε~k−~p − ω~p) +

1

τ̃Bpk
δ(ε~k − ε~k−~p + ω~p) +

1

τ̃Cpk
δ(ε~k + ε−~k+~p

− ω~p)
)

(4.65)

1

τ̃Apk
=

2π

~
(
|VSc,av,N|2 + |Vex,av,N|2

)
(1 + f0

~k
)f0
~k−~pn

0
~p

ε~k − ω~p
kBT0

(4.66)

1

τ̃Bpk
=

2π

~
(
|VSc,av,N|2 + |Vex,av,N|2

)
f0
~k

(1 + f0
~k−~p)n

0
~p

ε~k + ω~p

kBT0
(4.67)

1

τ̃Cpk
=

2π

~
|V2M,av,N|2f~kf−~k+~p

(1 + n~p)
ε~k − ω~p
kBT0

, (4.68)

and

T1(k, p, |~k − ~p|) =
TPh(p)

T0

(
1

τApk
− 1

τ̃Apk

)
− TM(k)

T0

1

τApk
+

1

τ̃Apk

TM(|~k − ~p|)
T0

(4.69)

T2(k, p, |~k − ~p|) =
TPh(p)

T0

(
1

τBpk
− 1

τ̃Bpk

)
− TM(k)

T0

1

τBpk
+

1

τ̃Bpk

TM(|~k − ~p|)
T0

(4.70)

T3(k, p, |~k − ~p|) =
TPh(p)

T0

(
1

τCpk
− 1

τ̃Cpk

)
− TM(k)

T0

1

τCpk
+

1

τ̃Cpk

TM(|~k − ~p|)
T0

. (4.71)

These abbreviations, we insert in Eq. (4.55). Thus, we find

0 =
B.Z.∑
~p

1

N
T1(k, p, |~k − ~p|) δ(ε~k − ε~k−~p − ω~p)

+

B.Z.∑
~p

1

N
T2(k, p, |~k − ~p|) δ(ε~k − ε~k−~p + ω~p)

+

B.Z.∑
~p

1

N
T3(k, p, |~k − ~p|) δ(ε~k + ε−~k+~p

− ω~p)) . (4.72)

Since the functions T1, T2 and T3 only depend on absolute values, we can write the p-
integration in spherical coordinates. The z-direction of the p-integration will be fixed along
the ~k-direction. We rewrite the sum into an integral and introduce an integration over

km = |~k − ~p| =
√
k2 + p2 − 2kp cos(ϑ) . (4.73)

It is

0 =
3a3N

4π4

1

N

∫
d3~p

∫ 2kF

0
dkmδ(km − |~k − ~p|)T1(k, p, |~k − ~p|) δ(ε~k − ε~k−~p − ω~p)

+
3a3N

4π4

1

N

∫
d3~p

∫ 2kF

0
dkmδ(km − |~k − ~p|)T2(k, p, |~k − ~p|) δ(ε~k − ε~k−~p + ω~p)

+
3a3N

4π4

1

N

∫
d3~p

∫ 2kF

0
dkmδ(km − |~k − ~p|)T3(k, p, |~k − ~p|) δ(ε~k + ε−~k+~p

− ω~p)) , (4.74)
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with the Fermi wave number kF = 3.10 · 107 · cm−1. For the p-integration, we us spherical
coordinates. We find

=
3a3

4π4
2π

∫ kF

0
dp p2

∫ π

0
d cos(ϑ)

∫ 2kF

0
dkmδ(km − |~k − ~p|)T1(k, p, km) δ(ε~k − ε~k−~p − ω~p)

+
3a3

4π4
2π

∫ kF

0
dp p2

∫ π

0
d cos(ϑ)

∫ 2kF

0
dkmδ(km − |~k − ~p|)T2(k, p, km) δ(ε~k − ε~k−~p + ω~p)

+
3a3

4π4
2π

∫ kF

0
dp p2

∫ π

0
d cos(ϑ)

∫ 2kF

0
dkmδ(km − |~k − ~p|)T3(k, p, km) δ(ε~k + ε−~k+~p

− ω~p)) .
(4.75)

We rearrange the delta-distribution to solve the angular integration by taking Eq. (4.73).
For the phonon energy dispersion, we use Eq. (2.3) and find

=
3a3

2π3

∫ kF

0
dp p2

∫ π

0
d cos(ϑ)

∫ 2kF

0
dkm

∣∣∣∣kmkp
∣∣∣∣ δ(cos(ϑ)− k2 + p2 − k2

m

2pk

)
× T1(k, p, km) δ(εk − εkm − cphp)

+
3a3

2π3

∫ kF

0
dp p2

∫ π

0
d cos(ϑ)

∫ 2kF

0
dkm

∣∣∣∣kmkp
∣∣∣∣ δ(cos(ϑ)− k2 + p2 − k2

m

2pk

)
× T2(k, p, km) δ(εk − εkm + cphp)

+
3a3

2π3

∫ kF

0
dp p2

∫ π

0
d cos(ϑ)

∫ 2kF

0
dkm

∣∣∣∣kmkp
∣∣∣∣ δ(cos(ϑ)− k2 + p2 − k2

m

2pk

)
× T3(k, p, km) δ(εk + εkm − cphp) . (4.76)

Here, cph denotes the phonon sound velocity. Since km is no longer dependent on p, it is
now very simple to solve the energy-delta-distribution for the p-integration. One still has to
consider, that the p-integration only takes place in the first Brillouin zone.

=
3a3

2π3

1

cph

∫ 2kF

0
dkm

km p

k
Θ

(
1−

∣∣∣∣k2 + p2 − k2
m

2pk

∣∣∣∣) Θ(kF − p) Θ(p)T1(k, p, km)

∣∣∣∣
p=

εk−εkm
cph

+
3a3

2π3
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(4.77)

With this expression, we are able to set up a system of linear equations for the magnon tem-
perature TM (k). The magnon temperature is linearly included in the functions T1(k, p, km),
T2(k, p, km) and T3(k, p, km). Their expressions are given in Eqs. (4.69), (4.70) and (4.71).
The phonon temperature TPh(p) will be treated as an input parameter.

The magnon temperature TM (k) is dependent on the wave number k. The wave number
is limited to the Brillouin zone (i.e. 0 ≤ k ≤ kF). For solving the system of integral equa-
tions, we discretize the wave number k to 100 or 200 numbers in the given range. This is
accompanied by a discretization of the integral over km in the same way as for k. Now, one
can read out the prefactors of the different TM (k) and set up a matrix with them. The func-
tions T1(k, p, km), T2(k, p, km) and T3(k, p, km) also contain summands, where no magnon
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temperature occurs. Instead, the phonon temperature occurs there. Since the phonon tem-
perature is fixed and cannot be changed, these terms will be treated as an inhomogeneity of
the system of linear equations.

Before we solve the system of linear equations, we need to add the magnon-magnon
interaction to our calculation. This will be done in section 5. There, we will proceed
in the same way as in this section and set up a system of linear equations for the magnon
temperature. Because the collision integrals will be added (as one can see in Eq. (4.1)), both
systems of linear equations also need to be added. After that, we will present solutions to the
combined system of equations in section 7. Here, we will calculate the magnon temperature
in the YIG-film. The result for the magnon temperature can be found in figures 43 and 44.
Later, we calculate the transverse spin Seebeck voltage, which is shown in figure 49.

4.4 Summary

In this chapter, we considered a magnon-phonon coupled system and calculated the collision
integral to this system. The substrate consists of a cuboid out of GGG (Gd3Ga5O12), where
only phonons are able to propagate. On top of it, there is a thin film out of ferrimagnetic
YIG (Y3Fe5O12). In this film, magnons and phonons are able to propagate. This YIG-
film will be the magnon-phonon coupled system. The thickness of the ferrimagnetic YIG
(dYIG = 3.9 µm) is much smaller than the thickness of the GGG substrate (dGGG = 0.5
mm). Thus, phonons propagate in the GGG substrate most of the time. Hence, they are
rarely influenced by the magnons via magnon-phonon interaction. For calculating the phonon
temperature, only phonon-phonon interaction is important, which was already calculated in
section 3. On the opposite, magnons are only propagating in the ferrimagnetic YIG film,
where phonons are able to propagate as well. Thus, magnons are strongly influenced by
the phonons via magnon-phonon interaction. The phonon temperature we used as an input
parameter in this chapter and calculated the wave number dependent magnon temperature.

In the beginning, we wrote down the Hamilton operator for the magnon-phonon coupled
system. Here, we considered dipolar magnons as well as exchange magnons. The Hamilton
operator was expressed in terms of annihilation and creation operators for phonons and
magnons. Also the prefactors were calculated, because we needed them for writing down
the collision integral. After calculating the Hamilton operator, we derived the Boltzmann
equation for our system. The effect, calculated by Xiao et al. [23] as well as by Sanders and
Walton [24] was neglected in our calculation, because measurements from Agrawal et al. [31]
claimed the effect to be small. Thus, we found the equation, that the collision integral of
the magnon-phonon interaction has to be zero (see Eq. (4.47)).

After that, we set up the collision integral of the magnon-phonon interaction. Here, we
included dipolar magnons as well as exchange magnons. Since the temperature deviations
from the equilibrium temperatures are small, we performed a Taylor expansion of the colli-
sion integral. In the result, the magnon and phonon temperatures occurred as linear terms
in the resulting expression. The resulting equation is an integral equation. To solve the inte-
gral equation, we performed some analytical transformations, which can be better evaluated
numerically. Since the wave number for the magnon and the phonon temperatures is lim-
ited to the Brillouin zone, we discretized the wave number dependent magnon and phonon
temperatures. The summation is discretized as well. In the end we got a system of linear
equations of the magnon temperature.

In chapter 5 we will add magnon-magnon interaction to our calculation. The resulting
system of linear equations is a sum of both interactions. It will be solved in section 7.
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5 Magnon-magnon interaction

In this chapter, we add the magnon-magnon interaction to our calculations. The goal of this
chapter is to prepare the calculation of the wave number dependent magnon temperature
in the setup of the transverse spin Seebeck effect. In chapter 3, we already calculated the
phonon temperature in the GGG substrate. Since the thickness of the YIG-film on top of
the GGG substrate is much smaller, we calculated the influence from the phonons onto the
magnons in chapter 4. The influence from the magnons onto the phonons was neglected.
Finally in this chapter, we will prepare the analysis of the influence of the magnon-magnon
interaction onto the wave number dependent magnon temperature.

For our calculation, we take the sample size out of Ref. [21]. The GGG substrate is
dGGG = 0.5 mm thick, LGGG = 8 mm long and wGGG = 4 mm wide. On top of it, there
is a YIG-film, which is dYIG = 3.9 µm thick, LYIG = 8 mm long and wYIG = 4 mm wide.
One has to mention, that the length and the width of the GGG substrate are the same as
for the YIG-film. At the end, there will be a small Pt-stripe on top of the YIG-film. This is
dPt = 15 nm thick, LPt = 0.1 mm long and wPt = 4 mm wide. One has to mention, that the
width of the Pt stripe is the same as for the YIG-film and the GGG substrate. The length of
the Pt-stripe is smaller than of the YIG film. The schematical setup can be found in figure
9 in chapter 3.

The magnon-magnon interaction consists of the three particle interaction based on dipole-
dipole interaction, where one incoming magnon is scattered into two magnons or vice versa.
Additionally, there is the four particle interaction based on exchange interaction, where two
incoming magnons are scattered into two outgoing magnons, at which energy and momentum
are transfered between the magnons. In section 5.1, we will calculate the collision integral
for the three particle interaction. After that, we will perform analytic transformations to
better evaluate the resulting terms numerically. With that, we want do develop an integral
equation for the wave number dependent magnon temperature. The same procedure will
be done for the four particle interaction in section 5.2. At the end, one has to sum up
the contributions from magnon-phonon interaction and from magnon-magnon interactions.
The resulting integral equation is transformed into a system of linear equations for the
wave number dependent magnon temperature. In section 7, we will present and discuss the
solutions to the system of linear equations.

In Eq. (4.1), we already set up the Boltzmann equation, which has to be solved. The
collision integral consists of two summands, one for the magnon-phonon interaction and one
for the magnon-magnon interaction. This is

− ε~k
T0

∂f
(0)
~k

∂ε
(~v~k · ~∇TM) + ~v~k · ~∇δf~k =

∂f~k
∂t

∣∣∣∣
St

=
∂f~k
∂t

∣∣∣∣
St,mag-pho

+
∂f~k
∂t

∣∣∣∣
St,mag-mag

, (5.1)

while TM denotes the spatial and wave vector dependent magnon temperature. T0 is the
average temperature. The wave vector dependent magnon energy dispersion is denoted by
ε~k, while we use Eq. (2.6). The parameter ~v~k denotes the wave vector dependent magnon
velocity. The magnon density distribution f~k is composed as in Eq. (3.1). Additionally Eqs.
(3.9) and (3.10) hold. The boundary areas of the GGG substrate and of the YIG film, which
are perpendicular to the unit vector in y- and z-direction are modeled as perfect reflecting
walls. Later, we will introduce boundary scattering by an effective relaxation length. The
results will be separated by including and excluding boundary scattering. Thus, the system
becomes qualitatively invariant in y- and z-direction. Because of that, the derivatives in
y- and z-direction in the Boltzmann equation (5.1) vanish. The first summand on the right
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5.1 Three particle interaction - dipole-dipole-interaction

hand side of the Eq. (5.1) determines the collision integral of the magnon-phonon-interaction.
In section 4.2, we performed some transformations with the upper Boltzmann equation and
used experimental findings. We ended up with Eq. (4.47). It is

0 =
1

2

∫ π

0
dϑ sin(ϑ)

∂f~k
∂t

∣∣∣∣
St

, (5.2)

while the collision integral is independent on ϕ. The summand of the collision integral for
the magnon-phonon interaction reads

∂f~k
∂t

∣∣∣∣
St,mag-pho

=
∑
~p

{
1

τmppk

TPh(p)− TM(k)

T0
− 1

τ̃mppk

TPh(p)− TM(|~k − ~p|)
T0

}
, (5.3)

while the abbreviations are given in Eqs. (4.56) and (4.57). TPh denotes the spatial and
wave vector dependent phonon temperature. In the same way, the collision integral for the
magnon-magnon interaction will be derived in this section. The result can be found in Eqs.
(5.11) and (5.63) and reads as follows

∂f~k
∂t

∣∣∣∣
St,mag-mag

=
∂f~k
∂t

∣∣∣∣
St,mag-mag,3

+
∂f~k
∂t

∣∣∣∣
St,mag-mag,4

(5.4)

∂f~k
∂t

∣∣∣∣
St,mag-mag,3

=
∑
~k′

(
|V |2
τmmA

TM(~k)

T0
+
|V |2
τmmB

TM(~k′)

T0
+
|V |2
τmmC

TM(~k ± ~k′)
T0

)
(5.5)

∂f~k
∂t

∣∣∣∣
St,mag-mag,4

=
∑
~q ~k′

{
|V |2
τM1

TM(~k)

T0
+
|V |2
τM2

TM(~k′)

T0
+
|V |2
τM3

TM(~k − ~q)
T0

+
|V |2
τM4

TM(~k′ + ~q)

T0

}
,

(5.6)

The term with index 3 denotes the collision integral for the three particle magnon-magnon
interaction via dipole-dipole interaction. Additionally, the four particle magnon-magnon
interaction via exchange energy is included in the term with index 4. The abbreviations are
given in Eqs. (5.12), (5.16), (5.20), (5.64), (5.65), (5.66) and (5.67). The scattering amplitude
|V | will be calculated in this section. The results can be found in Eqs. (5.29) and (5.72).

5.1 Three particle interaction - dipole-dipole-interaction

The goal of this chapter is to prepare the calculation of the magnon-temperature of the
phonon-magnon coupled system by including magnon-magnon interaction. Since there is
a three particle magnon-magnon interaction via dipole-dipole interaction and a four parti-
cle magnon-magnon interaction via exchange interaction, we start with the three particle
magnon-magnon interaction in this section. The corresponding collision integral will be
calculated now. After that, we perform analytic transformations to better evaluate the re-
sulting expression numerically. The resulting terms must be added to the expression for the
phonon-magnon interaction in Eq. (4.77). In this chapter, we describe the calculation. The
detailed calculation can be found in the appendix C.1.
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5.1.1 Collision integral

We set up the collision integral for three particle magnon-magnon interaction. The corre-
sponding third order collision integral reads (see Eq. (11.9) on page 289 in Ref. [43])

∂f~k
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∣∣∣∣
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=
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2
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}
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~
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]
. (5.7)

The term W (M~k+~k′ → M~k
+ M~k′) denotes the probability for the transformation of one

magnon with wave vector ~k + ~k′ into one magnon with wave vector ~k and one magnon with
wave vector ~k′. Again, f~k denotes the magnon density with wave vector ~k and ε~k denotes the

magnon energy for magnons with wave vector ~k. The term |V |2 denotes the matrix-element
of the transition and will be determined later. The result can be found in Eq. (5.29). The
factor 1/2 occurs, because scattering processes are double counted. The equivalences read

W (M~k+~k′ → M~k
+ M~k′) =̂ W (M~k+~k′ → M~k′ + M~k

) (5.8)

W (M~k′ → M~k′−~k + M~k
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+ M~k′−~k) (5.9)

W (M~k′ + M~k−~k′ → M~k
) =̂ W (M~k−~k′ + M~k′ → M~k

) . (5.10)

Now, we perform a first order Taylor expansion for the temperatures in the same way as in
section 4.3 and find
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)
. (5.11)

In this expression, the magnon temperature occurs as a linear parameter. Later, we will
discretize the magnon temperature and the summation. Thus, we will get a system of linear
equations for the magnon temperature. The abbreviations read

1

τmmA
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δ(ε~k+~k′ − ε~k − ε~k′) +
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and
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and
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These abbreviations we insert in Eq. (5.11). We rewrite the sum into an integral and intro-
duce an integration over

km = |~k ± ~k′| =
√
k2 + k′2 ± 2kk′(cos(ϑ) cos(ϑ′) + sin(ϑ) sin(ϑ′) cos(ϕ− ϕ′)) . (5.24)

In our calculation, we are interested in the equation integrated over ϑ and ϕ (cf. Eq. (5.2)).
It is
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(5.25)

with the Fermi wave number kF = kmax = 3.10 · 107 · cm−1. We used
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)
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Since the magnon temperature only depends on absolute values of the wave vectors, we can
write the integration over d3~k′ in spherical coordinates. Then, we use Eq. (5.24) to solve
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the angular integration. We relocate the angular delta function. Kaganov et al. [56] made
calculations on the Hamilton operator for different magnon-magnon scattering processes.
We take Eq. (39) out of Ref. [56]

|V |2 =
1

N
V 2

abs | cos(ϑ) sin(ϑ)(cos(ϕ) + i sin(ϕ)) + cos(ϑ′) sin(ϑ′)(cos(ϕ′) + i sin(ϕ′))|2

=
1

N
V 2

abs

(
cos2(ϑ) sin2(ϑ) + cos2(ϑ′) sin2(ϑ′) + 2 cos(ϑ) sin(ϑ) cos(ϑ′) sin(ϑ′) cos(ϕ− ϕ′)

)
(5.29)

V 2
abs =

(2πµB)2 2µ0µBM0

a3
= 52.1824 ·GHz2 , (5.30)

while µB = 9.2740154 · 10−24J/T denotes the Bohr magneton. Additionally, the constant
µ0 = 12.566370614 · 10−7T 2 · m3/J denotes the vacuum permeability, and the magnetic
saturation M0 = 139 G = 0.0139 T [43, p. 182]. The lattice constant of YIG is a = 1.2376 nm
[52, 53]. The upper expression will be set in into the collision integral term. After that,
we substitute ϕ → ϕ + ϕ′. Thus, we are able to perform the integration via ϕ′. For the
ϕ-integration, the term does only depend on cos(ϕ). Thus, we can separate the integration
into 0 to π and π to 2π. Additionally, we perform a transformation p = cos(ϕ) of the angular
delta-function. Thus, we are able to perform the integration via ϕ and solve the p-integral.
We introduce the following expressions

β+ =
cos(ϑ) cos(ϑ′) + α

sin(ϑ) sin(ϑ′)
β− =

cos(ϑ) cos(ϑ′)− α
sin(ϑ) sin(ϑ′)

α =
k2
m − k2 − k′2

2kk′
. (5.31)

Now, we want to handle the integration via ϑ and ϑ′ in Eq. (5.25). Since, it is not possible to
solve the resulting integral of ϑ and ϑ′, one has to perform it numerically. This we can treat
by perform an approximation of the solution to the integral dependent on the parameter α
out of Eq. (5.31). Since Eq. (5.24) is true, 0 ≤ k ≤ kmax and 0 ≤ k′ ≤ kmax, the parameter
α is limited to −1 ≤ α ≤ 1. We can write down the integral

h(α) =

∫
dϑ

∫
dϑ′Θ(1− β±) Θ(1 + β±)

1√
1− (β±)2

×
(
cos2(ϑ) sin2(ϑ) + cos2(ϑ′) sin2(ϑ′)− 2 cos(ϑ) sin(ϑ) cos(ϑ′) sin(ϑ′)β±

)
. (5.32)

At the end, the result can be approximated in the following way

h(α) ≈ Θ(1− |α|)
(
c1 + c2 α

2 + c3 α
4
)
. (5.33)

One finds

c1 =0.838041 (5.34)

c2 =2.49346 (5.35)

c3 =0.0113386 . (5.36)

In figure 36, the accordance of the approximation is shown. This approximation, we include
for the collision integral. Since km is no longer dependent on k’, it is now very simple to
solve the energy-delta-distribution for the k’-integration. One still has to consider, that the
k’-integration only takes place in the first Brillouin zone. It is kF = kmax. We set the energy
dispersion for the magnons [43, p. 181] (or cf. Eq. (2.6)) for k ≤ kF

εk = ωoff +Dexk
2 , (5.37)
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Figure 36: Plot of function h(α). The blue and solid line describes the numeric evaluation of
Eq. (5.32). The red and dashed line denotes the approximated function out of Eq. (5.33)

and for k > kF ∧ k ≤ 2kF

εk = ωoff +Dex(2kF − k)2 . (5.38)

Now, we separate the calculation into normal processes Np and Umklapp processes U . Here,
we regard the Umklapp processes of k, k′ and km. It is

0 = Np + U . (5.39)

At the end, we find
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h

(
k2
m − k2 − k′2

2kk′

)
V 2

abs Θ(kF − k′) Θ(k′)T3(k, k′, km)

∣∣∣∣
k′=

√
εk−εkm−ε0

Dex

.

