
Chapter 5

Applications

5.1 Conformational analysis of biomolecules

5.1.1 Introduction

The analysis of biomolecular structure and function is one of the real challenges
of scientific computing nowadays. Advances in this area will have tremendous
impact on the design and identification process of new pharmaceutical drugs. The
enrichment of chemical databases with structural and functional information will
allow the use ofvirtual screeningprocedures, reducing time and costs of the phar-
maceutical research decidedly.

The key concept to characterizestructurehas become the characterization in
terms ofgeometric conformations, often just called conformations in the liter-
ature. In contradiction to structure,function, seems to depend on the dynamic
properties of the molecule and therefore should be rather characterized by what
has been calledmetastable conformations. Any type of conformations consists of
sets of possible molecular states. In geometric conformations such sets are de-
fined via the geometric similarity of different states. In metastable conformations
such sets are defined via the high probability of the molecule to stay in such a set,
once it is in such a set.

In classical molecular dynamics [2] a molecule is modeled by a Hamiltonian
function

H(q, p) = 1
2
pTM−1p + V (q),

whereq and p are the corresponding positions and momenta of the atoms,M
denotes the diagonal mass matrix, andV is a differentiable potential. The Hamil-
tonian functionH is defined on the phase space. The corresponding canonical
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equations of motion

q̇ = M−1p, ṗ = −gradV (5.1)

describe the dynamics of the molecule. The formal solution of (5.1) with initial
statex0 = (q(0), p(0)) is given byxt = (q(t), p(t)) = Φτ

V x0, whereΦτ
V denotes

the flow.
In [14] a first attempt had been made to identify metastable conformations

on the basis of the so-called Perron-Frobenius operator. That approach, though
principally opening the door to the new concept of conformation dynamics, had
been more or less restricted to toy molecules. In a further step, performing some
momenta averaging based on the Boltzmann distributionf0 for given heat bath
temperature, the Perron-Frobenius operator in phase space has been replaced by a
different Markov operator in position space [58, 59]. This new operator has much
nicer theoretical properties and it may be interpreted as the transfer operator of
an underlying Markov chainX(t). This Markov chain can be realized via Hybrid
Monte-Carlo (HMC) methods [22]:

• random choice of momenta from a Gaussian distribution,

• deterministic propagation of the molecular system by the flowΦτ
V with po-

tentialV and over short timeτ ,

• acceptance or rejection of new configurations by an appropriate transition
kernelK of the underlying Markov process, e.g., Metropolis-Hastings.

Like classical Monte-Carlo, HMC also suffers from possibletrappingin local
potential wells. In order to overcome this unwanted effect, an adaptive temper-
ature version has been worked out [22] that embeds the given problem into a
family of problems with flowΦτ,s

V in terms of an embedding parameters ∈ [0, 1].
At s = 0, only a few metastable subsets need to be identified, whereas ats = 1 a
rich structure of conformations might arise. Two types of embedding are in quite
common use:temperature embeddingandpotential embedding. Upon examin-
ing the equations of motion, one immediately sees that, in the context of HMC,
temperature embedding can be realized by the following flow:

Φτ,s
V = Φs−2τ

sV , (5.2)

which requires a scaling of the potential and the time step of propagation [58].
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Any kind of embedding stimulates the idea of a hierarchical algorithm con-
sisting of the following steps:

1. Simulate the molecular system for a specific parameter (say, high tempera-
ture), which causes the flow to overcome specific energy barriers.

2. Identify metastable subsets.

3. Increase the parameter (say, lower the temperature), but restrict the simula-
tion to one of the metastable subsets. Go to step 1.

This algorithm will generate a hierarchy of subsets that can be sampled indepen-
dently at each level. The restriction of an HMC-simulation to a given metastable
subsetCs requires only a slight modification of the Markov kernelK toKs [23].
The additional rule is that any configuration outside the subsetCs will be rejected.
Detailed balance still holds for this modified Markov kernel so thatKs is still
reversible. SinceCs is metastable, only a few rejections will be expected with
respect to the new rule. Moreover, trapping should thus be avoided, since energy
barriers towards all other metastable subsets can be ignored. A further exploita-
tion of this embedding structure is given in [23], where an uncoupling/coupling
technique has been suggested and worked out.

