
Chapter 4

Multilevel Representative Clustering

In this chapter we will extend the basic reduction algorithm (see section 2.3) to
a multilevel approach. The main idea is to iterate the decomposition based rep-
resentative clustering method until the decomposition is fine enough so that the
optimal solution of the reduced cluster problem determines an optimal clustering
of the original cluster problem.

We will present a general approach that can be always used if the number of
clustersk is known a priori. For special homogeneity functions we will addition-
ally describe a powerful extension based onPerron Clusteranalysis that can be
used for cluster problems, where the number of clusters is unknown.

4.1 General approach

Let V = {v1, . . . , vn} ⊂ Ω be any data set inΩ with frequency functionf and
homogeneity functionh. A point very critical within the application of the basic
reduction algorithm (see section 2.3) is the fulfillment of the condition that the
decomposition ofV has to be a covering of an optimalk-cluster set of(V, f, h).

Suppose now that we have any decompositionΘ of V with codebookW and
any optimalk-cluster setC of (W, f̌ , ȟf). We know that the extension̂C of C on
V is ak-cluster set of(V, f, h). SinceΘ is a covering ofC by construction, it is
also a covering of̂C. Therefore we haveΓf̌ ,ȟf

(C) = Γf,h(Ĉ). At the moment we
cannot be sure thatΘ is also a covering of an optimalk-cluster set of(V, f, h),
what would imply thatĈ is optimal. Therefore we try to refineΘ.

Let Θ‘ with codebook vectorW ‘ be the result of a suitable refinement process,
e.g., as it will be described in the next section. If we now compute an optimal
k-cluster setC‘ of (W ‘, f̌ , ȟf), we can extend it tôC‘ and compute the weighted
intra-cluster homogeneityΓf,h(Ĉ‘) = Γf̌ ,ȟf

(C‘). If Γf,h(Ĉ‘) > Γf,h(Ĉ), the new
clustering is better, i.e.Θ was definitely not a covering of an optimalk-cluster set
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of (V, f, h). With Θ‘ we have a new candidate that is a finer decomposition asΘ
and that is a covering of ak-cluster set with improved quality.

From the above reflections one easily derives the main idea of the new mul-
tilevel representative clustering approach: Refine iteratively the decomposition
Θ, until no further improvement of the corresponding representative clustering is
observable.

Multilevel Reduction Algorithm

The following algorithm embeds the basic reduction algorithm in a multilevel re-
finement process. Note thatk has to be known a priori.
(1) Compute a decompositionΘ (based on a codebookW ) with adaptive choice
of nk, k ≤ nk ≤ |� n.
(2) Compute an optimalk-cluster setC of (W, f̌, ȟf ).
(3) ExtendC onV : Ĉ is ak-cluster set of(V, f, h). SinceΘ is a covering ofĈ, we
haveΓf̌ ,ȟf

(C) = Γf,h(Ĉ).
(4) RefineΘ so that the new decompositionΘ‘ of V with codebookW ′ is also a
covering ofĈ.
(5) Compute an optimalk-cluster setC‘ of (W ‘, f̌ , ȟf).
(6) ExtendC‘ on V : Ĉ‘ is k-cluster set of(V, f, h). SinceΘ‘ is a covering ofĈ‘,
we haveΓf̌ ,ȟf

(C‘) = Γf,h(Ĉ‘).
(7) If Γf̌ ,ȟf

(C‘) > Γf̌ ,ȟf
(C) then setΘ := Θ‘ and go to step (4), else stop.

For the computation ofΘ with adaptive choice ofnk and the codebookW
we can use the algorithms described in chapter 3. In the following section we
will describe techniques for a refinement of an existing decomposition so that the
quality of the corresponding codebook clustering increases.

4.2 Adaptive decomposition refinement

Let C̃ be any optimalk-cluster set of(V, f, h) and Ĉ be any nearly optimalk-
cluster set of(V, f, h). Further letΘ := {Θ1, . . . ,Θnk

} any decomposition ofV
with codebookW = {w1, . . . , wnk

} so thatΘ is a covering ofĈ, but not ofC̃.
Then there exist clusters̃C1, C̃2 ∈ C̃, Ĉ1, Ĉ2 ∈ Ĉ and partitionsΘs,Θp ∈ Θ so
thatC̃1 ∩ Θs 6= ∅, C̃2 ∩ Θs 6= ∅, C̃1 ∩ Θp 6= ∅ andΘs ⊂ Ĉ1,Θp ⊂ Ĉ2.