(5.40)

For the Umklapp processes we choose a symmetrized way. It is

U =
1

3
Np (km ∈ [kF, 2kF]) +

1

3

k′

|2kF − k′|
Np

(
k′ ∈ [kF, 2kF]

)
+

1

3
Np (k ∈ [kF, 2kF]) . (5.41)

The extra factor in the second summand arises from a different algebraic term of the energy
dispersion ε~k′ = ωH +Dex(2kF − k′)2 for k′ ∈ [kF, 2kF].

5.2 Four particle interaction - exchange interaction

The goal of this chapter is to prepare the calculation of the magnon-temperature of the
phonon-magnon coupled system by including magnon-magnon interaction. In this section,
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5 Magnon-magnon interaction

we handle four particle magnon-magnon interaction via exchange interaction. The corre-
sponding collision integral will be calculated now. After that, we perform analytic transfor-
mations to better evaluate the resulting expression numerically. The resulting terms must be
added to the expression for the phonon-magnon interaction in Eq. (4.77). In this chapter,
we describe the calculation. The detailed calculation can be found in the appendix C.2.

5.2.1 Hamilton operator

We write down the following Hamilton operator for the magnons [54, p. 76]

ĤHeisenberg = −J
∑
〈mn〉

~Sm~Sn , (5.42)

while J denotes the coupling constant or exchange energy and where 〈mn〉 denotes the
summation over the nearest neighbors. We introduce raising and lowering operators

S+
~m = Sx~m + iSy~m S−~m = Sx~m − iSy~m Sz~m = Sz~m , (5.43)

while S±m denote the lowering (-) and raising (+) operators. The commutator relations are
[54, p. 76][

Si~m, S
j
~n

]
= iδ~m,~nε

ijkSk~m
[
Sz~m, S

±
~n

]
= ±δ~m,~nS±~m

[
S+
~m, S

−
~n

]
= 2δ~m,~nS

z
~m . (5.44)

We perform the Holstein-Primakoff-transformation [43, p. 207] and rewrite the Hamilton
operator. The simple case of the calculation can be found in Ref. [54, p. 77 ff]. The Holstein-
Primakoff-transformation is performed by introducing the following operators

S−~m = a†
~m

√
2S − a†

~ma~m S+
m =

√
2S − a†

~ma~m am Sz~m = S − a†
~ma~m . (5.45)

The operators a~m and a†
~m denote the annihilation and the creation of one magnon at position

~m, respectively. All operators fulfill the common commutation relations.

[a~m, a~n] = 0
[
a†
~m, a

†
~n

]
= 0

[
a~m, a

†
~n

]
= δ~m,~n . (5.46)

Since S = 14.2 (cf. Eq. (4.22)), the above operators may be approximated as

S−~m ≈
√

2Sa†
~m −

1√
8S
a†
~ma

†
~ma~m S+

~m ≈
√

2Sa~m −
1√
8S
a†
~ma~ma~m . (5.47)

One finds the following expansion of the operator product

ĤHeisenberg =− J
∑
~m,i

~S~m~S~m+~ei (5.48)

=− JNS2 − JS
∑
~m,i

(
−2a†

~ma~m + a†
~ma~m+~ei + a~ma

†
~m+~ei

)
− J

4

∑
~m,i

(
4a†

~ma
†
~m+~ei

a~ma~m+~ei

)
− J

4

∑
~m,i

(
−a†

~ma
†
~m+~ei

a~ma~m − a†
~m+~ei

a†
~ma~ma~m − a

†
~ma

†
~ma~ma~m+~ei − a

†
~ma

†
~ma~m+~eia~m

)
,

(5.49)
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5.2 Four particle interaction - exchange interaction

while ~ei denotes the vector in direction i with length of the lattice constant. Let us now
perform a Fourier transformation. We use

a~k =
1√
N

3√N∑
m1,m2,m3=1

ei
~k~ma~m a~m =

1√
N

B.Z.∑
~k

e−i
~k~ma~k . (5.50)

The operators a~k and a†
~k

denote the annihilation and the creation of one magnon with wave

vector ~k, respectively. The commutator relations are still fulfilled in the reciprocal case. It
is [

a~k, a~k′
]

= 0
[
a†
~k
, a†
~k′

]
= 0

[
a~k, a

†
~k′

]
= δ~k,~k′ . (5.51)

After set in the transformation, we perform the sum overm which leads to delta-distributions.
We introduce the abbreviations ~k3 = ~k − ~q and ~k4 = ~k′ + ~q. For the dispersion, we get
a expression including cosine terms. Here we perform an approximation for small wave
numbers, i.e. ak, ak′, ak3, ak4, aq � 1. A symmetrized version can be written down

ĤHeisenberg ≈− JNS2 +

B.Z.∑
~k,i

Dexk
2a†
~k
a~k

− J

4N

B.Z.∑
~k~k′~q,i

a2

2

(
k2
i + k′2i + k2

3,i + k2
4,i − 4q2

i

)
a†
~k
a†
~k′
a~k−~qa~k′+~q , (5.52)

with

~k3 = ~k − ~q ~k4 = ~k′ + ~q . (5.53)

We can read out the interaction prefactor for the exchange-interaction

|Vex| =
Ja2

8N
(k2 + k′2 + k2

3 + k2
4 − 4q2) . (5.54)

To calculate the coupling parameter J , we use an identity from [43, p. 210]. If one only
includes first nearest neighbor hopping, one finds for a simple cubic lattice

J ≈ Dex

Sa2
. (5.55)

It is

~ =1.05457266 · 10−34 Js (5.56)

S =14.2 [53] (5.57)

Dex =9.16 · 10−11 GHz cm2[43, p. 182] (5.58)

a =1.2376 nm [52, 53] . (5.59)

Thus, we find

J = 421.159 GHz . (5.60)
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5 Magnon-magnon interaction

5.2.2 Collision integral

Now, we set up the collision integral of the Boltzmann equation for the four particle magnon-
magnon interaction (see Eq. (11.22) on page 294 in Ref. [43])

∂f~k
∂t

∣∣∣∣
St,mag-mag,4

=
1

2

∑
~q ~k′

{
W (M~k−~q + M~k′+~q → M~k

+ M~k′) +W (M~k′+~q + M~k−~q → M~k
+ M~k′)

−W (M~k
+ M~k′ → M~k−~q + M~k′+~q)−W (M~k

+ M~k′ → M~k′+~q + M~k−~q)
}

(5.61)

=
1

2

2π

~
∑
~q ~k′

|V |2δ(ε~k + ε~k′ − ε~k−~q − ε~k′+~q) · 16 · f~k−~qf~k′+~q(1 + f~k)(1 + f~k′)

− 1

2

2π

~
∑
~q ~k′

|V |2δ(ε~k + ε~k′ − ε~k−~q − ε~k′+~q) · 16 · (1 + f~k−~q)(1 + f~k′+~q)f~kf~k′ .

(5.62)

Now, we perform a first order Taylor expansion for the temperatures in the same way as in
section 4.3 and find

∂f~k
∂t

∣∣∣∣
St,mag-mag,4

≈
∑
~q ~k′

{
|V |2
τM1

TM(|~k|)
T0

+
|V |2
τM2

TM(|~k′|)
T0

+
|V |2
τM3

TM(|~k − ~q|)
T0

+
|V |2
τM4

TM(|~k′ + ~q|)
T0

}
,

(5.63)

with

1

τM1
=

1

τ̃M1
δ(ε~k + ε~k′ − ε~k−~q − ε~k′+~q) (5.64)

1

τM2
=

1

τ̃M2
δ(ε~k + ε~k′ − ε~k−~q − ε~k′+~q) (5.65)

1

τM3
=

1

τ̃M3
δ(ε~k + ε~k′ − ε~k−~q − ε~k′+~q) (5.66)

1

τM4
=

1

τ̃M4
δ(ε~k + ε~k′ − ε~k−~q − ε~k′+~q) , (5.67)

and

1

τ̃M1
=

16π

~
· f0
~k−~qf

0
~k′+~q

(1 + f0
~k

)(1 + f0
~k′

)
1

kBT0
(−ε~k) (5.68)

1

τ̃M2
=

16π

~
· f0
~k−~qf

0
~k′+~q

(1 + f0
~k

)(1 + f0
~k′

)
1

kBT0
(−ε~k′) (5.69)

1

τ̃M3
=

16π

~
· f0
~k−~qf

0
~k′+~q

(1 + f0
~k

)(1 + f0
~k′

)
1

kBT0
(+ε~k−~q) (5.70)

1

τ̃M4
=

16π

~
· f0
~k−~qf

0
~k′+~q

(1 + f0
~k

)(1 + f0
~k′

)
1

kBT0
(+ε~k′+~q) , (5.71)

and

|V | = |Vex| =
Ja2

8N
(k2 + k′2 + k2

3 + k2
4 − 4q2) . (5.72)

For avoiding some difficulties, we perform a transformation of the integration procedure.
Since the function magnon temperature only depends on absolute values, we can write the
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5.2 Four particle interaction - exchange interaction

integration in spherical coordinates. We rewrite the sum into an integral and introduce an
integration over

km = |~k − ~q| =
√
k2 + q2 − 2kq cos(^(~k, ~q)) (5.73)

kp = |~k′ + ~q| =
√
k′2 + q2 + 2k′q cos(^(~k′, ~q)) . (5.74)

We are making use of Eq. (B.51). The delta function which contains the energy dispersion
relations can be solved in two different ways. One may change the equation for km, kp or k′.
Since km and kp are on an equal footing, we change the equation of the energy dispersions for
km on the one hand and for k′ on the other hand. At the end we sum up both contributions
with a weighting factor of 1/2 for both contributions respectively. Additionally, we rotate
the ~q coordinate system in that way, that its z-axis is parallel to the vector ~k. In the same
way, we rotate the ~k′ coordinate system in that way, that its z-axis is parallel to the vector
~q. Thus, we can set ^(~k, ~q) = α and ^(~k′, ~q) = ϑ. Since the resulting integrand does not
longer depend on the ϕ-angle of the ~k′ and ~q coordinate system, their integral reduces to 2π.
Additionally, we use the identities from Eqs. (C.94), (C.95) and (C.96). We define

|Vex|2 =|Vex,abs|2
1

N2
a4(k2 + k′2 + k2

3 + k2
4 − 4q2)2 (5.75)

|Vex,abs| =
J

8
=

Dex

8Sa2
, (5.76)

and

T1(k, k′, |~k − ~q|, |~k′ + ~q|) =

{
1

τ̃M1

TM(|~k|)
T0

+
1

τ̃M2

TM(|~k′|)
T0

+
1

τ̃M3

TM(|~k − ~q|)
T0

+
1

τ̃M4

TM(|~k′ + ~q|)
T0

}
,

(5.77)

and

Q(k, k′, km, kp) =a4 · (k2 + k′2 + k2
m + k2

p)
2 ·
(
min

[
kmax,min

(
km + k, kp + k′

)]
− min

[
kmax,max

(
|km − k|, |kp − k′|

)
,min

(
km + k, kp + k′

)])
− 8a4 · (k2 + k′2 + k2

m + k2
p) ·
(

(min [kmax,min (km + k, kp + k′)])3

3

− (min [kmax,max (|km − k|, |kp − k′|) ,min (km + k, kp + k′)])3

3

)
+ 16a4 ·

(
(min [kmax,min (km + k, kp + k′)])5

5

− (min [kmax,max (|km − k|, |kp − k′|) ,min (km + k, kp + k′)])5

5

)
.

(5.78)

We have to divide the calculation into normal processes Np and Umklapp processes U . In

Eq. (5.63), the vectors ~k, ~k′ and ~q are formally limited to the first Brillouin zone. When
we consider Umklapp processes, we consider the case, where the vectors ~k − ~q and ~k′ + ~q
are outside the first Brillouin zone. For a symmetric calculation, we also consider the case,
where the other expressions in the temperature ~k and ~k′ are outside the Brillouin zone and
weight the contributions. Thus, we find

0 = Np + U , (5.79)
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5 Magnon-magnon interaction

while Np denotes the sum for normal processes and U the sum for Umklapp processes. At
the end, we get

Np =
1

2

9a6

4π6

1

2Dex

∫ kmax

0
dk′
∫ kmax

0
dkp

k′ kp
k

T1(k, k′, km, kp) Θ(km) Θ(kmax − km)

× |Vex,abs|2 ·Q(k, k′, km, kp)

∣∣∣∣
km=

√
εk+εk′−ε~kp

−ε0
Dex

+
1

2

9a6

4π6

1

2Dex

∫ kmax

0
dkm

∫ kmax

0
dkp

km kp
k

T1(k, k′, km, kp) Θ(km) Θ(kmax − km)

× |Vex,abs|2 ·Q(k, k′, km, kp)

∣∣∣∣
k′=

√
εkp

+εkm
−ε~k−ε0

Dex

. (5.80)

This expression will be evaluated numerically. For the Umklapp processes we choose a
symmetrized way. It is

U =
1

2
Np (kp ∈ [kmax, 2kmax]) +

1

2

km
|2kmax − km|

Np (km ∈ [kmax, 2kmax])

+
1

2

km
|2kmax − km|

Np (kp ∈ [kmax, 2kmax] ∧ km ∈ [kmax, 2kmax])

+
1

2
Np

(
k′ ∈ [kmax, 2kmax]

)
+

1

2
Np (k ∈ [kmax, 2kmax])

+
1

2
Np

(
k ∈ [kmax, 2kmax] ∧ k′ ∈ [kmax, 2kmax]

)
. (5.81)

The extra factor in the second and third summand arises from a different algebraic term of
the energy dispersion ε~km = ωH +Dex(2kmax − km)2 for km ∈ [kmax, 2kmax].

With these terms and the terms for the phonon-magnon interaction out of chapter 4,
we will calculate the magnon temperature in the YIG-film in chapter 7. Here, the phonon
temperature was used as an input parameter. The result for the magnon temperature can
be found in figures 43 and 44. Later, we calculate the transverse spin Seebeck voltage, which
is shown in figure 49.

5.3 Summary

In this chapter, we included the magnon-magnon interaction in the phonon-magnon coupled
YIG-stripe in our calculation.

The setup of the transverse spin Seebeck effect consists of a GGG substrate, while the
edge length are in the order of millimeters. On top of the thick GGG substrate, there is a thin
YIG-stripe with the same surface area attached. Furthermore on top of the YIG-stripe, there
are smaller stripes of platinum. The setup can be found in figures 4 and 9. Since the thickness
of the GGG substrate is much thicker than of the YIG-film, the phonons are rarely influenced
by the magnons. In contrast, the magnons are strongly influenced by the phonons. Out of
the Boltzmann equation, we derived an equation, where the scattering integral needs to be
zero by including all relevant interactions. Thus, we calculated the phonon-temperature
in chapter 3 by using the Boltzmann equation and including phonon-phonon interaction
only. In chapter 4, we calculated the collision integral in the Boltzmann equation for the
magnon-phonon interaction and took the phonon temperature as an input parameter. In
this chapter, we calculated the collision integral in the Boltzmann equation for the magnon-
magnon interaction. Here, we considered exchange magnons and dipolar magnons as well.
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5.3 Summary

For the dipole-dipole interaction, we considered a three particle interaction, while for the
exchange interaction, we considered a four particle interaction as well. To evaluate the
resulting expressions numerically, we performed analytic transformations. We derived a
system of linear equations for the wave number dependent magnon temperature including
magnon-phonon and magnon-magnon interaction as well. The phonon temperature was used
as an input parameter.
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6 Ferromagnet normal-metal junction

6 Ferromagnet normal-metal junction

In this chapter, we consider a junction between a non-conducting ferromagnet and a normal
metal. A temperature difference between the magnons in the ferromagnet and the electrons
in the normal metal will induce a spin current in the normal metal, which is called spin
pumping. The ferromagnet could be a model for the ferrimagnetic YIG (Y3Fe5O12) and the
normal metal could be platinum. Here, we will describe this effect by using the Boltzmann
equation. In 2010, Xiao et al. [23] formulated a first theory for the spin pumping mechanism
of this setup by using the Landau-Lifshitz-Gilbert equation. Additionally, Schmidt et al. [57]
developed a theory for this effect. In all three cases, the spin current is proportional to the
difference between magnon temperature and electron temperature.

The spin pumping mechanism is important for the understanding of the spin Seebeck
effect. There, a thin and ferrimagnetic YIG-film (Y3Fe5O12) was evaporated on a GGG
substrate (Gd3Ga5O12). Again on top, there are small platinum stripes with a voltmeter
attached to measure the inverse spin Hall voltage (cf. figures 4 or 9). In case of the transverse
spin Seebeck effect, the applied temperature gradient is parallel to the surface of the YIG-film.
In contrast for the longitudinal spin Seebeck effect, the temperature gradient is perpendicular
to the surface of the YIG-film. The heat reservoirs, which generate the temperature gradient
are assumed to be ideal heat reservoirs. The temperature gradient will induce a deviation
of the magnon temperature inside the YIG-film. Since the electrons in the normal metal are
strongly coupled to the phonons, there will be a temperature difference between magnons
and electrons. Thus, there will be a spin current based on the spin pumping mechanism.
The inverse spin Hall effect transfers the spin current into a measurable charge current.

In the ferromagnet, only magnons and phonons are able to propagate, while in the
normal metal only electrons and phonons are able to propagate. In our model, there is an
intermediate region with thickness L, where all three types of (quasi-)particles can propagate.
Here, magnons and electrons are able to interact via sd-interaction. In our calculation, we
only consider magnons and electrons. Phonons are able to propagate in all three regions
and are assumed to be in equilibrium at temperature T0. Since the electrons are strongly
coupled to the phonons, they are also at temperature T0, but the chemical potential can
deviate. The magnons in the ferromagnet are at temperature TM0 and the electrons are at
temperature T0. For the electrons, we separate between spin up and spin down electrons.
We need a finite thickness L of the intermediate region, because then we are able to match
the magnon temperature and electron spin chemical potential at the two interfaces. At the
end, we will calculate the limes of the thickness L going to zero. The sd-coupling parameter
will be inverse proportional to the thickness L of the intermediate region (cf. Eq. (6.64)). A
sketch of the setup can be found in figure 37.

Inside the intermediate region based on sd-interaction, the following interactions are
possible

e−↓~k
→ e−↑~k−~q

+ Mag↓~q (6.1)

Mag↓~q + e−↑~k
→ e−↓~k+~q

, (6.2)

while e−↓~k
denotes one electron with the wave vector ~k, spin down and negative charge as

well as Mag↓~q denotes one magnon with the wave vector ~q and spin down. The impurity

scattering e−↓~k
↔ e−↑~k

will be neglected inside the small intermediate region.
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Figure 37: Sketch of the spin pumping setup, which consists of a ferromagnet and a normal
metal. In the ferromagnet, only magnons and phonons are able to propagate, while in the normal
metal only electrons and phonons are able to propagate. In between, there is an intermediate
layer of thickness L, where all three (quasi-)particles can propagate.

6.1 Calculation

For simplicity, we take the system of units in that way, that it is kB = 1. The collision
integral for the magnons reads as follows

∂f~q
∂t

∣∣∣∣
St

=
∑
~k

{
W (e−↓~k

→ e−↑~k−~q
+ Mag↓~q)−W (Mag↓~q + e−↑~k

→ e−↓~k+~q
)
}

(6.3)

=

∫
d3~k

{
|M~k,~k−~q,~q|

2g↓~k(1− g↑~k−~q)(1 + f~q)δ(ε~k − ε~k−~q − ω~q)

−|M~k+~q,~k,~q
|2f~qg↑~k(1− g↓~k+~q

)δ(ε~k − ε~k+~q
+ ω~q)

}
(6.4)

=

∫
d3~k |M~k,~k−~q,~q|

2
{
g↓~k(1− g↑~k−~q) + f~q(g↓~k − g↑~k−~q)

}
δ(ε~k − ε~k−~q − ω~q) , (6.5)

while W (e−↓~k
→ e−↑~k−~q

+ Mag↓~q) denotes the probability for one electron with spin down and

wave vector ~k scatters into one electron with spin up and wave vector ~k− ~q and one magnon
with spin down and wave vector ~q. The parameter |M~k,~k−~q,~q|2 denotes the matrix element

for the scattering process. The density functions are (cf. Eqs. (2.2) and (2.8))

f~q =
1

e
ω~q
TM − 1

g↑~k =
1

e
ε~k
−µup
T0 + 1

g↓~k =
1

e
ε~k
−µdown
T0 + 1

, (6.6)

while µup denotes the chemical potential for spin up electrons and µdown denotes the chemical
potential for spin down electrons. Approximated the upper collision integral to first order
in (T0 − TM ), in (µdown − µup). We also perform a linearization in the magnon distribution
function and in the electron distribution function. This principle of linearization of all
density functions was introduced by Gangadharaiah et al. [58]. After linearization of the
density functions (cf. Eq. (3.1) exemplary) we find

∂f~q
∂t

∣∣∣∣
St

≈cq1ω~q
τme

(T0 − TM ) +
cq1T0

τme
(µdown − µup)− δf~q

τ~q
−
∑
~k

 δg↓~k

τ e↓→m
~q~k

−
δg↑~k

τ e↑→m
~q~k

 , (6.7)
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while we introduce the abbreviations

1

τq
=−

∫
d3~k |M~k,~k−~q,~q|

2
(
g

(0)
~k
− g(0)

~k−~q

)
δ(ε~k − ε~k−~q − ω~q) ≥ 0 (6.8)

1

τ e↓→m
~q~k

=|M~k,~k−~q,~q|
2
(

1 + f
(0)
~q − g

(0)
~k−~q

)
δ(ε~k − ε~k−~q − ω~q) ≥ 0 (6.9)

1

τ e↑→m
~q~k

=|M~k+~q,~k,~q
|2
(
f

(0)
~q + g

(0)
~k+~q

)
δ(ε~k − ε~k+~q

+ ω~q) ≥ 0 , (6.10)

and

cq1
τme

=

∫
d3~k δ(ε~k − ε~k−~q − ω~q)

|M~k,~k−~q,~q|2

2T 2
0 (sinh(

ε~k−µ0
T0

) + sinh(
ω~q
T0

)− sinh(
ε~k−ω~q−µ0

T0
))
≥ 0 . (6.11)

It is to mention that

1 + f
(0)
~q − g

(0)
~k−~q

∣∣∣
ε~k−~q=ε~k−ω~q

= f
(0)
~q + g

(0)
~k+~q

∣∣∣
ε~k+~q=ε~k+ω~q

. (6.12)

Now, we write down the electron spin down collision integral

∂g↓~k
∂t

∣∣∣∣∣
St

=
∑
~k′~q

{
W (Mag↓~q + e−↑~k−~q

→ e−↓~k
) +W (e−↑~k

→ e−↓~k
)

−W (e−↓~k
→ e−↑~k−~q

+ Mag↓~q)−W (e−↓~k
→ e−↑~k

)
}

(6.13)

=

∫
d3~q

{
|M~k,~k−~q,~q|

2f~qg↑~k−~q(1− g↓~k)δ(ε~k − ε~k−~q − ω~q)