A schematic diagram of such a hierarchy is given in Figure 5.1. As can been
seen there, each cluster needs to be described by appropriate boundaries. To save
computer time over the whole simulation, one is interested in efficient descriptions
of the identified metastable subsets (see section 1.3).
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Figure 5.1:Hierarchical scheme of clustering combined with parameter em-
bedding. The numbers denote metastable conformations at different levels of the
hierarchical embedding scheme.
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As described in section 1.1, the problem of finding metastable conformations
can be transformed into a cluster problem, if we use a sufficiently long Markov
chainX(t) as a representative trajectory. SinceX(t) is reversible (see [59]), we
can use Perron Cluster analysis to determine an optimal numberk of metastable
conformations (see section 4.3).

Based on an uniform box decomposition, the conformations of small molecules
like n-pentanehave been recently analyzed successfully [58]. For larger molecules
such a simple decomposition is not possible, because the number of boxes ex-
plode (see section 2.2). Therefore the use of approximate box decompositions,
computed via the SOBM algorithm, allows for the first time the conformational
analysis of molecules of practically relevant size.

5.1.2 Adaptation of SOM and SOBM to cyclic data

One easily checks that the computing time of the SOM and the SOBM algorithm
strongly depends on the dimension ofΩ. The dimension of the position space of
molecules is three times the number of atoms and therefore it is very large even
for small molecules. The following observation leads to a reduction of the di-
mension: For each molecule there exists a set of so calledtorsion angles, which
are sufficient for a rough reconstruction of the spatial position of each atom of
the molecule together with the corresponding equilibrium bonds and angles [39].
Without loss of generality we assume each torsion angle within[ − π, π]. Then
we defineΩ as the space spanned by the torsion angles of the molecule. Since the
analysis of cyclic data is different from non-cyclic data (see [24] for a compre-
hensive introduction), it is not surprising that we have to adapt the SOM and the
SOBM algorithm to cyclic data.

First one has to choose a suitable distance measure. We suggest to use the
distance on theq-dimensional unit circle, i.e. we definedist : Ω × Ω → R+

0 via

dist(x, y) := F (d1(x1, y1), . . . , dq(xq, yq)) := (

q∑
i=1

di(xi, yi))
1/2

with di(xi, yi) := (sin(xi) − sin(yi))
2 + (cos(xi) − cos(yi))

2

for x, y ∈ Ω, wherexi andyi denote the values of theith torsion angle.

Next we have to assure that the codebook is adapted in the right direction (see
Figure 5.2). For the SOM algorithm this requires that the input vectorx(t) or the
old codebook vectorws(t), respectively, may need to be transformed first, before
the new codebook vectorws(t+ 1) can be computed according to Eq. (3.5):
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Figure 5.2:Example: Adaptation of the codebook vector (grey) in direction
of the input vector (black) on the shortest way.

Cyclic Transformation Rules (SOM)

1. IF wsi
(t) ≥ 0 AND xi(t) < 0 AND abs(wsi

(t)) + abs(xi(t)) > π
THEN xi(t) := xi(t) + 2π

2. IF wsi
(t) < 0 AND xi(t) ≥ 0 AND abs(wsi

(t)) + abs(xi(t)) > π
THEN wsi

(t) := wsi
(t) + 2π

Note that we haveabs(x) :=
√
x2 for x ∈ R.

After the new codebook vector has been computed, eventually it must also
be transformed so that each componentWsi

(t + 1) is inside the interval[−π, π].
Figure 5.3 shows an one-dimensional example for the first case.

 -180  +180  +360 +270 0

3. Transformation

2. Adaptation

1. Transformation

Figure 5.3:Example: Transformations of the codebook vector (grey) and the
input vector (black) to guarantee correct adaptation.

