Chapter 3

Adaptive Decomposition by
Self-Organized Neural Networks

In this chapter we will describe two methods, based on self-organized neural net-
works !, that can be used to compute a decomposiion= {0,,...,0,, } of

a data set” with homogeneity functiork. The decomposition is adaptive in the
sense that the numbey, is chosen automatically — only an upper bolind N

has to be fixed a priori — so thétis fine enough to use it within our basic reduc-
tion algorithm (see section 2.3). Moreover, the second method that is an recently
developed extension of the first one (see [29]), allows to compute non-uniform
approximate box decompositions.

Since each decomposition Bfis also a kind of clustering df, the computa-
tion of a decomposition with small decomposition error (see Eg. (2.1)) has to be
done heuristically in a shorter time théh(n?). Otherwise there is no advantage
of our basic reduction algorithm in comparison with a direct computation of an
optimal k-cluster set ol

We suppose thd? C R?is a metric space, otherwise we will extend it suffi-
ciently as described in the appendix. Further we assume that there exists a distance
functiondist : 2 x 2 — R so that for allv, w € V the following local maximum
condition holds:

dist(v,w) ~ 0 = h(v,w) = hpe (V) . (3.1)

Usually, this condition is given for geometric cluster problems and also for many
dynamic cluster problems (see the earlier discussion in section 1.2).

For an introduction to neural networks see, e.g., [55]

42

Adaptive Decomposition by Self-Organized Neural Networks

3.1 Self-Organizing Maps (SOM)

Let V' any data set irf2 with frequency functionf. The following Lemma de-
scribes a way to compute an adaptive decomposition based on a given codebook:

Lemma 3.1.1 Assumé € N andW := {wy,...,wg} C €.
SetOy = {Oyy, . . ., Oy, } With partitions,,, C (2 so that for allv €

vEOBO,, <= p=min{s|dist(v,w,)= Hlun dist(v, w;)}. (3.2)
Further set/ := {p|©,,(V) #0,p=1,... k}witho,, (V) :=06,, NV. Then
Ow, (V) :={0,,(V)|p € I} is adecomposition df with n;, := || partitions.

Since we havelist(v, w) < dist(v, wy) + dist(w, w;) for all v, w € 6,,(V),
each method that tries to computéfa so that forv € 0, (V) the distances
dist(v, ws) are minimized, can be used to generate a decompositidn with
small decomposition error.

At first, one might think of pure vector quantization (VQ) methods (see [35]).
These methods often try to minimize ttistortion valuewhich is defined as:

Z Z dlSt’U’LUS) f(v). (3.3)

s=1 1)6@“)5

However, they have the tendency to produce codebook vectors that are maximally
different, to achieve a more uniform decompositiol/ofThis might cause prob-
lems of so calleghseudo-clusters.e. clusters” with nearly zero frequency value
f(C). Therefore it seems better to use a method that tends to gather codebook
vectors in some more robust way. Here a powerful method atedfNEN s Self-
Organizing Maps (SOM). The corresponding algorithm usually produces fast and
good solutions even for high-dimensiontal It can be easily adapted to the case
of cyclic data which will be essential for using it within biomolecular data (see
chapter 5). Further it has the feature of topology approximation which avoids the
appearance of pseudo-clusters and leads to decompositions that are rather robust
under changes of the numier

In the following we give a short general description of the SOM method. For
an exhaustive presentation see [48].

To be in correspondence with the usual notation in the literature, we suppose
that there exists a probability distributid?,; on¢) With a probability density func-
tionp : Q — R{ so thatp(v) = f(v)
replace all integral signs by sums and has tofisl&ectly.

Each SOM is formed by a-dimensional input-layer that is fully connected
with the two-dimensional Kohonen layer, which is a neural x m, grid G with

3.1 Self-Organizing Maps (SOM)

43

rectangular or hexagonal topology akd= m,m, grid neurons. The coordi-

nate tuple of each neuronon the grid is denoted by, € G and each neu-

ron s is uniquely related to g-dimensional codebook vectar,. After a suit-

able initialization of the codebook vectors, the SOM is trained. itime steps

by a repeated presentation of vectors of thdimensional input spac@ ac-
cording to the probability distributio®’,. For each presented input vector the
SOM computes a so called winner neuron and its neighboring neurons on the grid
and adapts the related codebook vectors so that the distance to the input vector
is reduced. To achieve convergence, the learning rate of the distance reduction
a: {0,...,L} — [0,1] and the width of the neighborhood of the winner neuron,
the so called neighborhood radius functipn {0, ..., L} — R, shrink to zero

with time. After a suitable number of training steps the codebook vectors that are
related to neighboring neurons on the grid, are neighboring in the input space ac-
cording to the chosen distance function. Therefore the codebook vectors not only
determine via Eq. (3.2) a decompositiontafbut also approximate the topology

of the input space via the neighborhood structure of the grid.