−|M~k,~k−~q,~q|
2g↓~k(1− g↑~k−~q)(1 + f~q)δ(ε~k − ε~k−~q − ω~q)

}
+ |F~k|

2g↑~k(1 + g↓~k)− |F~k|
2g↓~k(1 + g↑~k) , (6.14)

while W (e−↑~k
→ e−↓~k

) denotes the scattering probability from one electron with spin up

into one electron with spin down. The parameter |F~k|2 denotes the matrix element for this
interaction. The collision integral approximated to first order and after linearization reads

=− dk1

τme
(T0 − TM )− dk2

τme
(µdown − µup)−

δg↓~k
τ~k↓
−
δg↓~k − δg↑~k

τ
s~k

− µdown − µup

r~kτs~k
+
∑
~q

 δg↑~k−~q

τ e↑→e↓
~q~k

+
δf~q

τm→e↓
~q~k

 , (6.15)
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with τ
s~k

= 1/|F~k|2 and with the abbreviations

1

τ~k↓
=

∫
d3~q |M~k,~k−~q,~q|

2
(

1− g(0)
~k−~q

+ f
(0)
~q

)
δ(ε~k − ε~k−~q − ω~q) ≥ 0 (6.16)

1

τ e↑→e↓
~q~k

=|M~k,~k−~q,~q|
2
(
f

(0)
~q + g

(0)
~k

)
δ(ε~k − ε~k−~q − ω~q) ≥ 0 (6.17)

1

τm→e↓
~q~k

=|M~k,~k−~q,~q|
2
(
g

(0)
~k−~q
− g(0)

~k

)
δ(ε~k − ε~k−~q − ω~q) ≥ 0 (6.18)

dk1

τme
=

∫
d3~q δ(ε~k − ε~k−~q − ω~q)

ω~q|M~k,~k−~q,~q|2

2T 2
0 (sinh(

ε~k−µ0
T0

) + sinh(
ω~q
T0

)− sinh(
ε~k−ω~q−µ0

T0
))
≥ 0

(6.19)

dk2

τme
=

∫
d3~q δ(ε~k − ε~k−~q − ω~q)

|M~k,~k−~q,~q|2

2T0(sinh(
ε~k−µ0
T0

) + sinh(
ω~q
T0

)− sinh(
ε~k−ω~q−µ0

T0
))
≥ 0 (6.20)

r~kτs~k =4T0 sinh2(
ε~k − µ0

T0
) ≥ 0 . (6.21)

Analogously, one obtains for the electron spin up collision integral approximated to first
order

∂g↑~k
∂t

∣∣∣∣∣
St

=
dk3

τme
(T0 − TM ) +

dk4

τme
(µdown − µup)−

δg↑~k
τ~k↑

+
δg↓~k − δg↑~k

τ
s~k

+
µdown − µup

r~kτs~k
+
∑
~q

 δg↓~k+~q

τ e↓→e↑
~q~k

− δf~q

τm→e↑
~q~k

 , (6.22)

with the abbreviations

1

τ~k↑
=

∫
d3~q |M~k+~q,~k,~q

|2
(
g

(0)
~k+~q

+ f
(0)
~q

)
δ(ε~k − ε~k+~q

+ ω~q) ≥ 0 (6.23)

1

τ e↓→e↑
~q~k

=|M~k+~q,~k,~q
|2
(

1 + f
(0)
~q − g

(0)
~k

)
δ(ε~k − ε~k+~q

+ ω~q) ≥ 0 (6.24)

1

τm→e↑
~q~k

=|M~k+~q,~k,~q
|2
(
g

(0)
~k
− g(0)

~k+~q

)
δ(ε~k − ε~k+~q

+ ω~q) ≥ 0 (6.25)

dk3

τme
=−

∫
d3~q δ(ε~k − ε~k+~q

+ ω~q)
ω~q|M~k+~q,~k,~q

|2

2T 2
0 (sinh(

ε~k−µ0
T0

)− sinh(
ω~q
T0

)− sinh(
ε~k+ω~q−µ0

T0
))
≥ 0

(6.26)

dk4

τme
=−

∫
d3~q δ(ε~k − ε~k+~q

+ ω~q)
|M~k+~q,~k,~q

|2

2T0(sinh(
ε~k−µ0
T0

)− sinh(
ω~q
T0

)− sinh(
ε~k+ω~q−µ0

T0
))
≥ 0

(6.27)

r~kτs~k =4T0 sinh2(
ε~k − µ0

T0
) ≥ 0 . (6.28)
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6 Ferromagnet normal-metal junction

Thus, we are able to write down the coupled Boltzmann equations

−ω~q
T0

∂f
(0)
~q

∂ω
v~q,x

∂TM
∂x

+ v~q,x
∂δf~q
∂x

=
cq1ω~q
τme

(T0 − TM ) +
cq1T0

τme
(µdown − µup)− δf~q

τ~q

−
∑
~k

 δg↓~k

τ e↓→m
~q~k

−
δg↑~k

τ e↑→m
~q~k

 (6.29)

−
∂g

(0)
~k

∂ε
u~k,x

∂µdown

∂x
+ u~k,x

∂δg↓~k
∂x

=− dk1

τme
(T0 − TM )− dk2

τme
(µdown − µup)−

δg↓~k

τ
(0)
k

−
δg↓~k
τ~k↓

−
δg↓~k − δg↑~k

τ
s~k

− µdown − µup

r~kτs~k
+
∑
~q

 δg↑~k−~q

τ e↑→e↓
~q~k

+
δf~q

τm→e↓
~q~k


(6.30)

−
∂g

(0)
~k

∂ε
u~k,x

∂µup

∂x
+ u~k,x

∂δg↑~k
∂x

=
dk3

τme
(T0 − TM ) +

dk4

τme
(µdown − µup)−

δg↑~k

τ
(0)
k

−
δg↑~k
τ~k↑

+
δg↓~k − δg↑~k

τ
s~k

+
µdown − µup

r~kτs~k
+
∑
~q

 δg↓~k+~q

τ e↓→e↑
~q~k

− δf~q

τm→e↑
~q~k

 ,

(6.31)

while v~q,x denotes the x-component of the magnon velocity with momentum ~q and u~k,x
denotes the x-component of the electron velocity with momentum ~k. Thus, it is

v~q,x = v~q · cos(ϑ) u~k,x = u~k · cos(ϑ) , (6.32)

while ϑ is the angle between ~u~k or ~v~q and the x-axis. The terms are independent of ϕ. The

relaxation time τ
(0)
k belongs to inelastic impurity scattering as well as phonon scattering.

We assume τ
(0)
k � τ~kl. We are able to divide the differential equations by integration

over
∫
dϑ sin(ϑ)/2,

∫
dϑ sin(ϑ) cos(ϑ)/2 and

∫
dϑ sin(ϑ) cos(2ϑ)/2. So, we get nine different

equations. From now on, we also neglect the spin flip scattering processes. Thus, the
summands including τ

s~k
vanish in Eqs. (6.30) and (6.31). Now, we take equations from

the
∫
dϑ sin(ϑ) cos(ϑ)/2-integral and neglect the crossing terms. After solving these three

equations for the deviation functions, we set them back into the expressions in curly brackets.
We will now derive a system of differential equations, which only includes the magnon

temperature TM , the spin chemical potential µSpin = µup − µdown and the charge chemical
potential µcha = µup + µdown. The deviation functions δf~q, δg↑~k and δg↓~k should not longer
occur. This, we perform by using the definitions for the magnon current, the spin current
and the charge current. The formula for the spin current for magnons reads

jMag = −
∑
~q

v~q,x δf~q . (6.33)

The minus sign arises, because the spin of the magnons is parallel to electron spin down.
Now, we continue with the spin current for the electrons. It reads

jspin =
1

2

∑
~k

u~k,x δg~k↑ −
1

2

∑
~k

u~k,x δg~k↓ . (6.34)
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6.1 Calculation

On the other hand, no charge transport is allowed. This corresponds to

0 = jcharge =
∑
~k

u~k,x δg~k↓ +
∑
~k

u~k,x δg~k↑ . (6.35)

For all three currents, we take the first derivative in coordinate x. On the one hand, we
can take the equations out of the

∫
dϑ sin(ϑ)/2-integration, solve them for the derivative

in coordinate x of the deviation functions. After that, we set them into the derivative in
coordinate x of the current definitions. On the other hand, we can take the equations out
of the

∫
dϑ sin(ϑ) cos(ϑ)/2-integration, solve them for the deviation functions an set them

into the derivative in coordinate x of the current definitions. Thus, we get three differential
equations, which only include the magnon temperature TM , the spin chemical potential µSpin

and the charge chemical potential µcha. This three differential equations, we can set into
each other and find the following system of differential equations

ΣMnew
∂2TM
∂x2

=− C1(T0 − TM ) + C2µSpin (6.36)

−ΣEnew
∂2µSpin

∂x2
=C1(T0 − TM )− C2µSpin , (6.37)

with

ΣMnew =− 2Σ1

ΣDM (ΣE + ΣUD) + ΣE(−2ΣE + ΣUM ) + ΣDU (2ΣUD + ΣUM )
(6.38)

ΣEnew =
2Σ1

Σ2
(6.39)

Σ2 =ΣDMΣMD + ΣDU (ΣM + 2ΣMD)− ΣDMΣMU + 2ΣE(ΣM + ΣMD + ΣMU )

+ ΣMΣUD + 2ΣMUΣUD − ΣMDΣUM + ΣMUΣUM (6.40)

Σ1 =Σ2
EΣM + ΣDMΣEΣMD − ΣDUΣMΣUD + ΣDMΣMUΣUD

+ ΣDUΣMDΣUM + ΣEΣMUΣUM . (6.41)

We use the following short-writing notation

ΣDM :=
Σed→m

2
ΣUM :=

Σeu→m
2

ΣUD :=
Σeu→ed

2
(6.42)

ΣDU :=
Σed→eu

2
ΣMD :=

Σm→ed
2

ΣMU :=
Σm→eu

2
, (6.43)

and
ΣE = Σed/2 = Σeu/2 . (6.44)

We use as an approximation

Σed =Σeu = −
∑
~k

u~k,xτ
(0)
k

∂g
(0)
k

∂ε
u~k,x (6.45)

Σeu→ed =−
∑
~k~q

u~k,xτ
(0)
k

τ
(0)
~k−~q

τ e↑→e↓
~q~k

∂g
(0)
k

∂ε
u~k−~q,x Σed→eu = −

∑
~k~q

u~k,xτ
(0)
k

τ
(0)
~k+~q

τ e↓→e↑
~q~k

∂g
(0)
k

∂ε
u~k+~q,x

(6.46)

Σm→ed =−
∑
~k~q

u~k,xτ
(0)
k

τ~q

τm→e↓
~q~k

ω~p
T0

∂f
(0)
q

∂ω
v~q,x Σm→eu = −

∑
~k~q

u~k,xτ
(0)
k

τ~q

τm→e↑
~q~k

ω~p
T0

∂f
(0)
q

∂ω
v~q,x .

(6.47)
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6 Ferromagnet normal-metal junction

One has to remember that it is v~q,x = v~q · cos(ϑ) and u~k,x = u~k · cos(ϑ). Additionally, we
abbreviated

ΣM =−
∑
~q

v~q,xτq
ω~p
T0

∂f
(0)
q

∂ω
v~q,x (6.48)

Σed→m =−
∑
~q~k

v~q,xτ~qτ
(0)
k

τ e↓→m
~q~k

∂g
(0)
k

∂ε
u~k,x (6.49)

Σeu→m =−
∑
~q~k

v~q,xτ~qτ
(0)
k

τ e↑→m
~q~k

∂g
(0)
k

∂ε
u~k,x , (6.50)

and introduced the coefficients

C1 =
∑
~q

2 cos2(ϑ)
cq1ωq
τme

C2 =
∑
~q

2 cos2(ϑ)
cq1T0

τme
. (6.51)

By neglecting the crossing terms in the collision integral, we would have

Σeu→ed = Σed→eu = Σm→ed = Σm→eu = Σed→m = Σeu→m = 0 . (6.52)

Then, we would find for the system of differential equations

ΣM
∂2TM
∂x2

=− C1(T0 − TM ) + C2µSpin (6.53)

−ΣE
∂2µSpin

∂x2
=C1(T0 − TM )− C2µSpin . (6.54)

These two equations for the intermediate layer and the Eq. (6.55) for the normal metal will
form the key system of differential equations, which will be solved further down. In the
same way, as described above, we are able to derive a Boltzmann differential equation for
the electrons in the region of the normal metal (x ≥ L), where only electrons and phonons
are able to propagate. Magnons are not able to propagate in this region. In this region, we
include the spin relaxation. Here, we start with Eqs. (6.30) and (6.31) and do not neglect the
spin flip scattering. But, we neglect the scattering with magnons. Phonons are equilibrated
at temperature T0 and strongly coupled to the electrons. Thus, the electron temperature is
fixed at T0, but the chemical potential may deviate. As already done above, we perform a
separation by the integration over

∫
dϑ sin(ϑ)/2 and

∫
dϑ sin(ϑ) cos(ϑ)/2. Then, we take Eq.

(6.34), which is the definition of the spin current and take the first derivative in coordinate x.
Again, we solve the two equations from the

∫
dϑ sin(ϑ)/2-integration for the first derivative

in coordinate x of the deviation density functions and set them into Eq. (6.34). Additionally,
we take the two equations from the

∫
dϑ sin(ϑ) cos(ϑ)/2-integration and solve them for the

deviation density distribution. Then, we also set these equations into Eq. (6.34). Finally, we
find

− ΣE,right
∂2µSpin,right

∂x2
= −C5µSpin,right , (6.55)

while µSpin,right denotes the spin chemical potential in the normal metal, where only electrons
and phonons can propagate (x ≥ L). It is µSpin,right = µup,right − µdown,right. The parameter
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6.1 Calculation

ΣE,right now becomes renormalized because of the spin relaxation term in Eqs. (6.30) and
(6.31). The abbreviations read

ΣE,right = −
∑
~k

τ
(0)
k τsk

2τ
(0)
k + τsk

u2
~k

∂g
(0)
k

∂ε
, (6.56)

and

C5 =
∑
~k

2 cos2(ϕ)
1

rkτsk
. (6.57)

Now, we want to solve the resulting system of differential equations consisting of the three
differential equations with three unknown functions TM , µSpin and µSpin,right. For the inter-
mediate region at 0 ≤ x < L, the differential equations (6.36) and (6.37) hold. However, the
differential equation (6.55) holds in the normal metal, where only electrons and phonons are
able to propagate (x ≥ L). The boundary conditions read

jMag(L) =0 TM (0) = TM0 (6.58)

jSpin(0) =0 µSpin(L) = µSpin,right(L) (6.59)

jSpin(L) =jSpin,right(L) lim
x→∞

µSpin,right(x) = 0 , (6.60)

while TM0 denotes the magnon temperature at position x = 0. For writing down the bound-
ary conditions, we need the expressions for the magnon current and the spin current. The
expressions for the magnon current, the spin current and the charge current read

jMag =ΣM
∂TM
∂x

+

(
ΣUM

2
+

ΣDM

2

)
∂µSpin

∂x
−
(

ΣDM

2
− ΣUM

2

)
∂µcha

∂x
(6.61)

jSpin =− ΣE
∂µSpin

∂x
+

ΣUD + ΣDU

2

∂µSpin

∂x
+

ΣUD − ΣDU

2

∂µcha

∂x
+ (ΣMD + ΣMU )

∂TM
∂x

(6.62)

jcha =− ΣE
∂µcha

∂x
− ΣUD − ΣDU

2

∂µSpin

∂x
− ΣUD + ΣDU

2

∂µcha

∂x
+ (−ΣMD + ΣMU )

∂TM
∂x

= 0 .

(6.63)

For writing down the boundary conditions, one needs to eliminate ∂µcha/∂x. By solving Eq.
(6.63) for ∂µcha/∂x and setting it into the other two Eqs. (6.61) and (6.62), we eliminate the
dependence of the charge chemical potential in the boundary conditions.

The explicit spatially dependent solutions to the problem is to complicated to write down.
We are interested in small interface length L. Thus, the interaction needs to scale with this
interface length in the following way

|M~k,~k−~q,~q|
2 ∝ 1

L
. (6.64)

In addition to that, we assume lattice mismatching at the interface between the insulating
ferromagnet and the conducting normal metal. This leads to a boosted impurity relaxation
time for magnons and electrons, which is assumed to scale in the following way

τ
(0)
k ∝ L τ (0)

q ∝ L . (6.65)
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6 Ferromagnet normal-metal junction

Because of that, the coefficients C1 = C1(L) and C2 = C2(L) as well as the spin conductivities
also depend on the interface length and we can identify the following dependencies of the
arising coefficients

C1(L) =
c1

L
C2(L) =

c2

L
ΣE(L) = σEL ΣM (L) = σML Σab(L) = σabL .

(6.66)

For a, b one sets the letters D, U or M . Including these definitions, the result becomes
independent of the interface length L. Since it is also to lengthy to write down, we perform
an approximation in the magnon-electron interaction strength (influencing c1, c2 and σab).
The total current can be calculated by Eq. (6.62) and one finds for the total spin current
exactly behind the interface

jSpin(L) ≈− c1(TM0 − T0) +
c1(c1σE

√
C5ΣE,right + c2(3σE +

√
C5ΣE,right)σM )(TM0 − T0)

3σE
√
C5ΣE,rightσM

− c1(8c2
1C5σ

2
EΣE,right + 4c2

2σ
2
M (15σ2

E + 2C5ΣE,right + 10σE
√
C5ΣE,right))(TM0 − T0)

60C5ΣE,rightσ
2
Eσ

2
M

− c1(10c2σMC5ΣE,right(σE(σMD + σMU )− σM (σDU + σUD)))(TM0 − T0)

60C5ΣE,rightσ
2
Eσ

2
M

− c1(c1σEσM (c2(11C5ΣE,right + 40σE
√
C5ΣE,right)− 5C5ΣE,right(σDM + σUM )))

60C5ΣE,rightσ
2
Eσ

2
M

× (TM0 − T0) . (6.67)

We want to point out, that this resulting term does not depend on the thickness L of the
intermediate region. Hence, this term does not change, when we perform the limes of L→ 0.
Of course, the zero order term in temperature difference vanishes, because the interaction is
needed to transfer the magnons into electron spin excitations. The leading contribution is
just c1 times the temperature difference, since this term results from the first order collision
integral for the temperature variation. Behind the interface (x > L), the current decays
exponentially.

If one compares the expression for the spin current in Eq. (6.67), one finds that the spin
current is proportional to c1 and (TM0 − T0) in leading order of the sd-coupling strength.
Also, Schmidt et al. [57] performed a calculation on a related setup. Their expression is
similar to our result.

In order to describe the spin pumping on an YIG-Pt interface, where the intermediate
region is small, i.e. on an atomic scale, we take the two dimensional limit of our calculation.
One has to consider, that the parameter c1 is an ~k-integrated coefficient. For considering
wave vector dependent magnon temperatures, we have to take out the ~k-integration and
integrate after multiplying the wave vector dependent temperature. Taking into account,
that for a two dimensional interface, the three dimensional momentum conservation reduces
to a two dimensional momentum conservation and recovering the k-dependent form of c1,
in order to allow the treatment of the k-dependent temperatures, we arrive at the following
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expression for the spin pumping

js =
∑
~k

Gm,k (TM(k)− T0) (6.68)

G
(clean)
m,k =

LmeffN
2
s kB

π ~2

(
4π4

3a3

)
ω~k

∂b0~k
∂T

×
∫ pmax

0
dp p2

(
−
∂f0

~p

∂ε

)∫
dΩ~k

∫
dΩ~p |M |2

θ(p′⊥) · θ(pmax − p′⊥)

|p′⊥|
, (6.69)

with

p′⊥ = ±
√
p2
⊥ +

2meffω~k
~2

− k2
‖ − 2p‖k‖ cos(ϕ~k − ϕ~p) . (6.70)

Here, TM(k) denotes the local and wave vector dependent magnon temperature in the YIG-
film. Additionally, it is p‖ = p · sin(ϑ~p), p⊥ = p · cos(ϑ~p) and k‖ = k · sin(ϑ~k). We have

b0~k
= f

(0)
~k

for the equilibrium density for the magnons at wave vector ~k (cf. Eq. (2.8)) and

the energy dispersion ω~k = ε~k (cf. Eq. (2.6)). Besides, the equilibrium electron density is

denoted by f0
~p = f

(0)
~p (cf. Eq. (2.2)) and the electron energy dispersion is denoted by ε~p (cf.

Eq. (2.1)). The parameter meff denotes the effective mass for the electrons and Ns is the
number of valence electrons in a platinum unit cell. The upper expression is equivalent to
the spin pumping found by Schmidt et al. [57] for a clean interface. For the comparison
between the two theories, we have

|M |2 =
1

L

(
3a3

4π4

)
πS

2A

(
Jsd

Ns

)2 1

kB
(6.71)

The numbers are

Jsd =1.48884 meV (6.72)

aYIG =12.4 nm [52, 53] (6.73)

A =a2
YIG (6.74)

me =9.1093897 · 10−31 kg (6.75)

meff =1.38 ·me [57] . (6.76)

The parameter Jsd will be adjusted in chapter 7. It will be adjusted in that way, that the
resulting transverse spin Seebeck voltage for T0 = 300 K is the same for the theory from
Xiao et al. [23], from Schmidt et al. [57] and from ourselves as well.

6.2 Summary

In this chapter, we considered the spin pumping mechanism between an insulating ferromag-
net and a normal metal by using the Boltzmann equation. We found the spin current to be
proportional to the difference between magnon and electron temperature.

In the insulating ferromagnet only magnons and phonons are able to propagate, while
in the normal metal only electrons and phonons are able to propagate. In our model, there
is an intermediate layer of thickness L, where all three types of (quasi-)particles are able
to propagate. The electrons in the normal metal are strongly coupled to the phonons and
thus both are at temperature T0. Only the magnons in the insulating ferromagnet are at a
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6 Ferromagnet normal-metal junction

different temperature TM0. But the chemical potential for the electrons can deviate in the
normal metal and in the intermediate region.

Here, we set up the Boltzmann equation for the intermediate region and for the normal
metal. In the intermediate region we consider electrons and magnons, while in the normal
metal we consider electrons only. The magnon-electron interaction is mediated by a sd-
interaction. At the end, we derive a system of differential equations for the problem. After
solving the system of differential equations, we calculate the spin current at the contact area
between the intermediate layer and the normal metal (x = L). The interaction strength is
assumed to be proportional to 1/L (cf. Eq. (6.64)). Thus, we take the limes of the thickness
of the intermediate layer going to zero (L→ 0). At the end, the spin current is proportional
to the difference of the magnon temperature TM0 and the electron temperature T0. This
dependency on the temperature difference agrees with the theory of Xiao et al. [23] and with
Schmidt et al. [57]. Our detailed expression coincides with the expression of Schmidt et al.
[57].

