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Summary

This thesis deals with structural results for translation invariant valuations
on polytopes and certain related enumeration problems together with geo-
metric approaches to them.

The starting point of the first part are two theorems by Richard Stanley. The
first one is his famous Nonnegativity Theorem [42] stating that the Ehrhart
h∗-vector of every lattice polytope has nonnegative integer entries. In [48] he
further proves that the entries satisfy a monotonicity property. In Chapter 2
we consider the h∗-vector for arbitrary translation invariant valuations. Our
main theorem states that monotonicity and nonnegativity of the h∗-vector
are, in fact, equivalent properties and we give a simple characterization. In
Chapter 3 we consider the h∗-vector of zonotopes and show that the entries
of their h∗-vector form a unimodal sequence for all translation invariant val-
uations that satisfy the nonnegativity condition.

The second part deals with certain enumeration problems for order preserving
maps. Given a suitable pair of finite posets A ⊆ P and an order preserving
map λ from A to [n] we consider the problem of enumerating order preserving
extensions of λ to P. In Chapter 4 we show that their number is given by a
piecewise multivariate polynomial. We apply our results to counting exten-
sions of graph colorings and generalize a theorem by Herzberg and Murty
[21]. We further apply our results to counting monotone triangles, which
are closely related to alternating sign matrices, and give a short geometric
proof of a reciprocity theorem by Fischer and Riegler [17]. In Chapter 5 we
consider counting order preserving maps from P to [n] up to symmetry. We
show that their number is given by a polynomial in n, thus, giving an or-
der theoretic generalization of Pólya’s enumeration theorem [33]. We further
prove a reciprocity theorem and apply our results to counting graph colorings
up to symmetry.

Chapters 2 and 4 are based on joint work with Raman Sanyal. Chapter 4
appeared in [23]. Chapter 3 is part of a joint project with Matthias Beck
and Emily McCullough. The content of Chapter 5 is published in [22].
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Introduction

The present thesis is located at the crossroads of enumerative and algebraic
combinatorics and geometric combinatorics. By switching perspectives be-
tween these fields, new applications and structural results can be obtained in
both directions. The “classical” setup is to model an enumerative problem as
counting lattice points in a polyhedral object. If the parameter of the count-
ing function corresponds to geometric dilation, then Ehrhart theory provides
suitable geometric tools. On the other hand, the number of lattice points
inside a polytope is, like the Euler characteristic and the volume, a “mea-
sure” on polytopes — a so-called valuation — and interesting combinatorics
is involved in the behavior and structure of the valuations themselves.

The thesis is divided into two parts: The first part deals with combinatorial
properties of translation-invariant valuations. The second is devoted to cer-
tain enumeration problems and new geometric approaches to order theoretic
questions.

The background will be discussed in Chapter 1. We will provide rigorous
definitions of all concepts in later chapters as needed.

A map ϕ on convex polytopes in Rd into an abelian group is a valuation if
for polytopes P and Q such that P ∪ Q is convex, we obtain the value on
P ∪ Q by adding the values on P and Q and subtracting the value on the
intersection P ∩Q:

P

Q

ϕ(P ∪Q) = ϕ(P ) + ϕ(Q)− ϕ(P ∩Q).

The first example of a valuation that usually comes to mind is the volume.

xi
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Another simple example is the Euler characteristic which is constant 1 on
non-empty polytopes. But there are far more exciting valuations, as we hope
to convince the reader in the following.

Questions concerning the characterization of valuations with specific proper-
ties are of central interest in the theory of valuations. The volume and the
Euler characteristic of a polytope, for example, have the additional property
that they do not change when transforming the polytope by a rigid motion
— they are rigid motion invariant. A fundamental result is Hadwiger’s the-
orem [19], which characterizes real-valued continuous rigid-motion invariant
valuations on convex bodies as forming a (d + 1)-dimensional vector space
spanned by the so-called quermassintegrals.