Algorithmic Realization In the following we describe the initialization of the
codebook vectors, the definition of the winner neuron together with its grid neigh-
borhood and the specification of the codebook adaptation rule.

Initialization. We suggest to choose the initial valueg0), ..., wx(0) as
approximatelyP,-distributed random vectors with,(0) € €.

Winner neuron and grid neighborhootlet z = (z4,...,z,)" € Q be an
any input vector andvy, ..., w, € 2 the actual codebook vectors of the
SOM. Then we call neurop e {1, ..., k} thewinner neurorfor inputz, if

minkdist(a:, w;)}. (3.4)

1=

p = min{s | dist(z, w;)

.....

Note that Eq. (3.4) is equivalent toc ©,,,, if ©,,, is defined according to
Eq. (3.2).
To determine the neighboring neurons of the winner neuron, one has to
specify a grid distance functiop: G x G x Rt — [0, 1]. Usually one uses
either the bubble grid distance

0 if flzs — 2l <

nbubble(zsa Zps 7) =
1 else,

or the Gaussian grid distance

2s — 2|17
i 27) = 1= (L2220,

44

Adaptive Decomposition by Self-Organized Neural Networks

wherey denotes the actual neighborhood radius jafidhe two-dimensional
Euclidean distance. A neurarbelongs to the neighborhood of winner neu-
ronp if n(zs, zp,7v) < 1. If we choose),qussian, then the neighborhood of
each neuron covegl grid neurons.

Codebook adaptation ruled.et neuronp be the winner neuron for input

z(t) = (z1(t),...,z,(¢))" € Q at timet andw, (¢),...,w(t) € Q the

actual codebook vectors. Further tett) and~(t) be two time-dependent

linear or log-linear functions that decrease to zero witt) < 1 andy(0) <

min{mg,my}

A R

Then the new codebook vectarsg(t + 1), ..., wg(t + 1) are computed as
ws(t + 1) := ws(t) + a(t) neigh(zs, zp, t) (x(t) — ws(t)) (3.5)

with neigh(zs, z,, t) == 1 — n(zs, 2p, Y(t)).

In the case that we set(0) = 0, the SOM is a pure VQ algorithm and there-
fore optimizes the distortion value [48]. If we allow neighborhood learning, e.g.,
v(0) > 0, the formulation of an energy function that is minimized by the SOM is
not possible [47]. Recently slight modifications of the adaptation rules have been
suggested that allows the formulation of an energy function without destroying the
essential features of the SOM [38, 40]. For further theoretical investigations of the
SOM algorithm, especially a comparison to pure VQ methods, see [54, 11, 12].

3.2 Self-Organizing Box Maps (SOBM)

The basic idea of the recently developed Self-Organizing Box Maps (SOBM)
method [29] is to computeodebook boxe®/, := (W,,,...,W,) € BOX(Q)
with W, = [I,,,7,,] C R instead of codebook vectors, € . This is done in
such a way that each codebook box is a nearly optimal box approximation of its
corresponding partitio®;, C

We will call any setB = Q?_,[l;,r;] € BOX(2) with /;,7; € R an optimal
box approximation of a se¥/ C 2 with respect taP,, if

P,(B\ M)+ P,(M\ B) — min.

Algorithmic Realization Obviously, this change of concept induces changes of
the SOM algorithm, which we arrange here:

Initialization. Let w, (0), ..., wx(0) be different initial values for the code-
book vectors of the traditional SOM, e.g., approximatejydistributed ran-
dom vectors withw,(0) € Q for s = 1,...k. For our extended algo-
rithm, we chooséV,(0) := @™, I, (0), 7, (0)] with I,,(0) = W,,(0) and

3.2 Self-Organizing Box Maps (SOBM) 45

rs,(0) = Wy, (0) + € in terms of a small positive valug the initial width of

i

the interval so thatV, N1, = P forall s,p € {1,...,k}.