To use cyclic data within the SOBM algorithm, we need more sophisticated
rules, because we have to distinguish between normal and complementary inter-
vals:

If lsi
< rsi

, we callŴsi
:= [lsi

, rsi
] a normal interval. But we allow also the

caselsi
> rsi

. In this case we havêWsi
:= [−π, π] \ [rsi

, lsi
], i.e. Ŵsi

is the
complementary interval of[rsi

, lsi
].

First we have to refine functiong : [−π, π]3 → [0, 1] used within the codebook
adaptation rules (see Eq. (3.7)):
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Case 1:a < b. Set

g(a, b, x) :=


1 if x /∈ [a, b] ∧ di(x, a) ≤ di(x, b)
0 if x /∈ [a, b] ∧ di(x, a) > di(x, b)

b−x
ι([a,b])

else

with ι([a, b]) := (b− a).

Case 2:a > b. Set

g(a, b, x) :=


1 if x ∈ [b, a] ∧ di(x, a) ≤ di(x, b)
0 if x ∈ [b, a] ∧ di(x, a) > di(x, b)

2π+(b−x)
ι([a,b])

if x /∈ [b, a] ∧ x ≥ a
b−x

ι([a,b])
else

with ι([a, b]) := 2π + (b− a).
Next we have to specify the necessary transformations to guarantee a correct

adaptation of the codebook boxes:

Cyclic Transformation Rules (SOBM)

If Ŵsi
(t) := [lsi

(t), rsi
(t)] with lsi

(t) > rsi
(t) or if xi(t) is not inside the comple-

mentary intervalŴsi
(t), i.e. xi(t) ∈ [rsi

(t), lsi
(t)], then we have to consider the

earlier defined cyclic transformation rules for the SOM algorithm, withlsi
(t) and

rsi
(t) instead ofWs(t). But if xi(t) is inside the complementary interval̂Wsi

(t),
i.e. xi(t) /∈ [rsi

(t), lsi
(t)], one has to consider slightly different transformation

rules to assure that the boundaries are adapted towards the correct direction:

IF g(lsi
(t), rsi

(t), xi(t)) > g(−rsi
(t),−lsi

(t),−xi(t)) THEN
Use the cyclic transformation rules (SOM) for the adaptation oflsi

(t).
IF xi(t) > rsi

(t) THEN
First setxi(t) := xi(t) − 2π, afterwards adaptrsi

(t) directly
(i.e. without further transformation).

ELSE
Adaptrsi

(t) directly.
ELSE

Use the cyclic transformation rules (SOM) for the adaptation ofrsi
(t).

IF xi(t) < lsi
(t) THEN

First setxi(t) := xi(t) + 2π, afterwards adaptlsi
(t) directly.

ELSE
Adaptlsi

(t) directly.
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If the width of the interval[lsi
(t), rsi

(t)] is nearly2π, then one observes some-
times the artifact that left and right boundaries interchange so that the interval
becomes “too small”. In this case the adaptation step has to be skipped and the
interval[−2π + ε, 2π − ε] has to be fixed as the new value ofŴsi

(t+ 1).

5.1.3 Numerical results: HIV protease inhibitor

The fact that the cleavage of the HIV polyprotein by HIV protease is essential for
viral propagation, has made the HIV protease a key target for the design of drugs
against AIDS. The recent development of HIV protease inhibitors has dramati-
cally improved the therapeutic outcome for many AIDS patients. Unfortunately,
these inhibitors are very expensive and the effectiveness of therapy can encounter
problems with drug-resistant viral strains. So there is further strong interest in the
development of other classes of HIV protease inhibitors [10]. It is obvious that
with a deeper understanding — including knowledge about the dynamic behavior
— of the existing inhibitor molecules, it becomes much easier and cheaper to find
and to design new inhibitor classes. In the following we present the numerical
results of the conformational analysis of the HIV-protease inhibitor VX-478.

The inhibitor VX-478 of the enzyme HIV protease consists of70 atoms. The
molecule was parameterized by the Merck molecular force field (MMFF) [37].
Figure 5.4 shows one possible state (configuration) of the molecule.