Suppose now that̄Θ is a decomposition of̄V := Θs ∪ Θp. Then the refined
decompositionΘ‘ := Θ \ {Θs,Θp} ∪ {Θ̄i ∩ Θs | Θ̄i ∈ Θ̄} ∪ {Θ̄i ∩ Θp | Θ̄i ∈ Θ̄}
would be better fitting tõC, while still being a covering of̂C. The problem is how
to identify the partitionsΘs andΘp, without knowingC̃.



4.3 Approach based on Perron Cluster analysis 61

The following qualitative observation offers a heuristic solution: SinceC̃ is
optimal, we havêhf(C̃1, C̃1) � 0 and thereforêhf (Θs ∩ C̃1,Θp ∩ C̃1) � 0.
But this givesĥf(Θs,Θp) � 0, which is equivalent tǒhf (ws, wp) � 0. So if
we refine all partitions witȟhf(ws, wp) � 0, we can be sure to refine also all
partitions which destroy the covering property ofΘ for C̃. Note that partitions that
are already fitting tõC, are also fitting after a refinement.

Decomposition refinement algorithm

Let Θ be any decomposition ofV with codebookW := {w1, . . . , wnk
}.

(1) Identify all indicess, p ∈ {1, . . . , nk} so thaťhf(ws, wp) > σ with σ � 0. Let
I be the resulting index subset.
(2) SetV̄ :=

⋃
s∈I Θs.

(3) Compute a decomposition̄Θ of V̄ with n̄k partitionsΘ̄i.
(4) SetΘ‘ := Θ \ {Θs | s ∈ I} ∪ {Θ̄i ∩ Θs | Θ̄i ∈ Θ̄ , s ∈ I}.

Obviously the above algorithm increases the number of partitions fromnk to
maximallynk +(n̄k −1)|I| partitions. Often several of the new partitionsΘ̄i∩Θs

are nearly empty. Therefore step (4) is improved by the following condition:Θs

is replaced only by thosēΘi∩Θs, with f(Θ̄i∩Θs) � 0. Note that in this case the
refinedΘ has to be adapted slightly to guarantee that it is still a decomposition.
This can be easily done, if we use the SOM algorithm for the computation of the
decomposition of̄V :

Let W̄ be the codebook of̄Θ generated by the SOM algorithm. For eachs ∈ I
we setIs := {i | f(Θ̄i ∩ Θs) � 0}. Then the reduced codebookWIs defines a
decomposition̄ΘWIs

of V̄ . If we replaceΘs by {Θ̄s,i ∩ Θs | Θ̄s,i ∈ Θ̄WIs
} for all

s ∈ I, the refinedΘ is still a decomposition ofV .
Instead of the suggested refinement algorithm, one could also think about us-

ing methods that tries to grow the SOM adaptively [26, 17]. In this case one has
to assure that the growing process is driven by the homogeneity functionh. If the
cluster problem is geometrically based, this should be no problem.

4.3 Approach based on Perron Cluster analysis

In this section, we will extend our general multilevel cluster approach by using
results and methods from the theory ofPerron Clusteranalysis that has been re-
cently developed by DEUFLHARD ET AL.. We will show that for cluster problems
with a stochastic homogeneity functions, this extended approach can be used for
a fast identification and efficient description of clusters, even if a correct number
of clustersk is not known a priori.
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4.3.1 Theoretical background

In the following, we will give a short description of the theory of Perron Cluster
analysis. For details and proofs see [16, 13].

Suppose we have a primitive stochasticn|× n|matrixS, i.e. there exist an
m ∈ N so thatSm > 0, the entriesSi,j are non-negative and the sum of each
row equals one. As a consequence, the constant vectore = (1, . . . , 1)T is an
eigenvector corresponding to the simple eigenvalueλ1 = 1 of S. For all other
eigenvaluesλi of S we have|λi| < 1.