Winner neuron.We suppose that the problem specijidimensional dis-
tance functiondist(x, y) with =,y € € can be written as a functioh of ¢
one-dimensional distance measufgs;, y;), which means thatist(z, y) =
F(di(z1,11), ..., dy(xq,y,)). Note that many popular distance measures, as
e.g., the Euclidean distance, just exhibit this feature. Obviously we need a
distance measurBIST that permits to compute the distance between an
input vectorz € 2 and codebook boxd§/, e BOX(£2). For that purpose,

we suggest

DIST (, Wy) := F(di (21, Wy,), . . ., dy(aq, Ws,))
with
0 if z; € Wsi
min{d;(z;, ls,), d;(x;,7rs,)} else.

Then the winner neuromhas to match a condition analogous to Eq. (3.4):

A

sz‘(%', Wsi) =

p = min{s | DIST(z, W,) minkDIST(x, Wi)}. (3.6)

1=

.....

Obviously we can use Eq. (3.6) to define for each codebookibpthe
corresponding partitio®, := ©,;, C (2 analogously to Eq. (3.2).

Codebook adaptation rulesn analogy to the SOM algorithm, the SOBM
algorithm has to adapt the codebdodéxes This will be done by the fol-

lowing rules:

ls,(t+1) = (1)
+ (L, (1), 75, (1), (1)) o(t) neigh(zs, 2z, 1) (2i(t) — 15, (1))
- Oé(t) C(lSi (t)v T's; (t))

r,(t+1) = 7re(t)

+g(=7rs,(t), =1, (t), —7i(t)) (t) neigh(zy, 2, 1) (zi(t) — 7r4,(t))
+a(t) c(ls, (1), rs,(t))
fzx<a

1
with a linear functiory : R?® — [0,1], g(a,b,z) = { 0 if >0
else

46

Adaptive Decomposition by Self-Organized Neural Networks

and a functiore : R? — R that is independent of the inpuft) and will
be defined later.

Note that instead of the above functignalso a smoother "sigmoid” function
like g(a,b,x) :=1— m can be chosen in principle.

Suppose for the time being that= 0, then one easily verifies that the left
interval boundary is only adapted, if the input is left of the right interval boundary
and vice versa. Further one observes that inputs outside the interval have a greater
influence on the adaptation of the nearest interval boundary, as when they are
inside the interval. In the following we will motivate the suggested adaptation
rule.

One easily verifies, that after the initialization we have c O, for all
s=1,..., k. Suppose now an inputthat belongs t®,. If z; ¢ IW.,, we have
to widen the interval. Therefore the nearest interval boundary is “pulled” towards
x;. Thisis just the same method as in the original SOM algorithm, & Wsi the
first strategy is to do nothing, because in this case the box seems to be all right.
This however, turns out to be not a good idea, because ffebange over time so
that we can observi/, \ O, +# (after several adaptation steps. If this difference
becomes larger, it is not only possible tHa{(1V, \ ©,) increases so that, is
no longer a good box approximation ©f. Also the probability grows that one
observes overlaps between the boxes after the algorithm stops (see Figure 3.1).

Figure 3.1:Poor partitioning in the absence of interval shrinkage.

If, however the overlap between the boxes is too larjeand its correspond-
ing decomposition are no longer an approximate box decomposition. Therefore
it is necessary to shrink the intervals. This could be done by adapting the inter-
val boundaries when even the inpytis inside the interval, the so called interior
adaptation. It is obvious that the adaptation of the nearest boundary should be
greater than that of the opposite side. By doing this a new problem arises: Usu-
ally after some time there are more inpuisnside the interval than outside. As a
consequence, the interval shrinks faster than it grows, which implies that the value

PP(WS) shrinks, too. But then the box approximation@®f is not as good as it

3.2 Self-Organizing Box Maps (SOBM)

47

could be. Therefore one has to introduce something like a damping coefficient or
a correction term, which reduces the inter-interval adaptation. Such a parameter
will depend on the ratio of the inputs inside and outside the interval. A direct
computation would be impracticable, because it is very time consuming. So one
has to think about certain heuristics, which only consider the interval width. Our

approaches with a damping coefficient, appeared to supply unsatisfactory results.

