Chapter 4

Multilevel Representative Clustering

In this chapter we will extend the basic reduction algorithm (see section 2.3) to
a multilevel approach. The main idea is to iterate the decomposition based rep-
resentative clustering method until the decomposition is fine enough so that the
optimal solution of the reduced cluster problem determines an optimal clustering
of the original cluster problem.

We will present a general approach that can be always used if the number of
clustersk is known a priori. For special homogeneity functions we will addition-
ally describe a powerful extension basedRerron Clusteranalysis that can be
used for cluster problems, where the number of clusters is unknown.

4.1 General approach

Let V = {vy,...,v,} C Q be any data set if2 with frequency functiornf and
homogeneity functiok. A point very critical within the application of the basic
reduction algorithm (see section 2.3) is the fulfillment of the condition that the
decomposition of” has to be a covering of an optinfakluster set of V, f, h).

Suppose now that we have any decomposi@oof 1 with codeboolV and
any optimalk-cluster seC of (W, f, hs). We know that the extensiafof C on
V' is ak-cluster set of V, f, h). Since® is a covering ofC by construction, it is
also a covering of. Therefore we havé; ; (C) = I';4(C). At the moment we
cannot be sure th&b is also a covering of an optiméatcluster set of V, f, h),
what would imply that is optimal. Therefore we try to refin@.

Let ©° with codebook vector/© be the result of a suitable refinement process,
e.g., as it will be described in the next section. If we now compute an optimal
k-cluster seC* of (W*, f, hf), we can extend it t¢‘ and compute the weighted
intra-cluster homogeneity;(C*) = 'y (C*). If T'¢,(C) > T'4(C), the new
clustering is better, i.e0 was definitely not a covering of an optimiakcluster set
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of (V, f, h). With ©° we have a new candidate that is a finer decompositiadh as
and that is a covering of lacluster set with improved quality.

From the above reflections one easily derives the main idea of the new mul-
tilevel representative clustering approach: Refine iteratively the decomposition
0, until no further improvement of the corresponding representative clustering is
observable.

Multilevel Reduction Algorithm

The following algorithm embeds the basic reduction algorithm in a multilevel re-
finement process. Note thathas to be known a priori.

(1) Compute a decompositiagn (based on a codebodk’) with adaptive choice
of ng, k < nip <k < n.

(2) Compute an optimail-cluster set of (W, f, h;).

(3) ExtendC onV: C is ak-cluster set ofV, f, h). Since® is a covering of’, we
havel';;, (C) = I'yn(C).

(4) Refine® so that the new decompositié of 1 with codebookiV’ is also a
covering ofC.

(5) Compute an optimail-cluster set* of (W*, f, hy).

(6) ExtendC* on V: C' is k-cluster set of V, f, h). Since®‘ is a covering o,
we havel';;, (C*) = T';4(CY).

() If Uin, (CY) > ny,vlf(C) then seP := O and go to step (4), else stop.

For the computation o® with adaptive choice of,, and the codebookl’
we can use the algorithms described in chapter 3. In the following section we
will describe techniques for a refinement of an existing decomposition so that the
guality of the corresponding codebook clustering increases.

4.2 Adaptive decomposition refinement

Let C be any optimalk-cluster set of(V, f, h) andC be any nearly optimat-
cluster set oV, f, h). Further let®© := {©,,...,0,, } any decomposition of’
with codebookiV = {wl, . wnk} so that® is a covering ofC, but not ofC.
Then there exist cIustel@’l,(JQ e, Cy,C, € C and partltlonsﬁ)s,@ € ©so0
thatCy, N O, # 0, C, N O, £ 0, (Jlm@ # () andO, C01,® c Cs.

Suppose now tha is a decomposition of := ©, U ©,. Then the refined
decompositior®* := 0\ {0,,0,} U{O©,NO,|6, € O} U {G)Z- no,|o, € B}
would be better fitting t@, while still being a covering of. The problem is how
to identify the partition®, ande,,, without knowingC.



