Appendix

Extension of Ω to a normalized metric space

Let $\mathcal{A}:=\left\{A_{1}, \ldots, A_{q}\right\}$ be a set of not necessarily ordered domains and define $\Omega:=\bigotimes_{i=1}^{q} A_{i}:=\left\{\left(a_{1}, \ldots, a_{q}\right)^{T} \mid a_{i} \in A_{i}, i=1, \ldots, q\right\}$. Further let $V \subset \Omega$ be any finite subset of Ω.

We suppose that any attribute A_{i} is finite or at least bounded. Otherwise we replace it by $A_{i}(V):=\left\{x \in A_{i} \mid\left(\exists v=\left(v_{*, 1}, \ldots, v_{*, q}\right)^{T} \in V\right) v_{*, i}=x\right\}$. We define an unique projection π from Ω into a normalized metric space, as follows:

1. Let A_{i} any attribute of Ω with $A_{i}=\left\{x_{i, 1}, \ldots, x_{i, m_{i}}\right\} \nsubseteq \mathbf{R}, m_{i} \in \mathbf{N}$. For $1 \leq j \leq m_{i}$ set $A_{i, j}:=\{0,1\}$ and define $\pi_{i}: A_{i} \longrightarrow \bigotimes_{j=1}^{m_{i}} A_{i, j} \subset \mathbf{R}^{m_{i}}$ via

$$
\pi_{i}\left(x_{i, j}\right):=\left(\delta_{i, 1}, \ldots, \delta_{i, m_{i}}\right)^{T} \text { for } j=1, \ldots, m_{i}
$$

with

$$
\delta_{i, j}= \begin{cases}1 & \text { if } i=j \\ 0 & \text { else }\end{cases}
$$

2. Let A_{i} any attribute of Ω with $A_{i} \subset\left[l_{i}, r_{i}\right] \subset \mathbf{R}$ and $l_{i}, r_{i} \in \mathbf{R}$. Set $A_{i, 1}:=[0,1], m_{i}:=1$ and define $\pi_{i}: A_{i} \longrightarrow A_{i, 1} \subset \mathbf{R}$ via

$$
\pi_{i}(x):=\frac{x-l_{i}}{r_{i}-l_{i}} \text { for } x \in A_{i} .
$$

Then $\pi:=\left(\pi_{1}, \ldots, \pi_{q}\right)^{T}$ is a projection from Ω into a $\dot{q}:=\sum_{i=1}^{q} m_{i}$ dimensional normalized subspace $\Omega_{\mathbf{R}}:=\bigotimes_{i=1}^{q} \bigotimes_{j=1}^{m_{i}} A_{i, j} \subset \mathbf{R}^{\dot{q}}$.

Obviously we have: $\pi(v)=\pi(w) \Longleftrightarrow v=w$ for all $v, w \in \Omega$.