Excellent results were obtained by another approach, which uses an analytically
derived correction term. This approach will be presented subsequently.

Correction term

Without loss of generality, we suppose that there exjsk; € R so that we

haveQ, := {z € Q| p(z) > 0} C QL ,[a;,b;]. Let O4(t) be the decomposition
that is defined vidV,(t) and letA,(t) := I [(t), 7% (t)] be an optimal box
approximation o, () with minimal volume, i.e.

q

boxvol(A, (1)) := [[(rs,(t) — I2,(t)) — min.

=1

For our further expositions we define fof C Q with P,(A/) > 0, the condi-
tional probability density functiop,; on M via

p(w) fweM
w) = Pp(M) !
pu(w) { 0 else.

Usingpg,), We can compute the conditional expectation vall(&,(t + 1))

for each actual codebook vecttr, (1) under the condition that is the winner
neuron. Note that this implicitly ensuré%(6,(t)) > 0.

We haveFE (W, (t + 1)) = Q™ [E(l,,(t + 1)), E(re,(t + 1))] with

b;
BU(+1) = [1+ Do, (X do = [1t + D)o, (00) dai,

P 1

b;
Elra(t+1)) = / ot + 1)pa o (X) d = / ot + 1) o, 4(72)

P 1

and

48 Adaptive Decomposition by Self-Organized Neural Networks

pé)s(t),i(xi) =

b1 bi—1 bit1 bg T
/ / / / Do (@1,)TV ey . dayy dys . day.
al a;—1 A+1 Qg

Upon considering our above adaptation rule we obtain:

Els(t+1)) = ()

and

E(rg,(t+1)) = rg(t

+a(t) c(ls, (1), 75, (1)) -

SinceA,(t) is an optimal box approximation @, (¢), we may assume that

Ppésu)(As(t)) = / P@S(t)(aJ) dw =~ 1.
k weAL(t)

Therefore, for simplicity, we suppose that the i-th components the inputs
X € O4(t) are uniformly distributed over? (¢), r}(¢)] so that

IS TS .
Per. (1) = 4 TOLO if X = (21,...,29)7 € A1)
O 0 else.

3.2 Self-Organizing Box Maps (SOBM)

49

Hence, we arrive at;
E(rg,(t+1)) = rg(t)

ri*(t) Oé(t) i — T €T;
I oo (RO

)
Ts; (t) (JZ'Z — ls(t)) Od(t)
i /l t)) (ry ; (i — 75,(1)) dz;

84 (t) (rsi (t) - lsl(

+a(t) e(ls,(t), rs,(t))

50 Adaptive Decomposition by Self-Organized Neural Networks

By means of the intuitive choice

C(lSi (t)v T's; (t)) = (Tsi (t) - lSi (t)) (37)

we end up with

B (t41)) = 1, — galt) o) ~ b0}

and

E(rs,(t+1)) = rs + 1oz(t)

in terms of some model quantity

(Tsi (t) B lSi (t))
(i) = (1)

Vs, (t) ==

This quantity measures the deviation of the actual interval width from the op-
timal one.

In the following, we have to assure that the intervals are always well defined,
i.e. we always have, (t) < r,,(t) forallt € {0, ..., L}.

Lemma 3.2.1Foranys € {1,...,q}and allt € {0,..., L} we have

[;(t) <rs,(t) = I, (t+1) <rg,(t+1).

3.2 Self-Organizing Box Maps (SOBM)

51

Proof. Let p be the winner neuron for input X(t). Then one easily verifies:
(1) xi(t) < ls,(t) ==

ntr)= ter) = (1420 0ul) - 1)
— a(t) neigh(z, 2p, 1) (2(t) — 1,(1))

~—
>0 >0 <0

Y
<
w
—~
~
~—
|
S~
il
—~
~
~—

@ alt) > ()
(4 1) Lt +1) = (1+—)<r5i<t>—z5i<t>>

!