4.3 Approach based on Perron Cluster analysis 61

The following qualitative observation offers a heuristic solution: Sidds
optimal, we havehf((Jl,Cl) > 0 and thereforei (0, N Cy,0, N C;) > 0.
But this givesh;(©,,0,) > 0, which is equivalent tdi(w,, w,) > 0. So if
we refine all partitions withh (w,, w,) > 0, we can be sure to refine also all
partitions which destroy the covering propertyafor C. Note that partitions that
are already fitting t@, are also fitting after a refinement.

Decomposition refinement algorithm

Let © be any decomposition df with codebookV := {wy, ..., w,, }.

(1) Identify all indicess, p € {1,...,n} S0 tha%f(ws, wy,) > o With o > 0. Let
I be the resulting index subset.

(2) SetV := U, O,

(3) Compute a decompositic@n of V' with 7, partitions®;.

(4)Seto :=0\{06,]|s€I}U{6;,NO,|0,€O,s¢c I}

Obviously the above algorithm increases the number of partitions froto
maximallyn,, + (7, — 1)|1] partitions. Often several of the new partitigAsN O,
are nearly empty. Therefore step (4) is improved by the following conditin:
is replaced only by thog®,; N ©,, with £(©;N16,) > 0. Note that in this case the
refined© has to be adapted slightly to guarantee that it is still a decomposition.
This can be easily done, if we use the SOM algorithm for the computation of the
decomposition of/:

Let IV be the codebook dd generated by the SOM algorithm. For each [
we setl, := {i| f(©, N O,) > 0}. Then the reduced codebodK;, defines a
decompositior®y,, of V. If we replaceO, by {6,; N0, |6,,; € Oy, } forall
s € 1, the refinedd is still a decomposition o¥.

Instead of the suggested refinement algorithm, one could also think about us-
ing methods that tries to grow the SOM adaptively [26, 17]. In this case one has
to assure that the growing process is driven by the homogeneity furictibthe
cluster problem is geometrically based, this should be no problem.

4.3 Approach based on Perron Cluster analysis

In this section, we will extend our general multilevel cluster approach by using
results and methods from the theoryRdrron Clusteranalysis that has been re-
cently developed by BUFLHARD ET AL.. We will show that for cluster problems

with a stochastic homogeneity functions, this extended approach can be used for
a fast identification and efficient description of clusters, even if a correct number
of clustersk is not known a priori.
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4.3.1 Theoretical background

In the following, we will give a short description of the theory of Perron Cluster
analysis. For details and proofs see [16, 13].

Suppose we have a primitive stochasticx n;, matrix S, i.e. there exist an
m € N so thatS™ > 0, the entriesS; ; are non-negative and the sum of each
row equals one. As a consequence, the constant vector(1,...,1)" is an
eigenvector corresponding to the simple eigenvalue- 1 of S. For all other
eigenvalues\; of S we havel\;| < 1.

Letm = (my,...,m, )" any strictly positive distribution so that'e¢ = 1 and
778 = =T, We suppose that is reversible with respect to, i.e. DS = STD?,
whereD := diag(,/7;) is called aweighting matrixof S. If S is reversible, it
is self-adjoint with respect to the weighted scalar product,y >.:= 27 D%y
and consequently, all eigenvalues are real. Additionally there exist a basis of
w-orthogonal right eigenvectors, which diagonalizeand for every right eigen-
vectorY there is an associated left eigenvector= D?Y’, which corresponds to
the same eigenvalue.

In the following let/y, . . ., I;, any disjointindex subsets wit) C {1,..., ny},
ped{l,... k}, andU’;:1 I, ={1,...,n}. Based on these index subsets we de-

fine a so called¢oupling matrixS := (81_9,1p)1§5,p§k via

S, =y el Z (4.1)

i€ls gelp Ze]?

Lemma 4.3.1 The matrixS is stochastic and reversible with respect to the distri-
bution# := (71, ..., 7)" wherer, := 3>, .