Let π = (π1, . . . , πn|)
T any strictly positive distribution so thatπT e = 1 and

πTS = πT . We suppose thatS is reversible with respect toπ, i.e. D2S = STD2,
whereD := diag(

√
πi) is called aweighting matrixof S. If S is reversible, it

is self-adjoint with respect to the weighted scalar product< x, y >π:= xTD2y
and consequently, all eigenvalues are real. Additionally there exist a basis of
π-orthogonal right eigenvectors, which diagonalizesS and for every right eigen-
vectorY there is an associated left eigenvectorȲ = D2Y , which corresponds to
the same eigenvalue.

In the following letI1, . . . , Ik any disjoint index subsets withIp ⊂ {1, . . . , n|},
p ∈ {1, . . . , k}, and

⋃k
p=1 Ip = {1, . . . , n|}. Based on these index subsets we de-

fine a so calledcoupling matrixŜ := (SIs,Ip)1≤s,p≤k via

SIs,Ip :=
∑
i∈Is

∑
j∈Ip

πiS(i, j)∑
i∈Is

πi
. (4.1)

Lemma 4.3.1 The matrixŜ is stochastic and reversible with respect to the distri-
butionπ̂ := (π̂1, . . . , π̂k)

T whereπ̂p :=
∑

i∈Ip
πi.

Proof: SinceS is stochastic, i.e.
∑n|

j=1 S(i, j) = 1 for 1 ≤ i ≤ n|, we have

k∑
p=1

SIs,Ip =
∑
i∈Is

πi

π̂s

k∑
p=1

∑
j∈Ip

S(i, j)

=
∑
i∈Is

πi

π̂s

n|∑
j=1

S(i, j) =
∑
i∈Is

πi

π̂s

= 1

and thereforêS is stochastic. We further have

π̂sSIs,Ip =
∑
i∈Is

∑
j∈Ip

πiS(i, j) for 1 ≤ s, p ≤ k.

SinceS is reversible, i.e.πiS(i, j) = πjS(j, i) the reversibility ofŜ follows
immediately. �
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We are interested in index subsetsI1, . . . , Ik that lead to a nearly diagonal
coupling matrix:

Definition 4.3.2 Choosep ∈ {1, . . . , k}. Then we callIp an almost invariant
aggregate ofS, if SIp,Ip ≈ 1. If Ip is an almost invariant aggregate ofS for all
p ∈ {1, . . . , k}, we callI1, . . . , Ik a covering set of almost invariant aggregates of
S. In this case we callk an optimal number of almost invariant aggregates ofS.

One easily checks that almost invariant aggregates correspond to a permutation
of S so that the matrix is nearly block-diagonal:

Lemma 4.3.3 Let I1, . . . , Ik ⊂ {1, . . . , n|} any covering set of almost invariant
aggregates ofS. Then the indices{1, . . . , n|} can be ordered so that the matrix
S is of block-diagonally dominant form:

S = D + E =


D1,1 E1,2 . . . E1,k

E2,1 D2,2 . . . E2,k

. . . . . . . . . . . .
Ek,1 Ek,2 . . . Dk,k

 .

Herein the perturbation matrixE satisfiesE = O(ε) whereε is some perturbation
parameter.

Supposing that the conditions of Lemma 4.3.3 hold, we set:

S(ε) := S(0) + εS(1) + ε2S(2) + . . . ,

whereS(0) = D is the unperturbed part ofS.

It follows from perturbation theory [45] that the spectrum ofS(ε) can be di-
vided into two parts:

1. ThePerron Clusterincluding thePerron Rootλ1 = 1 and thek − 1 eigen-
valuesλ2(ε), . . . , λk(ε) approaching1 for ε→ 0.

2. The remaining part of the spectrum, bounded away from1 for ε→ 0.

The eigenvectors corresponding to eigenvalues of the Perron Cluster have a
useful property:

Lemma 4.3.4 Letλ1(ε), . . . , λk(ε) be the Perron Cluster ofS. Then there exits a
covering set of almost invariant aggregateI1, . . . , Ik ofS so that the eigenvectors
Y1, . . . , Yk ∈ Rn|, corresponding toλ1(ε), . . . , λk(ε), are almost constant on each
Is, i.e. we have for alls ∈ {1, . . . , k}:

i, j ∈ Is =⇒ (∀p ∈ {1, . . . , k}) Yp(i) ≈ Yp(j).
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The above theoretical results lead to a powerful method for the determination
of an optimal numberk of almost invariant aggregates ofS:

Suppose there exist — a priori unknown — index subsetsI1, . . . , Ik so that
the conditions of Lemma 4.3.3 hold. Then there exists anε∗ so thatS(ε∗) = S. If
ε∗ is sufficiently small, we can find a large gap within the spectrum ofS between
the eigenvaluesλk andλk+1 of S. In this casek is an optimal number of almost
invariant aggregates ofS.