+ a(t) neigh(z,, 2,, t) (zi(t) — 7, (t))J

[

-~

> -l

(3) i) € [ls,(1),rs, ()] =

1) (1) — <1+@)<mi<t>—zsi<t>>

+ a(t) neigh(zs, 2p, t) e l; ol (i (t) — rs. (1))
ol neieh(s. o g Ts®) —@i)
(t) neigh(zs, 2p, 1) (rs. (1) — lsi(t))(i(t) = 15,(1))

_ (1 i @) (ras() = 1, (1))

(rs;(t) — 2i(0)) (:(t) —

L, (1))

—2a(t) w (rs,(t) — L5, (1))

<1 ~ ~
<3 (rs; (D)=1s; (1) (%)

V4
VR

[a—y
+

w‘

|

M‘

~_
—~
=

w0
—
~
SN~—

|
o~

w
—~
~
N—
N—

1
(%) max (r —x)(z —1) = Z(r—l)2 forall [, € R

1<z<r

Adaptive Decomposition by Self-Organized Neural Networks

Becausex(t) < 1forallt € {0,..., L}, we have in all three cases:

(re,(t) = 1,(t) >0 = (ry,(t+1) =1, (t+1))>0.

Note that Lemma 3.2.1 is usually not truenift) > 6.

Hence ifl,, (0) < ,,(0), Lemma 3.2.1 guarantees that, (t),,,(t)) > 0 and
Y5, (t) > 0forallt € {0,...,L}.

Therefore we obtain

W, (t) C (1), r1 ()] = s,(t) €]0,1]
= E(l,(t+1)) <l (t) and E(rs,(t + 1)) > rg,(t)

and

Wo, () = [F(0),ri (0] = Bl (¢ +1)) = L,(t) and E(r,(t 4 1)) = r,(0).

2 2

If we chooselV,(0) € A,(0) we can be confident that,, (L) ~ 1 and there-
fore W, (L) ~ [I¥(L),r(L)], whenever we use our extended algorithm with

7

time steps and. large enough. This means tHéﬁS(L) ~ A,(L) and therefore
Wi(L) is nearly an optimal box approximation 6f,(L) with respect tg. Obvi-
ously the chosen functianis a suitable correction term for the interval shrinkage.

Using this correction term the presented SOBM algorithm is suitable to gen-
erate approximate box decompositiond/ofsee Definition 2.2.1):

Lemma 3.2.2 AssumelV = {IW;,..., W} C Q so thatWW, € BOX(1) is
a nearly optimal box approximation @Wp forp =1... k. Set@Wp(V) =
@Wp nv. Then@WI(V) = {G)WP(V) |p € I} with I := {p‘@WP(V) # 0}
is a decomposition of” with n;, := [I| < k partitions and(©y;, (V'), W) with
W = {W,|p € I} is an approximate box decomposition.

Proof. There exists a smadl > 0 so that for any € I we have
FWu\ O,) + F(O, \ Wy) < 0 (V).

This guaranteeg(©y;, N W,) > f(©yy,) — (V) foranyp € I. SinceOy;, (V)
is a decomposition of” by construction andg' (M NV') = f(M) for any subset
M of Q, this yields:

overlay ; (O, (V), W) >1—ong.

3.3 Comparison SOM - SOBM

53

One easily verifies that for anyc I, we have

fWnJWe) <D fW\Og) =) f(W) =Y f(W.ney,)
DF#D sel sel sel

A

Since) ., f(W;) < f(V), this yields:
. W, N6y
< Z <1 — overlayf(QWI(V),W1)> < on;.

sel

sel

3.3 Comparison SOM - SOBM

Upon comparing codebool& and W, computed by the original SOM and the
SOBM algorithm with the same parameters and initialization, one will observe
clear similarities. In most cases the orientation of the maps and the visually iden-
tifiable clusters are equal (see subsection 5.2.2 for an example).

For each codebook vectar, € 1V one can usually find a codebook bid €
W with w, € W,. Therefore the SOBM algorithm will be at least as powerful
as the classical SOM algorithm. In the following, however, we will show that the
SOBM algorithm has important advantages.

For simplicity we suppose that we have only an one-dimensional input space
2 = R. We want to compute & x 1 map with neurons ands, the Euclidean
distance function andeigh(z,, z5,t) = 0 fort € {0, ..., L}.