Proof. Sinces is stochastic, i-eZ?L S(i,7) = 1for 1 <i < ng, we have

k
> S, = 2 ZZS i-d)
p=1

ZEIS 5 p= 1 jel,
7T’L Z
= 2= Zé‘w > =1
ZGIQ ’LEI@ S

and therefores is stochastic. We further have

sS1,1, = ZZ%-S(Z’,]’) forl <s,p<k.

icls jel,

SinceS is reversible, i.e.m;S(i,j) = m,;S(j,i) the reversibility ofS follows
immediately. O
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We are interested in index subsdis. . ., I, that lead to a nearly diagonal
coupling matrix:

Definition 4.3.2 Choosep € {1,...,k}. Then we call/, an almost invariant
aggregate ofS, if S;,;, ~ 1. If I, is an almost invariant aggregate o for all
pe{l,...,k}, wecalll,..., I, acovering set of almost invariant aggregates of
S. In this case we calt an optimal number of almost invariant aggregatesSof

One easily checks that almost invariant aggregates correspond to a permutation
of S so that the matrix is nearly block-diagonal:

Lemma4.3.3Letly,..., I, C {1,...,nx} any covering set of almost invariant
aggregates o8. Then the indice$1, ..., n;} can be ordered so that the matrix
S is of block-diagonally dominant form:
D171 ELQ e El,k:
S _ D + E _ Egyl D272 PPN Egyk
EkJ Ek72 e Dk,k

Herein the perturbation matrig’ satisfies®” = O(¢) wheree is some perturbation
parameter.

Supposing that the conditions of Lemma 4.3.3 hold, we set:
S(e) == 8(0) + SV + 8@
whereS(0) = D is the unperturbed part &f.
It follows from perturbation theory [45] that the spectrum&i) can be di-
vided into two parts:

1. ThePerron Clusterincluding thePerron Root\; = 1 and thek — 1 eigen-
valuesiy(e), . .., A\x(€) approaching for e — 0.

2. The remaining part of the spectrum, bounded away frdar ¢ — 0.

The eigenvectors corresponding to eigenvalues of the Perron Cluster have a
useful property:

Lemma 4.3.4 Let A\ (e), ..., A\x(e) be the Perron Cluster a$. Then there exits a
covering set of almost invariant aggregdte. . ., I, of S so that the eigenvectors
Yi,..., Y, € R™, corresponding to\ (¢), . . ., A\x(¢), are almost constant on each
I, i.e. we have foralk € {1,... k}:

i,jel, = (Vpe{l,....k}) Y, (i) = Y,()).
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The above theoretical results lead to a powerful method for the determination
of an optimal numbek of almost invariant aggregates &f

Suppose there exist — a priori unknown — index subgets. ., I, so that
the conditions of Lemma 4.3.3 hold. Then there exists,av thatS(e,) = S. If
e, 1S sufficiently small, we can find a large gap within the spectrur§ between
the eigenvalues, and )\, of S. In this casek is an optimal number of almost
invariant aggregates d.

But we cannot only determine an optimal number of almost invariant aggre-
gates, also the index subsets themselves can be computed based on Lemma 4.3.4:

LetYy,..., Y, € R"™ be the eigenvectors corresponding to the eigenvalues
A(€), ..., \(e) of §. Then the identification ok groups of nearly identical
k-tuple Y (i) := (Y1(i),...,Y%(i))T of eigenvector components associated with
each: € {1,...,n}, is sufficient to identify the covering set of almost invariant
aggregates,, ..., I, of S. Obviously such a grouping can be done via the com-
putation of ak-cluster set of the séty := {Y(1),...,Y (nx)} with frequency
function fy (v) := 1 for v € V4 and a suitable homogeneity functiég, e.g.,
hy = hg, Whered is a distance function iR*.

