
Chapter 1

Cluster Analysis in
High-Dimensional Data

Clustering can be loosely defined as partitioning a set of objects into a given num-
berk of disjoint subsets, so called clusters, so that the homogeneity between ob-
jects within each cluster is strong. Instead of homogeneity, the terms relationship
or similarity are used synonymously in the literature.

Obviously, the definition given above does only make sense together with a
measure for the homogeneity between objects. In this case any possible set of
k clusters has a certain quality, depending on the measured homogeneity between
all objects within each cluster.

One easily checks that the number of ways to partition a set ofn objects in
k disjoint non-void subsets is given by [18]:

K(n, k) :=
1

k!

k∑
i=0

(
k

i

)
(−1)i(k − i)n. (1.1)

The functionK(n, k) grows exponentially fast inn. Already in a very small set
of objects the number of possible partitionings ink disjoint subsets is staggering,
e.g., forn = 100 objects, there areK(100, 2) ≈ 1030 ways to partition them in
two subsets. It can be shown that the problem to compute a set ofk clusters of
high quality is NP-complete [33]. Therefore fast solutions usually can only be
achieved by using heuristic algorithms.

In addition to the identification of clusters, one is also interested in their de-
scription, i.e. in rules that allow to determine the cluster membership of each
object, based on its properties. Especially in the case of high-dimensional data,
where the objects have a high number of properties, such rules have to be efficient
in the sense that their number is as small as possible and that they depend on a
minimal number of properties only.
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Given the above terminology, we definecluster analysis in high-dimensional
dataas the process of fast identification and efficient description of clusters. The
clusters have to be of high quality with regard to a suitably chosen homogeneity
measure.

1.1 Modeling

In the following we suggest a general model for cluster problems, supposing that
the measure for the relationship between objects is given explicitly. It will be
shown that the model — in contrast to other models suggested in the literature
that are designed for geometric cluster problems — is usable for different fields of
applications, because it is not only suitable for a geometrically based modeling,
but also for dynamic cluster problems.

LetA := {A1, . . . , Aq} be a set of not necessarily ordered domains and define
Ω :=

⊗q
j=1Aj := {(a1, . . . , aq)

T | aj ∈ Aj , j = 1, . . . , q}. We will refer to
A1, . . . , Aq as theattributesof Ω and toq as thedimensionof Ω. Each finite
subsetV = {v1, . . . , vn} ⊂ Ω, n ≥ 2, is called adata setin Ω and for each
data objectvi := (vi,1, . . . , vi,q)

T ∈ V , the valuevi,j ∈ Aj denotes theproperty
of vi for attributeAj . We will further call each functionf : Ω −→ R+

0 with
f(v) = 0 ⇐⇒ v /∈ V a frequency functionfor the data set V and we define
f(M) :=

∑
v∈M f(v) for any subsetM ⊂ Ω.

Suppose now that there exists a functionh : Ω×Ω −→ [0, 1] so thath(v, w) =
h(w, v) for anyv, w ∈ V . Thenh will be called ahomogeneity functionfor the
data setV . We sethmax(V ) := maxv,w∈V h(v, w) and call two objectsv1, v2 ∈ V
maximally homogeneous, ifh(v1, v2) = hmax(V ).

Based on given functionsf andh the problem of clusteringV in a given
numberk of subsets can be stated in the following general way:

Definition 1.1.1 Letk ∈ {1, . . . , n} andC := {C1, . . . , Ck} any set ofk non-void
subsetsCs ⊂ V .
(i) If

⋃k
s=1Cs = V andCs ∩ Ct = ∅ for 1 ≤ s < t ≤ k, then we callC a

k-cluster set of the data setV .
(ii) LetC anyk-cluster set ofV . If C maximizes the weighted intra-cluster homo-
geneity

Γf,h(C) :=
1

k

k∑
s=1

1

f(Cs)

∑
v∈Cs

∑
w∈Cs

h(v, w)f(v)f(w) → max, (1.2)

then we callC an optimalk-cluster set of(V, f, h).
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1.1.1 Geometric cluster problems

Many of the traditional clustering methods, including the famousk-meansmethod
[46], have in common that they are geometrically driven, i.e. they suppose thatΩ
can be modeled as a metric space, e.g.,Ω ⊂ Rq, and that the relationship between
objects is given by adistance functiond : Ω −→ R+

0 , satisfying the following
requirements for allv, w, z ∈ Ω:

(D1) d(v, w) ≥ 0

(D2) d(v, v) = 0

(D3) d(v, w) = d(w, v)

(D4) d(v, w) ≤ d(v, z) + d(z, w).