In the present work we will consider more general translation-invariant valu-
ations on polytopes with vertices in an additive subgroup of Rd. An example
is given by the lattice point enumerator Ehr(P ) =

∣∣P ∩ Zd
∣∣: restricted to

the class of lattice polytopes, that is, polytopes with vertices in the integer
lattice, Ehr(P ) is a valuation which is invariant under translation by integer
vectors. McMullen [28] showed that if ϕ is a translation-invariant valuation
and P is a lattice polytope then the function ϕ(nP ) agrees with a polynomial
ϕP (n) in n of degree at most dim(P ) for natural numbers n ≥ 0. For the
lattice point enumerator this is due to Ehrhart [14] and the counting func-
tion EhrP (n) is called the Ehrhart polynomial. Ehrhart polynomials appear
all over enumerative and algebraic combinatorics. For some of their coef-
ficients an interpretation can be given: The leading coefficient of EhrP (n)
corresponds to the volume, the second highest coefficient is related to half
the surface area, and the constant coefficient is the Euler characteristic of
P . Still, a full understanding of Ehrhart polynomials is far out of sight.
However, a groundbreaking step in the direction of a characterization was
done by Stanley [42]. He showed that for an r-dimensional lattice polytope
P ⊂ Rd the Ehrhart polynomial has only nonnegative integers as coefficients
when written in the polynomial basis

(
n+r
r

)
,
(
n+r−1

r

)
, . . . ,

(
n
r

)
:

EhrP (n) = h∗0

(
n+ r

r

)
+ h∗1

(
n+ r − 1

r

)
+ · · ·+ h∗r

(
n

r

)
.

The coefficients form the so-called h∗-vector (h∗0, . . . , h
∗
d) of P (sometimes

called δ-vector), where h∗i := 0 for i > r. In [48] Stanley proved furthermore
that the coefficients have a monotone behavior: For two lattice polytopes
P,Q ⊆ Rd such that P ⊆ Q he showed that h∗i (P ) ≤ h∗i (Q) for all 0 ≤ i ≤ d.

In Section 2.6 we consider more generally the expansion of ϕP (n) in the poly-
nomial basis

(
n+r
r

)
,
(
n+r−1

r

)
, . . . ,

(
n
r

)
for arbitrary translation-invariant valua-

tions ϕ. A valuation for which the coefficients are nonnegative for all P will
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be called h∗-nonnegative. If the coefficients are monotone with respect to
inclusion, then ϕ will be called h∗-monotone. Our main theorem states that
h∗-monotonicity and h∗-nonnegativity are, in fact, equivalent properties of ϕ
and are characterized by a simple property. This enables us to give a short
and simple proof of Stanley’s results on the nonnegativity and monotonicity
of the Ehrhart h∗-vector, and to reprove a result by Beck, Robins and Sam [3]
on solid-angle polynomials. Moreover, we consider Steiner polynomials, which
are closely related to Hadwiger’s theorem, investigate a weak notion of h∗-
monotonicity and illuminate other related properties of translation-invariant
valuations.

In Section 2.7 we study the class of real-valued h∗-nonnegative valuations
as a geometric set. We give a new characterization of volume in Section
2.7.1, namely as the unique (up to scaling) h∗-monotone translation-invariant
valuation on all polytopes in Rd. In Section 2.7.2 we consider lattice-invariant
valuations on lattice polytopes: Betke and Kneser showed in [6] that they
form a (d + 1)-dimensional vector space. We give a full characterization of
all lattice-invariant h∗-nonnegative valuations for d ≤ 2 and show that they
form a full-dimensional simplicial cone. For d ≥ 0 we prove that they form
a full-dimensional convex cone and conjecture that this cone is polyhedral.

As EhrP (n) agrees with a polynomial for n ≥ 0, it is natural to ask whether
there is a combinatorial interpretation for the evaluation at negative integers.
The answer is given by Ehrhart–Macdonald reciprocity [26] which states that
(−1)dim(P )EhrP (−n) counts the number of lattice points in the relative in-
terior of nP . Polynomial counting functions that have a natural combina-
torial meaning for negative integers — so-called reciprocities — occur quite
often in combinatorics (see, for example, Stanley [41]). Many of these re-
ciprocities can be seen as an incarnation of Ehrhart–Macdonald reciprocity.
Ehrhart’s result on the polynomiality of EhrP (n) has a multivariate general-
ization to Minkowski sums: The Bernstein–McMullen theorem [4, 28] states
that for lattice polytopes P1, . . . , Pk and natural numbers n1, . . . , nk the func-
tion EhrP1,...,Pk(n1, . . . , nk) counting lattice points in n1P1 + · · ·+nkPk agrees
with a multivariate polynomial in n1, . . . , nk for n1, . . . , nk ≥ 0. We consider
the same question that appears in the univariate case: Is there an interpre-
tation for the evaluation of EhrP1,...,Pk at arbitrary integers n1, . . . , nk ∈ Z?
Using a formal reciprocity for translation-invariant valuations by McMullen
[28] we are able to give an interpretation as weighted enumeration of lat-
tice points in Section 2.5, where the weights are given by the reduced Euler
characteristic of certain polytopal complexes.