4.3.2 Stochastic homogeneity functions

In the following we suppose that the homogeneity functiois stochastic in/
with respect tof:

Definition 4.3.5 We call any homogeneity functién 2x Q2 — [0, 1] stochastic
in V with respect tof if we have

> h(v,w) =1 forallv e V. (4.2)

SetP(v,w) := h(v,w)f(w) for anyv,w € V. We can directly extend® on
subsets of/, if we define for any non-void subséis, V, C V:

PV, Va) =Y Y f . (4.3)

veVT weVa

Using earlier definitions (see section 2.3) we get:

Lemma 4.3.6 P(V;, V3) = hy(Vi,Va)f(Va) for any non-voidv;, Vs C V.
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Proof:

~

b (VL) = W SO b, w)f(v) flw)

) 1 weVs
= T 2 2 Pl
1 P(V;, V)
f(V) f(Va) ( LR f(V2)

We have a sort of reversibility aP with respect tof:
Lemma 4.3.7 f(v)P(v,w) = f(w)P(w,v) forall v,w € V.

Proof: Sinceh is a homogeneity function, we ha¥i¢v, w) = h(w, v) and there-
fore also

f)P(,w) = f(v)h(v,w)f(w) = f(v)h(w,v)f(w) = P(w,v)f(w).

forallv,w e V. O
From Lemma 4.3.7 directly follows:

FVI)P(Vi,Va) = f(Va) P(Va, 1)
for all non-void subset®;, V; C V.

Based orP and a decomposition &f we can define a stochastic and reversible
matrix S:

Lemma 4.3.8Let© := {O4,...,0,,} be any decomposition 6f. Define the
ny Xy MatrixS via S(i, j) == P(6;,0;). Further setr := (m, ..., m,,)T with
e 1= J;((e;))_ Then we have:

(7) Ifforanyi,j € {1,...,n;} there existp,,...,p,, m € N, so thatp; = 4,
pm =7 andS(py, pry1) > 0for 1 <t < m — 1, then the matrixS is primitive.
(77) The matrixS is stochastic.

(ii1) mis a strictly positive distribution with”e = 1 and7?S = 7.

(7v) The matrixS is reversible with respect to.

Proof:
(7) is obvious andyi) follows directly from the fact thak is stochastic an@® is
a decomposition of the data dét
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(¢ii) Obviously we haver’e = 1. Further letS,; := (S(1,)),...,S(n,j))" be
the j-th column of the matrixS. Using Lemma 4.3.7 we have:

WTS*J' = Zf @za@ )
RS J(0)P(v.0)
‘m@y ;%

- ZZZf

i=1 v€EO; WEO;

- ZZZf

i=1 v€O; WEO;

S DY) 3) DYURY

we@ i=1 vEO;
we@

(v) Foranyi,j € {1,...,nx} we have:

mS(i,j) = f;((%))ﬁ(@ 0;)
1
- f—zz
€O0; weo;
_ J® vj ZZ Jw)Ptw,o) s ).
€0, vev; J

O

Based onS we can use Perron Cluster analysis to determine an optimal num-
berk and to identify the almost invariant aggregates off he following Theorem
shows that a covering set ffalmost invariant aggregates Sfcorresponds to a
nearly optimalk-cluster set of ©, f, iz) what we know is equivalent to a nearly
optimal representative clustering for any codebtiolof © (see Theorem 2.3.9).
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Theorem 4.3.9 Letk be an optimal number of almost invariant aggregates of the
matrix S and letly,..., I, C {1,...,n} be the corresponding covering set of
almost invariant aggregates. Then we have:

(i) + ZS 1\ Srr, > 1 — e, with smalle, := 1 — min, Sy, 1,

(17) If we setC = {C,... Ck} with C, = {0, ]p € I} thenC is an nearly
optimalk-cluster set of ©, f, ), with ' ( ) = ZS L S1.1L

Proof:
(1) Since eacH, is almost invariant, we hav®;, ;, ~ 1fors=1,... k.
(77) ObviouslyC is ak-cluster set oB. We have:

0 = FY s 3 AT

V1 €Cs VoeCs

- kz ZZ (051032 (0,,)f(6)

plEIs pQEIs

= kZ Z Z @mv@m @ 1)