But we cannot only determine an optimal number of almost invariant aggre-
gates, also the index subsets themselves can be computed based on Lemma 4.3.4:

Let Y1, . . . , Yk ∈ Rn|be the eigenvectors corresponding to the eigenvalues
λ1(ε), . . . , λk(ε) of S. Then the identification ofk groups of nearly identical
k-tupleY (i) := (Y1(i), . . . , Yk(i))

T of eigenvector components associated with
eachi ∈ {1, . . . , n|}, is sufficient to identify the covering set of almost invariant
aggregatesI1, . . . , Ik of S. Obviously such a grouping can be done via the com-
putation of ak-cluster set of the setVY := {Y (1), . . . , Y (n|)} with frequency
function fY (v) := 1 for v ∈ VY and a suitable homogeneity functionhY , e.g.,
hY = hd, whered is a distance function inRk.

4.3.2 Stochastic homogeneity functions

In the following we suppose that the homogeneity functionh is stochastic inV
with respect tof :

Definition 4.3.5 We call any homogeneity functionh : Ω×Ω −→ [0, 1] stochastic
in V with respect tof if we have∑

w∈V

h(v, w)f(w) = 1 forall v ∈ V. (4.2)

SetP (v, w) := h(v, w)f(w) for anyv, w ∈ V . We can directly extendP on
subsets ofV , if we define for any non-void subsetsV1, V2 ⊂ V :

P̂ (V1, V2) :=
∑
v∈V1

∑
w∈V2

f(v)P (v, w)

f(V1)
. (4.3)

Using earlier definitions (see section 2.3) we get:

Lemma 4.3.6 P̂ (V1, V2) = ĥf (V1, V2)f̂(V2) for any non-voidV1, V2 ⊂ V .
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Proof:

ĥf (V1, V2) =
1

f(V1)f(V2)

∑
v∈V1

∑
w∈V2

h(v, w)f(v)f(w)

=
1

f(V1)f(V2)

∑
v∈V1

∑
w∈V2

P (v, w)f(v)

=
1

f̂(V1)f̂(V2)
P̂ (V1, V2)f(V1) =

P̂ (V1, V2)

f̂(V2)

�

We have a sort of reversibility ofP with respect tof :

Lemma 4.3.7 f(v)P (v, w) = f(w)P (w, v) for all v, w ∈ V .

Proof: Sinceh is a homogeneity function, we haveh(v, w) = h(w, v) and there-
fore also

f(v)P (v, w) = f(v)h(v, w)f(w) = f(v)h(w, v)f(w) = P (w, v)f(w).

for all v, w ∈ V . �

From Lemma 4.3.7 directly follows:

f(V1)P̂ (V1, V2) = f(V2)P̂ (V2, V1)

for all non-void subsetsV1, V2 ⊂ V .

Based on̂P and a decomposition ofV we can define a stochastic and reversible
matrixS:

Lemma 4.3.8 Let Θ := {Θ1, . . . ,Θn|} be any decomposition ofV . Define the
n|× n|matrixS via S(i, j) := P̂ (Θi,Θj). Further setπ := (π1, . . . , πn|)

T with
πs := f(Θs)

f(V )
. Then we have:

(i) If for any i, j ∈ {1, . . . , nk} there existp1, . . . , pm, m ∈ N , so thatp1 = i,
pm = j andS(pt, pt+1) > 0 for 1 ≤ t ≤ m− 1, then the matrixS is primitive.
(ii) The matrixS is stochastic.
(iii) π is a strictly positive distribution withπT e = 1 andπTS = πT .
(iv) The matrixS is reversible with respect toπ.