The better understanding of the spin pumping mechanism helps us to better understand
the spin Seebeck effect. There, a thin and ferromagnetic YIG-film was evaporated on a GGG
substrate (Gd3Ga5O12). Again on top, there are small platinum stripes with a voltmeter
attached to measure the inverse spin Hall voltage (cf. figure 4). The heat reservoirs, which
generate the temperature gradient are assumed to be ideal heat reservoirs. The temperature
gradient will induce a deviation of the magnon temperature inside the YIG-film. Since the
electrons in the normal metal are strongly coupled to the phonons, there will be a temperature
difference between magnons and electrons. Thus, there will be a spin current based on the
spin pumping mechanism. The inverse spin Hall effect transfers the spin current into a
measurable charge current.

98



7 Results

In this section, we discuss the results out of the system of linear equations for the magnon
temperature in the transverse spin Seebeck effect, which was derived in chapters 3, 4 and 5.
Additionally, we will calculate the transverse spin Seebeck voltage. The setup can be found
in figures 4 and 9.

The setup of the transverse spin Seebeck effect consists of a GGG substrate formed as
a cuboid, while the edge length are in the order of millimeters. On top of the thick GGG
substrate, there is a thin YIG-stripe with the same surface area attached. Furthermore on top
of the YIG-stripe, there are smaller stripes of platinum. In the GGG substrate, only phonons
are able to propagate. Since the thickness of the GGG substrate is much thicker than of the
YIG-film, the phonons are propagating in the GGG substrate most of the time. Thus, they
are only rarely influenced by the magnons. We neglect the influence from the magnons onto
the phonons. In contrast, the magnons are strongly influenced by the phonons, because they
propagate only in the YIG-film, where phonons and magnons are able to propagate as well.
Thus, we calculated the phonon-temperature in chapter 3 by using the Boltzmann equation
and including phonon-phonon interaction only.

In chapter 4, we calculated the collision integral in the Boltzmann equation for the
magnon-phonon interaction and took the phonon temperature as an input parameter. After
that, we calculated the collision integral in the Boltzmann equation for the magnon-magnon
interaction in chapter 5. In both interactions, we considered exchange magnons and dipolar
magnons as well. To evaluate the resulting expressions numerically, we performed analytic
transformations and a discretization of the wave vector dependent temperature in 100 or 200
points. We derived a system of linear equations for the wave number dependent magnon
temperature including magnon-phonon and magnon-magnon interaction as well. The phonon
temperature was used as an input parameter. The solution to the system of linear equations
will be presented in this chapter.

The resulting system of equations is composed of contributions from magnon-phonon
interaction, dipole-dipole magnon-magnon interaction and exchange magnon-magnon inter-
action. We have to sum up the three contributions in a system of equations. It is

∂f~k
∂t

∣∣∣∣
St

=
∂f~k
∂t

∣∣∣∣
St,mag-pho

+
∂f~k
∂t

∣∣∣∣
St,mag-mag,3

+
∂f~k
∂t

∣∣∣∣
St,mag-mag,4

. (7.1)

In Eq. (4.47) we motivated the integral identity, which has to be fulfilled

0 =
1

2

∫ π

0
sin(ϑ) dϑ

∂f~k
∂t

∣∣∣∣
St

, (7.2)

while this equation is assumed to be independent on ϕ. With these two equations, we set
up the system of linear equations for the wave number dependent magnon temperature. For
the contribution of the magnon-phonon interaction, we take Eq. (4.77). We take Eq. (5.40)
for the contribution of the magnon-magnon interaction which is mediated by dipole-dipole
interaction. For the contribution of the magnon-magnon interaction, which is mediated by
exchange interaction, we take Eq. (5.80). For magnons in this section, we only consider nor-
mal scattering processes. Umklapp scattering processes are neglected for magnons. These
three contributions sum up to a system of integral equations, where the wave number depen-
dent magnon temperature occurs only linear. Since there are summands including phonon
temperature but no magnon temperature, they are treated as inhomogeneities in the system
of linear equations.
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7 Results

For setting up the system of linear equations, we discretize the integration and also
discretize the wave number dependent magnon temperature and phonon temperature. For
our calculation, we discretize the wave number interval 0 ≤ k ≤ kF into n = 100 or n = 200
small intervals. It turns out, that the result converges with these numbers. Then, we get a
system of linear equations with n equations and n unknown magnon temperatures.

In figures 38 and 39, one finds a plot of the dispersion relation for the phonons and for the
magnons. Here we use Eq. (2.3) for the linear phonon dispersion. The magnon dispersion
relation consists of an offset plus a quadratic term. For this, we take Eqs. (2.6) and (2.7).
We take H0 = 99.9 Oe for the external magnetic field and M0 = 139 G [43, p. 182] for
the local magnetization (cf. Eq. (2.7)). This is consistent with the parameters used for the
magnon-magnon interaction in Eq. (5.30). If we set in the angle ϑk = π/4 (cf. Eq. (2.6)), we
end up with

ωoff = 5.49 GHz . (7.3)

With these numbers, we compared the exact formula for the magnon dispersion and the
approximation. The exact formula is in Eq. (2.5), while the approximation is in Eq. (2.6).
The accordance of both formulas is good for the expected numbers. In figure 40, we added
an exemplary optical phonon mode.

ω~q,optical = ωgap − cph,2 q , (7.4)

with ωgap = 19094 GHz and cph,2 = 768.6 m/s. The temperature for the optical phonons
is set to ∆T at position x = −L/2, which is approximately the temperature for diffusive
phonons. For our calculation, we use the following numbers

~ =1.05457266 · 10−34 Js (7.5)

kB =1.380658 · 10−23 J/K (7.6)

a =1.2376 nm [52, 53] (7.7)

cPh =3843 m/s [55] (7.8)

S =14.2 [53] (7.9)

Dex =9.16 · 10−11 GHz cm2[43, p. 182] (7.10)

kF =kmax = 3.10 · 107 · cm−1 . (7.11)
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k / kF

f(k) / GHz

Figure 38: Here, the k-dependent frequency (not angular velocity) of magnons and phonons
is plotted. The phonon dispersion relation is linear, while the magnon dispersion relation is
quadratic plus an offset. Thus, the dispersion relations intersect twice.

k / kF

f(k) / GHz

k / kF

f(k) / GHz

Figure 39: Zoom of the phonon and magnon dispersion relation. The dispersion relations intersect
twice.

k / kF

f(k) / GHz

Figure 40: Here, the k-dependent frequency (not angular velocity) of magnons and phonons is
plotted. The linear phonon dispersion relation is extended by a linear optical phonon mode. As
in figures 38 and 39, the magnon dispersion relation is quadratic plus an offset.
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7 Results

Now, we discuss the results from the system of linear equations, which was derived above.
The wave vector dependent phonon temperature was already calculated in chapter 3. We
will recapitulate the results. The wave vector dependent phonon temperature for different
average temperatures T0 is plotted. In figure 41 the boundary scattering is not included,
while in figure 42 boundary scattering is included. For constructing the spatial temperature
profile, one takes the value for x = −L/2 out of figure 41 and 42 and places a straight
line through this point and zero at x = 0. In the absence of boundary scattering, the
ballistic phonons propagate nearly hitchless through the GGG substrate. Thus, they keep
the temperature of the heat bath where they came from. In average, left and right moving
ballistic phonons therefore have the average temperature T0. When boundary scattering
is included, the phonons scatter at the boundary of the substrate and relax to the local
temperature of diffusive phonons, as described above. Thus they are only able to keep the
temperature for a length in order of the boundary relaxation length.

 / kFp

0Ph(T   -T ) / ΔT

smaller T0

Figure 41: Here, the k-dependent phonon temperature at position x = −L/2 is plotted for
different average temperatures T0. Boundary scattering is not included in this figure.
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 / kFp

0Ph(T   -T ) / ΔT

smaller T0

Figure 42: Here, the k-dependent phonon temperature at position x = −L/2 is plotted for
different average temperatures T0. Boundary scattering is included in this figure.

Now, we calculate the wave vector dependent magnon temperature. Here, we include
magnon-phonon interaction as well as magnon-magnon interaction. For both interactions
we consider dipolar magnons and exchange magnons separately. We take Eqs. (7.1) and
(7.2) and solve the system of linear equations for the discretized wave vector dependent
magnon temperature. In figure 43, the resulting magnon temperature is shown without
boundary scattering. Instead in figure 44, the resulting magnon temperature is plotted
and the boundary scattering is included. The boundary scattering describes the scattering
process of phonons at the boundary of the system (or the cuboid). When one phonon reaches
the boundary, it relaxes and gets the local temperature of the diffusive phonons. Diffusive
phonons are phonons with a small relaxation length and hence with a large wave number.
The boundary scattering is also explained around Eqs. (3.25) and (3.40).

Similar to the wave vector dependent phonon temperature, the magnon temperature de-
creases for small wave numbers (or large wave lengths). The smaller the average temperature
T0 is, the greater the decrease of temperature for the small wave number magnons is. In
contrast to the phonon temperature, the magnon temperature does not decrease to T0 for
small wave numbers even without boundary scattering. When we include boundary scat-
tering, the magnon temperature decreases less for small wave vectors similar to the phonon
case. If one wants to construct the spatial temperature profile for one certain wave number,
one has to take the value out of the figures 43 or 44 as one point of the profile at x = −L/2.
All temperature profiles are linear and crossing the value T0 at position x = 0. With these
two points, one is able to construct the linear temperature profile.
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k / kF

smaller T0

0M(T  -T ) / ΔT

Figure 43: Here, the k-dependent magnon temperature at position x = −L/2 is plotted for
different average temperatures T0. Boundary scattering is not included in this figure.

k / kF

0M

smaller T0

(T  -T ) / ΔT 

Figure 44: Here, the k-dependent magnon temperature at position x = −L/2 is plotted for
different average temperatures T0. Boundary scattering is included in this figure.

Now, we add an optical phonon mode to the phonon dispersion relation. In principle,
optical phonon modes are present and we want to analyze their influence on our transverse
spin Seebeck voltage. Because of that we consider one representative optical phonon mode.
Here, we use Eq. (7.4) and the dispersion relation can be seen in figure 40. The interaction
strength between magnons and optical phonons is set to be the same strength as for interac-
tion between magnons and acoustic phonons. At the end, we have the results for the cases
with the same interaction strength and with zero interaction strength for magnons with op-
tical phonons. The temperature for the optical phonons is set to ∆T at position x = −L/2,
which is approximately the temperature for diffusive phonons. The magnon temperature by
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including the optical phonon mode and without boundary scattering is shown in figure 45
and with boundary scattering shown in figure 46. If the average temperature T0 is small, the
result does nearly not change by adding an additional optical phonon mode. This we will
also see later, when we calculate the spin Seebeck voltage. For higher temperatures T0, the
numeric calculation does not converge within the bounds of computing capacity. But, we can
state, that the temperature profile for the magnon temperature including optical phonons
deviates from without optical phonons.

k / kF

(T  -T ) / ΔT 0M

smaller T0

Figure 45: Here, the k-dependent magnon temperature at position x = −L/2 is plotted for
different average temperatures T0. In this calculation, we included an optical phonon mode, as
shown in figure 40. In this figure, boundary scattering is not included.

(T  -T ) / ΔT 0M

smaller T0

k / kF

Figure 46: Here, the k-dependent magnon temperature at position x = −L/2 is plotted for
different average temperatures T0. In this calculation, we included an optical phonon mode, as
shown in figure 40. In this figure, boundary scattering is included.

For calculating the transverse spin Seebeck voltage, we need to calculate the average
temperatures for phonons and magnons before. By calculating the phonon temperature
average, we weight the summation by the Bose-Einstein distribution. Since the temperature
is only dependent on the absolute value of the wave vector, we transform the summation
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into spherical coordinates. Thus, the factor p2 occurs as an additional weighting factor. The
formula for the phonon temperature average reads

T̄Ph =
4π
∑

p p
2 · n(p, T0) · TPh(p)

4π
∑

p p
2 · n(p, T0)

, (7.12)

while the summation goes via the discretized points between 0 and kF of the magnon tem-
perature. Here, the function n(p, T0) denotes the wave number and temperature dependent
phonon distribution, which is a Bose-Einstein distribution (cf. Eq. (2.4)). If optical phonons
are included, on also have to consider them in the upper summation with their correct dis-
persion and Bose-Einstein distribution. The average magnon temperature will be calculated
in the same way as for the phonon temperature. The summation is weighted by the Bose-
Einstein distribution. In the same way, the factor k2 occurs because of the transformation
into spherical coordinates. The formula for the magnon temperature average reads

T̄M =
4π
∑

k k
2 · f(k, T0) · TM(k)

4π
∑

k k
2 · f(k, T0)

, (7.13)

while the summation goes via the discretized points between 0 and kF of the magnon tem-
perature. Here, the function f(k, T0) denotes the wave number and temperature dependent
magnon distribution, which is a Bose-Einstein distribution (cf. Eq. (2.8)).

The results for the phonon average temperature T̄Ph and the magnon average tempera-
ture T̄M dependent on the overall average temperature T0 are shown in figure 47(a) without
boundary scattering. The same results by including boundary scattering are shown in figure
47(b). The smaller the overall average temperature T0 is, the smaller the average tempera-
ture for phonons and magnons is. For calculating the wave vector average, the Bose-Einstein
distribution times k2 occurs as a weighting factor. At small overall average temperature T0,
small wave vector phonons and magnons are much higher weighted than large wave vector
phonons and magnons. Thus, their influence on the wave vector averaged temperature is
large. The consequence is, that here the wave vector averaged phonon and magnon tempera-
tures are close by the temperature for small wave vector phonons and magnons, respectively.
For larger overall temperature, the situation is different for phonons and magnons. At room
temperature (T0 = 300 K), the phonon weight function is nearly linear and the magnon
weight function has a small and negative slope. In that situation, all phonons and magnons
contribute to the wave vector average.

As a next step, we consider the difference between the averaged phonon temperature
T̄Ph and the averaged magnon temperature T̄M for different overall averaged temperature
T0. The difference is shown in figure 48. The sign change in the temperature difference
is caused by the crossing of average phonon temperature and average magnon temperature
in figure 47. Additionally, the plots are also made by including an extra optical phonon
mode (cf. Eq. (7.4)). The optical phonons are expected to have the diffusive temperature.
For calculating the phonon average temperature, one also has to respect optical phonons,
their temperature and the correct dispersion relation in the Bose-Einstein weighting factor.
For small temperatures T0, the deviation between including and excluding optical phonon
modes is small. For larger temperatures, we can state that there is a significant change in
the behavior. But, there is no decrease in the absolute value of the temperature difference
and the sign change still remains.
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T  / K0

(T-T ) / ΔT0

_

(a) Average phonon and magnon temperature
without boundary scattering

T  / K0

(T-T ) / ΔT0

_

(b) Average phonon and magnon temperature
with boundary scattering

Figure 47: The wave vector averaged phonon temperature T̄Ph and magnon temperature T̄M was
calculated dependent on the overall average temperature T0. These figures do not include optical
phonon modes.

MPh

_ _
(T  -T  ) / ΔT

0T  / K

(a) Without boundary scattering

MPh

_ _
(T  -T  ) / ΔT

0T  / K

(b) With boundary scattering

Figure 48: The difference of the averaged phonon temperature T̄Ph and averaged magnon tem-
perature T̄M is plotted dependent on the overall averaged temperature T0. Additionally, we
performed the same calculation by including an optical phonon mode. The dashed line for larger
than 6 K illustrates just the magnitude of the result, because there are significant numerical
errors, which are caused by finite size effects.

Now, we want to calculate the transverse spin Seebeck voltage in the platinum stripe.
The setup can be found in figures 4 and 9. For the conversion of a temperature difference
between magnons and phonons into a transverse spin Seebeck voltage, we take the theory
from Xiao et al. [23]. As described by them, the temperature of the electrons in the platinum
stripe is strongly correlated to the phonon temperature in the YIG ferrimagnet. Thus, we
expect the electron temperature to be the same as the averaged phonon temperature. If there
is a temperature difference between the magnons in the ferrimagnet and the electrons in the
platinum stripe, there will be a net spin current in the platinum stripe, which is proportional
to this temperature difference. This proportionality we also find in our theory of chapter 6
and in the theory of Schmidt et al. [57]. This mechanism is called spin pumping. The inverse
spin Hall effect converts a spin current into a charge current, which is perpendicular to the
direction of the spin current and additionally perpendicular to the polarization of the spin
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current. The mechanism causes the transverse spin Seebeck voltage and is sketched in figure
4b. For the formula for the transverse spin Seebeck effect, we compare Eqs. (18) and (25)
from Ref. [23]. Thus, we find

VSSE =
θH ρwPt gr γ |e| kB

πMs VaA
· (T̄Ph − T̄M) . (7.14)

We take the numbers from Ref. [23]

θH =0.0037 (7.15)

ρ =0.91 µΩ m (7.16)

wPt =4 mm (7.17)

gr/A =1016 m−2 (7.18)

γ =1.76 · 1011 T−1s−1 (7.19)

e =1.60217733 · 10−19 C (7.20)

kB =1.380658 · 10−23 J/K (7.21)

4πMs =1.4 · 105 A/m (7.22)

V 1/3
a =14.1 nm . (7.23)

Additionally, we have to respect the temperature dependence of the magnetic coherence
volume Va. The upper value is given for T0 = 300 K. Out of Eq. (15) of Ref. [23], we extract
the following temperature dependence

Va ∝
1√
T̄M

≈ 1√
T0
. (7.24)

With these numbers, we calculate the transverse spin Seebeck voltage. The results can
be found in figure 49. The results are separately plotted by including and excluding the
boundary scattering. We find, that the transverse spin Seebeck voltage is larger for small
temperatures T0 than for room temperature. Besides for small overall averaged temperatures
T0, the difference in the results between including and excluding the optical phonon mode is
very small. For larger overall temperatures T0 the difference between including and excluding
the optical phonon mode becomes larger.
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V / nVSSE
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ΔT=1K

(a) Without boundary scattering

V / nVSSE

T / K0

ΔT=1K

(b) With boundary scattering

Figure 49: The transverse spin Seebeck voltage VSSE is plotted dependent on the overall average
temperature T0. Additionally, the transverse spin Seebeck voltage by including an optical phonon
mode in the calculation VSSE opt is plotted here. The dashed line for larger than 6 K illustrates
just the magnitude of the result, because there are significant numerical errors, which are caused
by finite size effects. The temperature difference between the two heat baths is set to 2∆T = 2
K. The results are proportional to this temperature difference.

In figure 14 and 15 of section 3.2, we discussed the several relaxation processes for the
phonons. Now, we separate the calculation by including and excluding the phonon normal
scattering processes. In figure 50, we plot the transverse spin Seebeck voltage by performing
this separation. As one can see for T0 = 3 K in figure 15, the normal scattering relax-
ation length is length is always larger than the boundary scattering. Thus, there is nearly
no difference between including and excluding normal scattering processes when boundary
scattering is including. Only by excluding boundary scattering, the result becomes a little
different. For higher overall average temperatures T0 with and without boundary scattering,
the normal scattering relaxation length becomes more important (cf. figure 14) and reduces
the transverse spin Seebeck voltage significantly. If we combine including normal scattering
and optical phonon mode, we suspect the influence of the optical phonons to the spin Seebeck
voltage to be small for all T0.
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(a) Without boundary scattering
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Figure 50: The transverse spin Seebeck voltage VSSE is plotted dependent on the overall average
temperature T0 with and without boundary scattering. Additionally, the transverse spin Seebeck
voltage is separated by including and excluding phonon-phonon normal scattering events in the
calculation for the relaxation length.
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Now, we will use another theory out of chapter 6 for the spin pumping mechanism. As
already discussed at the end of chapter 6, ourselves and Schmidt et al. [57] developed a theory
for the spin pumping mechanism. The expressions can be found in Eqs. (6.68), (6.69), (6.70)
and (6.71).

Schmidt et al. [57] developed a more exact equation for the inverse spin Hall effect.
They included spin-flip mechanism in the platinum stripe. Thus, the spin current decays
by penetrating from the contact area into the platinum stripe. The averaged spin Seebeck
voltage reads

VSSE = θH ρwPt
2|e|
~

tanh
(
LN
2λsf

)
LN
λsf

· js . (7.25)

The numbers are

LN =dPt = 15 nm [21, 57] (7.26)

λsf =14 nm [57] (7.27)

Jsd =1.48884 meV (7.28)

θH =0.0037 [23] (7.29)

ρ =0.91 µΩ m [23] (7.30)

wPt =4 mm [23] . (7.31)

The parameter Jsd out of Eq. (6.71) was adjusted in that way, that the resulting transverse
spin Seebeck voltage for T0 = 300 K is the same for the theory from Xiao et al. [23], from
ourselves and from Schmidt et al. [57] as well. The resulting transverse spin Seebeck voltage
out of Eq. (7.25) dependent on the overall average temperature T0 is plotted in figure 51.
If one compares the results with the transverse spin Seebeck voltage in figure 49, one finds,
that the result in figure 51 is about one magnitude smaller. This belongs to the fact that
the general temperature dependence of the spin pumping mechanism is different.

V / nVSSE

T / K0

ΔT=1K

Figure 51: Here, the theory from ourselves and Schmidt et al. [57] is used. The transverse
spin Seebeck voltage is plotted dependent on the overall average temperature T0. The plot is
separated between excluding and including boundary scattering.

Now, we want to separate the calculation by including and excluding phonon normal
scattering processes by using the spin pumping theory from ourselves and Schmidt et al.
[57]. The transverse spin Seebeck voltage by performing this separation can be found in
figure 52. As already found in figure 50, there is nearly no difference between including
and excluding normal scattering processes when boundary scattering is including. This is
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7.1 Summary

the case, because the normal scattering relaxation length is length is always larger than the
boundary scattering (cf. figure 15 for T0 = 3 K). Only by excluding boundary scattering, the
result becomes a little different. For higher overall average temperatures T0 with and without
boundary scattering, the normal scattering relaxation length becomes more important (cf.
figure 14) and reduces the transverse spin Seebeck voltage significantly.
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Figure 52: Here, the transverse spin Seebeck voltage is separated by including and excluding
phonon-phonon normal scattering events in the calculation for the relaxation length. In addition,
the theory from ourselves and Schmidt et al. [57] is used.

