Symbols

General Notation

| \(|M| \) | number of objects in a finite set \(M \)
| \(|| \cdot || \) | Euclidean distance

Sets

\(\mathbb{N} \) | natural numbers
\(\mathbb{R}, \mathbb{R}_0^+ \) | real numbers, positive real numbers including zero
\(A_j, \mathcal{A} \) | attribute, finite set of attributes
\(\Omega \) | direct product of attributes
\(V \) | data set
\(C_i, \mathcal{C} \) | cluster, \(k \)-cluster set (finite set of disjoint clusters)
\(\wp(\Omega) \) | power set of \(\Omega \)
\(I, J \) | index subset
\(\mathcal{A}(J) \) | reduced set of attributes (only \(A_j \) with \(j \in J \))
\(\Omega(J) \) | direct product of attributes in \(\mathcal{A}(J) \)
\(V(J) \) | canonical projection of \(V \) on \(\Omega(J) \)
\(\Theta_s \) | partition
\(\Theta \) | decomposition (finite set of disjoint partitions)
\(B_j \) | subset of attribute \(A_j \)
\(B, \Delta_s \) | box
\(\Delta, \Delta_I \) | set of boxes, reduced set of boxes (only \(\Delta_s \) with \(s \in I \))
\(W \) | codebook
\(\mathcal{C}(W) \) | compressed clustering
\(\hat{\mathcal{C}} \) | extended clustering
\(\Theta_W \) | decomposition based on SOM codebook
\(\hat{W}_s \) | codebook box

Matrices

\(S \) | stochastic matrix
\(\hat{S} \) | coupling matrix
\(D \) | weighting matrix
Variables

- q: dimension of Ω
- v, v_i: data object in V
- n: number of data objects in V
- k: number of clusters
- $v(J)$: projection of v on $\Omega(J)$
- n_k: number of decomposition partitions
- w_s: codebook vector
- T, L: time steps
- k: upper bound of n_k
- z_s: grid position of neuron s
- l_i, r_i: left and right boundaries of interval in \mathbb{R}
- X: random variable
- u: average number of codebook updates
- λ_i, Y_i: eigenvalue, eigenvector

Functions

- f: frequency function
- h: homogeneity function
- $h_{\max}(V)$: maximal value of homogeneity function in V
- $\Gamma_{f,h}$: weighted intra-cluster homogeneity
- d: distance function
- h_d: homogeneity function based on distance function
- S: conditional transition probability function
- \hat{S}: set extension of S
- h_S: homogeneity function based on transition probability function
- χ_M: characteristic function of set M
- r: membership rule (set)
- $\hat{\varrho}_{f,h}$: decomposition error
- \hat{f}: compressed frequency function
- \hat{h}: compressed homogeneity function
- \hat{f}: set extension of f
- \hat{h}: set extension of h
- ρ: probability density function
- P_ρ: probability function corresponding to ρ
- α: learning rate
- γ: neighborhood radius function
- η: grid distance function
- $E(X)$: conditional expectation value of X
- P: weighted homogeneity function
- \hat{P}: set extension of P