In the case thatΩ ⊂ Rq, theEuclidean distancefunction is often used:

deuclid(v, w) := ‖v − w‖ :=
√

(v − w)T (v − w) , v, w ∈ Rq.

The basic idea of almost all geometrically driven cluster methods is the identifi-
cation of ak-cluster setC := {C1, . . . , Ck} so that

∑k
s=1 cost(Cs) is minimized,

wherecost : ℘(Ω) −→ R+
0 is a cost function based on the distance function. The

methods differ in the choice of the cost and the distance function and the several
possible optimization strategies lead to different cluster algorithms. Many popular
algorithms try to minimize thesum-of-squarescost function [20]:

cost(Cs) :=
1

f(Cs)

∑
v∈Cs

∑
w∈Cs

d(v, w)2f(v)f(w) → min .

The corresponding cluster problem can be formulated within our general defini-
tion:

Lemma 1.1.2 Let Ω be a metric space with a distance functiond : Ω −→ R+
0 .

Further let V := {v1, . . . , vn} ⊂ Ω, n ≥ 2, be any finite data set inΩ and
f : V −→ R+

0 be any frequency function forV . Finally suppose thatC is any
k-cluster set ofV .
(a) Thenhd : Ω × Ω −→ [0, 1], with

hd(v, w) := 1 − d(v, w)2

(max
ev, ew∈V d(ṽ, w̃))2

, v, w ∈ Ω.

is a homogeneity function forV .
(b) C is an optimalk-cluster set of(V, f, h), if and only if

k∑
s=1

1

f(Cs)

∑
v∈Cs

∑
w∈Cs

d(v, w)2f(v)f(w) → min .
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Proof: (a)hd is well defined, becausehd(v, w) ∈ [0, 1] for all v, w ∈ Ω. Sinced
is a distance function, i.e.d(v, w) = d(w, v) for anyv, w ∈ Ω, one further checks
thathd(v, w) = hd(w, v) and thereforehd is a homogeneity function.
(b) Sincemax

ev, ew∈V d(ṽ, w̃), f(V ) are constant and positive values, we have:

min

k∑
s=1

1

f(Cs)

∑
v∈Cs

∑
w∈Cs

d(v, w)2f(v)f(w)

⇐⇒ min

k∑
s=1

1

f(Cs)

∑
v∈Cs

∑
w∈Cs

d(v, w)2

(max
ev, ew∈V d(ṽ, w̃))2

f(v)f(w)

⇐⇒ max f(V ) −
k∑

s=1

1

f(Cs)

∑
v∈Cs

∑
w∈Cs

d(v, w)2

(max
ev, ew∈V d(ṽ, w̃))2

f(v)f(w)

⇐⇒ max
k∑

s=1

(
f(Cs) −

1

f(Cs)

∑
v∈Cs

∑
w∈Cs

d(v, w)2

(max
ev, ew∈V d(ṽ, w̃))2

f(v)f(w)

)

⇐⇒ max
k∑

s=1

1

f(Cs)

(
f(Cs)

2 −
∑
v∈Cs

∑
w∈Cs

d(v, w)2

(max
ev, ew∈V d(ṽ, w̃))2

f(v)f(w)

)

⇐⇒ max
k∑

s=1

1

f(Cs)

∑
v∈Cs

∑
w∈Cs

(
1 − d(v, w)2

(max
ev, ew∈V d(ṽ, w̃))2

)
f(v)f(w)

⇐⇒ max
1

k

k∑
s=1

1

f(Cs)

∑
v∈Cs

∑
w∈Cs

hd(v, w)f(v)f(w).

�

If d = deuclid, then the sum-of-squares cost function is equivalent to the cost
function used by algorithms based on thek-means method:

Lemma 1.1.3 LetC ⊂ V ⊂ Rq any non-void subset ofV andf : Ω −→ R+
0 any

frequency function for the data setV . Then we have∑
v∈C

‖v − m̄C‖2 f(v) =
1

2

1

f(C)

∑
v∈C

∑
w∈C

‖v − w‖2 f(v)f(w) ,

where

m̄C :=
1

f(C)

∑
v∈C

f(v)v

denotes the centroid ofC.
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Proof: ∑
v∈C

‖v − m̄C‖2 f(v)