In Chapter 3 we consider the h∗-vector for a large class of polytopes: zono-
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topes. Every zonotope Z with vertices in Zd is integrally closed, i.e., for all
n ≥ 1 and all p ∈ nZ ∩ Zd there are p1, . . . , pn ∈ Z ∩ Zd such that

p = p1 + · · ·+ pn.

The simplest examples of integrally closed polytopes are unimodular sim-
plices, i.e., simplices that affinely span Zd. A sequence h∗0, . . . , h∗d is said to
be unimodal, if it is of the form

h∗0 ≤ · · · ≤ h∗i ≥ · · · ≥ h∗d, for some i.

Stanley conjectured in [46] that the entries of the Ehrhart h∗-vector of any
integrally closed polytope form a unimodal sequence. Schepers and van
Langenhoven recently showed in [36] that this is true for all lattice paral-
lelepipeds. Towards Stanley’s conjecture, we investigate the h∗-vector of ar-
bitrary lattice zonotopes. Along the way we show unimodality for half-open
unit cubes by giving the entries of the h∗-vector a combinatorial interpreta-
tion in terms of refined descent statistics of permutations. We then pass to
half-open parallelepipeds and, in the end, show unimodality for lattice zono-
topes by taking a suitable half-open decomposition as introduced by Köppe
and Verdoolaege in [24].

In the second part of the thesis we consider specific enumeration problems.
Many problems in enumerative combinatorics, such as counting graph color-
ings, can be translated into lattice point enumeration problems for certain
polyhedral objects. We are concerned with order preserving maps from a
finite partially ordered set P into the chain [n] = {1, . . . , n}. A classical the-
orem by Stanley [38] states that their number is given by a polynomial ΩP(n)
for n ≥ 1 and that there exists a reciprocity, namely that (−1)|P|ΩP(−n)
equals the number of strictly order preserving maps P→ [n].

In Chapter 4 we consider a generalized version of this problem: Given a
partially ordered set P, a suitable subposet A ⊆ P, and an order preserving
map λ : A→ Z, what is the number of order preserving extensions of λ to P?
By passing to real-valued order preserving maps we can identify every order
preserving extension with a lattice point in the corresponding marked order
polytope introduced by Ardila, Bliem and Salazar in [1]. In Section 4.2 we
study the arithmetic of counting lattice points in these polytopes and show
that the counting function is given by a piecewise multivariate polynomial
ΩP,A(λ) in the values of λ. By studying a specific subdivision into products
of simplices we can give explicit regions of polynomiality. We further prove
a reciprocity for the evaluation at order reversing maps.
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In Section 4.4 we apply our results to counting extensions of partial graph col-
orings. We reprove a theorem by Herzberg and Murty [21] and we generalize
Stanley’s classical reciprocity theorem for graph colorings [40].

The main application of the arithmetic for marked order polytopes concerns
monotone triangles, which are strongly connected to alternating sign matri-
ces. An alternating sign matrix of size n is a n × n-matrix with entries in
{0, 1,−1} such that the non-zero entries in each row and column alternate in
sign and sum up to 1. There is a bijection between these matrices and states
in the “square ice” model in statistical mechanics. Mathematical interest was
fueled by a longstanding open conjecture of Mills, Robbins and Rumsey [30]
from the early 1980s — the alternating sign matrix conjecture — which was
finally proven by Zeilberger in 1995. In [16] Fischer gave a new proof of a
refined version using monotone triangles. These are triangular arrays of inte-
gers such that the entries increase along the northeast and southeast direction
and strictly increase in east direction. Fischer [15] showed that the number

