Table of Contents

1. Introduction 1

1.1. Intrauterine Programming of Adult Disease 1

1.1.1. What is Intrauterine Programming? What are Its Mechanisms? 1

1.1.2. Fetal Programming and Its Potential Impact on Fetal Cardiac State 2

1.1.3. Myocardial Function of Fetuses in Disadvantageous Intrauterine Milieu and The Need for Establishing Standards for Future Studies 4

1.2. Current State of Ultrasonographic Evaluation of the Fetal Heart Function 6

1.2.1. Advances in Cardiac Function Assessment – Early Stages 6

1.2.2. Intracardiac Blood Flow Estimation with Pulsed Doppler as an Indicator of Diastolic Cardiac Function and Outflow Tract Doppler Examination as a Measure of Systolic Ventricular Function 7

1.2.3. Estimation of Myocardial Performance Index (MPI) as a Derivative of Doppler Studies 9

1.2.4. Newer Imaging Modalities – 3D Fetal Echocardiography, Tissue Doppler Imaging, Doppler-Independent Tissue Tracking Modalities (Speckle Tracking and Feature Tracking) 11

1.3. Purposes of the Study 14
2. Methods and Study Collective

2.1. Definitions of Velocity, Displacement Strain and Strain Rate

2.1.1. Definitions related to Motion; Velocity and Displacement

2.1.2. Definitions related to Deformation

2.1.2.1. Strain

2.1.2.2. Strain Rate

2.2. Tissue Tracking Echocardiography

2.2.1. Feature Tracking Algorithm

2.2.1.1. Tracking of the Reference Points – Initial Steps

2.2.1.2. Tracking of Remaining Points

2.2.1.3. Application of a Sequence of Intermediate Passages

 Fourier Transformation using the Periodicity of the Heart Motion

2.2.1.4. Border Strain, Strain Rate and Displacement

2.3. Study Collective

2.3.1. Recruitment of Participants, Inclusion / Exclusion Criteria

2.3.2. Maternal Characteristics

2.3.3. Fetal Characteristics

2.4. Evaluation Method

2.4.1. Ultrasound System and Transducers

2.4.2. Scan Settings

2.4.3. Data Acquisition
2.4.4. Software and Hardware

2.4.5. Data Processing with syngo VVI

2.4.6. Data Collection and Six-Segment Model to Assess Global Myocardial Function

2.5. Statistical Analysis

2.6. Ethics Committee Approval

3. Results

3.1. Global Cardiac Activity

3.1.1. Motion Parameters

3.1.1.1. Global Systolic Velocities

3.1.1.2. Global Diastolic Velocities

3.1.1.3. Global Displacement

3.1.2. Deformation Parameters

3.1.2.1. Global Strain

3.1.2.2. Global Systolic Strain Rate

3.1.2.3. Global Diastolic Strain Rate

3.2. Correlation between Ejection Fraction and Strain

3.3. Repeatability of VVI

3.3.1. Repeatability of Left Ventricular Parameters

3.3.2. Repeatability of Right Ventricular Parameters

3.4. Overview of the Results
4. Discussion

4.1. Tissue Tracking in Fetal Echocardiography

4.1.1. A Comparison of Previous Studies, Their Results and Our Findings

4.1.2. Our Feature Tracking Algorithm Results

4.1.2.1. Motion Parameters

4.1.2.2. Deformation Parameters

4.1.2.3. Strain as a Sign of Pump Function

4.2. Critical Analysis of Our Study

4.2.1. Global Perspective Versus Regional Perspective

4.2.2. Is every heart the same?

4.2.3. No Comparison with Another Method

4.2.4. Other Limitations of Our Study

4.2.4.1. The Nature of Fetal Echocardiographic Examination

4.2.4.2. Issues Related to Software and Algorithm

4.3. Future Directions

5. Summary
6. Zusammenfassung 100

7. Literature 103

8. Curriculum Vitae and Acknowledgement 110
8.1. Curriculum Vitae 110
8.2. Acknowledgement 116