=
∑
v∈C

vTvf(v) − 2

(∑
v∈C

f(v)vT

)
m̄C +

∑
v∈C

f(v)m̄T
Cm̄C

=
∑
v∈C

vTvf(v) − f(C)m̄T
Cm̄C

=
1

f(C)

(∑
v∈C

f(C)vTvf(v) − f(C)2m̄T
Cm̄C

)

=
1

f(C)

(∑
v∈C

∑
w∈C

vTvf(v)f(w)−
∑
v∈C

∑
w∈C

vTwf(v)f(w)

)

=
1

2

1

f(C)

(
2
∑
v∈C

∑
w∈C

vTvf(v)f(w) − 2
∑
v∈C

∑
w∈C

vTwf(v)f(w)

)

=
1

2

1

f(C)

∑
v∈C

∑
w∈C

(
vTvf(v)f(w)− 2vTwf(v)f(w) + wTwf(w)f(v)

)
=

1

2

1

f(C)

∑
v∈C

∑
w∈C

‖v − w‖2 f(v)f(w)

�

A combination of Lemma 1.1.2 and Lemma 1.1.3 guarantees that geometric
cluster problems, where thek-means method is suitable, can always be formulated
within the suggested general model. Figure 1.1 shows a simple example of such
a cluster problem inR2 with k = 3. In the following sections, we will use this
example for demonstration purposes.

A1
 2  4  6  8

A2

 2

 4

Cluster C1

Cluster C3

Cluster C2

Figure 1.1:Example: Clustering of data set inR2 with k = 3.
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1.1.2 Dynamic cluster problems

Recently new cluster methods have been suggested using homogeneity measures
not derived from a distance function or a more general data model [1, 5, 36]. The
reason for this conceptual change is the emergence of new fields of application for
cluster analysis, like e.g., the clustering of web-pages or of genomic data, where
a geometrically driven modeling is often not suitable.

One of these new fields of application is the the analysis of dynamic systems.
Here, an interesting problem is the identification of metastable sets of states, i.e.
sets of states with a high probability that the dynamic system moves between
states within the same set and a low probability of transitions between states of
different sets. Although the state space of a dynamic system might be modeled as
a geometric space, it is not advisable to equate metastable sets with geometrically
based clusters inside this space: The dynamics between different states may not
only depend on their geometric similarity. In the following we transform the iden-
tification of metastable sets of states of a dynamic system in a dynamic cluster
problem, which will be described within our general model.

Let Ω be the set of all possible states of a dynamic system and choose any
representative trajectoryX(1), . . . , X(T ) ∈ Ω. SetV := {X(t) | t = 1, . . . , T}
and define a frequency functionf := Ω −→ R+

0 via f(v) := |{t |X(t) = v, }|,
where|M | denotes the number of elements in a finite setM . Further define for
anyv, w ∈ V :

S(v, w) :=
|{t |X(t) = v,X(t+ 1) = w}|

f(v)
(1.3)

so thatS(v, w) is the conditional probability of transitions from statev to statew
in a single step. We can directly extendS on subsets ofV , if we define for any
non-void subsetsV1, V2 ⊂ V :

Ŝ(V1, V2) :=
∑
v∈V1

∑
w∈V2

f(v)S(v, w)

f(V1)
. (1.4)

One easily checks that̂S(V1, V2) is the conditional probability of the dynamic
system being in a state of setV1 to move to a state of setV2 in a single step.

The identification ofk metastable sets of states of a dynamic system corre-
sponds to the computation ofk disjoint subsetsCs ⊂ V so thatŜ(Cs, Cs) ≈ 1 for
s = 1, . . . , k. Since this is equivalent to a maximization of

∑k
s=1 Ŝ(Cs, Cs), the

identification ofk metastable sets is equivalent to the identification of an optimal
k-cluster set for(V, f, hS) wherehS is a suitable homogeneity function:
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Lemma 1.1.4 DefinehS : Ω × Ω −→ [0, 1] via

hS(v, w) :=

{
1
2

(
S(v,w)
f(w)

+ S(w,v)
f(v)

)
if v, w ∈ V

0 else

ThenhS is a homogeneity function ofV .

Proof: Since0 ≤ |{t |X(t) = v,X(t + 1) = w}| ≤ f(v) for all v, w ∈ V , we
haveS(v, w) ∈ [0, 1]. ThereforehS is well defined and one easily checks that
hS(v, w) = hS(w, v) for anyv, w ∈ V . �

Lemma 1.1.5 For anyk-cluster setC of V the weighted intra-cluster homogene-
ity with respect tof andhS is given by

Γf,hS
(C) =

1

k

k∑
s=1

Ŝ(Cs, Cs).