For the purpose of illustration, we define two probability density functigns
andp, (see Figure 3.2):

25 if z€[0.8, 1]
pi(x) = 0.5 ifze[-1,0]
0 else

25 ifzel08, 1]
) 0625 ifze[-1,-06]
p®) =0 0625 itz e [-04, 0]
0 else.

We have used the original SOM algorithm and our extended algorithm with
¢ = 0 andc as defined in Eq. (3.7) to compute the codebookspfoand p,.

54 Adaptive Decomposition by Self-Organized Neural Networks

p,(%) p,(X)

05f 4 05t ’ ‘
0 L L L L 0 L
-2 -15 -1 -05 0 05 1 15 2 -2 -15 -1 -05 0

Figure 3.2:Probability density functions p; and p,

Table 3.1 shows the results (random codebook initializatioi) = 0.9 and

L = 10000).
P1
SOM ws = —0.5, wsy = 0.9
SOBM(c = 0) | W, = [0.75, —0.25], W5 = [0.85,0.95]
SOBM . = [—1.00,0.00], W5 = [0.80, 1.00]
P2
SOM ws, = —0.5,ws = 0.9
SOBM(c = 0) | W, = [-0.78, —0.22], W5 = [0.85, 0.95]
SOBM W, = [~1.05,0.07], W5 = [0.80, 1.01]

Table 3.1:Codebooks forp; and p,

Obviously, the following three observations are of interest:

e The probability density functiop; is positive on[—1,0] and[0.8,1]. Al-
though these intervals are of different width, we get no hint about this fact,
if we look at the codebook vectors, andws.

e The codebook boxes are box approximations of the partitions, which they
implicitly define. These approximations are perfect if we use the correction
termc as defined in Eqg. (3.7).

e The point codebooks are equal for both probability density functions, i.e.
althoughp; andp, are different, we cannot distinguish them by looking at

3.3 Comparison SOM - SOBM 55

the codebook vectors. The situation is quite different if we use the correc-
tion termc and look at the codebook boxes. Here we see that the interval
width of I, in the case of, is larger then in the case ¢f. If we look
deeper, we see that the difference is approximately the width of the hole
between-0.4 and—0.6 of p,. This is not surprising, because the correction
terms forl¥, are equal in both cases, but the power of the interval shrink-
age forl¥, is lower in the case of,. Therefore the intervall’, can grow
stronger in this case. Although we cannot derive the differences befwyeen
andp, from looking at the differentV,, we at least get a hint that there are
differences.

We have made similar observations for higher-dimensional input spaces and
larger maps.

Additionally we want to show an intriguing feature of the SOBM algorithm.
Look at he following probability density functions:

i (e () e (52

One observes thal/, ~ [— o,y + o] andW; ~ [uy — o, iz + o]. The
approximation is the better, the larger the difference is betweemd .. Fig-
ure 3.3 showgs with iy = —0.5, s = 0.5 ande = 0.27 and Table 3.2 gives the
corresponding computational results.

p3(z) =

0.8

0.7

0.6

0.5

04t

0.3

0.2

01r

L L L L L
-2 -15 -1 -0.5 0 0.5 1 15 2

Figure 3.3:Probability density functions ps

Adaptive Decomposition by Self-Organized Neural Networks

P3
SOM ws = —0.5, wsy = 0.5
SOBM(c = 0) | W, = [<0.67, —0.33], W5 = [0.31,0.67]
SOBM W, = [-0.85, —0.15], W = [0.13, 0.86]

Table 3.2:Codebook vectors forps

Although the concept of codebook boxes develops its full power still within
the computation of approximate box decompositions the advantages in compari-
son with point codebooks are already obvious.

A disadvantage of the SOBM algorithm is that it requires more computing
time than the classical SOM algorithm. Although the difference depends on the
chosen implementation, one easily checks that the number of variables that have
to be adapted and to be evaluated are doubled. Therefore in the worst case the
SOBM algorithm doubles the computing time of the original SOM algorithm.

3.4 Computational complexity

To speed up the computing time, one may think about a combination of the SOM
and the SOBM algorithm. In the following we suggest such a combination, which
has turned out to be quiet powerful in our first applications (see chapter 5).