Figure 5.4:Possible configuration of the HIV-protease inhibitor.
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As noted in Eq. (5.2), the sampling of a thermodynamic distribution at vari-
ous temperatures within a temperature embedding can be realized by a correlated
scaling of time steps and potential [58].

The Hybrid Monte Carlo (HMC) simulations are performed with temperature
dependent time steps (fs = femtoseconds)

τ =
1.4√

300
T [K]

fs.

Each new configuration is generated by a propagation of the system over a random
length between40 and80 time steps and each simulation consists of5 independent
Markov chains. For every configuration34 torsion angles are stored which are
sufficient for a rough reconstruction together with the corresponding equilibrium
bonds and angles. Convergence of the HMC-simulation is reached, as soon as the
Gelman and Rubin quotientR [34, 9] is sufficiently close to the value1. Note
that the choice of what is “sufficiently close to1” is rather critical, because on the
one hand one is interested in fast simulations, but on the other hand a worse con-
vergence bears the risk of sampling not the whole configurational space. In [30]
the focus was definitely on fast simulations, leading to a sampling of only parts of
the configurational space. Together with a slight different choice of parameters1

this has led to a detection of conformations even at rather high temperatures. In
the following the results of simulations with much better convergence properties
are presented, where the Gelman and Rubin quotient accomplishes the rigorous
condition‖1 −R‖ ≤ 0.05.

Based on the five Markov chains we have constructed the data setV , the fre-
quency functionf and the homogeneity functionhS as described in section 1.1.
The computation of the approximate box decomposition ofV with respect tof
was done automatically via a combination of the SOM and the SOBM algorithm
with pruning and early stopping (see section 3.3+3.5). Note that the chosen pa-
rameters are comparable with the suggestions in the SOM literature [48]:

1. As an upper bound for the number of partitionsΘs we have chosen an upper
bound| := 600, what is large enough to guarantee robust results, i.e. nearly
equal results, if| is changed slightly.

2. The computation of a25 × 24 SOM was done by performingu ·|ordering
steps (withα(0) = 1.0, η := ηgaussian andγ(0) = 12) andu ·|convergence
steps (withα(0) := 0.1, η = ηbubble andγ(0) = 1), whereu := 50 denotes
the average number of codebook updates.

1In [30] shorter time steps and a propagation of fixed length were used. This has reduced the
flexibility of the molecular system.
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3. We have initialized the SOBM codebook by using only the codebook vec-
torswp with f(Θwp(V )) ≥ 2u. Then we have performed convergence steps
(with α(0) := 0.005, η := ηbubble andγ(0) := 1), until the overlap between
the codebook boxes has exceeded0.1%. We have used the final codebook to
derive an approximate box decomposition ofV according to Lemma 3.2.2.

Cluster identification

For the cluster identification, we have used our extended multilevel approach.
First we look at the results, without decomposition refinement (see Table 5.1):

T [K] N k spectrum coupling matrix overlay [%]

900 60000 53

1.000
0.830
0.805
0.791

1.000 26.5

700 31000 72

1.000
0.930
0.885
0.876
0.860
0.795
0.790

0.924 0.076
0.018 0.982

40.5

700-C0 RS 60000 65

1.000
0.890
0.820
0.798
0.768

1.000 35.5

700-C1 RS 42000 92

1.000
0.896
0.875
0.824
0.820

1.000 36.4

Table 5.1:Hierarchical temperature embedding for HIV protease inhibitor
with resimulation at level T = 700K (N = number of configurations per Markov
chain, k = final number of codebook boxes).

While for T ≥ 900K the Perron cluster analysis only identifies one confor-
mation, one observes a large spectral gap between the second (0.930) and the third
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(0.885) eigenvalue of the transition matrixS at levelT = 700K. To prove the
metastability of the identified clustersC0 andC1, a resimulation at the same level
was performed. As expected the gap between the1 and the second eigenvalue
grows for both clusters, but there are also large gaps between the second (0.890)
and the third eigenvalue (0.820) for the first cluster and between the third (0.875)
and the fourth (0.824) eigenvalue for the second cluster. But if one looks again
at the original spectrum at levelT = 700K, one finds another large gap between
the fifth (0.860) and the sixth (0.795) eigenvalue. Obviously the configurational
space at levelT = 700K decomposes into two strongly metastable clusters, but
also into five weaker metastable subsets (see Table 5.2).