Proof:

Γf,hS
(C) =

1

k

k∑
s=1

1

f(Cs)

∑
v∈Cs

∑
w∈Cs

hS(v, w)f(v)f(w)

=
1

k

k∑
s=1

1

f(Cs)

∑
v∈Cs

∑
w∈Cs

1

2
(f(v)S(v, w) + f(w)S(w, v))

=
1

k

k∑
s=1

1

f(Cs)

1

2

(∑
v∈Cs

f(v)
∑
w∈Cs

S(v, w) +
∑
w∈Cs

f(w)
∑
v∈Cs

S(w, v)

)

=
1

k

k∑
s=1

1

f(Cs)

∑
v∈Cs

f(v)
∑
w∈Cs

S(v, w) =
1

k

k∑
s=1

Ŝ(Cs, Cs)

�

1.2 Problem reduction via representative clustering

A point very critical within the application of algorithms for the identification of
clusters in high-dimensional data is the computational complexity, i.e. the corre-
spondence between the time one needs to compute a solution and the number of
data objectsn, respectively the number of attributesq.

Suppose we have an algorithm that computes an optimalk-cluster setC of a
data setV of sizen and dimensionq with respect to a frequency functionf and
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a homogeneity functionh. One easily checks that we needO(n2) valuesh(v, w)
to compute the weighted intra-cluster homogeneityΓf,h(C). This usually makes a
direct optimization ofΓf,h(C) impossible, if the numbern is large. In the literature
several heuristic optimization approaches are suggested, but unfortunately, most
algorithms are designed for special applications and are therefore not generally
usable. Moreover a mathematical justification is very often missing. In the fol-
lowing, we will describe another way to deal with large data sets that is motivated
by principles of vector quantization and signal compression (see [35]) and that we
will call representative clustering.

The reduction of cluster problems to a handier size via representative cluster-
ing rests upon the following assumption:

Optimal cluster assumption

Let C be any optimalk-cluster set of a data setV ⊂ Ω with respect to a frequency
functionf and a homogeneity functionh. ThenC assigns nearly maximally ho-
mogeneous objects in a predominant portion to the same cluster, i.e. ifC ∈ C is
any cluster andv, w ∈ V are any data objects withh(v, w) ≤ hmax(V ) − ε for
smallε > 0, then usually we have:v ∈ C =⇒ w ∈ C.

Since each optimalk-cluster set of(V, f, h) maximizes the weighted intra-
cluster homogeneity, this assumption should be true for most cluster problems.

Suppose now that the homogeneity functionh meets the following two condi-
tions:

• Local maximum condition:Objectsv1, v2 ∈ V are nearly maximally ho-
mogeneous, if they have nearly the same properties.

• Global correspondence condition:The homogeneity functionh is nearly
identical for any two nearly maximally homogeneous objectsv1, v2 ∈ V :

h(v1, v2) ≈ hmax(V ) =⇒ h(v1, v) ≈ h(v2, v) for all v ∈ V.

In the case of geometric cluster problems, the possible homogeneity functions
should meet the first condition and usually also the second one. For dynamic
cluster problems, it is necessary that the state spaceΩ is build by a set of attributes.
In this case moves between states with identical values for most attributes are
usually very frequent, i.e. the local maximum condition holds, and typically, such
states have very common dynamic properties, i.e. also the global correspondence
condition holds.
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If we successively replace objectsvi1 , vi2, . . . that have nearly the same prop-
erties by a representative objectwi, e.g.,wi := vi1 , and define forwi a compressed
frequency valuef̌(wi) := f(vi1) + f(vi2) + . . . , we come out with a data set
W = {w1, w2, . . . } and a compressed frequency functionf̌ of W .

Let C := {C1, . . . , Ck} be any optimalk-cluster set of(W, f̌ , h), then we can
extendC onV , if we defineĈ := {Ĉ1, . . . , Ĉk} with Ĉs :=

⋃
wi∈Cs

{vi1 , vi2, . . . }.