Proof:
(i) is obvious and(ii) follows directly from the fact thath is stochastic andΘ is
a decomposition of the data setV .
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(iii) Obviously we haveπT e = 1. Further letS∗j := (S(1, j), . . . ,S(n|, j))
T be

thej-th column of the matrixS. Using Lemma 4.3.7 we have:

πTS∗j =
1

f(V )

n|∑
i=1

f(Θi)P̂ (Θi,Θj)

=
1

f(V )

n|∑
i=1

f(Θi)
∑
v∈Θi

∑
w∈Θj

f(v)P (v, w)

f(Θi)

=
1

f(V )

n|∑
i=1

∑
v∈Θi

∑
w∈Θj

f(v)P (v, w)

=
1

f(V )

n|∑
i=1

∑
v∈Θi

∑
w∈Θj

f(w)P (w, v)

=
1

f(V )

∑
w∈Θj

f(w)

n|∑
i=1

∑
v∈Θi

P (w, v)

=
1

f(V )

∑
w∈Θj

f(w) = πj .

(iv) For anyi, j ∈ {1, . . . , n|} we have:

πiS(i, j) =
f(Θi)

f(V )
P̂ (Θi,Θj)

=
1

f(V )

∑
v∈Θi

∑
w∈Θj

f(v)P (v, w)

=
1

f(V )

∑
v∈Θi

∑
w∈Θj

f(w)P (w, v)

=
f(Θj)

f(V )

∑
w∈Θj

∑
v∈Θi

f(w)P (w, v)

f(Θj)
= πjS(j, i).

�

Based onS we can use Perron Cluster analysis to determine an optimal num-
berk and to identify the almost invariant aggregates ofS. The following Theorem
shows that a covering set ofk almost invariant aggregates ofS corresponds to a
nearly optimalk-cluster set of(Θ, f̂ , ĥ) what we know is equivalent to a nearly
optimal representative clustering for any codebookW of Θ (see Theorem 2.3.9).
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Theorem 4.3.9 Letk be an optimal number of almost invariant aggregates of the
matrix S and letI1, . . . , Ik ⊂ {1, . . . , n|} be the corresponding covering set of
almost invariant aggregates. Then we have:
(i) 1

k

∑k
s=1 SIs,Is ≥ 1 − ε∗, with smallε∗ := 1 − mins SIs,Is

(ii) If we setC̄ := {C̄1, . . . , C̄k} with C̄s = {Θp | p ∈ Is}, thenC̄ is an nearly
optimalk-cluster set of(Θ, f̂ , ĥ), with Γf̂ ,ĥf

(C̄) = 1
k

∑k
s=1 SIs,Is

Proof:
(i) Since eachIs is almost invariant, we haveSIs,Is ≈ 1 for s = 1, . . . , k.
(ii) ObviouslyC is ak-cluster set ofΘ. We have:

Γf̂ ,ĥf
(C̄) =

1

k

k∑
s=1

1

f̂(C̄s)

∑
V1∈Cs

∑
V2∈Cs

ĥf(V1, V2)f̂(V1)f̂(V2)

=
1

k

k∑
s=1

1

f̂(C̄s)

∑
p1∈Is

∑
p2∈Is

ĥf (Θp1,Θp2)f̂(Θp1)f̂(Θp2)

=
1

k

k∑
s=1

1

f̂(C̄s)

∑
p1∈Is

∑
p2∈Is

P̂ (Θp1,Θp2)f̂(Θp1)

=
1

k

k∑
s=1

1

f̂(C̄s)

∑
p1∈Is

∑
p2∈Is

S(p1, p2)f(Θp1)

=
1

k

k∑
s=1

1

f̂(C̄s)

∑
p1∈Is

∑
p2∈Is

(
∑

p∈Is
f(Θp))S(p1, p2)f(Θp1)∑

p∈Is
f(Θp)

=
1

k

k∑
s=1

∑
p∈Is

f(Θp)

f̂(C̄s)

∑
p1∈Is

∑
p2∈Is

S(p1, p2)πp1∑
p∈Is

πp

=
1

k

k∑
s=1

SIs,Is.