Now, we want to compare the results with experimental measurements. As we found in
our calculations, the transverse spin Seebeck voltage is at the order of tenth of nanovolts
for room temperature (T0 = 300 K). This result coincides with the measurements of Schmid
et al. [33], Avery et al. [35] and Meier et al. [39]. They found, that the transverse spin
Seebeck voltage is not larger than nanovolts at T0 = 300 K. Our results do not coincide with
Uchida et al. [21], they found a transverse spin Seebeck voltage at the order of microvolts.
Our calculation of the magnon and phonon temperature coincides with the measurements
of the magnon temperature by Agrawal et al. [31]. They found a small deviation between
the magnon temperature and the phonon temperature, while they are only able to measure
the temperature of large wave number magnons. For large wave number magnons, we found
a similar result, while the deviation becomes larger for short wave number magnons. For
smaller overall average temperatures T0, the resulting transverse spin Seebeck voltage in-
creases in general. Until now, there has been no experiment performed at this temperature
regime.

7.1 Summary

In this chapter, we took the system of linear equations for the magnon-phonon coupled
system out of chapters 3, 4 and 5 and solved it for the magnon temperature in the YIG-
stripe. After that, we calculated the transverse spin Seebeck voltage by using the phonon
and magnon temperature.

The setup of the transverse spin Seebeck effect consists of a GGG substrate, while the
edge length are in the order of millimeters. On top of the thick GGG substrate, there is a
thin YIG-stripe with the same surface area attached. Furthermore on top of the YIG-stripe,
there are smaller stripes of platinum. The setup can be found in figures 4 and 9. Since
the thickness of the GGG substrate is much thicker than of the YIG-film, the phonons are
rarely influenced by the magnons. In contrast, the magnons are strongly influenced by the
phonons. Thus, we calculated the phonon-temperature in chapter 3 by using the Boltzmann
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equation and including phonon-phonon interaction only. We calculated the collision integral
in the Boltzmann equation for the magnon-phonon interaction and took the phonon temper-
ature as an input parameter in chapter 4. In chapter 5, we calculated the collision integral
in the Boltzmann equation for the magnon-magnon interaction. In both interactions, we
considered exchange magnons and dipolar magnons as well. We derived a system of linear
equations for the wave number dependent magnon temperature including magnon-phonon
and magnon-magnon interaction as well. The phonon temperature was used as an input pa-
rameter. Finally, we solved the system of equations for the wave number dependent magnon
temperature in this chapter.

With these solutions, we calculated the wave number averaged phonon and magnon
temperature. This, we did for different overall averaged temperatures T0. For calculating
the transverse spin Seebeck voltage, we needed the temperature difference between the wave
number averaged phonon and magnon temperature. Here, we used the theory of Xiao et
al. [23] to calculate the transverse spin Seebeck voltage. We separately plotted the results
by including phonon boundary scattering on the one hand and excluded phonon boundary
scattering on the other hand. Our theory out of chapter 6 and the theory of Schmidt et al.
[57] are similar to each other. Additionally, we used them for calculating the transverse spin
Seebeck voltage. The three methods were adjusted, so that they give the same transverse spin
Seebeck voltage for room temperature. In both theories we found, that the transverse spin
Seebeck voltage is larger for small temperatures than for room temperature. Furthermore,
we included an optical phonon mode in our calculation with the theory of Xiao et al. [23].
For small overall averaged temperatures T0, the change in the results is very small, when we
include an optical phonon mode. But it becomes larger for larger overall temperatures T0.
Besides, normal phonon scattering decreases the transverse spin Seebeck voltage for large
overall averaged temperatures T0.
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8 Conclusions and Outlook

In the present theoretical thesis, we analyzed the influence of quasiballistic phonons to the
transverse spin Seebeck effect by making use of the Boltzmann equation.

In one of the experimental setup, where the spin Seebeck effect was observed, a thin,
ferrimagnetic, and here insulating YIG-film (Y3Fe5O12) was evaporated on an insulating
and non-magnetic GGG substrate (Gd3Ga5O12). Again on top, there are small platinum
stripes with a voltmeter attached to measure the inverse spin Hall voltage (cf. figures 4 or
9). The sizes are at the order of millimeters, except for the thicknesses of YIG which is at
the order of micrometers, and except for the thickness of platinum which is at the order of
nanometers. In case of the transverse spin Seebeck effect, the applied temperature gradient
is parallel to the surface of the YIG-film. In contrast for the longitudinal spin Seebeck effect,
the applied temperature gradient is perpendicular to the surface of the YIG-film. The heat
reservoirs, which generate the temperature gradient, are assumed to be ideal heat reservoirs.

In this thesis, we focused on the transverse spin Seebeck effect. The goal was it to
calculate the transverse spin Seebeck voltage in the platinum stripes, which is measurable.
This transverse spin Seebeck voltage is generated by a spin current which comes out of
the YIG-stripe. Via the inverse spin Hall effect, the spin current is converted to a charge
current. Xiao et al. [23], Schmidt et al. [57] and ourselves showed, that the spin current is
generated, when there is a temperature difference between the magnons in the YIG-stripe
and the electrons in the platinum. This effect is called spin pumping. The phonons are
strongly coupled to the electrons in the platinum and thus have the same temperature.
Hence, we needed to calculate the magnon temperature and the phonon temperature in the
YIG-stripe. Since the thickness of the YIG-stripe is much smaller than the thickness of the
GGG-substrate, the phonons are propagating most of the time in the GGG-substrate and
are thus rarely influenced by the magnons. In contrast, the magnons are only propagating
in the YIG-film and hence interact with the phonons all the time. Because of that, we first
calculated the phonon temperature in the GGG-substrate by only including phonon-phonon
interaction in chapter 3. After that, we prepared the calculation of the influence of the
phonons onto the magnon temperature in chapters 4 and 5. In chapter 7, we presented the
results.

The left heat reservoir is at temperature T0 + ∆T at position x = −L/2, while the right
heat reservoir is at temperature T0 − ∆T at position x = L/2. Xiao et al. [23] as well as
Sanders and Walton [24] performed calculations on the transverse spin Seebeck effect on the
magnon temperature. Since measurements from Agrawal et al. [31] claimed their effect to
be small for large wave number magnons, we performed a wave vector dependent calculation
based on local interactions, where small wave number phonons, which are quasiballistic
phonons, play an important role. Additionally, there are contradictory measurements [33,
34, 35], which motivated us to perform the calculation.

In the collision integral of the Boltzmann equation, the relaxation length occurs. Neel-
mani et al. [48] calculated the phonon relaxation length dependent on the wave vector,
where Umklapp processes are included. Additionally, we performed an estimation for the
Normal process scattering length. These we used and solved the Boltzmann equation for the
wave number dependent phonon temperature by performing some approximations. For this
calculation, the temperature deviation needs to be much smaller than the overall average
temperature T0. Additionally, we performed this calculation for different overall average
temperatures T0.

The resulting phonon temperature profiles are linear in space and crossing the overall
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average temperature T0 in the middle of the substrate at x = 0 (cf. figure 11). The values for
x = −L/2 dependent on the wave number can be found in figures 18 and 19. The temperature
of the phonons is connected to the density of the phonons via the Bose-Einstein distribution
function. A large phonon temperature corresponds to a large density of phonons. Phonons
with a large wave vector have a small relaxation length. Thus, they scatter very often and
adopt the temperature from the proximity. So, there is nearly no temperature jump at
the heat reservoir and the slope of the temperature profile is large. Phonons with a small
wave vector have a large relaxation length. Hence, these phonons propagate nearly hitchless
through the GGG-substrate and keep their density as well as the temperature from the heat
bath, where they come from. Thus, right moving phonons with a small wave vector nearly
keep the temperature T0 +∆T and left moving phonons with a small wave vector nearly keep
the temperature T0 −∆T , respectively. In average they have a temperature, which is close
to T0. Thus, their spatial temperature profile has a very small slope and a large temperature
jump at the heat reservoir contacts. The slope for the small wave number phonons reaches
zero slope for zero wave number. Additionally for a fixed wave number k, the slope of the
phonon temperature decreases, when the overall average temperature decreases. When we
include boundary scattering in our calculation, the slope does not decrease that much as
without boundary scattering.

In chapter 4 and 5, we enlarged our calculation by including phonon-magnon- and
magnon-magnon-interaction in the YIG-film. We considered exchange-magnons and dipolar
magnons as well, set up a system of linear equations for the wave number dependent magnon
temperature and performed some analytical transformations. The wave number dependent
phonon temperature was used as an input parameter. Similarly as for the phonons, the
resulting magnon temperature profiles are linear in space and crossing the overall average
temperature T0 in the middle of the substrate at x = 0. The slope of the magnon temperature
profile is dependent on the wave number. The values for x = −L/2 can be found in figures
43 and 44. In the same way as for the phonons, we found a large slope of the temperature
profile for the long wave number magnons. The slope for the small wave number magnons
is small, but does not reach zero slope. Additionally for fixed wave number k, the slope of
the magnon temperature decreases, when the overall average temperature decreases. When
we include boundary scattering in our calculation, the slope does not decrease that much as
without boundary scattering.

If we include optical phonons to our calculations (cf. figures 45 and 46), the result does
not change significantly for small overall average temperature T0. For higher T0, the existence
of the spin Seebeck effect is not affected.

Furthermore, we had a closer look on the spin pumping mechanism in chapter 6. We
investigated this spin pumping mechanism between a ferromagnetic insulator and a normal
metal (platinum) by making use of the Boltzmann equation. In our theory, we assumed that
there is an intermediate region between the ferrimagnetic insulator and the normal metal,
where magnons and valence electrons are able to interact via sd-interaction. We assumed
the electrons in the normal metal to be strongly coupled to the phonons. We set up a system
of differential equations to solve the magnon temperature in the intermediate layer as well
as the electron chemical potential in the intermediate layer and the normal metal. At the
end, the resulting spin current at x = L is proportional to the temperature difference of the
magnons in the ferrimagnetic insulator and the temperature of the electrons in the normal
metal. This dependency on the temperature difference agrees with the theory of Xiao et al.
[23] and with Schmidt et al. [57]. Our detailed expression coincides with the expression of
Schmidt et al. [57].
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After that, we calculated the transverse spin Seebeck voltage. This, we did by using
the theory for the spin pumping mechanism of Xiao et al. [23]. Additionally, we calculate
the transverse spin Seebeck voltage by using our results, which coincide with Schmidt et
al. [57]. The results by using the spin pumping theory of Xiao et al. [23] are plotted in
figures 49(a) and 49(b). There we found a larger transverse spin Seebeck voltage if one
considers temperatures much lower than room temperature. The results are at the order of
nanovolts, which should be measurable in experiments. Again, the result does not change
significantly by including an optical phonon mode in the calculation for small overall average
temperatures T0. For higher T0, the existence of the spin Seebeck effect is not affected. We
also used the theory of Schmidt et al. [57] for the spin pumping mechanism. There, we
found a different transverse spin Seebeck voltage at the order of tenth of nanovolts, which
also should be measurable in experiments. The results are plotted in figure 51. Again,
the voltage increases, when one considers temperatures much lower than room temperature.
The two methods are adjusted, so that they give the same transverse spin Seebeck voltage
at room temperature.

For further study of the transverse spin Seebeck effect, one may have a closer look on
the phonon boundary scattering. We suspect, that the influence of the phonon boundary
scattering decreases, if one enlarges the width B or the thickness D of the GGG substrate.
This should cause an increase of the transverse spin Seebeck voltage, we suspect.

As discussed at the end of chapter 7, our results coincide with several experimental results
for room temperature [31, 33, 35, 39]. Most of them stated, that the transverse spin Seebeck
voltage is not larger than nanovolts at room temperature. This is in striking contrast to
the first observation of the spin Seebeck effect by Uchida et al. [21]. Since there are no
experiments made for lower temperature, it would be interesting to perform measurements
at lower temperature. We claim that, the transverse spin Seebeck voltage should become
larger for small temperatures.

It also would be interesting to perform a calculation on the longitudinal spin Seebeck
effect. There, we can transfer our wave vector dependent calculation on the longitudinal spin
Seebeck effect.
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A Relaxation length for phonon Normal scattering

In this appendix, we will calculate the phonon relaxation length for normal scattering pro-
cesses. We start from the elastic energy [41, p. 102]

V3 =
1

6

∫
V
d3~x

∑
lmnijk

Almnijk

∂ul
∂ri

∂um
∂rj

∂un
∂rk

. (A.1)

We use a generalized version of the phonon operators from Eq. (4.6). This is

~u(~r) =
∑
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e−i~q~ru~q ê~q =
∑
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After inserting them into the Eq. (A.1), we find
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while ẽi~k
denotes the component i of the unit vector of vector ~k. For simplicity, we assume

Ã =
1

6

∑
lmnijk

Almnijk e
l
k,λ1e

m
q,λ2e

n

|~k+~q|,λ3 ẽ
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We take ωk,λ = cλ · k. The sound velocity for longitudinal phonons is c1 = 6.393 · 103 m/s.
For transverse phonons, the sound velocities are c2 = 3.629 · 103 m/s and c3 = 3.429 · 103

m/s. Wet find

V3 = Ã
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(A.5)

With this, we can write down the collision integral for the Boltzmann equation. For our
calculation, the prefactor of the collision integral is irrelevant. Thus, we write

dnk,λ
dt

= Ā
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qλ2λ3

k q |~k + ~q|
cλcλ2cλ3

{
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(A.6)
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while nk,λ denotes the Bose-Einstein distribution for wave number k and acoustical phonon
mode λ (cf. Eq. (2.4)). We rearrange this term

dnk,λ
dt

=Ā
∑
qλ2λ3

k q |~k + ~q|
cλcλ2cλ3

×
{
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}
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(A.7)

To calculate the scattering rate for phonons with wave vector ~k, we linearize the collision
integral. We take nk,λ = n0

k,λ + δnk,λ. In Eq. (3.40) as well as in figures 14 and 15, we only
consider diagonal terms in the relaxation length. To be consistent, we only consider diagonal
terms in this calculation. Because of that, we do not consider contributions from δnq,λ or
δn|~k+~q|,λ.

Then, we find
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= Ā
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(A.8)

We perform a relaxation time approximation:

dnk,λ
dt

=
δnk,λ
τk

. (A.9)

The resulting relaxation time reads

1
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}
. (A.10)

Normal processes

For evaluating the upper expressions, we need to transform the delta distributions to solve
the angular integrations. We take ωk,λ = cλ · k. For the first and second delta distribution,
we take

0 = ωq,λ2 ± ωk,λ − ω|~k+~q|,λ3 = cλ2q ± cλk − cλ3
√
k2 + q2 + 2kq cos(ϑ) , (A.11)

while ϑ denotes the angle between ~k and ~q. We transform this expression to

cos(ϑ) =
(cλ2q ± cλk)2 − c2

λ3
(k2 + q2)

2kqc2
λ3

. (A.12)
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In case of the minus sign, we find in the transformation, that the following relation must be
fulfilled

cλ2q > cλk . (A.13)

In both cases, the following relationship must be fulfilled

|cos(ϑ)| ≤ 1 |~k + ~q| ≤ pF . (A.14)

In the same way, we transform the third delta distribution. We have

0 = ωq,λ2 − ωk,λ + ω|~k+~q|,λ3 = cλ2q − cλk + cλ3
√
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2kqc2
λ3

. (A.16)

In the transformation, we find the following relationships, which must be fulfilled

cλ2q < cλk |cos(ϑ)| ≤ 1 |~k + ~q| ≤ pF . (A.17)

Umklapp processes

Umklapp processes denote processes, where |~k + ~q| > pF. For those processes, the delta-
distribution must be evaluated differently. For the first and second delta distribution, we
find

0 = ωq,λ2 ± ωk,λ − ω|~k+~q|,λ3 = cλ2q ± cλk − cλ3
(

2pF −
√
k2 + q2 + 2kq cos(ϑ)

)
. (A.18)

This expression we transform to

cos(ϑ) =
(cλ32pF − cλ2q ∓ cλk)2 − c2
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2kqc2
λ3

. (A.19)

In the transformation, we find the following relationships, which must be fulfilled

q ≤ 2pF

cλ3
cλ2
∓ cλ
cλ2

k |cos(ϑ)| ≤ 1 |~k + ~q| > pF . (A.20)

For the third delta distribution of the Umklapp processes, we find

0 = ωq,λ2 − ωk,λ + ω|~k+~q|,λ3 = cλ2q − cλk + cλ3
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⇔ cos(ϑ) =
(cλ2q − cλk + cλ32pF)2 − c2

λ3
(k2 + q2)

2kqc2
λ3

. (A.22)

In the transformation, we find the following relationships, which must be fulfilled

q ≥ cλ
cλ2

k − 2pF

cλ3
cλ2

|cos(ϑ)| ≤ 1 |~k + ~q| > pF . (A.23)

With these expressions for cos(ϑ), we can solve the delta distribution in Eq. (A.10). The
~q-integration will be transformed into spherical coordinates. The angular integration is
canceled by the delta distribution and we end up with a single integral over the absolute
value q. It is important to respect the relations, which are derived above for the Normal
scattering and for the Umklapp scattering as well. At the end, we are interested in the
quotient between Normal scattering and Umklapp scattering relaxation time or relaxation
length. Thus, we do not need the value for Ā. The Umklapp scattering relaxation length, is
obtained from Neelmani et al. [48]. Therewith, we calculate the Normal scattering relaxation
length. The results are used in figures 14 and 15.
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B Hamilton operators for magnon-phonon-interaction

In this appendix, we will calculate the Hamilton operator for the magnon-phonon coupling
in detail. First, we will consider dipole dipole magnons in three particle interactions in
section B.1 and after that exchange magnons in four particle interaction in section B.2. The
prefactor of the Hamilton operator will be used for writing down the collision integral in the
Boltzmann equation. In section 4.1 we already presented the short calculation.

Here, we consider a thin film out of a thin magnetic insulator (YIG, Y3Fe5O12) on top of
the GGG substrate (Gd3Ga5O12). Since the thickness of the GGG substrate is much thicker
than the thickness of the YIG film, the phonons are rarely influenced by the magnons. Thus,
the phonon temperature profile out of chapter 3 will be used as an input parameter. In
chapter 4, we use the Hamilton operator to calculate the collision integral in the Boltzmann
equation. With that, the spatial temperature profile of the magnons will be calculated in
chapter 5.

B.1 Dipole-dipole interaction

We start with the magnetoelastic energy for the magnon-phonon interaction with dipolar
magnons (cf. Eq. (4.3)) [43, p. 315]

Umel =
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M2
0

3∑
p=1

M2
p epp +

B2

M2
0

3∑
p,q=1
q 6=p

MpMqepq , (B.1)

whileMp denotes the local magnetization in spatial direction p and epq denotes the symmetric
strain tensor. We follow the calculation of Kaganov et al. [51]. In our calculation, the
YIG lattice structure will be modeled by a 3-dimensional cubic lattice with identical unit
cell volume (lattice constant a = 1.25 nm [52, 53]). The spin inside one single unit cell
will be modeled as one single spin with strength S = 14.2. In the following, we use the
transformations

Mi =− γ~Si (B.2)
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where ~S denotes the net spin and its orientation of all atoms in one YIG unit cell and S
denotes its absolute value. m denotes the mass of one unit cell and N denotes the number
of unit cells in the whole solid. ~u denotes the spatial dependent displacement vector of the
lattice atom. The operators b~p,i and b†~p,i denote the annihilation and the creation of one
phonon with wave vector ~p and mode i, respectively. The gyromagnetic ratio is denoted by
γ. We insert (B.2) into the magnetoelastic energy and find
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with the abbreviations
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The spin operators Sx and Sy can be rewritten in the following way

S+ = Sx + iSy S− = Sx − iSy , (B.7)

Including these identities, we rewrite the energy
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On the other hand, we replace the spin operators with creation and annihilation operators.
This we do by using the Holstein-Primakoff transformation [54, p. 78]. To lowest order
approximation, we find

S+ =
√

2S a S− =
√

2S a† Sz = S − a†a , (B.9)

which is still dependent on position ~r. The operators a and a† denote the annihilation and
the creation of one magnon at position ~r, respectively. Thus, we need to Fourier transform
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The operators a~k and a†
~k

denote the annihilation and the creation of one magnon with wave

vector ~k, respectively. The symmetric strain tensor needs to be rewritten in terms of phonon
operators
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(B.11)
The Hamilton operator is the summation of the energy in the whole solid with volume V .
One finds

H =

∫
V
d3~xUmel . (B.12)
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It is
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The integral reduces the exponential functions to delta distributions by∫
V
d3~xe−i

~Q~r =(2π)3δ( ~Q) (B.14)∑
~k′

=
3a3N

4π4

∫
d3~k′ . (B.15)
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B Hamilton operators for magnon-phonon-interaction

This cancels one summation. One finds

H =Hconst +
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(B.16)

We rearrange the terms by setting b2 = b1 for an isotropic ferromagnet [43, p. 315]
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Energy conservation needs to be fulfilled. Terms with only annihilation or creation operators
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B.1 Dipole-dipole interaction

vanish. Thus, we find

H =Hconst +
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+ (px + ipy)a
†
~pb~p e~p,z + (px − ipy)a−~pb†−~p e~p,z)
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Now, we need to identify the prefactors of the different Hamilton operators. The first term
contains the transformation from one magnon into one phonon and vice versa. Energy and
momentum conservation need to be fulfilled. This is only the case, when the dispersion
relation for magnons and phonons intersect (cf. figure 39). Since this is true only for two
points of the dispersion relation, the first term will be neglected in the upper expression for
the Hamilton operator. The second term contains the transformation of one phonon into
two magnons and vice versa. Furthermore, the scattering from one magnon into one magnon
and one phonon and vice versa is contained in the third as well as in the fourth term. The
prefactor to the second term reads

V2M =
6a3

π

√
2b1S

2i

√
~

2mNωp
(px − ipy) =

6a3

π

B1√
2iS

√
~

2mNωp
(px − ipy) . (B.19)

Thus

|V2M|2 =
36a6

π2

B2
1

2S2

~
2mNωp

(p2
x + p2

y) =
36a6

π2

~B2
1

4mNcPhS2
p sin2(ϑ) . (B.20)

The scattering amplitude, which is the prefactor of the third and fourth term, reads

VSc =
6a3

π

b1S

2i

√
~

2mNωp
((px + ipy)

√
2 + (px − ipy)

√
2− 4pz) . (B.21)

We perform an approximation, where we average over the angles ϑ and ϕ of the orientation
of the magnon magnetic moment. Thus

|VSc|2 =
36a6

π2

~B2
1

4S2mNωp

1

2
(8p2 sin2(ϑ) cos2(ϕ)− 16

√
2 sin(ϑ) cos(ϕ) cos(ϑ) + 16 cos2(ϑ))

(B.22)

|VSc,av|2 =
1

4π

∫ 2π

0

∫ π

0
sin(ϑ) |VSc|2dϑdϕ =

36a6

π2

~B2
1

4S2mNcPh

1

2
p

(
8

3
+ 0 +

16

3

)
, (B.23)
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B Hamilton operators for magnon-phonon-interaction

where ϑ denotes the angle between the magnetization direction and the vector ~p. It is
m = ρ · VEZ = ρ · a3 and Bges = B1 · a3. To calculate the prefactor, we take