T [K] spectrum coupling matrix overlay [%]

700

1.000
0.930
0.885
0.876
0.860
0.795
0.790

0.908 0.021 0.024 0.031 0.018
0.014 0.874 0.022 0.001 0.090
0.013 0.018 0.879 0.006 0.085
0.044 0.002 0.015 0.896 0.043
0.004 0.029 0.033 0.006 0.928

40.5

Table 5.2:Weaker metastability: Five conformations for HIV protease inhibitor
at levelT = 700K (31000 configurations,72 final codebook boxes).

Next we have refined the decomposition after step (2) and performed step (3),
until the decomposition was fine enough. At levelT = 700K, we have achieved
the results presented in Table 5.3.

The number of final codebook boxes has increased, leading to a larger second
eigenvalue (0.952), a larger gap size and a better coupling matrix. Additionally
the overlay has increased (47.7% in comparison with40.5%), while the overlap
still has remained near zero.

For a temperature embedded simulation at levelT = 500K inside the both
metastable clustersC0 andC1, our cluster method computes4 (C00, C01, C02, C03)
and3 conformations(C10, C11, C12) respectively (see Table 5.3). The seven iden-
tified conformations have weightsf(Ci) according to Table 5.4.

Figure 5.5 and Figure 5.6 show average configurations for always two out of
the seven conformations atT = 500K. To allow a better comparison the two
average configurations are aligned in a plane defined by three common atoms.
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T [K] N k spectrum coupling matrix overlay [%]

900 60000 53

1.000
0.830
0.805
0.791

1.000 26.5

700 31000 113

1.000
0.952
0.898
0.889
0.886
0.830
0.802
0.794

0.934 0.066
0.015 0.985

47.7

500-C0 60000 101

1.000
0.962
0.949
0.945
0.917
0.903
0.896

0.921 0.015 0.040 0.023
0.012 0.920 0.023 0.044
0.034 0.024 0.919 0.023
0.010 0.024 0.012 0.954

51.8

500-C1 60000 72

1.000
0.952
0.942
0.920
0.908
0.891

0.961 0.029 0.010
0.025 0.964 0.012
0.044 0.062 0.894

47.3

Table 5.3:Hierarchical temperature embedding for HIV protease inhibitor
with decomposition refinement (N = number of configurations per Markov
chain, k = final number of codebook boxes).

C00 C01 C02 C03 C10 C11 C12

3.3% 4.1% 3.9% 7.4% 33.8% 40.1% 7.5%

Table 5.4:Weights of the seven conformations for HIV protease inhibitor at
levelT = 500 K
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Figure 5.5: Visualization of conformations of HIV protease inhibitor:
Average configurations for two metastable conformations at temperature level
T = 500K (left: C00 andC02, right:C02 andC11).

Figure 5.6: Visualization of conformations of HIV protease inhibitor:
Average configurations for two metastable conformations at temperature level
T = 500K (left: C01 andC03, right:C01 andC10).

For comparison purposes, we have also used mere VQ instead of SOM. In
this case Perron Cluster analysis leads to four metastable clusters instead of the
three conformationsC10, C11, C12 atT = 500K. Upon careful examination of the
results, however, one observes that one of the four clusters is nearly empty — this
is the kind of pseudo-clusters already mentioned in chapter 3.
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Cluster description

Using the corresponding approximate box decomposition (see Figure 5.7 for a
projection of codebook boxes computed by the SOBM algorithm on two out of
the34 torsion angles), we have identified17 discriminating torsion angles for the
clusteringC := {C0, C1} atT = 700K. Further we have used the corresponding
113 codebook boxes to determine reduced membership rules ofC0 andC1. Here
is one of these membership rules for clusterC1:

IF v∗,3 /∈ [18.9, 151.8] AND v∗,4 /∈ [ − 169.4,−29.2] AND v∗,5 /∈ [ − 82.3, 58.5]
AND v∗,6 /∈ [29.3, 168.0] AND v∗,7 /∈ [ − 45.4, 94.6] AND v∗,8 /∈ [ − 103.7, 29.0] AND
v∗,15 /∈ [−36.4, 99.9] AND v∗,16 /∈ [−160.0,−22.5] AND v∗,17 /∈ [−138.5,−10.1] AND
v∗,18 /∈ [ − 52.1, 67.7] AND v∗,19 ∈ [ − 61.8, 177.7] AND v∗,26 ∈ [ − 148.1, 77.0] AND
v∗,27 ∈ [−158.1, 68.4] AND v∗,29 ∈ [−144.4, 89.2] AND v∗,30 ∈ [−110.5, 107.4] AND
v∗,31 ∈ [ − 152.7, 76.5] AND v∗,32 ∈ [ − 99.3, 121.3] THEN v = (v∗,1, . . . , v∗,34) ∈ C1

−180 −60 60 180
−180

−60

60

180

Figure 5.7:Example: Adaptive box decomposition for HIV protease inhibitor.
Visualized projection of codebook boxes on two out of34 torsion angles.
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5.1.4 Prospect: Virtual screening

Clustering techniques and especially self-organized neural networks have been
already used for the analysis of molecular dynamics [43, 41]. But all suggested
algorithms have the deficit that they use a geometric cluster model: They try to
group geometric conformations to metastable conformations by an investigation
of a suitable visualization of the transition probabilities between the geometric
conformations. Obviously such a procedure is only possible if the number of geo-
metric conformations is very small, as it is only the case for simple molecules. In
contradiction, the method described in the previous subsections is able to compute
metastable conformations also for large and complex molecules. Therefore it can
be used for a virtual screening of chemical databases.

Example: Virtual screening of CDK inhibitor

Virtual screening of chemical databases is a powerful tool for the identification of
derivatives of already known molecules with a function of pharmaceutical interest.
Figure 5.8 shows a virtual screening process for theCDK inhibitor indirubin in
principle: First we have to perform a conformational analysis of indirubin and also
of all molecules inside the database, to generate knowledge about their function.
Then we have to use suitable matching algorithms (see [52]) to identify molecules
inside the database with a similar structure and similar metastable conformations
as the indirubin molecule. For a first application of conformational analysis within
a virtual screening project see [30].

Figure 5.8:Virtual Screening of CDK inhibitor indirubin.
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5.2 Cluster analysis of insurance customers

Cluster analysis is a powerful tool for insurance companies to get a better under-
standing of their customer structure, e.g., to design new tariffs or services. In the
following we will present a successful applications of our new cluster approach
for the analysis of insurance data that has been done in cooperation with RISK-
CONSULTING, KÖLN. For a description of a further application see [31].

5.2.1 Modeling

Suppose that each insurance customer can be described by a set ofq attributes,
e.g., age, sex, occupation. As described in the appendix, we can easily transform
the correspondingΩ to a normalized metric space and therefore the customers
can be interpreted as points in a setV ⊂ Ω. Since we want to identify groups
of customers, who have similar properties with regard to the different attributes,
we have to solve a geometric cluster problem. If the data quality is good, i.e.
if we have for each customer valid values for nearly all attributes, we can use a
homogeneity measurehd based on the Euclidean distance functiond = deuclid.
Otherwise we have to use more sophisticated distance measures as, e.g., the Tani-
moto measure [48] or measures that use information levels [28]. Since each cus-
tomer is unique, we use a frequency functionf with f(v) = 1 for all v ∈ V .
If the number of clusters is unknown a priori, we transformhd into a stochastic
homogeneity functioñhd as described in Lemma 4.3.11 so that we can use our
extended multilevel approach based on Perron Cluster analysis. Since we cannot
be sure that the homogeneity functionh̃d corresponds to the same optimal clusters
as the original homogeneity functionh (see the earlier discussion in connection
with Lemma 4.3.11), we have to validate the identified clusters carefully. This is
especially necessary, if the artificial construction ofh̃d leads to a spectrum with
much noise, i.e. a spectrum where the separation between the Perron Cluster and
the remaining part is difficult. Obviously an efficient cluster description based on
an approximate box decomposition is a helpful tool for cluster validation.