Since 1
k

∑k
s=1 SIs,Is ≤ 1, we haveΓf̂ ,ĥf

(C̄) ≤ 1 and therefore(i) guarantees that

C̄ is nearly optimal. �

If we setC := {C1, . . . , Ck} with Cs :=
⋃

p∈Is
Θp, then using Theorem 2.3.9

and Lemma 2.3.5 we haveΓf,h(C) = Γf̂ ,ĥf
(C̄) and thereforeC is a nearly optimal

k-cluster set of(V, f, h).
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Note that it is possible that there exist differentk so thatk is an optimal number
of invariant aggregates. But this is not surprising, because cluster problems might
also have different correct numbers of clusters.

Multilevel Reduction Algorithm for stochastic homogeneity functions

We can use our results for a special version of the multilevel reduction algorithm
that can be used even if the number of clustersk is not known a priori:
(1) Compute a decompositionΘ (based on a codebookW ) with adaptive choice
of n|, n|≤ |� n.
(2a) Compute the matrixS.
(2b) Compute an optimal numberk of almost invariant aggregates ofS via Perron
Cluster analysis.
(2c) Compute an optimalk-cluster set of(VY , fY , hY ), leading to a covering set
of k almost invariant aggregatesI1, . . . , Ik ⊂ {1, . . . , n|} of S.
(3) SetC := {C1, . . . , Ck} with Cs =

⋃
p∈Is

Θp. ThenC is a k-cluster set of

(V, f, h) with Γf,h(C) = 1
k

∑k
s=1 SIs,Is.

(4) RefineΘ so that the new decompositionΘ‘ of V with codebookW ′ is also a
covering ofC.
(5) Repeat the steps (2a)-(2c) and (3) withΘ‘ instead ofΘ, leading to ak‘-clustering
C‘ of (V, f, h).
(6) If k‘ 6= k then setΘ := Θ‘ andk = k‘ and go to step (4)
(7) If Γf,h(C‘) > Γf,h(C), then setΘ := Θ‘ and go to step (4), else stop.

Identification of discriminating attributes based on Perron Cluster analysis.

In section 2.4.2 we have presented an algorithm for the identification of discrimi-
nating attributes. We now give a simple heuristic criterion to decide if an attribute
setA(JC) is redundant or not:

Let C := {C1, . . . , Ck} be any optimalk-cluster set of a data setV with a
coveringΘW that is defined based on a codebookW according to Eq. (3.2). Fur-
ther letW (J) be the projection ofW on Ω(J) and ΘW (J) := {Θ1, . . . ,Θnk

}
be the corresponding decomposition ofV (J). If the eigenvalue spectrum of the
matrix S corresponding toΘW , is nearly the same as the spectrum of matrixS‘
corresponding toΘW (J), then the attribute setA(JC) is redundant.

The above criterion uses the obvious fact that an attribute setA(JC) is redun-
dant, if the cluster structure of the cluster problem is independent of the attributes
in A(JC).
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Natural and artificial stochastic homogeneity functions

For a reversible dynamic system, the homogeneity functionhs, as defined in
Lemma 1.1.4, is stochastic:

Lemma 4.3.10 Let (X(t))t=1,...,T any representative trajectory of lengthT ∈ N
of a reversible dynamic system inΩ, i.e. |{t |X(t) = v,X(t + 1) = w}| =
|{t |X(t) = w,X(t+ 1) = v}| for all v, w ∈ Ω. Then the homogeneity function
hs is stochastic with respect to the frequency functionf that is given byf(v) :=
|{t |X(t) = v}|.

Proof: We havef(v)S(v, w) = f(w)S(w, v) and sohS(v, w) = S(v,w)
f(w)

for any
v, w ∈ V . Since

∑
w∈V S(v, w) = 1 for all v ∈ V , hS is stochastic. �

Note that the condition forS primitive (see Lemma 4.3.8) is true for any de-
composition ofV := {X(t) | t = 1, . . . , T} because one easily checks that for
all v, w ∈ V , there existv1, . . . , vm ∈ V , m ≤ T , so thatv = v1, w = vm and
S(vi, vi+1) > 0 for 1 ≤ i ≤ m− 1.