Km

(V2)

plefe p2€ls
- % Z Z Z (p1,p2) f(Op,)
plefe p2€ls
= pEIs ))S(p17p2)f(@p1>
k Z p;s p; ZpEIg f(®p)

. 2 : pGIg 2 : 2 : p17p2 7Tp1
k s
plels pQGIs Zpe[s p
1
- - E st,fs'
k
s=1

S_ince% S S <1, we havel'; ;. (C) < 1 and therefordi) guarantees that
C is nearly optimal. O

If we setC := {C1,..., Cy} with C; := {,¢;. ©,, then using Theorem 2.3.9
and Lemma 2.3.5 we hatg ,(C) = Ui, (C) and therefor€ is a nearly optimal
k-cluster set of V, f, h).
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Note that it is possible that there exist differérgo thatt is an optimal number
of invariant aggregates. But this is not surprising, because cluster problems might
also have different correct numbers of clusters.

Multilevel Reduction Algorithm for stochastic homogeneity functions

We can use our results for a special version of the multilevel reduction algorithm
that can be used even if the number of clusteisnot known a priori:

(1) Compute a decompositigh (based on a codebodk’) with adaptive choice
of ny, ny <k < n.

(2a) Compute the matrix.

(2b) Compute an optimal numbkiof almost invariant aggregates&ivia Perron
Cluster analysis.

(2c) Compute an optimdl-cluster set of Vy, fy, hy), leading to a covering set
of k almost invariant aggregatés, ..., [, C {1,...,nx} of S.

(3) SetC := {C4,...,Cy} with C; = |J,.; ©,. ThenC is ak-cluster set of
(V, f,h) with T ,(C) = £ S°F_ Sy 1.

(4) Refine® so that the new decompositiéi of VV with codebooki’ is also a
covering ofC.

(5) Repeat the steps (2a)-(2c) and (3) véthinstead o0, leading to &:*-clustering
C of (V, f,h).

(6) If k* # k then se® := ©° andk = k‘ and go to step (4)

(M) IFT¢n(C) > Tfu(C), then seB := ©° and go to step (4), else stop.

pEls

Identification of discriminating attributes based on Perron Cluster analysis.

In section 2.4.2 we have presented an algorithm for the identification of discrimi-
nating attributes. We now give a simple heuristic criterion to decide if an attribute
setA(JY) is redundant or not:

LetC := {C4,...,Cy} be any optimak-cluster set of a data sét with a
covering®y, that is defined based on a codebdbkaccording to Eq. (3.2). Fur-
ther let W (J) be the projection ol on Q(J) and Oy ;) = {O1,...,0,,}
be the corresponding decompositionlof.). If the eigenvalue spectrum of the
matrix S corresponding t®yy, is nearly the same as the spectrum of mafiix
corresponding t®y (), then the attribute sed(.J¢) is redundant.

The above criterion uses the obvious fact that an attributd 6&t) is redun-
dant, if the cluster structure of the cluster problem is independent of the attributes
in A(JY).
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Natural and artificial stochastic homogeneity functions

For a reversible dynamic system, the homogeneity functignas defined in
Lemma 1.1.4, is stochastic:

Lemma 4.3.10 Let (X (¢)):—1. 7 any representative trajectory of lengihe N
of a reversible dynamic system @y i.e. |{t|X(t) = v, X(t + 1) = w}| =
{t| X(t) = w, X (t+ 1) = v}| forall v,w € Q. Then the homogeneity function
hs is stochastic with respect to the frequency functiahat is given byf(v) :=

{t] X (&) = v}l.

Proof: We havef (v)S(v,w) = f(w)S(w,v) and sohg(v, w) = ) for any

v,we V. Since)_ ., S(v,w) = 1forallv € V, hg is stochastic. O

Note that the condition fof primitive (see Lemma 4.3.8) is true for any de-
composition ofV := {X(¢)|t = 1,...,T} because one easily checks that for
all v,w € V, there existy,...,v,, € V,m < T, so thatv = v, w = v, and
S(Uz‘,UH_l) > (0 for1l <i<m-—1.