5.2.2 Numerical results: Whiplash Injury Patients

Within our application we have clustered2153 customers of a German health in-
surance company with a diagnosis ofwhiplash2 during the observation years1996
and1997. The number of attributes after transformation ofΩ into a normalized
metric space was185.

2Whiplash (German: Schleudertrauma) is an injury to the cervical spine and its soft tissues
caused by forceful flection of the neck, especially that occurring during an automobile accident.
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The computation of an approximate box decomposition ofV was done with
a combination of the SOM and the SOBM algorithm as described in section 3.3.
We have used early stopping, but we have not pruned neurons to allow a visual
comparison with the results generated by using only the SOM algorithm.

1. As an upper bound for the number of partitionsΘs we have chosen| := 99,
what is large enough to guarantee robust results, i.e. nearly equal results, if
| is changed slightly.

2. The computation of a11 × 9 SOM was done by performing100|ordering
steps (withα(0) = 0.9, η := ηgaussian andγ(0) = 5) and300|convergence
steps (withα(0) := 0.1, η = ηbubble andγ(0) = 1).

3. Using the codebook vectorswp, we have initialized the SOBM codebook
boxes. Then we have performed convergence steps (withα(0) := 0.005,
η := ηbubble andγ(0) := 1), until the overlap between the codebook boxes
has exceeded the value0.1%.

In a first trial, we have stopped after step (2). We have used the codebook
vectorswp to determine a decomposition ofV and performed a Perron Cluster
analysis (see Table 5.5):

λ1 λ2 λ3 λ4 λ5 λ6 λ7 Γf,hd
(k = 3) Γf,hd

(k = 5)

1.00 0.81 0.72 0.60 0.51 0.38 0.34 0.71 0.60

Table 5.5:Whiplash Patients: Perron Cluster analysis using9 × 11 SOM.

Figure 5.9:Whiplash Patients: SOM gray-level visualization including cluster
borders computed via Perron cluster analysis (solid border: clusters fork = 3,
dashed border: two additional clusters fork = 5).
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The two largest gaps are betweenλ3 andλ4 and betweenλ5 andλ6 respec-
tively. Figure 5.9 shows the borders of the computed clusters within a SOM gray-
level visualization3.

Next we have performed additionally step (3). We have computed an approx-
imate box decomposition ofV based on the final codebook boxes and we have
used Perron Cluster analysis to determine an optimal clustering:

λ1 λ2 λ3 λ4 λ5 λ6 λ7 Γf,hd
(k = 3) Γf,hd

(k = 5)

1.00 0.81 0.73 0.62 0.54 0.43 0.35 0.69 0.62

Table 5.6:Whiplash Patients: Perron Cluster analysis using9 × 11 SOBM.

The algorithm suggests3 or 5 clusters. Since we have not pruned neurons
after step (2), we can visualize the SOBM with gray-levels (see Figure 5.10). The
borders computed via Perron Cluster analysis corresponds to the the borders indi-
cated by the dark-shades. Especially the right upper cluster is clearly identified.
This cluster contains customers that has been taken over by the insurance company
from another company many years ago. It is very interesting that these customers
have been grouped together, because we have not used the corresponding attribute
within our analysis, i.e. the information “customer has been overtaken” was not
given explicitly. Nevertheless there exists a strong relationship between these cus-
tomers, hidden inside the used attributes. Our cluster algorithm was able to detect
these relationship and therefore has generated knowledge.

Figure 5.10:Whiplash Patients: SOBM visualization including cluster borders
computed via Perron cluster analysis (solid border: clusters fork = 3, dashed
border: two additional clusters fork = 5).

3SOM gray-level visualization is used to determine the clusters by visual investigation (see
[48]). Dark shades represent low homogeneity between the codebook vectors, while light shades
represent a high homogeneity . Other techniques for cluster visualization are presented in [61]
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