ObviouslyĈ is ak-cluster set ofV . The local maximum condition assures thatwi

andv ∈ {vi1 , vi2, . . . } are nearly maximally homogeneous. Therefore the global
correspondence condition guarantees:

Γf̌ ,h(C)

=
1

k

k∑
s=1

1

f̌(Cs)

∑
wi∈Cs

∑
wj∈Cs

h(wi, wj)f̌(wi)f̌(wj)

=
1

k

k∑
s=1

1

f(Ĉs)

∑
wi∈Cs

∑
wj∈Cs

h(wi, wj)
∑

v1∈{vi1
,vi2

,...}
f(v1)

∑
v2∈{vj1

,vj2
,...}

f(v2)

=
1

k

k∑
s=1

1

f(Ĉs)

∑
wi∈Cs

∑
v1∈{vi1

,vi2
,...}

∑
wj∈Cs

∑
v2∈{vj1

,vj2
,...}

h(wi, wj)f(v1)f(v2)

≈ 1

k

k∑
s=1

1

f(Ĉs)

∑
v1∈Ĉs

∑
wj∈Cs

∑
v2∈{vj1

,vj2
,...}

h(v1, wj)f(v1)f(v2)

≈ 1

k

k∑
s=1

1

f(Ĉs)

∑
v1∈Ĉs

∑
v2∈Ĉs

h(v1, v2)f(v1)f(v2)

= Γf,h(Ĉ).

Suppose now that̂C is not nearly optimal for(V, f, h). Then the optimal cluster
assumption guarantees that there exist objectsv1, v2 ∈ V that are assigned to
different clusters in̂C, althoughh(v1, v2) is large. But this is a contradiction to the
fact that nearly homogeneous objects are replaced by the same representative and
therefore are assigned to the same cluster inĈ.

Let V (j) := {v∗,j | v = (v∗,1, . . . , v∗,q)T ∈ V } be the projection ofV on the
attributeAj. SetVΩ :=

⊗q
j=1 V (j) = {(a1, . . . , aq)

T | aj ∈ V (j) , j = 1, . . . , q}.
Obviously we haveV ⊂ VΩ ⊂ Ω andn = |V | ≤ |VΩ| ≤ nq. When analyzing
high-dimensional data one often observes thatVΩ is rather sparse with respect to
V , i.e. thesparsity factor |V |

|VΩ| is very small. This guarantees that|W | is smaller
thann, i.e. we have reduced our cluster problem.
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Figure 1.2 shows a reduction of our geometric cluster problem inR2 via rep-
resentative clustering in principle.

A1
 2  4  6  8

A2

 2

 4

Reduction

A1
 2  4  6  8

A2

 2

 4

Representatives

Figure 1.2:Example: Reduction of geometric cluster problem inR2.

A problem reduction via representative clustering is only efficient, if|W | is
significantly smaller than the numbern. Obviously the number of representatives
depends strongly on the criterion that is used for the identification of objects with
nearly the same properties. As a brute force approach one could think about using
a very weak criterion that allows to replace much objects by the same representa-
tive. In this case the local maximum condition only holds, if we call two objects
v1, v2 nearly maximal homogeneous, even ifh(v1, v2) is not so high. But then
we cannot be sure that their homogeneity in relation to all other objects is nearly
identical, i.e. thath(v1, v) ≈ h(v2, v) holds for allv ∈ V . If the global correspon-
dence condition is violated too often, this usually has negative consequences for
the quality ofĈ.

In chapter 2 we will describe a concept calleddecompositionthat can be used
as a basis for the development of methods for an efficient problem reduction via
representative clustering. We will replace the global correspondence condition
for h by the construction of a compressed homogeneity functionȟ and define a
more convenient condition that guarantees the optimality ofĈ, if C is an optimal
k-cluster set of(W, f̌, ȟ). Moreover in chapter 4 a multilevel approach is pre-
sented that uses decomposition based representative clustering for a fast cluster
identification.

1.3 Efficient cluster description

Besides the identification of clusters in high-dimensional data, also their efficient
description is very important for most practical applications (see chapter 5). We
want to know, which objects are homogeneous and also why they are homoge-
neous.
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Obviously such a description can be achieved via rules that allow to determine
the cluster membership of each object, based on its properties, i.e. rules like:

If v = (v∗,1, . . . , v∗,q)T ∈ V has the propertiesv∗,1 = a1 and. . . andv∗,q = aq,
thenv belongs to clusterCs.

A description based on such rules has to be consistent, i.e. it contains no rules
assigning the same objectv to different clusters.