4
3 5

2 3 5
1 3 5 8

1 3 4 7 8

↔

Figure 1: A monotone triangle and a Gelfand–Tsetlin poset of order n.

of monotone triangles with bottom row k = (k1, . . . , kn) is given by a multi-
variate polynomial in the strictly increasing entries of k, and later, together
with Riegler, she gave an interpretation for the evaluation of this polynomial
at weakly decreasing entries [17]. Their proofs are purely algebraic in nature
and use advanced methods from the calculus of finite differences. By in-
terpreting monotone triangles as integer-valued order preserving maps from
the Gelfand–Tsetlin poset we are able to apply our methods to give a short
geometric proof of their results in Section 4.3.

Chapter 5 has a purely algebraic nature and deals with problems of enu-
meration up to symmetry. An important theorem in this context is Pólya’s
enumeration theorem [33]. It gives an explicit formula for the number of
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orbits of labelings of a set as a polynomial in the number of labels. In Chap-
ter 5 we generalize Pólya’s enumeration theorem in terms of order preserving
maps. To that end, we consider a finite poset P and a group G acting on
P by automorphisms. It turns out that the number of orbits of order pre-
serving maps from P into the n-chain agrees with a polynomial ΩP,G(n) for
natural numbers n ≥ 1. We call this polynomial the orbital order polyno-
mial. Moreover, we show a combinatorial reciprocity theorem by giving an
interpretation for the evaluation of ΩP,G at negative integers. We thus prove
an orbital generalization of Stanley’s polynomiality and reciprocity theorem
for order preserving maps [38]. Further, we outline a generalization to count-
ing orbits of (P, ω)-partitions. Applying our results to the poset without
relations, called antichain, we obtain Pólya’s enumeration theorem.

We further consider orbits of graph colorings of a finite simple graph Γ under
the action of a group G on Γ. The function χΓ,G(n) counting orbits of proper
n-colorings is a polynomial — the orbital chromatic polynomial — which
was first studied by Cameron and Kayibi [9]. We give a new proof for the
polynomiality of χΓ,G by showing that χΓ,G is a sum of order polynomials.
Moreover, we are able to interpret the values of χΓ,G at negative integers.
Thus, we obtain an orbital generalization of Stanley’s polynomiality and
reciprocity results for graph colorings [40].

The results of Chapter 2 and 4 are based on joint work with Raman Sanyal.
The content of Chapter 4 appeared in [23]. Chapter 3 is part of a joint project
with Matthias Beck and Emily McCullough. The content of Chapter 5 was
published in [22].



Contents

Summary vii

Acknowledgements ix

Introduction xi

1 Basics 1

I On the combinatorics of valuations 13

2 Combinatorics of valuations 15

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Λ-valuations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Polynomiality . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4 Reciprocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.5 Multivariate Ehrhart–Macdonald reciprocity . . . . . . . . . . 24

2.5.1 Counting lattice points in Minkowski sums . . . . . . . 24

2.5.2 Weighted enumeration . . . . . . . . . . . . . . . . . . 27

2.6 Nonnegativity and monotonicity . . . . . . . . . . . . . . . . . 29

2.6.1 h∗-nonnegativity and -monotonicity . . . . . . . . . . . 29

2.6.2 Weak h∗-monotonicity . . . . . . . . . . . . . . . . . . 35

2.6.3 Other properties of Λ-valuations . . . . . . . . . . . . . 38

2.7 Geometry of Λ-valuations . . . . . . . . . . . . . . . . . . . . 41

xvii



xviii CONTENTS

2.7.1 Rd-valuations . . . . . . . . . . . . . . . . . . . . . . . 42

2.7.2 Lattice-invariant valuations . . . . . . . . . . . . . . . 43

3 Zonotopes 47

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.2 Descent statistics . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.3 Half-open unit cubes . . . . . . . . . . . . . . . . . . . . . . . 51

3.4 Half-open parallelepipeds . . . . . . . . . . . . . . . . . . . . . 54

3.5 Zonotopes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

II Order preserving maps 61

4 Marked order polytopes 63

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.2 Marked order polytopes . . . . . . . . . . . . . . . . . . . . . 65