B1 =3.48 · 106 erg/cm3 = 0.348 J/cm3 [43, p. 315] (B.24)

ρ =5170 kg/m3 [52, 55] (B.25)

a =1.2376 nm [52, 53] (B.26)

cPh =3843 m/s [55] (B.27)

S =14.2 [53] . (B.28)

At the end, we find

|V2M|2 =V 2
melp sin2(ϑ) (B.29)

|VSc|2 =V 2
mel

1

2
(8p2 sin2(ϑ) cos2(ϕ)− 16

√
2 sin(ϑ) cos(ϕ) cos(ϑ) + 16 cos2(ϑ)) , (B.30)

with

V 2
mel =

36a6

π2

~B2
1

4mNcPhS2
=

1

N
· 4.95482 · 10−8GHz2cm . (B.31)

The average reads

|V2M,av|2 =
1

4π

∫ 2π

0

∫ π

0
sin(ϑ) |V2M|2dϑdϕ =

2

3
· p
N
· 4.95482 · 10−8 GHz2 cm (B.32)

|VSc,av|2 =
1

4π

∫ 2π

0

∫ π

0
sin(ϑ) |VSc|2dϑdϕ = 4 · p

N
· 4.95482 · 10−8 GHz2 cm . (B.33)

B.2 Exchange interaction

Now, we have a look at the coupling of phonons with exchange magnons. The magnetoelastic
energy reads [43, p. 315] [51]

Umel =
A1

M2
0

3∑
p,q,l=1,l 6=q

∂Mp

∂xq

∂Mp

∂xl
eql +

A2

M2
0

3∑
p,q=1

(
∂Mp

∂xq

)2

eqq +
A3

M2
0

3∑
p,q,l=1,l 6=q

(
∂Mp

∂xq

)2

ell ,

(B.34)
where Mp denotes the local magnetization in spatial direction p and epq denotes the sym-
metric strain tensor. Again, we perform the following transformations

Mi =− γ~Si (B.35)

epq =
1

2

(
∂up
∂xq

+
∂uq
∂xp

)
(B.36)

~u(~r) =
∑
~p

e−i~p~ru~p ê~p =
∑
~p

√
~

2mNωp
(b~p + b†−~p)e

−i~p~r ê~p , (B.37)

where ~S denotes the net spin and its orientation of all atoms in one YIG unit cell and S
denotes its absolute value. m denotes the mass of one unit cell and N denotes the number
of unit cells in the whole solid. ~u denotes the spatial dependent displacement vector of the
lattice atom. The gyromagnetic ratio is denoted by γ and the Planck constant by ~. The

124



B.2 Exchange interaction

operators b~p,i and b†~p,i denote the annihilation and the creation of one phonon with wave
vector ~p and mode i, respectively. We insert (B.35) into the magnetoelastic energy and find

Umel = a1

3∑
p,q,l=1,l 6=q

∂Sp
∂xq

∂Sp
∂xl

eql + a2

3∑
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(
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)2

eqq + a3
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(
∂Sp
∂xq

)2

ell , (B.38)

with the abbreviations

a1 =
γ2~2A1

M2
0

=
A1

S2
a2 =

γ2~2A2

M2
0

=
A2

S2
a3 =

γ2~2A3

M2
0

=
A3

S2
. (B.39)

The spin operators Sx and Sy can be rewritten in the following way

S+ = Sx + iSy S− = Sx − iSy , (B.40)

Including these identities, we rewrite the energy

Umel =
a1
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. (B.41)

On the other hand, we replace the spin operators in the following way [54, p. 78]

S+ =
√

2S a S− =
√

2S a+ Sz = S − a+a , (B.42)

which is still dependent on position ~r. The operators a and a† denote the annihilation and
the creation of one magnon at position ~r, respectively. Thus, we need to Fourier transform

a =
1√
N

∑
~k

a~ke
−i~k~r a† =

1√
N

∑
~k′

a†
~k′
ei
~k′~r . (B.43)

The operators a~k and a†
~k

denote the annihilation and the creation of one magnon with wave

vector ~k, respectively. Thus, we find
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∂xq
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√

2S
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√
2S√
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∑
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∂xq
=

√
2S√
N

∑
~k

a†
~k

∂

∂xq
ei
~k~r = i

√
2S√
N

∑
~k

a†
~k
kqe

i~k~r (B.45)
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=− ∂a†a

∂xq
= − 1

N

∑
~k~k′

a~ka
†
~k′

∂

∂xq
e−i

~k~rei
~k′~r = i

1

N

∑
~k~k′

a~ka
†
~k′
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~k−~k′)~r . (B.46)
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B Hamilton operators for magnon-phonon-interaction

Now, we neglect higher order terms with more than two annihilation or creation operators.
Thus, we find
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The symmetric strain tensor needs to be rewritten in terms of phonon operators

eij =
1
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∑
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(B.48)
Thus, we find
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We are making use of ∫
V
d3~xe−i

~Q~r =(2π)3δ( ~Q) (B.50)∑
~k′

=
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and find
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Now, we evaluate the integral and find
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If one assumes a2 = a1 (cf. Eq. (2) of Ref. [51]), then one finds
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Let us assume a3 = a1 for simplicity. We have three phonon modes (one for each spatial
dimension). Thus, we find three coupling parameters
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Because these three interactions are different, the squares of absolute value are added in the
collision integral
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The average can be calculated in the following way. Let k′ = |~k + ~p|, ϑ1 = ](~p,~k + ~p) and
ϑ2 = ](~k,~k + ~p). Then
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+ 10(kk′ cos(ϑ2))(k′p cos(ϑ1))(kp cos(ϑ1 + ϑ2))
)
. (B.59)

The average coupling parameter read

|Vex,ges,av|2 =
1

(4π)2

∫ 2π

0

∫ 2π

0

∫ π

0

∫ π

0
sin(ϑ1)sin(ϑ2)|Vex,ges|2 dϑ1 dϑ2 dϕ1 dϕ2

=
36a6

π2

~A2
1

2mNS2ωp

10

3
k2k′2p2

=
A

N
k2k′2p . (B.60)

For calculating the numeric parameters, we use an identity out of [43, p. 333]. This is∣∣∣∣Vex,ges,av

VSc,av

∣∣∣∣ ∝ M0Dk
2

B
∝ 1 , (B.61)

for k = k′ ≈ 106cm−1. We make use of Eq. (B.33). From there, we get for k = k′

|Vex,ges,av|2
|VSc,av|2

=
(A/N)k2k′2p

4 · (1/N) · 4.95482 · 10−8 GHz2 cm p
=

Ak4

4 · 4.95482 · 10−8 GHz2 cm
= 1 ,

(B.62)
for k ≈ 106cm−1. Thus, we get

A =
4 · 4.95482 · 10−8 GHz2 cm

(106cm−1)4
= 1.98197 · 10−31 GHz2 cm5 . (B.63)
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C Collision integral for magnon-magnon interaction

In this appendix, we will calculate the collision integral in the Boltzmann equation for the
magnon-magnon interaction in detail. First, we consider dipolar magnons in section C.1 and
after that exchange magnons in section C.2. In sections 5.1 and 5.2, we already presented
the short calculation. The collision integral will be used in chapter 5 to calculate the wave
number dependent magnon temperature.

Here, we consider a thin film out of a thin magnetic insulator (YIG, Y3Fe5O12) on top of
the GGG substrate (Gd3Ga5O12). Since the thickness of the GGG substrate is much thicker
than the thickness of the YIG film, the phonons are rarely influenced by the magnons. Thus,
the phonon temperature profile out of chapter 3 will be used as an input parameter. In
chapter 4, we derived the collision integral for the magnon-phonon interaction. With these
ingredients and the collision integral for the magnon-magnon interactions, we calculate the
wave number dependent magnon temperature in chapter 5.

C.1 Three particle interaction - dipole-dipole-interaction

C.1.1 Collision integral

We set up the collision integral for three particle magnon-magnon interaction. The corre-
sponding third order collision integral reads (see Eq. (5.7) in this thesis or see Eq. (11.9) on
page 289 in Ref. [43])

∂f~k
∂t

∣∣∣∣
St,3

=
∑
~k′

{
1

2
W (M~k+~k′ → M~k

+ M~k′) +
1

2
W (M~k′ → M~k′−~k + M~k

)

+
1

2
W (M~k′ + M~k−~k′ → M~k

)− 1

2
W (M~k

+ M~k′ → M~k+~k′)

−1

2
W (M~k′−~k + M~k

→ M~k′)−
1

2
W (M~k

→ M~k′ + M~k−~k′)

}
=

1

2

2π

~
∑
~k′

|V |2δ(ε~k+~k′ − ε~k − ε~k′) · 4 ·
[
f~k+~k′(1 + f~k)(1 + f~k′)− f~kf~k′(1 + f~k+~k′)

]
+

1

2

2π

~
∑
~k′

|V |2δ(ε~k′ − ε~k′−~k − ε~k) · 4 ·
[
f~k′(1 + f~k′−~k)(1 + f~k)− f~kf~k′−~k(1 + f~k′)

]
+

1

2

2π

~
∑
~k′

|V |2δ(ε~k−~k′ + ε~k′ − ε~k) · 4 ·
[
f~k−~k′f~k′(1 + f~k)− f~k(1 + f~k−~k′)(1 + f~k′)

]
.

(C.1)

The term W (M~k+~k′ → M~k
+ M~k′) denotes the probability for the transformation of one

magnon with wave vector ~k + ~k′ into one magnon with wave vector ~k and one magnon with
wave vector ~k′. Again, f~k denotes the magnon density with wave vector ~k and ε~k denotes the

magnon energy for magnons with wave vector ~k. The term |V |2 denotes the matrix-element
of the transition and will be determined later. The result can be found in Eq. (5.29) or in
Eq. (C.33). The factor 1/2 occurs, because scattering processes are double counted. The
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C Collision integral for magnon-magnon interaction

equivalences read

W (M~k+~k′ → M~k
+ M~k′) =̂ W (M~k+~k′ → M~k′ + M~k

) (C.2)

W (M~k′ → M~k′−~k + M~k
) =̂ W (M~k′ → M~k

+ M~k′−~k) (C.3)

W (M~k′ + M~k−~k′ → M~k
) =̂ W (M~k−~k′ + M~k′ → M~k

) . (C.4)

Now, we perform a first order Taylor expansion for the temperatures and find:

∂f~k
∂t

∣∣∣∣
St,3

≈4π

~
∑
~k′

|V |2δ(ε~k+~k′ − ε~k − ε~k′)f
0
~k+~k′

(1 + f0
~k

)(1 + f0
~k′

)
1

kBT 2
0

×
[
(ε~k + ε~k′)TM(~k + ~k′)− ε~k′TM(~k′)− ε~kTM(~k)

]
+

4π

~
∑
~k′

|V |2δ(ε~k′ − ε~k′−~k − ε~k)f
0
~k′

(1 + f0
~k′−~k)(1 + f0

~k
)

1

kBT 2
0

×
[
−ε~kTM(~k) + ε~k′TM(~k′) + (ε~k − ε~k′)TM(~k′ − ~k)

]
+

4π

~
∑
~k′

|V |2δ(ε~k−~k′ + ε~k′ − ε~k)f
0
~k−~k′f

0
~k′

(1 + f0
~k

)
1

kBT 2
0

×
[
−ε~kTM(~k) + ε~k′TM(~k′) + (ε~k − ε~k′)TM(~k − ~k′)

]
. (C.5)

In this expression, the wave number dependent magnon temperature occurs as a linear
parameter. Later, we will discretize the magnon temperature and the summation. Thus, we
will get a system of linear equations for the magnon temperature. By now, we introduce
abbreviations

0 =
∂f~k
∂t

∣∣∣∣
St

=
∑
~k′

(
|V |2
τmmA

TM(~k)

T0
+
|V |2
τmmB

TM(~k′)

T0
+
|V |2
τmmC

TM(~k ± ~k′)
T0

)
, (C.6)

with

1

τmmA

=
4π

~
δ(ε~k+~k′ − ε~k − ε~k′)f

0
~k+~k′

(1 + f0
~k

)(1 + f0
~k′

)
−ε~k
kBT0

+
4π

~
δ(ε~k′ − ε~k′−~k − ε~k)f

0
~k′

(1 + f0
~k′−~k)(1 + f0

~k
)
−ε~k
kBT0

+
4π

~
δ(ε~k−~k′ + ε~k′ − ε~k)f

0
~k−~k′f

0
~k′

(1 + f0
~k

)
−ε~k
kBT0

, (C.7)

and

1

τmmB

=
4π

~
δ(ε~k+~k′ − ε~k − ε~k′)f

0
~k+~k′

(1 + f0
~k

)(1 + f0
~k′

)
−ε~k′
kBT0

+
4π

~
δ(ε~k′ − ε~k′−~k − ε~k)f

0
~k′

(1 + f0
~k′−~k)(1 + f0

~k
)

+ε~k′

kBT0

+
4π

~
δ(ε~k−~k′ + ε~k′ − ε~k)f

0
~k−~k′f

0
~k′

(1 + f0
~k

)
+ε~k′

kBT0
, (C.8)
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C.1 Three particle interaction - dipole-dipole-interaction

and

1

τmmC

=
4π

~
δ(ε~k+~k′ − ε~k − ε~k′)f

0
~k+~k′

(1 + f0
~k

)(1 + f0
~k′

)
(ε~k + ε~k′)

kBT0

+
4π

~
δ(ε~k′ − ε~k′−~k − ε~k)f

0
~k′

(1 + f0
~k′−~k)(1 + f0

~k
)
(ε~k − ε~k′)
kBT0

+
4π

~
δ(ε~k−~k′ + ε~k′ − ε~k)f

0
~k−~k′f

0
~k′

(1 + f0
~k

)
(ε~k − ε~k′)
kBT0

. (C.9)

C.1.2 Numerical treatment

For avoiding some difficulties, we perform a transformation of the integration procedure. We
start with introducing some abbreviations

1

τmmA

=
1

τmmA1

δ(ε~k+~k′ − ε~k − ε~k′) +
1

τmmA2

δ(ε~k′ − ε~k′−~k − ε~k) +
1

τmmA3

δ(ε~k−~k′ + ε~k′ − ε~k) (C.10)

1

τmmA1

=
4π

~
f0
~k+~k′

(1 + f0
~k

)(1 + f0
~k′

)
−ε~k
kBT0

(C.11)

1

τmmA2

=
4π

~
f0
~k′

(1 + f0
~k′−~k)(1 + f0

~k
)
−ε~k
kBT0

(C.12)

1

τmmA3

=
4π

~
f0
~k−~k′f

0
~k′

(1 + f0
~k

)
−ε~k
kBT0

, (C.13)

and

1

τmmB

=
1

τmmB1

δ(ε~k+~k′ − ε~k − ε~k′) +
1

τmmB2

δ(ε~k′ − ε~k′−~k − ε~k) +
1

τmmB3

δ(ε~k−~k′ + ε~k′ − ε~k) (C.14)

1

τmmB1

=
4π

~
f0
~k+~k′

(1 + f0
~k

)(1 + f0
~k′

)
−ε~k′
kBT0

(C.15)

1

τmmB2

=
4π

~
f0
~k′

(1 + f0
~k′−~k)(1 + f0

~k
)

+ε~k′

kBT0
(C.16)

1

τmmB3

=
4π

~
f0
~k−~k′f

0
~k′

(1 + f0
~k

)
+ε~k′

kBT0
, (C.17)

and

1

τmmC

=
1

τmmC1

δ(ε~k+~k′ − ε~k − ε~k′) +
1

τmmC2

δ(ε~k′ − ε~k′−~k − ε~k) +
1

τmmC3

δ(ε~k−~k′ + ε~k′ − ε~k) (C.18)

1

τmmC1

=
4π

~
f0
~k+~k′

(1 + f0
~k

)(1 + f0
~k′

)
(ε~k + ε~k′)

kBT0
(C.19)

1

τmmC2

=
4π

~
f0
~k′

(1 + f0
~k′−~k)(1 + f0

~k
)
(ε~k − ε~k′)
kBT0

(C.20)

1

τmmC3

=
4π

~
f0
~k−~k′f

0
~k′

(1 + f0
~k

)
(ε~k − ε~k′)
kBT0

, (C.21)
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and

T1(~k,~k′,~k + ~k′) =

(
1

τmmA1

TM(~k)

T0
+

1

τmmB1

TM(~k′)

T0
+

1

τmmC1

TM(~k + ~k′)

T0

)
(C.22)

T2(~k,~k′,~k − ~k′) =

(
1

τmmA2

TM(~k)

T0
+

1

τmmB2

TM(~k′)

T0
+

1

τmmC2

TM(~k − ~k′)
T0

)
(C.23)

T3(~k,~k′,~k − ~k′) =

(
1

τmmA3

TM(~k)

T0
+

1

τmmB3

TM(~k′)

T0
+

1

τmmC3

TM(~k − ~k′)
T0

)
. (C.24)

These abbreviations we insert in Eq. (C.6) and find

0 =
∑
~k′

|V |2 T1(k, k′, |~k + ~k′|)δ(ε~k+~k′ − ε~k − ε~k′) (C.25)

+
∑
~k′

|V |2 T2(k, k′, |~k − ~k′|)δ(ε~k′ − ε~k′−~k − ε~k) (C.26)

+
∑
~k′

|V |2 T3(k, k′, |~k − ~k′|)δ(ε~k−~k′ + ε~k′ − ε~k) . (C.27)

Since the functions T1, T2 and T3 only depend on absolute values of the wave vectors, we
can write the integration in spherical coordinates. We rewrite the sum into an integral and
introduce an integration over

km = |~k ± ~k′| =
√
k2 + k′2 ± 2kk′(cos(ϑ) cos(ϑ′) + sin(ϑ) sin(ϑ′) cos(ϕ− ϕ′)) . (C.28)

In our calculation, we are interested in the equation integrated over ϑ and ϕ (cf. Eq. (5.2)).
It is

0 =

∫
dΩ

4π

3a3N

4π4

∫
d3~k′

∫ 2kF

0
dkmδ(km − |~k + ~k′|) |V |2 T1(k, k′, |~k + ~k′|) δ(ε~k+~k′ − ε~k − ε~k′)

+

∫
dΩ

4π

3a3N

4π4

∫
d3~k′

∫ 2kF

0
dkmδ(km − |~k − ~k′|) |V |2 T2(k, k′, |~k − ~k′|) δ(ε~k′ − ε~k′−~k − ε~k)

+

∫
dΩ

4π

3a3N

4π4

∫
d3~k′

∫ 2kF

0
dkmδ(km − |~k − ~k′|) |V |2 T3(k, k′, |~k − ~k′|) δ(ε~k−~k′ + ε~k′ − ε~k) ,

(C.29)

with the Fermi wave number kF = kmax = 3.10·107·cm−1. We introduce spherical coordinates
and find

0 =
3a3N

16π5

∫ π

0
dϑ sin(ϑ)

∫ 2π

0
dϕ

∫ kF

0
dk′ k′2

∫ π

0
dϑ′ sin(ϑ′)

∫ 2π

0
dϕ′

∫ 2kF

0
dkm

× δ(km − |~k + ~k′|) |V |2 T1(k, k′, km) δ(εkm − εk − εk′)

+
3a3N

16π5

∫ π

0
dϑ sin(ϑ)

∫ 2π

0
dϕ

∫ kF

0
dk′ k′2

∫ π

0
dϑ′ sin(ϑ′)

∫ 2π

0
dϕ′

∫ 2kF

0
dkm

× δ(km − |~k − ~k′|) |V |2 T2(k, k′, km) δ(εk′ − εkm − εk)

+
3a3N

16π5

∫ π

0
dϑ sin(ϑ)

∫ 2π

0
dϕ

∫ kF

0
dk′ k′2

∫ π

0
dϑ′ sin(ϑ′)

∫ 2π

0
dϕ′

∫ 2kF

0
dkm

× δ(km − |~k − ~k′|) |V |2 T3(k, k′, km) δ(εkm + εk′ − εk) . (C.30)
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C.1 Three particle interaction - dipole-dipole-interaction

Now, we use Eq. (C.28) to solve the angular integration. First, we relocate the term in the
delta-distribution.

=
3a3N

16π5

∫ π

0
dϑ sin(ϑ)

∫ 2π

0
dϕ

∫ kF

0
dk′ k′2

∫ π

0
dϑ′ sin(ϑ′)

∫ 2π

0
dϕ′

∫ 2kF

0
dkm

∣∣∣∣ kmkk′
∣∣∣∣ |V |2 T1(k, k′, km)

× δ(εkm − εk − εk′) δ
(

cos(ϑ) cos(ϑ′) + sin(ϑ) sin(ϑ′) cos(ϕ− ϕ′)− k2
m − k2 − k′2

2kk′

)
+

3a3N

16π5

∫ π

0
dϑ sin(ϑ)

∫ 2π

0
dϕ

∫ kF

0
dk′ k′2

∫ π

0
dϑ′ sin(ϑ′)

∫ 2π

0
dϕ′

∫ 2kF

0
dkm

∣∣∣∣ kmkk′
∣∣∣∣ |V |2 T2(k, k′, km)

× δ(εk′ − εkm − εk) δ
(

cos(ϑ) cos(ϑ′) + sin(ϑ) sin(ϑ′) cos(ϕ− ϕ′) +
k2
m − k2 − k′2

2kk′

)
+

3a3N

16π5

∫ π

0
dϑ sin(ϑ)

∫ 2π

0
dϕ

∫ kF

0
dk′ k′2

∫ π

0
dϑ′ sin(ϑ′)

∫ 2π

0
dϕ′

∫ 2kF

0
dkm

∣∣∣∣ kmkk′
∣∣∣∣ |V |2 T3(k, k′, km)

× δ(εkm + εk′ − εk) δ
(

cos(ϑ) cos(ϑ′) + sin(ϑ) sin(ϑ′) cos(ϕ− ϕ′) +
k2
m − k2 − k′2

2kk′

)
.