Given anyk-cluster setC := {C1, . . . , Ck} of a data setV in Ω, we can always
generate rules for a cluster description in the following trivial way:

Define a functioncχ : V −→ {1, . . . , k} via

cχ(v) :=
k∑

s=1

s χCs(v) for all v ∈ V,

whereχCs denotes the characteristic function of clusterCs. Then for any object
vi := (vi,1, . . . , vi,q)

T ∈ V we can state a ruleri:
If v = (v∗,1, . . . , v∗,q)T has the propertiesv∗,1 = vi,1 and . . . andv∗,q = vi,q,

thenv belongs to clusterCcχ(vi).
Obviously then rulesr1, . . . , rn describe the clustersC1, . . . , Ck consistently,

but such a description is surely not efficient. We will demonstrate this by our
example of a geometric cluster problem inR2 (see Fig. 1.1):

ClusterC1 contains33 data objects, i.e. we need33 rules to describe this
cluster if we use our trivial approach. If we allow rules that are slightly more
complex, one easily checks that the following two rules are sufficient to describe
clusterC1:

If v = (v∗,1, v∗,2)T has the propertiesv∗,1 = a1 andv∗,2 = a2 with a1 ∈ [0, 2],
a2 ∈ [1, 5], thenv belongs to clusterC1.

If v = (v∗,1, v∗,2)T has the propertiesv∗,1 = a1 andv∗,2 = a2 with a1 ∈ [2, 4],
a2 ∈ [3, 5], thenv belongs to clusterC1.

This motivates the following definition of cluster membership rules:

Definition 1.3.1 For any setB := {B1, . . . , Bq} withBj ⊂ Aj for j = 1, . . . , q,
we callrB : Ω −→ {0, 1} with

rB(v) :=

{
1 if (∀j ∈ {1, . . . , q}) v∗,j ∈ Bj

0 else
, v := (v∗,1, . . . , v∗,q)T ∈ Ω,

a membership rule for clusterCs, if

rB(v) = 1 =⇒ v ∈ Cs for all v ∈ V.
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Usually we need a setrs := {rs,1, . . . , rs,ms} of ms ∈ N+ membership rules
for each clusterCs, to guarantee that each objectv ∈ Cs is assigned to clusterCs

by at least one rule, i.e. that we have

v ∈ Cs =⇒ (∃ r ∈ rs) r(v) = 1 for all v ∈ V.

We call such a setrs acomplete membership rule setfor clusterCs.
Based on complete membership rule sets for each clusterCs, we can easily

generate a description ofC:

Lemma 1.3.2 Suppose there exists for each ClusterCs of C a complete member-
ship rule setrs := {rs,1, . . . , rs,ms}. LetH0 denote the Heaviside function with

H0(t) :=

{
0 if t < 0
1 if t ≥ 0.

Then the functioncr : V −→ {1, . . . , k} with

cr(v) :=
k∑

s=1

sH0(−1 +
ms∑
j=1

rs,j(v)) for all v ∈ V.

is a consistent description forC, i.e. we have

cr(v) = s ⇐⇒ v ∈ Cs for all v ∈ V.

Proof: “⇐=”: Choose anys ∈ {1, . . . , k} and anyv ∈ Cs. Sincers is a complete
membership rule set, there exists ant ∈ {1, . . . , ms} so thatrs,t(v) = 1. Therefore
we haveH0(−1 +

∑ms

j=1 rs,j(v)) = 1. Suppose now that there exists another
p ∈ {1, . . . , k} with p 6= s andH(−1 +

∑mp

j=1 rp,j(v)) = 1. If this is the case,
there must exist ãt ∈ {1, . . . , mp} so thatrp,et(vi) = 1. Sincerp,et is a membership
rule for ClusterCp, this impliesv ∈ Cp. But this is a contradiction tov ∈ Cs.
Therefore we havecr(v) = s.
“=⇒”: Choose anys ∈ {1, . . . , k} and anyv ∈ V \ Cs. SinceC is ak-cluster set
of V there exists ap ∈ {1, . . . , k} with p 6= s andv ∈ Cp. As already proofed
above this guaranteescr(v) = p and thereforecr(v) 6= s. �

Let v = (v∗,1, . . . , v∗,q) ∈ V be any data object and letcr : V −→ {1, . . . , k}
be a consistent description ofC with corresponding complete membership rule
setsr1, . . . , rk. Then the determination of the cluster membership ofv is rather
simple: Find a membership rulerB ∈

⋃k
s=1 rs with rB(v) = 1, i.e, withv∗,j ∈ Bj

for j = 1, . . . , q. Sincecr is consistent, there exists exactly ones ∈ {1, . . . , k}
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with rB ∈ rs. Therefore data objectv belongs to clusterCs. Note that the exis-
tence of more than one membership ruler ∈ rs with r(v) = 1 is possible.