4.2.1 Order cones . . . . . . . . . . . . . . . . . . . . . . . . 65

4.2.2 Marked order polytopes . . . . . . . . . . . . . . . . . 67

4.2.3 Induced subdivisions and arithmetic . . . . . . . . . . 68

4.2.4 Chains and Cayley cones . . . . . . . . . . . . . . . . . 72

4.2.5 Combinatorial reciprocity . . . . . . . . . . . . . . . . 74

4.2.6 Marked chain polytopes . . . . . . . . . . . . . . . . . 75

4.3 Monotone triangle reciprocity . . . . . . . . . . . . . . . . . . 75

4.4 Extending partial graph colorings . . . . . . . . . . . . . . . . 84

5 Counting modulo symmetry 89

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.2 Order preserving Pólya enumeration . . . . . . . . . . . . . . . 90

5.2.1 Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.2.2 Order preserving maps . . . . . . . . . . . . . . . . . . 91

5.2.3 Combinatorial reciprocity . . . . . . . . . . . . . . . . 93

5.2.4 (P, ω)-partitions . . . . . . . . . . . . . . . . . . . . . 95



CONTENTS xix

5.3 Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

Bibliography 101

Zusammenfassung 107

Eidesstattliche Erklärung 109





Chapter 1

Basics

The present thesis is situated within geometric, enumerative, and algebraic
combinatorics. In this chapter we will introduce the main objects together
with their basic properties. Our main sources which we recommend for fur-
ther reading are Ziegler’s lectures on polytopes [52], the book by Beck and
Robins on integer point enumeration [2], the first volume of Stanley’s book on
enumerative combinatorics [49], and the hand book on convex and discrete
geometry by Gruber [18]. Basic knowledge of linear algebra and combina-
torics is assumed.

Polyhedra

Let N be the natural numbers {0, 1, 2, . . . , } and [n] := {1, . . . , n} for n ∈ N>0.
Our geometric objects live in the Euclidean space Rd for some d ∈ N.
A set S ⊆ Rd is convex if the segment [x, y] = {(1− λ)x+ λy : 0 ≤ λ ≤ 1}
is contained in S whenever x, y ∈ S. The convex hull of S

conv(S) :=

{
m∑
i=1

λixi : m ≥ 1, x1, . . . , xm ∈ S, λ1, . . . , λm ≥ 0,
m∑
i=1

λi = 1

}
is the inclusion-wise minimal convex set in Rd containing S.

P ⊂ Rd is called a polytope if there are finitely many points x1, . . . , xm such
that

P = conv({x1, . . . , xm}).

The affine hull aff(S) of a set S ⊆ Rd is the inclusion-wise minimal affine
space that contains S, or equivalently

1
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aff(S) :=

{
m∑
i=1

λixi : m ≥ 1, x1, . . . , xm ∈ S, λ1, . . . , λm ∈ R,
m∑
i=1

λi = 1

}
.

A hyperplane H ⊆ Rd is an affine space of dimension d− 1, i.e., there are
a ∈ Rd, a 6= 0, and b ∈ R such that H = {x ∈ Rd : atx = b}. H divides Rd

into two half spaces H≥ = {x ∈ Rd : atx ≥ b} and H≤ = {x ∈ Rd : atx ≤ b}.
H is called supporting for a set S if S is fully contained in H≥ or H≤.

A subset P ⊆ Rd is a polyhedron or polyhedral if it is the intersection of
finitely many halfspaces, i.e., if there are m ∈ N, A ∈ Rm×d and b ∈ Rm such
that

P = {x ∈ Rd : Ax ≤ b}.

The dimension of P is defined by dim(P ) := dim(aff(P )).

The main theorem for polytopes is the following:

Theorem 1.1 (Minkowksi–Weyl Theorem [52, Theorem 1.1]). P ⊂ Rd is a
polytope if and only if P is a bounded polyhedron.

F ⊆ P is a face of P if there is a supporting hyperplane H of P such that

F = P ∩H.

Further, ∅ and P itself are by definition faces as well. Faces of dimension
0, 1 and dim(P )−1 are called vertices, edges, and facets respectively. The
empty face ∅ has dimension −1. A face F is called proper if dim(F ) ≤
dim(P )− 1. P ⊂ Rd is full-dimensional if dim(P ) = d.

The boundary ∂P of P is the set of points contained in a proper face. The
relative interior of P is defined by

relint(P ) = P \ ∂P.