As usual in the original SOM algorithm, we first computein:= u - k steps
the codebook vectors,, . . ., wy with a suitable average number of codebook up-
datesu, e.g.,u = 100, a large learning rate at the beginning, e«d()) = 1, and
with neighborhood adaptation, i.eeigh(zs, 2,,t) > 0 for ¢t < L,. This is often
called theordering phasef the SOM algorithm.

After this ordering phase one usually passes on to another adaptation cycle
with L, > L, adaptation steps, a low learning ratend no neighborhood adap-
tation, i.e.neigh(z;, 2,,t) = 0for s # pandt € [L;, L; + Lo]. After this so called
convergence phasd the SOM algorithm, the codebook vectors are rather stable
and good representatives of the input space and the used probability distribution.

To achieve convergence, in the classical SOM algorifiynis usually much
larger than’,, e.g., a factoB or more. In our combined approach, we et~ L,
and use the SOBM algorithm for an additional convergence phase: We first ini-

3.5 Practical extensions

57

tialize the codebook boxeléfs(()) by using the earlier computed representatives
ws(L2) within the described initialization routine. Then we adapt the codebook
boxes inL3 ~ L, time steps with a low learning rate and no neighborhood adap-
tation.

Summarizing, as a result of this combination — original SOM algorithm plus
additional convergence phase with SOBM algorithm — we obtain a shorter com-
puting time, as if we only use the SOBM algorithm, while getting comparable
results. Additionally we avoid possible negative effects of the neighborhood adap-
tation on the generation of the codebook boxes.

Up to now, we have not answered the question, if the SOM/SOBM algorithm
needs less thath(n?) operations to compute a decomposition of any data set
V' C Q with n data objects and dimensign

Letu denote the average number of codebook updates that is sufficient to guar-
antee convergence of the SOM/SOBM algorithm, i.e. we rf@@d k) adaptation
steps. Since we have to compute the winner neuron and to adapt the codebook
within each adaptation step, each of these steps gtsk) operations. There-
fore we need)(u - ¢ - k?) operations to generate a suitable codebook. In addition,
the computation of a decomposition based on this codebook according to Eq. (3.2)
can be done witl0(q - k - n) operations.

Since for large cluster problems we usually have

u-k<n and ¢g<n,
we totally need
Ow-q¢-kK*+q-k-n)=0(Kk-n)

operations to compute a decomposition of the datad/seta the SOM/SOBM
algorithm.

If we choosek significantly smaller than, e.g. .k = O(log n), this guarantees
that we can compute a decomposition much faster ¢h@art).

Therefore the SOM/SOBM algorithm is a suitable heuristic for the computa-
tion of decompositions.

3.5 Practical extensions

In the following we shortly describe two practical extensions of the SOM and the
SOBM algorithm, whenever they are used for computing decompositions of a data
setV with frequency functiory and homogeneity functioh.

58

Adaptive Decomposition by Self-Organized Neural Networks

3.5.1 Pruning

Neuron pruning is a classical technique in the field of neural networks, to simplify
the network architecture and therefore also the corresponding model. In our set-
ting each neuron of the Kohonen layer corresponds with one codebook ugctor

If now ny, is too large after the convergence phase of the SOM, we eliminate those
neurons, whose associated codebook vacianly represents a small number of
input objects, i.ew, with f(©,,,) < & for sufficiently larges;, e.g.,; == L.

Note that after such a neuron pruning, the corresponding decompc@mae
changed, especially, is smaller than before. Pruning has the additional advan-
tage that it prevents the appearing of pseudo clusters (see the earlier discussion in
section 3.1).

3.5.2 Early stopping

A main problem of the SOM algorithm is the fact that the number of training
steps of the convergence phase has to be fixed a priori and therefore must be set
to a large value, because otherwise we cannot be sure that we will reach conver-
gence. If we use our combined SOM/SOBM algorithm, the choice of the length
of the SOM convergence phase is rather uncritical, because we have an additional
convergence phase of the SOBM algorithm. At a first view, the determination of
the right number of convergence steps for the SOBM algorithm seems to be as
problematic as for the SOM algorithm. But if we look closer, we detect a nice
early stopping criterion for the SOBM algorithm:

To guarantee thd®;, (V), W) is an approximate box decomposition, we have
to ensure thabverlap (1) is small. Therefore we have to stop the adaptation of
the codebook boxes,dfverlap(W) > 0o With smalld,, e.g.,6o = 0.001.