Obviously descriptions should be efficient in the sense that the correspond-
ing complete membership rule setsrs := {rs,1, . . . , rs,ms} are minimal. i.e. the
numbersms are as small as possible.

Often not all properties of a data object have to be considered to determine its
cluster membership. Especially in the case of high-dimensional data, with a great
numberq of attributesAj, a description based on a reduced set of attributes is of
great interest.

We will illustrate this again by our two-dimensional example. Suppose that
we restrict our data set to the data objects of clusterC1 and clusterC3. Then the
following two rules will be sufficient to describe the clusters:

If v = (v∗,1, v∗,2)T has the propertyv∗,1 = a1 with a1 ∈ [0, 4], thenv belongs
to clusterC1.

If v = (v∗,1, v∗,2)T has the propertyv∗,1 = a1 with a1 ∈ [4.5, 8], thenv belongs
to clusterC3.

Obviously we only need attributeA1 for a description of clusterC1 andC3,
i.e. attributeA2 has no influence on the discrimination of both clusters. Note that
this is not true, for a description that includes clusterC2.

We can easily extend our earlier definitions to work with reduced attribute sets:
Let J := {j1, . . . , jm} ⊂ {1, . . . , q} any index subset of lengthm and let

A(J) := {Aj | j ∈ J} be a reduced set of attributes ofΩ. SetΩ(J) :=
⊗

jt∈J Ajt

and forv := (v∗,1, . . . , v∗,q)T ∈ Ω denote byv(J) := (v∗,j1 , . . . , v∗,jm)T ∈ Ω(J)
the projection onΩ(J). Further setM(J) := {v(J) | v ∈ M} ⊂ Ω(J) for any
subsetM ⊂ Ω.

We can defineJ-reduced membership rulesas a special kind of membership
rules:

Definition 1.3.3 Let rB be any membership rule withB := {B1, . . . , Bq} and
Bj ⊂ Aj for j = 1, . . . , q. We callrB J-reduced, ifBj = Aj for j /∈ J . Let
furtherrs be a complete membership rule set of clusterCs. We callrs a complete
J-reduced membership rule set, if each membership ruler ∈ rs is J-reduced.

There exists an unique projection of anyJ-reduced membership rule on the
subspaceΩ(J):

Lemma 1.3.4 LetrB be anyJ-reduced membership rule withB := {B1, . . . , Bq}
andBj ⊂ Aj for j = 1, . . . , q. Then the function̄rB : Ω(J) −→ {0, 1} with

r̄B(v̄) :=

{
1 if (∀j ∈ J) v∗,j ∈ Bj

0 else
, v̄ := (v∗,j1, . . . , v∗,jm)T ∈ Ω(J)

is the unique projection ofrB onΩ(J).
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Proof: For anyv = (v∗,1, . . . , v∗,q)T ∈ Ω we havev∗,j ∈ Aj = Bj for j /∈ J , and
thereforerB(v) = r̄B(v(J)). �

Analogously to Lemma 1.3.2 we can achieve a description based on the re-
duced set of attributesA(J), if there exists for each cluster a completeJ-reduced
membership rule set:

Lemma 1.3.5 Let J ⊂ {1, . . . , q} be any index subset of lengthm. Suppose
there exists for each ClusterCs of C a completeJ-reduced membership rule set
rs := {rs,1, . . . , rs,ms} and r̄s,j denotes the unique projection of the membership
rule rs,j onΩ(J), then the functioncr : V −→ {1, . . . , k} with

cr(v(J)) :=

k∑
s=1

sH0(−1 +

ms∑
j=1

r̄s,j(v(J))) for all v ∈ V,

is a consistent description forC based on the reduced attribute setA(J), i.e. we
have

cr(v(J)) = s ⇐⇒ v ∈ Cs for all v ∈ V.

Obviously descriptions should be efficient in the sense that they are based on a
maximally reduced attribute setA(J), i.e. A(J) should contain as less attributes
as possible.

Efficient cluster description algorithm

Using the above definitions, the following general algorithm generates an efficient
cluster description for ak-cluster setC := {C1, . . . , Ck} of a data setV ∈ Ω:
(1) Find an index subsetJ = {j1, . . . , jm} ⊂ {1, . . . , q} of minimal size so that
there exists a functionc : V −→ {1, . . . , k} with

c(v(J)) = s ⇐⇒ v ∈ Cs for all v ∈ V.