(C.31)

We again relocate the angular delta function. It is

=
3a3N

16π5

∫ π

0
dϑ sin(ϑ)

∫ 2π

0
dϕ

∫ kF

0
dk′ k′2

∫ π

0
dϑ′ sin(ϑ′)

∫ 2π

0
dϕ′

∫ 2kF

0
dkm

∣∣∣∣ kmkk′
∣∣∣∣ |V |2 T1(k, k′, km)

× δ(εkm − εk − εk′) δ
(

cos(ϕ− ϕ′) +
cos(ϑ) cos(ϑ′)

sin(ϑ) sin(ϑ′)
− k2

m − k2 − k′2
2kk′ sin(ϑ) sin(ϑ′)

)
1

sin(ϑ) sin(ϑ′)

+
3a3N

16π5

∫ π

0
dϑ sin(ϑ)

∫ 2π

0
dϕ

∫ kF

0
dk′ k′2

∫ π

0
dϑ′ sin(ϑ′)

∫ 2π

0
dϕ′

∫ 2kF

0
dkm

∣∣∣∣ kmkk′
∣∣∣∣ |V |2 T2(k, k′, km)

× δ(εk′ − εkm − εk) δ
(

cos(ϕ− ϕ′) +
cos(ϑ) cos(ϑ′)

sin(ϑ) sin(ϑ′)
+

k2
m − k2 − k′2

2kk′ sin(ϑ) sin(ϑ′)

)
1

sin(ϑ) sin(ϑ′)

+
3a3N

16π5

∫ π

0
dϑ sin(ϑ)

∫ 2π

0
dϕ

∫ kF

0
dk′ k′2

∫ π

0
dϑ′ sin(ϑ′)

∫ 2π

0
dϕ′

∫ 2kF

0
dkm

∣∣∣∣ kmkk′
∣∣∣∣ |V |2 T3(k, k′, km)

× δ(εkm + εk′ − εk) δ
(

cos(ϕ− ϕ′) +
cos(ϑ) cos(ϑ′)

sin(ϑ) sin(ϑ′)
+

k2
m − k2 − k′2

2kk′ sin(ϑ) sin(ϑ′)

)
1

sin(ϑ) sin(ϑ′)
.

(C.32)

Kaganov et al. [56] made calculations on the Hamilton operator for different magnon-magnon
scattering processes. We take Eq. (39) out of [56]

|V |2 =
1

N
V 2

abs | cos(ϑ) sin(ϑ)(cos(ϕ) + i sin(ϕ)) + cos(ϑ′) sin(ϑ′)(cos(ϕ′) + i sin(ϕ′))|2

=
1

N
V 2

abs

(
cos2(ϑ) sin2(ϑ) + cos2(ϑ′) sin2(ϑ′) + cos(ϑ) sin(ϑ) cos(ϑ′) sin(ϑ′)

(
ei(ϕ−ϕ

′) + ei(ϕ
′−ϕ)

))
=

1

N
V 2

abs

(
cos2(ϑ) sin2(ϑ) + cos2(ϑ′) sin2(ϑ′) + 2 cos(ϑ) sin(ϑ) cos(ϑ′) sin(ϑ′) cos(ϕ− ϕ′)

)
(C.33)

V 2
abs =

(2πµB)2 2µ0µBM0

a3
= 52.1824 ·GHz2 , (C.34)

while the constant µB = 9.2740154 · 10−24J/T denotes the Bohr magneton. Additionally,
the constant µ0 = 12.566370614 · 10−7T 2 · m3/J denotes the vacuum permeability, and
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C Collision integral for magnon-magnon interaction

M0 = 139 G = 0.0139 T [43, p. 182] is the magnetic saturation. The lattice constant for YIG
is a = 1.2376 nm [52, 53]. The upper expression will be set in into the collision integral term.
Thus, we find

0 =
3a3

16π5

∫ π

0
dϑ sin(ϑ)

∫ 2π

0
dϕ

∫ kmax

0
dk′ k′2

∫ π

0
dϑ′ sin(ϑ′)

∫ 2π

0
dϕ′

∫ ∞
0

dkm

∣∣∣∣ kmkk′
∣∣∣∣ V 2

abs T1(k, k′, km)

×
(
cos2(ϑ) sin2(ϑ) + cos2(ϑ′) sin2(ϑ′) + 2 cos(ϑ) sin(ϑ) cos(ϑ′) sin(ϑ′) cos(ϕ− ϕ′)

)
× δ(εkm − εk − εk′) δ

(
cos(ϕ− ϕ′) +

cos(ϑ) cos(ϑ′)

sin(ϑ) sin(ϑ′)
− k2

m − k2 − k′2
2kk′ sin(ϑ) sin(ϑ′)

)
1

sin(ϑ) sin(ϑ′)

+
3a3

16π5

∫ π

0
dϑ sin(ϑ)

∫ 2π

0
dϕ

∫ kmax

0
dk′ k′2

∫ π

0
dϑ′ sin(ϑ′)

∫ 2π

0
dϕ′

∫ ∞
0

dkm

∣∣∣∣ kmkk′
∣∣∣∣ V 2

abs T2(k, k′, km)

×
(
cos2(ϑ) sin2(ϑ) + cos2(ϑ′) sin2(ϑ′) + 2 cos(ϑ) sin(ϑ) cos(ϑ′) sin(ϑ′) cos(ϕ− ϕ′)

)
× δ(εk′ − εkm − εk) δ

(
cos(ϕ− ϕ′) +

cos(ϑ) cos(ϑ′)

sin(ϑ) sin(ϑ′)
+

k2
m − k2 − k′2

2kk′ sin(ϑ) sin(ϑ′)

)
1

sin(ϑ) sin(ϑ′)

+
3a3

16π5

∫ π

0
dϑ sin(ϑ)

∫ 2π

0
dϕ
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0
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∫ π

0
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0
dϕ′

∫ ∞
0

dkm

∣∣∣∣ kmkk′
∣∣∣∣ V 2

abs T3(k, k′, km)

×
(
cos2(ϑ) sin2(ϑ) + cos2(ϑ′) sin2(ϑ′) + 2 cos(ϑ) sin(ϑ) cos(ϑ′) sin(ϑ′) cos(ϕ− ϕ′)

)
× δ(εkm + εk′ − εk) δ

(
cos(ϕ− ϕ′) +

cos(ϑ) cos(ϑ′)

sin(ϑ) sin(ϑ′)
+

k2
m − k2 − k′2

2kk′ sin(ϑ) sin(ϑ′)

)
1

sin(ϑ) sin(ϑ′)
.

(C.35)

Now, we substitute ϕ→ ϕ+ ϕ′.

0 =
3a3

16π5

∫ π

0
dϑ sin(ϑ)
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0
dϕ
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0
dk′ k′2

∫ π

0
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0
dϕ′
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∣∣∣∣ kmkk′
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(
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)
× δ(εkm − εk − εk′) δ

(
cos(ϕ) +

cos(ϑ) cos(ϑ′)

sin(ϑ) sin(ϑ′)
− k2

m − k2 − k′2
2kk′ sin(ϑ) sin(ϑ′)

)
1

sin(ϑ) sin(ϑ′)

+
3a3

16π5
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0
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∫ ∞
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∣∣∣∣ kmkk′
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abs T2(k, k′, km)

×
(
cos2(ϑ) sin2(ϑ) + cos2(ϑ′) sin2(ϑ′) + 2 cos(ϑ) sin(ϑ) cos(ϑ′) sin(ϑ′) cos(ϕ)

)
× δ(εk′ − εkm − εk) δ

(
cos(ϕ) +

cos(ϑ) cos(ϑ′)

sin(ϑ) sin(ϑ′)
+

k2
m − k2 − k′2

2kk′ sin(ϑ) sin(ϑ′)

)
1

sin(ϑ) sin(ϑ′)

+
3a3

16π5

∫ π

0
dϑ sin(ϑ)
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0
dϕ

∫ kmax

0
dk′ k′2

∫ π

0
dϑ′ sin(ϑ′)

∫ 2π

0
dϕ′

∫ ∞
0

dkm

∣∣∣∣ kmkk′
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abs T3(k, k′, km)

×
(
cos2(ϑ) sin2(ϑ) + cos2(ϑ′) sin2(ϑ′) + 2 cos(ϑ) sin(ϑ) cos(ϑ′) sin(ϑ′) cos(ϕ)

)
× δ(εkm + εk′ − εk) δ

(
cos(ϕ) +

cos(ϑ) cos(ϑ′)

sin(ϑ) sin(ϑ′)
+

k2
m − k2 − k′2

2kk′ sin(ϑ) sin(ϑ′)

)
1

sin(ϑ) sin(ϑ′)
.

(C.36)
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C.1 Three particle interaction - dipole-dipole-interaction

Thus, we are able to perform the integration via ϕ′. For the ϕ-integration, the term does
only depend on cos(ϕ). Thus, we can separate the integration into 0 to π and π to 2π.

0 =
3a3

16π5
4π

∫ π

0
dϑ sin(ϑ)

∫ π

0
dϕ

∫ kmax

0
dk′ k′2

∫ π

0
dϑ′ sin(ϑ′)

∫ ∞
0

dkm

∣∣∣∣ kmkk′
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abs T1(k, k′, km)

×
(
cos2(ϑ) sin2(ϑ) + cos2(ϑ′) sin2(ϑ′) + 2 cos(ϑ) sin(ϑ) cos(ϑ′) sin(ϑ′) cos(ϕ)

)
× δ(εkm − εk − εk′) δ

(
cos(ϕ) +

cos(ϑ) cos(ϑ′)

sin(ϑ) sin(ϑ′)
− k2

m − k2 − k′2
2kk′ sin(ϑ) sin(ϑ′)

)
1

sin(ϑ) sin(ϑ′)

+
3a3

16π5
4π

∫ π

0
dϑ sin(ϑ)

∫ π

0
dϕ

∫ kmax

0
dk′ k′2

∫ π

0
dϑ′ sin(ϑ′)

∫ ∞
0

dkm

∣∣∣∣ kmkk′
∣∣∣∣ V 2

abs T2(k, k′, km)

×
(
cos2(ϑ) sin2(ϑ) + cos2(ϑ′) sin2(ϑ′) + 2 cos(ϑ) sin(ϑ) cos(ϑ′) sin(ϑ′) cos(ϕ)

)
× δ(εk′ − εkm − εk) δ

(
cos(ϕ) +

cos(ϑ) cos(ϑ′)

sin(ϑ) sin(ϑ′)
+

k2
m − k2 − k′2

2kk′ sin(ϑ) sin(ϑ′)

)
1

sin(ϑ) sin(ϑ′)

+
3a3

16π5
4π

∫ π

0
dϑ sin(ϑ)

∫ π

0
dϕ

∫ kmax

0
dk′ k′2

∫ π

0
dϑ′ sin(ϑ′)

∫ ∞
0

dkm

∣∣∣∣ kmkk′
∣∣∣∣ V 2

abs T3(k, k′, km)

×
(
cos2(ϑ) sin2(ϑ) + cos2(ϑ′) sin2(ϑ′) + 2 cos(ϑ) sin(ϑ) cos(ϑ′) sin(ϑ′) cos(ϕ)

)
× δ(εkm + εk′ − εk) δ

(
cos(ϕ) +

cos(ϑ) cos(ϑ′)

sin(ϑ) sin(ϑ′)
+

k2
m − k2 − k′2

2kk′ sin(ϑ) sin(ϑ′)

)
1

sin(ϑ) sin(ϑ′)
.

(C.37)

Additionally, we perform a transformation p = cos(ϕ) of the angular delta-function and find

0 =
3a3

16π5
4π

∫ π

0
dϑ

∫ −1

1
dp

∫ kmax

0
dk′ k′2

∫ π

0
dϑ′

∫ ∞
0

dkm

∣∣∣∣ kmkk′
∣∣∣∣ V 2

abs T1(k, k′, km)

×
(
cos2(ϑ) sin2(ϑ) + cos2(ϑ′) sin2(ϑ′) + 2 cos(ϑ) sin(ϑ) cos(ϑ′) sin(ϑ′) p

)
× δ(εkm − εk − εk′) δ

(
p+

cos(ϑ) cos(ϑ′)

sin(ϑ) sin(ϑ′)
− k2

m − k2 − k′2
2kk′ sin(ϑ) sin(ϑ′)

)
1

− sin(arccos(p))

+
3a3

16π5
4π

∫ π

0
dϑ

∫ −1

1
dp

∫ kmax

0
dk′ k′2

∫ π

0
dϑ′

∫ ∞
0

dkm

∣∣∣∣ kmkk′
∣∣∣∣ V 2

abs T2(k, k′, km)

×
(
cos2(ϑ) sin2(ϑ) + cos2(ϑ′) sin2(ϑ′) + 2 cos(ϑ) sin(ϑ) cos(ϑ′) sin(ϑ′) p

)
× δ(εk′ − εkm − εk) δ

(
p+

cos(ϑ) cos(ϑ′)

sin(ϑ) sin(ϑ′)
+

k2
m − k2 − k′2

2kk′ sin(ϑ) sin(ϑ′)

)
1

− sin(arccos(p))

+
3a3

16π5
4π

∫ π

0
dϑ

∫ −1

1
dp

∫ kmax

0
dk′ k′2

∫ π

0
dϑ′

∫ ∞
0

dkm

∣∣∣∣ kmkk′
∣∣∣∣ V 2

abs T3(k, k′, km)

×
(
cos2(ϑ) sin2(ϑ) + cos2(ϑ′) sin2(ϑ′) + 2 cos(ϑ) sin(ϑ) cos(ϑ′) sin(ϑ′) p

)
× δ(εkm + εk′ − εk) δ

(
p+

cos(ϑ) cos(ϑ′)

sin(ϑ) sin(ϑ′)
+

k2
m − k2 − k′2

2kk′ sin(ϑ) sin(ϑ′)

)
1

− sin(arccos(p))
.

(C.38)
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We solve the p-integral

0 =
3a3N

16π5
4π

∫ π

0
dϑ

∫ kmax

0
dk′ k′2

∫ π

0
dϑ′

∫ ∞
0

dkm

∣∣∣∣ kmkk′
∣∣∣∣ V 2

abs T1(k, k′, km)

×
(
cos2(ϑ) sin2(ϑ) + cos2(ϑ′) sin2(ϑ′)− 2 cos(ϑ) sin(ϑ) cos(ϑ′) sin(ϑ′)β−

)
× δ(εkm − εk − εk′) Θ(1− β−) Θ(1 + β−)

1√
1− (β−)2

+
3a3N

16π5
4π

∫ π

0
dϑ

∫ kmax

0
dk′ k′2

∫ π

0
dϑ′

∫ ∞
0

dkm

∣∣∣∣ kmkk′
∣∣∣∣ V 2

abs T2(k, k′, km)

×
(
cos2(ϑ) sin2(ϑ) + cos2(ϑ′) sin2(ϑ′)− 2 cos(ϑ) sin(ϑ) cos(ϑ′) sin(ϑ′)β+

)
× δ(εk′ − εkm − εk) Θ(1− β+) Θ(1 + β+)

1√
1− (β+)2

+
3a3N

16π5
4π

∫ π

0
dϑ

∫ kmax

0
dk′ k′2

∫ π

0
dϑ′

∫ ∞
0

dkm

∣∣∣∣ kmkk′
∣∣∣∣ V 2

abs T3(k, k′, km)

×
(
cos2(ϑ) sin2(ϑ) + cos2(ϑ′) sin2(ϑ′)− 2 cos(ϑ) sin(ϑ) cos(ϑ′) sin(ϑ′)β+

)
× δ(εkm + εk′ − εk) Θ(1− β+) Θ(1 + β+)

1√
1− (β+)2

, (C.39)

with

β+ =
cos(ϑ) cos(ϑ′) + α

sin(ϑ) sin(ϑ′)
β− =

cos(ϑ) cos(ϑ′)− α
sin(ϑ) sin(ϑ′)

α =
k2
m − k2 − k′2

2kk′
. (C.40)

Now, we want to handle the integration via ϑ and ϑ′ in Eq. (C.39). Since, it is not possible to
solve the resulting integral of ϑ and ϑ′, one has to perform it numerically. This we can treat
by performing an approximation of the solution to the integral dependent on the parameter
α out of Eq. (C.40). Because of Eq. (C.28), it is 0 ≤ k ≤ kmax and 0 ≤ k′ ≤ kmax, the
parameter α is limited to −1 ≤ α ≤ 1. We can write down the integral

h(α) =

∫
dϑ

∫
dϑ′Θ(1− β±) Θ(1 + β±)

1√
1− (β±)2

×
(
cos2(ϑ) sin2(ϑ) + cos2(ϑ′) sin2(ϑ′)− 2 cos(ϑ) sin(ϑ) cos(ϑ′) sin(ϑ′)β±

)
. (C.41)

At the end, the result can be approximated in the following way

h(α) ≈ Θ(1− |α|)
(
c1 + c2 α

2 + c3 α
4
)
. (C.42)

One finds

c1 =0.838041 (C.43)

c2 =2.49346 (C.44)

c3 =0.0113386 . (C.45)

In figure 53, the accordance of the approximation is shown.
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C.1 Three particle interaction - dipole-dipole-interaction
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Figure 53: Plot of function h(α). The blue and solid line describes the numeric evaluation of
Eq. (C.41). The red and dashed line denotes the approximated function out of Eq. (C.42)

Including this approximation, we find for the collision integral

0 =
3a3N

4π4

∫ kmax

0
dk′ k′2

∫ ∞
0

dkm

∣∣∣∣ kmkk′
∣∣∣∣ V 2

abs T1(k, k′, km) δ(εkm − εk − εk′)h
(
k2
m − k2 − k′2

2kk′

)
+

3a3N

4π4

∫ kmax

0
dk′ k′2

∫ ∞
0

dkm

∣∣∣∣ kmkk′
∣∣∣∣ V 2

abs T2(k, k′, km) δ(εk′ − εkm − εk)h
(
k2
m − k2 − k′2

2kk′

)
+

3a3N

4π4

∫ kmax

0
dk′ k′2

∫ ∞
0

dkm

∣∣∣∣ kmkk′
∣∣∣∣ V 2

abs T3(k, k′, km) δ(εkm + εk′ − εk)h
(
k2
m − k2 − k′2

2kk′

)
.

(C.46)

Since km is no longer dependent on k’, it is now very simple to solve the energy-delta-
distribution for the k’-integration. One still has to consider, that the k’-integration only
takes place in the first Brillouin zone. It is kmax = kF. We set the energy dispersion for the
magnons [43, p. 181] for k ≤ kF

εk = ωH +Dexk
2 , (C.47)

and for k > kF ∧ k ≤ 2kF

εk = ωH +Dex(2kF − k)2 . (C.48)

Now, we separate the calculation into normal processes Np and Umklapp processes U . Here,
we regard the Umklapp processes of k, k′ and km. It is

0 = Np + U . (C.49)

Thus

Np =
3a3

4π4

1

2Dex

∫ kF

0
dkm

km
k
h

(
k2
m − k2 − k′2

2kk′

)
V 2

abs Θ(kF − k′) Θ(k′)T1(k, k′, km)

∣∣∣∣
k′=

√
εkm

−εk−ε0
Dex

+
3a3

4π4

1

2Dex

∫ kF

0
dkm

km
k
h

(
k2
m − k2 − k′2

2kk′

)
V 2

abs Θ(kF − k′) Θ(k′)T2(k, k′, km)

∣∣∣∣
k′=

√
εkm

+εk−ε0
Dex

+
3a3

4π4

1

2Dex

∫ kF

0
dkm

km
k
h

(
k2
m − k2 − k′2

2kk′

)
V 2

abs Θ(kF − k′) Θ(k′)T3(k, k′, km)

∣∣∣∣
k′=

√
εk−εkm−ε0

Dex

.

(C.50)
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C Collision integral for magnon-magnon interaction

For the Umklapp processes we choose a symmetrized way. It is

U =
1

3
Np (km ∈ [kF, 2kF]) +

1

3

k′

|2kF − k′|
Np

(
k′ ∈ [kF, 2kF]

)
+

1

3
Np (k ∈ [kF, 2kF]) . (C.51)

The extra factor in the second summand arises from a different algebraic term of the energy
dispersion ε~k′ = ωH +Dex(2kF − k′)2 for k′ ∈ [kF, 2kF].

C.2 Four particle interaction - exchange interaction

C.2.1 Hamilton operator

Now, we consider the exchange interaction between magnons. We write down the following
Hamilton operator for the magnons

ĤHeisenberg = −J
∑
〈mn〉

~Sm~Sn , (C.52)

while J denotes the coupling constant or exchange energy and where 〈mn〉 denotes the
summation over the nearest neighbors. We introduce raising and lowering operators

S+
~m = Sx~m + iSy~m S−~m = Sx~m − iSy~m Sz~m = Sz~m , (C.53)

while S±m denote the lowering (-) and raising (+) operators. The commutator relations are
[54, p. 76][

Si~m, S
j
~n

]
= iδ~m,~nε

ijkSk~m
[
Sz~m, S

±
~n

]
= ±δ~m,~nS±~m

[
S+
~m, S

−
~n

]
= 2δ~m,~nS

z
~m . (C.54)

We perform the Holstein-Primakoff-transformation [43, p. 207] and rewrite the Hamilton
operator. The simple case of the calculation can be found in Ref. [54, p. 77 ff]. The Holstein-
Primakoff-transformation is performed by introducing the following operators

S−~m = a†
~m

√
2S − a†

~ma~m S+
m =

√
2S − a†

~ma~m am Sz~m = S − a†
~ma~m . (C.55)

The operators a~m and a†
~m denote the annihilation and the creation of one magnon at position

~m, respectively. All operators fulfill the common commutation relations.

[a~m, a~n] = 0
[
a†
~m, a

†
~n

]
= 0

[
a~m, a

†
~n

]
= δ~m,~n . (C.56)

Since S = 14.2 (cf. Eq. (B.28)), the above operators may be approximated as

S−~m ≈
√

2Sa†
~m −

1√
8S
a†
~ma

†
~ma~m S+

~m ≈
√

2Sa~m −
1√
8S
a†
~ma~ma~m . (C.57)
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C.2 Four particle interaction - exchange interaction

One finds the following expansion of the operator product

ĤHeisenberg =− J
∑
~m,i

~S~m~S~m+~ei = −J
∑
~m,i

(
Sz~mS

z
~m+~ei

+
1

2

(
S+
~mS
−
~m+~ei

+ S−~mS
+
~m+~ei

))
(C.58)

=− JNS2 − JS
∑
~m,i

(
−2a†

~ma~m + a†
~ma~m+~ei + a~ma

†
~m+~ei

)
− J

4

∑
~m,i

(
4a†

~ma~ma
†
~m+~ei

a~m+~ei − a
†
~ma~ma~ma

†
~m+~ei

− a~ma†
~m+~ei

a†
~m+~ei

a~m+~ei

)
− J

4

∑
~m,i

(
−a†

~ma
†
~ma~ma~m+~ei − a

†
~ma

†
~m+~ei

a~m+~eia~m+~ei

)
. (C.59)

Hence, we find

ĤHeisenberg =− JNS2 − JS
∑
~m,i

(
−2a†

~ma~m + a†
~ma~m+~ei + a~ma

†
~m+~ei

)
− J

4

∑
~m,i

(
4a†

~ma
†
~m+~ei

a~ma~m+~ei

)
− J

4

∑
~m,i

(
−a†

~ma
†
~m+~ei

a~ma~m − a†
~m+~ei

a†
~ma~ma~m − a

†
~ma

†
~ma~ma~m+~ei − a

†
~ma

†
~ma~m+~eia~m

)
,

(C.60)

while ~ei denotes the vector in direction i with length of the lattice constant. Let us now
perform a Fourier transformation. We use

a~k =
1√
N

3√N∑
m1,m2,m3=1

ei
~k~ma~m a~m =

1√
N

B.Z.∑
~k

e−i
~k~ma~k . (C.61)

The operators a~k and a†
~k

denote the annihilation and the creation of one magnon with wave

vector ~k, respectively. The commutator relations are still fulfilled in the reciprocal case. It
is [

a~k, a~k′
]

= 0
[
a†
~k
, a†
~k′

]
= 0

[
a~k, a

†
~k′

]
= δ~k,~k′ . (C.62)

After set in the transformation, we perform the sum overm which leads to delta-distributions.
We introduce the abbreviations ~k3 = ~k − ~q and ~k4 = ~k′ + ~q. A symmetrized version can be
written down

=− JNS2 − JS
B.Z.∑
~k,i

(
−2a†

~k
a~k + e−ikia†

~k
a~k + e+ikia†

~k
a~k

)

− J

4N

B.Z.∑
~k~k′~q,i

1

2
4
(
eiq
′
i + e−iq

′
i

)
a†
~k
a†
~k′
a~k−~qa~k′+~q

− J

4N

B.Z.∑
~k~k′~q,i

1

2

(
−eik′i − e−ik′i − eiki − e−iki − eik4,i − e−ik4,i − eik3,i − e−ik3,i

)
a†
~k
a†
~k′
a~k−~qa~k′+~q .