The next theorem collects some fundamental results about polyhedra:

Theorem 1.2 ([52, Propositions 2.2 and 2.3], [18, Theorem 4.4]). Let P ⊂ Rd

be a polyhedron. Then

(i) F ∩G is a face of P for all faces F,G of P ;

(ii) the faces of a face F of P are exactly the faces of P contained in F ;

(iii) if P is a polytope, then P is the convex hull of its vertices;
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(iv) for every point p outside a polyhedron P there is a hyperplane H such
that p ∈ H≥ \H and P ⊂ H≤ \H;

(v) for polyhedra P and Q such that relint(P ) ∩ relint(Q) = ∅ there is a
hyperplane H such that P ⊆ H≥ and Q ⊆ H≤.

A set C ⊆ Rd is a cone if for all λ ∈ R≥0 and s ∈ C we also have λs ∈ C.
A convex cone is a subset C ⊆ Rd such that for λ, µ ∈ R≥0 and s, t ∈ C
we have λs + µt ∈ C. C is called pointed if it does not contain a linear
subspace of positive dimension. The conical hull of a set S ⊆ Rd is defined
by

cone(S) :=

{
m∑
i=1

λixi : m ≥ 1, x1, . . . , xm ∈ S, λ1, . . . , λm ≥ 0

}
.

The homogenization of an r-dimensional polytope P ⊆ Rd is defined by

hom(P ) = {(x, t) ∈ Rd × R≥0 : x ∈ tP} ⊆ Rd+1.

The set hom(P ) is a pointed polyhedral cone of dimension r + 1.

A polytope ∆ with vertex set v1, . . . , vr+1 is an r-dimensional simplex if
v1, . . . , vr+1 are affinely independent. The convex hull of any subset of vertices
is a simplex itself and a face of ∆.

For an r-dimensional polytope P and a point p outside the affine hull of P ,
the pyramid Pyrp(P ) is the (r + 1)-dimensional polytope defined by

Pyrp(P ) = conv(P ∪ {p}).

Thus, an r-dimensional simplex can be obtained by applying the pyramid
operation r times starting out with a single point.

For n ∈ R≥0 and a polyhedron P , the n-th dilation of P is defined by

nP = {np : p ∈ P}.

The Minkowski sum of two polyhedra P and Q is

P +Q = {p+ q : p ∈ P, q ∈ Q}.

Both operations, taking the dilation or the Minkowski sum, yield again a
polyhedron or a polytope if P and Q are bounded.
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A polytope Z is a zonotope if it is the Minkowksi sum of finitely many
segments. Equivalently, a zonotope is a translate of

Z =

{
m∑
i=1

λiui : 0 ≤ λ1, . . . , λm ≤ 1

}

for some vectors u1, . . . , um ∈ Rd. If u1, . . . , um are linearly independent,
then Z is a parallelepiped.

Subdivisions

A polyhedral complex is a finite set C of polyhedra in Rd such that

(i) ∅ ∈ C,

(ii) if P ∈ C, then all faces of P are in C as well,

(iii) if P,Q ∈ C, then P ∩Q is a face both of P and Q.

The dimension of C is defined as the maximal dimension of a polyhedron
in C. The underlying set of C is the set |C| =

⋃
P∈C P ⊆ Rd. |C| can be

partitioned into relatively open polyhedra

|C| =
⊔
P∈C

relint(P ).

A set C ′ ⊆ C is a subcomplex of C if it is itself a polyhedral complex. C is
called a polytopal complex if it contains only polytopes.

Let fi(C) = |{F ∈ C : dim(F ) = i}|. An important topological invariant is
the Euler characteristic defined by

χ(C) = f0(C)− f1(C) + f2(C)− · · · .

The reduced Euler characteristic is χ̃(C) = χ(C)− f−1(C) = χ(C)− 1.

The collection of faces of a polyhedron P ⊆ Rd is by Theorem 1.2 a polyhe-
dral complex with underlying set P . It is denoted by L(P ) and called face
lattice. The set of proper faces forms the boundary complex ∂P of P .