(2) Compute for each clusterCs a minimally completeJ-reduced membership
rule setrs := {rs,1, . . . , rs,ms}.
(3) User := {r1, . . . , rk} to construct a consistent descriptioncr of C based on
the reduced attribute setA(J).

Since we are analyzing high-dimensional data, i.e. the dimensionq is large,
we obviously need heuristic solutions for step (1) and (2). For the development
of suitable methods the concept of decomposition is very helpful: In section 2.4
we will describe techniques for the computation of membership rule sets based on
approximate box decompositionsand we will introduce the concept ofdiscrim-
inating attributesthat allows the construction of heuristic algorithms to identify
optimally reduced attribute setsA(J).
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1.4 How many clusters?

Up to now, we have supposed that the number of clustersk is known a priori.
But in many real world applications this is not the case. Looking at Eq. (1.1) one
easily checks that the number of possiblek-cluster sets explodes, ifk is a further
unknown parameter of the cluster problem. Obviouslyk is the most important
parameter, i.e. with the words of cluster expert J. BEZDEK: “It is clearly more
important to be looking in the right solution space (within k) than it is to be com-
paring partitions across k because k specifies the number of clusters to look for,
while the other parameters control the search for these substructures.”[6].

The definition of a general model for cluster problems with unknown cluster
number is still an open problem. Usually it is not suitable to determine a correct
number of clusters by computing for differentk the optimalk-cluster setsC(k)
and comparing the weighted intra-cluster homogeneitiesΓf,h(C(k)), because most
homogeneity functions tend to prefer extreme clusterings withk = 1 or k = n.

Example: Cluster problem with unknown number of clusters

We will illustrate this by the following simple example: Suppose we want to com-
pute an optimal clustering of a data setV = {a, b, c, d, e, f, g, h, i} ⊂ R2 with
a frequency function so thatf(v) = 1 for all v ∈ V . We chooseh = hd (see
Lemma 1.1.2) based on the Euclidean distance functiond = deuclid. Figure 1.3
shows a plot ofV and the corresponding homogeneity matrix.
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Figure 1.3:Example: Cluster problem inR2 with unknown cluster number k.
Left hand side: Plot of data setV . Right hand side: Homogeneity matrix ofV
based on Euclidean distance.

In Table 1.1 the optimalk-cluster setsC(k) of (V, f, h) and their weighted
intra-cluster homogeneitiesΓf,h(C(k)) are presented for differentk. Obviously
one would expectk = 2, 3 or 4 as a correct number of clusters, but a maximization
of Γf,h(C(k)) leads always tok = 1. Therefore we cannot useΓf,h(C(k)) to judge
whichk is best.
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optimalk-cluster setC(k) Γf,h(C(k))

C(1) := V 6.17
C(2) := {{a, b, c, d, e, f}, {g, h, i}} 4.24
C(3) := {{a, b, c}, {d, e, f}, {g, h, i} 2.96

C(4) := {{a}, {b, c}, {d, e, f}, {g, h, i}} 2.23
C(9) := {{a}, {b}, {c}, {d}, {e}, {f}, {g}, {h}, {i}} 1.00

Table 1.1:Example: Optimal k-cluster sets of(V, f, h) for different k.

In the literature [42, 6, 25, 51] several other measures are suggested to deter-
mine the validity of a givenk-cluster set and so to find the optimal clustering, but
all of these measures have the deficit that they first need the computation of opti-
mal k-cluster sets for differentk. In the worst scenario this requires the solution
of n optimization problems. Ifn is large, this is a really heroic task.

Another possibility to cope with the problem of the unknown number of clus-
ters might be to determine it in a pre-processing step. Via a projection of the
high-dimensional data on a two-dimensional plane, one hopes that the cluster
structure is not destroyed through the transformation and the number of clusters
can be determined by visual investigation. A very popular tool for such a pro-
jection aremultidimensional-scalingmethods [49], e.g., SAMMON ’ S non-linear
mapping algorithm [56]. The deficits of projection methods are obvious: For high-
dimensional data it is unlikely that the cluster structure on the two-dimensional
plane reflects the original structure. Moreover a visual investigation could be very
subjective.

For cluster problems with a special type of homogeneity functions, exhibiting
a stochastic property, we will present in chapter 4 a new method based on the
theory ofPerron Clusteranalysis that allows the computation of a correct number
of clusters. We will show that this method can be easily used together with the
suggested multilevel cluster identification approach.