(C.63)
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C Collision integral for magnon-magnon interaction

This is

=− JNS2 − JS
B.Z.∑
~k,i

(−2 + 2 cos(ki)) a
†
~k
a~k

− J

4N

B.Z.∑
~k~k′~q,i

(
4 cos(qi)− cos(ki)− cos(k′i)− cos(k3,i)− cos(k4,i)

)
a†
~k
a†
~k′
a~k−~qa~k′+~q (C.64)

≈− JNS2 +
B.Z.∑
~k,i

Dexk
2a†
~k
a~k

− J

4N

B.Z.∑
~k~k′~q,i

a2

2

(
k2
i + k′2i + k2

3,i + k2
4,i − 4q2

i

)
a†
~k
a†
~k′
a~k−~qa~k′+~q , (C.65)

with
~k3 = ~k − ~q ~k4 = ~k′ + ~q . (C.66)

We can read out the interaction prefactor for the exchange-interaction

|Vex| =
Ja2

8N
(k2 + k′2 + k2

3 + k2
4 − 4q2) . (C.67)

To calculate the coupling parameter J , we use an identity from [43, p. 210]. If one only
includes first nearest neighbor hopping, one finds for a simple cubic lattice

J ≈ Dex

Sa2
. (C.68)

It is

~ =1.05457266 · 10−34 Js (C.69)

S =14.2 [53] (C.70)

Dex =9.16 · 10−11 GHz cm2[43, p. 182] (C.71)

a =1.2376 nm [52, 53] . (C.72)

Thus, we find
J = 421.159 GHz . (C.73)

C.2.2 Collision integral

Now, we set up the collision integral of the Boltzmann equation (see Eq. (11.22) on page 294
in Ref. [43] or Eq. (5.61))

∂f~k
∂t

∣∣∣∣
St

=
1

2

∑
~q ~k′

{
W (M~k−~q + M~k′+~q → M~k

+ M~k′) +W (M~k′+~q + M~k−~q → M~k
+ M~k′)

−W (M~k
+ M~k′ → M~k−~q + M~k′+~q)−W (M~k

+ M~k′ → M~k′+~q + M~k−~q)
}

(C.74)

=
1

2

2π

~
∑
~q ~k′

|V |2δ(ε~k + ε~k′ − ε~k−~q − ε~k′+~q) · 16 · f~k−~qf~k′+~q(1 + f~k)(1 + f~k′)

− 1

2

2π

~
∑
~q ~k′

|V |2δ(ε~k + ε~k′ − ε~k−~q − ε~k′+~q) · 16 · (1 + f~k−~q)(1 + f~k′+~q)f~kf~k′ . (C.75)
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We perform a first order Taylor expansion for the temperatures and find:

∂f~k
∂t

∣∣∣∣
St

≈16π

~
∑
~q ~k′

|V |2δ(ε~k + ε~k′ − ε~k−~q − ε~k′+~q) · f
0
~k−~qf

0
~k′+~q

(1 + f0
~k

)(1 + f0
~k′

)
1

kBT 2
0

×
[
−ε~k TM(~k)− ε~k′ TM(~k′) + ε~k−~q TM(~k − ~q) + ε~k′+~q TM(~k′ + ~q)

]
. (C.76)

At the end, the collision integral can be written in relaxation time notation

∂f~k
∂t

∣∣∣∣
St

≈
∑
~q ~k′

{
|V |2
τM1

TM(~k)

T0
+
|V |2
τM2

TM(~k′)

T0
+
|V |2
τM3

TM(~k − ~q)
T0

+
|V |2
τM4

TM(~k′ + ~q)

T0

}
, (C.77)

with

1

τM1
=

1

τ̃M1
δ(ε~k + ε~k′ − ε~k−~q − ε~k′+~q) (C.78)

1

τM2
=

1

τ̃M2
δ(ε~k + ε~k′ − ε~k−~q − ε~k′+~q) (C.79)

1

τM3
=

1

τ̃M3
δ(ε~k + ε~k′ − ε~k−~q − ε~k′+~q) (C.80)

1

τM4
=

1

τ̃M4
δ(ε~k + ε~k′ − ε~k−~q − ε~k′+~q) , (C.81)

and

1

τ̃M1
=

16π

~
· f0
~k−~qf

0
~k′+~q

(1 + f0
~k

)(1 + f0
~k′

)
1

kBT0
(−ε~k) (C.82)

1

τ̃M2
=

16π

~
· f0
~k−~qf

0
~k′+~q

(1 + f0
~k

)(1 + f0
~k′

)
1

kBT0
(−ε~k′) (C.83)

1

τ̃M3
=

16π

~
· f0
~k−~qf

0
~k′+~q

(1 + f0
~k

)(1 + f0
~k′

)
1

kBT0
(+ε~k−~q) (C.84)

1

τ̃M4
=

16π

~
· f0
~k−~qf

0
~k′+~q

(1 + f0
~k

)(1 + f0
~k′

)
1

kBT0
(+ε~k′+~q) , (C.85)

with

|V | = |Vex| =
Ja2

8N
(k2 + k′2 + k2

3 + k2
4 − 4q2) . (C.86)

C.2.3 Numerical treatment

For avoiding some difficulties, we perform a transformation of the integration procedure. We
start with introducing some abbreviations

0 =
∑
~q ~k′

|Vex|2 · T1(k, k′, |~k − ~q|, |~k′ + ~q|)δ(ε~k + ε~k′ − ε~k−~q − ε~k′+~q) , (C.87)

with

T1(k, k′, |~k − ~q|, |~k′ + ~q|) =

{
1

τ̃M1

TM(|~k|)
T0

+
1

τ̃M2

TM(|~k′|)
T0

+
1

τ̃M3

TM(|~k − ~q|)
T0

+
1

τ̃M4

TM(|~k′ + ~q|)
T0

}
.

(C.88)
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Because the function T1 only depends on absolute values, we can write the integration in
spherical coordinates. We rewrite the sum into an integral and introduce an integration over

km = |~k − ~q| =
√
k2 + q2 − 2kq cos(^(~k, ~q)) (C.89)

kp = |~k′ + ~q| =
√
k′2 + q2 + 2k′q cos(^(~k′, ~q)) . (C.90)

We are making use of Eq. (B.51). It is

0 =
3Na3

4π4

∫
d3~k′

3Na3

4π4

∫
d3~q

∫ 2kmax

0
dkm

∫ 2kmax

0
dkp δ(km − |~k − ~q|)

× δ(kp − |~k′ + ~q|) · |Vex|2 · T1(k, k′, km, kp) δ(ε~k + ε~k′ − ε~k−~q − ε~k′+~q)

=
3Na3

4π4

∫
d3~k′

3Na3

4π4

∫
d3~q

∫ 2kmax

0
dkm

∫ 2kmax

0
dkp δ(km −

√
k2 + q2 − 2kq cos(^(~k, ~q)))

× δ(kp −
√
k′2 + q2 + 2k′q cos(^(~k′, ~q))) · |Vex|2 · T1(k, k′, km, kp) δ(ε~k + ε~k′ − ε~k−~q − ε~k′+~q)

=
3Na3

4π4

∫
d3~k′

3Na3

4π4

∫
d3~q

∫ 2kmax

0
dkm

∫ 2kmax

0
dkp δ

(
cos(^(~k, ~q)) +

k2
m − k2 − q2

2kq

)
km
k q

× δ
(

cos(^(~k′, ~q))−
k2
p − k′2 − q2

2k′q

)
kp
k′ q
· |Vex|2 · T1(k, k′, km, kp) δ(ε~k + ε~k′ − ε~k−~q − ε~k′+~q) .

(C.91)

We have to divide the calculation into normal processes Np and Umklapp processes U . Here,
we regard the Umklapp processes of k, k′, km and kp. For the vector ~q, we do not consider
Umklapp processes. Thus, we find

0 = Np + U , (C.92)

while Np denotes the sum for normal processes and U the sum for Umklapp processes. The
delta function which contains the energy dispersion relations can be solved in two different
ways. One may relocate the equation for km, kp or k′. Since km and kp are on an equal
footing, we change the equation of the energy dispersions for km on the one hand and for k′

on the other hand. At the end we sum up both contributions with a weighting factor of 1/2
for both contributions respectively. Additionally, we rotate the ~q coordinate system in that
way, that its z-axis is parallel to the vector ~k. In the same way, we rotate the ~k′ coordinate
system in that way, that its z-axis is parallel to the vector ~q. Thus, we can set ^(~k, ~q) = α
and ^(~k′, ~q) = ϑ. Since the resulting integrand does no longer depend on the ϕ-angle of the
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~k′ and ~q coordinate system, their integral reduces to 2π. It is

Np =
1

2

9N2a6

16π8
(2π)2

∫ kmax

0
dk′
∫ kmax

0
dq

∫ kmax

0
dkm

∫ kmax

0
dkp

∫ 1

−1
d cos(ϑ)

∫ 1

−1
d cos(α) k′2 q2

× δ
(

cos(α) +
k2
m − k2 − q2

2kq

)
δ

(
cos(ϑ)−

k2
p − k′2 − q2

2k′q

)
km
k q

kp
k′ q

× |Vex|2 · T1(k, k′, km, kp)
1

2Dexkm
δ

km −
√
εk + εk′ − ε~kp − ε0

Dex


+

1

2

9N2a6

16π8
(2π)2

∫ kmax

0
dk′
∫ kmax

0
dq

∫ kmax

0
dkm

∫ kmax

0
dkp

∫ 1

−1
d cos(ϑ)

∫ 1

−1
d cos(α) k′2 q2

× δ
(

cos(α) +
k2
m − k2 − q2

2kq

)
δ

(
cos(ϑ)−

k2
p − k′2 − q2

2k′q

)
km
k q

kp
k′ q

× |Vex|2 · T1(k, k′, km, kp)
1

2Dexk′
δ

(
k′ −

√
εkp + εkm − ε~k − ε0

Dex

)

=
1

2

9N2a6

4π6

1

2Dex
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0
dk′
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0
dq

∫ kmax

0
dkp k

′2 q2 Θ(km) Θ(kmax − km) Θ

(
1−

∣∣∣∣k2
m − k2 − q2

2kq

∣∣∣∣)
× Θ

(
1−

∣∣∣∣∣k2
p − k′2 − q2

2k′q

∣∣∣∣∣
)

1

km

km
k q

kp
k′ q
· |Vex|2 · T1(k, k′, km, kp)

∣∣∣∣∣
km=

√
εk+εk′−ε~kp

−ε0
Dex

+
1

2

9N2a6

4π6

1
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0
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0
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0
dkp k
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)

1
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k q

kp
k′ q
· |Vex|2 · T1(k, k′, km, kp)
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√
εkp
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−ε~k−ε0

Dex
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(C.93)

Now, we use the identities

∫ kmax

0
dqΘ

(
1−

∣∣∣∣k2
m − k2 − q2

2kq

∣∣∣∣) Θ

(
1−

∣∣∣∣∣k2
p − k′2 − q2

2k′q

∣∣∣∣∣
)

= min
[
kmax,min

(
km + k, kp + k′

)]
−min

[
kmax,max

(
|km − k|, |kp − k′|

)
,min

(
km + k, kp + k′

)]
(C.94)

∫ kmax

0
dq q2 Θ

(
1−

∣∣∣∣k2
m − k2 − q2

2kq

∣∣∣∣) Θ

(
1−

∣∣∣∣∣k2
p − k′2 − q2

2k′q

∣∣∣∣∣
)

=
(min [kmax,min (km + k, kp + k′)])3

3

− (min [kmax,max (|km − k|, |kp − k′|) ,min (km + k, kp + k′)])3

3
(C.95)
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∫ kmax

0
dq q4 Θ

(
1−

∣∣∣∣k2
m − k2 − q2

2kq

∣∣∣∣) Θ

(
1−

∣∣∣∣∣k2
p − k′2 − q2

2k′q

∣∣∣∣∣
)

=
(min [kmax,min (km + k, kp + k′)])5

5

− (min [kmax,max (|km − k|, |kp − k′|) ,min (km + k, kp + k′)])5

5
. (C.96)

We define

|Vex|2 =|Vex,abs|2
1

N2
a4(k2 + k′2 + k2

3 + k2
4 − 4q2)2 (C.97)

|Vex,abs| =
J

8
=

Dex

8Sa2
, (C.98)

and

Q(k, k′, km, kp) =a4 · (k2 + k′2 + k2
3 + k2

4)2 ·
(
min

[
kmax,min

(
km + k, kp + k′

)]
− min

[
kmax,max

(
|km − k|, |kp − k′|

)
,min

(
km + k, kp + k′

)])
− 8a4 · (k2 + k′2 + k2

3 + k2
4) ·
(

(min [kmax,min (km + k, kp + k′)])3

3

− (min [kmax,max (|km − k|, |kp − k′|) ,min (km + k, kp + k′)])3

3

)
+ 16a4 ·

(
(min [kmax,min (km + k, kp + k′)])5

5

− (min [kmax,max (|km − k|, |kp − k′|) ,min (km + k, kp + k′)])5

5

)
.

(C.99)

Thus, we get

Np =
1

2

9a6

4π6

1

2Dex

∫ kmax

0
dk′
∫ kmax
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dkp

k′ kp
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√
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1
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km kp
k
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√
εkp

+εkm
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. (C.100)

This expression (cf. Eq. (5.80)) will be evaluated numerically in section 7. For the Umklapp
processes we choose a symmetrized way. It is

U =
1

2
Np (kp ∈ [kmax, 2kmax]) +

1

2

km
|2kmax − km|

Np (km ∈ [kmax, 2kmax])

+
1

2

km
|2kmax − km|

Np (kp ∈ [kmax, 2kmax] ∧ km ∈ [kmax, 2kmax])

+
1

2
Np

(
k′ ∈ [kmax, 2kmax]

)
+

1

2
Np (k ∈ [kmax, 2kmax])

+
1

2
Np

(
k ∈ [kmax, 2kmax] ∧ k′ ∈ [kmax, 2kmax]

)
. (C.101)
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The extra factor in the second and third summand arises from a different algebraic term of
the energy dispersion ε~km = ωH +Dex(2kmax − km)2 for km ∈ [kmax, 2kmax].
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Abstract

In the present theoretical thesis, we analyze the influence of quasiballistic phonons to the
transverse spin Seebeck effect by making use of the Boltzmann equation.

The setup for the transverse spin Seebeck effect consists of an insulating and non mag-
netic GGG-substrate (Gd3Ga5O12), where a temperature gradient is applied. On top of the
substrate, there is evaporated a thin film out of a ferrimagnetic and here insulating YIG
(Y3Fe5O12). The temperature gradient is applied parallel to the surface of the YIG-film.
The heat reservoirs are modeled as ideal heat reservoirs. On top of the YIG-film, there are
platinum stripes to detect the transverse spin Seebeck voltage.

The first experimental observation of the transverse spin Seebeck effect was made by
Uchida et al. as reported in 2008 [17] and on YIG as reported in 2010 [21]. Agrawal et
al. [31] as reported in 2013 and later other groups made contradictory observations to the
transverse spin Seebeck effect. This motivates us to perform a wave-vector dependent cal-
culation of the phonon temperature and the magnon temperature in the YIG-film based on
local interactions. Because the thickness of the YIG-film is much smaller than the thickness
of the GGG substrate, we start our calculation by calculating the wave number dependent
phonon temperature profile in the GGG substrate. Therefore, we set up a Boltzmann equa-
tion and perform a relaxation time approximation. Phonons with a large wave number have
a small relaxation length and thus take the temperature of the phonons in the proximity.
In contrast, phonons with a small wave number have a long relaxation length and scatter
nearly hitchless in the substrate. Thus, the slope of the temperature profile is smaller for
small wave number phonons.

To calculate the wave number dependent magnon temperature in the YIG-film, we set
up a Boltzmann equation for the magnons. Here, we consider phonon-magnon interaction
and magnon-magnon interaction as well. The wave number dependent phonon temperature
is taken as an input parameter. For the magnons, we include exchange magnons and dipolar
magnons. Umklapp processes are neglected for magnons. After some analytic transforma-
tions and approximations, we end up with a system of linear equations for the wave number
dependent magnon temperature and solve this system. For large wave number magnons we
find a large slope in the temperature profile, while for small wave number magnons we find
a small slope in the temperature profile.

Furthermore, we analyze the spin pumping mechanism between an insulating ferromagnet
and a normal metal by making use of the Boltzmann equation. In our theory, we assume an
intermediate layer between the ferromagnet and the normal metal, where the sd-interaction
between magnons and electrons takes place. At the end, we find a spin current induced in
the normal metal, which is proportional to the temperature difference between magnons in
the ferromagnet and electrons in the normal metal.

At the end we calculate the transverse spin Seebeck voltage by using three different
theories. For overall average temperatures much smaller than room temperature, we find a
larger value as for room temperature. For small temperatures, we find a result in the order
of nanovolts or tenth of nanovolts.
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Kurzfassung

In der vorliegenden Arbeit haben wir den Einfluss von quasi-ballistisch propagierenden
Phononen auf den transversalen Spin Seebeck Effekt untersucht. Hierbei haben wir die
Boltzmann-Gleichung verwendet.

Der experimentelle Aufbau für den transversalen Spin Seebeck Effekt besteht aus einem
isolierenden nicht magnetischen GGG-Substrat (Gd3Ga5O12), an dem ein Temperatur-Gra-
dient angelegt ist. Obenauf befindet sich eine aufgedampfte Schicht aus einem ferrimag-
netischem und hier isolierenden YIG (Y3Fe5O12). Der Temperatur-Gradient ist parallel zur
Oberfläche des YIG-Films angelegt und die Wärmebäder werden als ideale Wärmebäder
modelliert. Auf dem YIG-Film befinden sich Platin-Streifen, um die transversale Spin See-
beck Spannung zu detektieren.

Über die erste experimentelle Entdeckung des transversalen Spin Seebeck Effekt wurde
von Uchida et al. im Jahr 2008 [17] und mit YIG im Jahr 2010 [21] berichtet. Agrawal et
al. [31] und später auch andere Gruppen haben widersprüchliche experimentelle Beobach-
tungen zum transversalen Spin Seebeck Effekt gemacht. Dieses motiviert uns dazu, eine
Wellenvektor-abhängige Rechnung von der Phonon-Temperatur und der Magnon-Temperatur
durchzuführen, welche auf lokalen Wechselwirkungen basiert. Weil die Dicke des YIG-Filmes
sehr viel kleiner gegenüber der Dicke des GGG-Substrates ist, beginnen wir mit der Berech-
nung der Wellenvektor-abhängigen Phonon-Temperatur im GGG-Substrat. Dafür stellen wir
eine Boltzmann-Gleichung auf und führen eine Relaxationszeit-Näherung durch. Phononen
mit einer hohen Wellenzahl haben eine kleine Relaxationslänge und nehmen deswegen die
Temperatur der Phononen in der Umgebung an. Hingegen nehmen Phononen mit einer
kleinen Wellenzahl eine lange Relaxationslänge an und streuen fast gar nicht im Substrat.
Daher ist die Steigung des Temperatur-Profiles für kleine Wellenzahl-Phononen kleiner.

Um die Wellenvektor-abhängige Magnon-Temperatur im YIG-Film auszurechnen, stellen
wir eine Boltzmann-Gleichung für Magnonen auf. Hier berücksichtigen wir Phonon-Magnon-
und Magnon-Magnon-Wechselwirkungen. Die Wellenvektor-abhängige Phonon-Temperatur
wird hier als Input verwendet. Für die Magnonen berücksichtigen wir sowohl Austausch-
Magnonen ebenso wie dipolare Magnonen. Umklapp-Prozesse sind bei Magnonen vernach-
lässigt. Nach analytischen Term-Umformungen und Näherungen gelangen wir zu einem lin-
earen Gleichungssystem für die Wellenzahl-abhängige Magnon-Temperatur und lösen dieses
Gleichungssystem. Für Magnonen mit einer hohen Wellenzahl finden wir eine große Stei-
gung im Temperatur-Profil, wohingegen wir eine flache Steigung im Temperatur-Profil für
Magnonen mit einer kleinen Wellenzahl finden.

Darüber hinaus analysieren wir den Spin-Pump-Mechanismus zwischen einem isolieren-
den Ferromagneten und einem normal leitendem Metall, wobei wir die Boltzmann-Gleichung
verwenden. In unserer Theorie nehmen wir an, dass sich zwischen dem Ferromagneten und
dem normalem Metall eine dünne Schicht befindet, in der die SD-Wechselwirkung zwis-
chen Magnonen und Elektronen stattfinden kann. Am Ende finden wir einen im normalen
Metall induzierten Spin-Strom, welcher proportional zur Temperatur-Differenz zwischen den
Magnonen im Ferromagneten und den Elektronen im normalen Metall ist.

Am Ende rechnen wir die transversale Spin Seebeck Spannung aus, wobei wir hierfür drei
verschiedene Theorien verwenden. Für Gesamt-Mittelwert-Temperaturen, welche viel kleiner
als Zimmertemperatur sind, finden wir einen größeren Wert als bei Zimmertemperatur. Für
entsprechend kleine Temperaturen finden wir Spannungen in der Größe von Nanovolt oder
Zehntel-Nanovolt.
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