The Euler–Poincaré formula states that for every non-empty polytope P
we have

χ(P ) := χ(L(P )) = 1.
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A polyhedral complex C is a polyhedral subdivision of a polyhedron P if
|C| = P . Thus, L(P ) is the trivial subdivision. C is using no new vertices
if every vertex of a polytope in C is a vertex of P . If F is a face of P , then
C induces a subdivision of F

CF = {C ∩ F : C ∈ C}.
C is called a triangulation if all polytopes in C are simplices.
Theorem 1.3 ([2, Theorem 3.1]). Every polytope P ⊆ Rd has a triangulation
C of P using no new vertices.

Let p ∈ Rd. A face F of a polyhedron P is visible from p if for all q ∈ F
we have [p, q) = {(1 − λ)p + λq : 0 ≤ λ < 1} ⊆ Rd \ P . Equivalently, by
Theorem 1.2, F is visible if there is a supporting hyperplane H of P such
that P ∩ H = F , P ⊆ H≤ and p ∈ H≤ \ H. The faces visible from p
form a subcomplex of P called the visibility complex which is denoted by
Visp(P ). (See Figure 1.) More generally, if C is a subdivision of P , then
Visp(P ) induces a subcomplex Visp(C) := {C∩F : C ∈ C, F ∈ Visp(P )} ⊆ C.

P

p

Figure 1.1: A triangulated polytope P and its visibility complex (red).

Theorem 1.3 can, for example, be shown using the beneath-beyond algo-
rithm (see, e.g., [12, Section 4.3.1]):
Theorem 1.4 (Beneath-Beyond algorithm). Let P be a polytope given by
P = conv({v1, . . . , vm}). Then the algorithm

C = {∅};
FOR i = 1, . . . ,m DO

C = C ∪ {conv(F ∪ {vi}) : F ∈ Visvi(C) \ {∅}};
RETURN C;
returns a triangulation of P . If v1, . . . , vm are vertices of P , then C is a
triangulation using no new vertices.

If Q ⊆ P is a polytope with vertices w1, . . . , wl then by passing the points
v′1 = w1, . . . , v

′
l = wl, v

′
l+1 = v1, . . . , v

′
l+m = vm to the algorithm we obtain a

triangulation of Q and an extension to P using only vertices of P and Q.
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Posets

A partially ordered set, or poset for short, is a set P together with a
binary relation � such that the following three conditions are satisfied:

(i) x � x for all x ∈ P (reflexivity),

(ii) if x � y and y � z, then x � z for x, y, z ∈ P (transitivity), and

(iii) if x � y and y � x, then x = y for x, y ∈ P (antisymmetry).

A poset A ⊆ P with a binary relation �A is a subposet of P if x �A y
implies x � y in P for all x, y ∈ A. Moreover, A is called induced if x � y
in P implies x �A y for all x, y ∈ A.

Two elements x, y ∈ P are called comparable if x � y or y � x; otherwise
they are called incomparable. A set of pairwise incomparable elements is
called an antichain; a set of elements {x1 � · · · � xn} is called a chain.
I ⊆ P is an ideal if x ∈ I whenever there is a y with x � y and y ∈ I.
An upper bound of a set S ⊆ P is an element M ∈ P such that s � M
for all s in S. Analogously, m is a lower bound if m � s for all s ∈ S. The
join x∨ y of two elements x, y ∈ P is the unique least upper bound of x and
y if it exists, i.e., x∨y �M for every upper boundM of {x, y}. Analogously,
the meet x ∧ y is the unique largest lower bound of x and y if it exists. A
poset in which every pair of elements x and y has a join and a meet is called
a lattice. Thus, in a finite lattice there is a unique minimal element and a
unique maximal element denoted by 0̂ and 1̂, respectively.

For x, y ∈ P with x � y the set [x, y] := {z ∈ P : x � z � y} is called an
interval.

An element y covers x if x ≺ y and [x, y]\{x, y} = ∅. The relation between
x and y is called a cover relation and we write x ≺· y.
In a poset P with minimal element 0̂ and maximal element 1̂, all a ∈ P with
0̂ ≺· a are called atoms. Analogously, all b ∈ P such that b ≺· 1̂ are called
coatoms.

The elements of a polyhedral complex C, ordered by inclusion, form a poset.
In fact, by Theorem 1.2, this is a meet-semilattice, i.e., a poset in which
meets exist. If C = L(P ) for some polyhedron P , then it is even a lattice,
which justifies the name face lattice for L(P ).