In addition to natural given stochastic homogeneity functions, we can also
construct them artificially: For each homogeneity functionh there exists a trans-
formation into a stochastic homogeneity functionh̃ with respect to a suitable fre-
quency function:

Lemma 4.3.11 Let V be any data set inΩ with homogeneity functionh and fre-
quency functionf . Setf̃(v) :=

∑
w∈V h(v, w)f(v)f(w) for all v ∈ Ω. Define

h̃ : Ω × Ω −→ [0, 1] via

h̃(v, w) :=
h(v, w)f(v)f(w)

f̃(v)f̃(w)
v, w ∈ Ω.

Thenh̃ is a stochastic homogeneity function with respect tof̃ .

For well structured simple cluster problems, i.e. cluster problems with clusters
of nearly identical size and a nearly identical homogeneity and a nearly constant
frequency function, we havẽf(v) ≈ const. and thereforẽh(v, w) ≈ c · h(v, w),
where c is a constant value. This guarantees that an optimalk-cluster set of
(V, f̃ , h̃) is nearly an optimalk-cluster set of(V, f, h). Note that in the case of ge-
ometric cluster problems with a distance functiond, we usually havehd(v, w) > 0
for nearly allv, w ∈ V , becausehd vanishes only for objects with maximal dis-
tance. Therefore the constructed matrixS will be primitive. We will use this
observation to compute an optimal number of clusters for our simple example
from section 1.4:



70 Multilevel Representative Clustering

Example: Determination of a correct number of clusters

Obviously the cluster problem for the data setV as given by Figure 1.3 is well
structured and the frequency functionf is constant withf(v) = 1 for all v ∈ V .
Forh = hd with d = deuclid we getf̃(v) ∈ [4.90, 7.24] for v ∈ V . To reduce the
variance we slightly modify our homogeneity function. We set

h(v, w) := 1 − d(v, w)

(maxv,w∈V d(v, w))
, v, w ∈ Ω.

Obviously this homogeneity function is still suitable for the computation of ge-
ometrically based clusters. Now we getf̃(v) ∈ [3.81, 5.78] for v ∈ V , i.e. the
variance has decreased. The modification ofh has no influence on the ranking of
optimalk-cluster sets for differentk. We still cannot use the valuesΓf,h(C(k)) to
determine the optimal number of clusters (see Table 4.1).

optimalk-cluster setC(k) Γf,h(C(k))

C(1) := V 4.85
C(2) := {{a, b, c, d, e, f}, {g, h, i}} 3.67
C(3) := {{a, b, c}, {d, e, f}, {g, h, i} 2.72

C(4) := {{a}, {b, c}, {d, e, f}, {g, h, i}} 2.10
C(9) := {{a}, {b}, {c}, {d}, {e}, {f}, {g}, {h}, {i}} 1.00

Table 4.1: Example: Optimal k-cluster sets of(V, f, h) for different k with
modified homogeneity function.

Based oñh and the trivial decompositionΘV := {{v} | v ∈ V }, we can
compute the matrixS. The spectrum ofS is given in Table 4.2:

λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8 λ9

1.000 0.577 0.165 0.046 0.041 0.025 0.018 0.015 0.010

Table 4.2:Example: Spectrum of matrix S.

Obviously the large gap between the Perron Cluster and the remaining part of
the spectrum is atk = 2, indicating thatS has two almost invariant aggregates.
Therefore the optimal number of clusters for our cluster problem is also2. The
fact that the distance between the Perron Root andλ2 is also very large, is a result
of the artificial construction of the stochastic homogeneity functionh̃. We will
see in chapter 5 that for natural stochastic homogeneity functions, as e.g., the
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dynamically based functionhS, the Perron Cluster is always approaching1, if at
least there exist two clusters within the data.

Since the eigenvector associated with the Perron Root is the constant vector
e = (1, . . . , 1)T , we only need the eigenvectorY2 associated withλ2, to compute
the almost invariant aggregates.

We haveY2 = (−0.35,−0.21,−0.20,−0.13,−0.13,−0.13, 0.54, 0.53, 0.42)T .
Comparing the components ofY2 we can directly identify the almost invariant ag-
gregatesI1 := {1, . . . , 6} and I2 := {7, . . . , 9}. One easily checks that this
solution corresponds to the optimalk-cluster setC(2) of (V, f, h).
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