In addition to natural given stochastic homogeneity functions, we can also
construct them artificially: For each homogeneity functiotinere exists a trans-
formation into a stochastic homogeneity functfowith respect to a suitable fre-
qguency function:

Lemma 4.3.11LetV be any data set if with homogeneity functioh and fre-
quency functiory. Setf(v) := >, oy h(v,w)f(v)f(w) for all v € Q. Define

h:QxQ—[0,1]via

h(v,w) = h(v,g;)fﬂ(ﬂv)f(w) v,w € ()

f(0)f(w)

Thenh is a stochastic homogeneity function with respe(i.to

For well structured simple cluster problems, i.e. cluster problems with clusters
of nearly identical size and a nearly identical homogeneity and a nearly constant
frequency function, we havg(v) ~ const. and thereforéi(v, w) ~ ¢ - h(v, w),
wherec is a constant value. This guarantees that an optimeluster set of
(V, f, h) is nearly an optimakt-cluster set ofV, f, h). Note that in the case of ge-
ometric cluster problems with a distance functibrve usually haveé (v, w) > 0
for nearly allv, w € V, becausé, vanishes only for objects with maximal dis-
tance. Therefore the constructed matfixwill be primitive. We will use this
observation to compute an optimal number of clusters for our simple example
from section 1.4:
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Example: Determination of a correct number of clusters

Obviously the cluster problem for the data $éts given by Figure 1.3 is well
structured and the frequency functigris constant withf(v) = 1 forallv € V.

Forh = hy with d = deyqiqa We getf(v) € [4.90,7.24] for v € V. To reduce the
variance we slightly modify our homogeneity function. We set

d(v,w)

(max, wev d(v, w))

,v,w € €.

Obviously this homogeneity function is still suitable for the computation of ge-
ometrically based clusters. Now we géw) € [3.81,5.78] for v € V, i.e. the
variance has decreased. The modificatioh bfs no influence on the ranking of
optimal k-cluster sets for differerit. We still cannot use the valués ;,(C(k)) to
determine the optimal number of clusters (see Table 4.1).

| optimalk-cluster set (k) | Tn(C(K)) |
C) =V 4.85
C(2) :={{a,b,c,d,e, f},{g,h,i}} 3.67
C(3) :={{a,b,c},{d,e, f},{g,h,i} 2.72
C(4) :={{a},{b,c},{d,e, f},{g,h,i}} 2.10
C(9) == {{a}, {0}, {c}. {d}. {e}, {/}. {g}. {n}, {i}} | 1.00

Table 4.1: Example: Optimal k-cluster sets of(V, f, h) for different & with
modified homogeneity function.

Based oni and the trivial decompositio®, := {{v}|v € V1, we can
compute the matrix§. The spectrum of is given in Table 4.2:

LM LA [ A [ A [ A [ A | A [ A | A |
[1.000[ 0.577] 0.165] 0.046] 0.041] 0.025] 0.018] 0.015] 0.010]

Table 4.2:Example: Spectrum of matrix S.

Obviously the large gap between the Perron Cluster and the remaining part of
the spectrum is at = 2, indicating thatS has two almost invariant aggregates.
Therefore the optimal number of clusters for our cluster problem isalsthe
fact that the distance between the Perron Rootand also very large, is a result
of the artificial construction of the stochastic homogeneity functionNe will
see in chapter 5 that for natural stochastic homogeneity functions, as e.g., the
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dynamically based functiohg, the Perron Cluster is always approachingf at
least there exist two clusters within the data.

Since the eigenvector associated with the Perron Root is the constant vector
e=(1,...,1)T, we only need the eigenvectbs associated with,, to compute
the almost invariant aggregates.

We haveY, = (—0.35, —0.21, —0.20, —0.13, —0.13, —0.13, 0.54, 0.53, 0.42)".
Comparing the components Bf we can directly identify the almost invariant ag-
gregates/; := {1,...,6} andl, := {7,...,9}. One easily checks that this
solution corresponds to the optimakluster set(2) of (V, f, h).
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