The Hasse diagram of a poset P is a graphical diagram, where the vertices
correspond to the elements of P and the edges to cover relations. If x ≺·
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y then y is drawn above x. Sometimes we will identify P with its Hasse
diagram.

Figure 1.2: Hasse diagram of a chain (left) and of an antichain (right).

Möbius functions of posets

Let S1, . . . , Sm be finite sets. The classical inclusion-exclusion principle
allows us to calculate the number of elements in the union

⋃m
i=1 Si as an

alternating sum of the number of elements in all possible intersections of
S1, . . . , Sm:

Theorem 1.5 (Inclusion-exclusion principle). Let S1, . . . , Sm be finite sets.
Then

|S1 ∪ · · · ∪ Sm| = |S1|+· · ·+|Sm|−|S1 ∩ S2|−· · · =
∑

∅6=I⊆[m]

(−1)|I|−1 |∩i∈ISi| .

(1.1)

Some of the intersections might be empty or occur several times. A priori,
it is not clear how often each summand will appear on the right-hand side
of equation (1.1). With the help of Möbius functions we can calculate the
correct multiplicity of every non-empty intersection.

The Möbius function µΠ : P × P → Z of a finite poset P is recursively
defined by

µP(x, y) =


0 if x 6� y,

1 if x = y,

−
∑

x≤z<y µP(x, z) otherwise.

Its importance stems from the following remarkable property:

Theorem 1.6 (Möbius inversion formula [49, Proposition 3.7.1]). Let P be
a finite poset and let f, g : P→ G, where G is an abelian group. Then

g(y) =
∑
x�y

f(x) for all y ∈ P
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if and only if
f(y) =

∑
x�y

g(x)µP(x, y) for all y ∈ P.

Let again S1, . . . , Sm be finite sets. The intersection poset P∩ consists
of all the intersections {∩i∈ISi : ∅ 6= I ⊆ m} ordered by inclusion. Let
P̂∩ = P∩ ∪ {1̂}, where we define S1 ∪ · · · ∪ Sm =: 1̂. Then we obtain the
following proposition (see, for example, [49, Section 3.7]).

Proposition 1.7. Let S1, . . . , Sm be finite sets. Then

|S1 ∪ . . . ∪ Sm| = −
∑
S∈P∩

µP̂∩
(S, 1̂) |S| .

The Möbius function of a subdivision C of a polytope P has a simple form
(see, e.g., [49, Proposition 3.8.9]):

Theorem 1.8. Let P be an r-dimensional polytope and let C be a subdivision
of P . Then P = C ∪ {1̂} is a lattice and

µP(F,G) =

{
0 if G = 1̂ and F ⊆ ∂P,

(−1)dim(G)−dim(F ) otherwise,

where dim(1̂) := r + 1.

In particular, if F,G are faces of a polytope P and F ⊆ G, then µP (F,G) =
(−1)dim(G)−dim(F ), where µP denotes the Möbius function of L(P ).

One technique to determine the Möbius functions of lattices in general is the
Crosscut Theorem:

Theorem 1.9 (Crosscut Theorem [25, Section 3.1.9]). Let L be a finite lattice
and X be its set of atoms. Then

µL(0̂, 1̂) =
∑
k≥0

(−1)kXk,

where Xk is the number of k-element subsets of X with join 1̂.

Lattices and valuations

The word lattice has two different meanings in this thesis. Apart from the
poset theoretic context, a lattice is a discrete additive subgroup of Rd, i.e.,
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a subgroup without limit points. An important example is Zd. In fact, every
lattice is isomorphic to an integer lattice Zl for some 0 ≤ l ≤ d (see, e.g., [32,
Proposition 4.2]).

Throughout Λ will denote a lattice in Rd or a vector subspace over some
subfield of R. A polytope with vertices in Λ will be called a Λ-polytope,
or lattice polytope if Λ = Zd. The class of all Λ-polytopes is denoted by
P(Λ).

Let G be an abelian group. A valuation on Λ-polytopes is a map ϕ : P(Λ)→
G such that ϕ(∅) = 0 and

ϕ(P ∪Q) = ϕ(P ) + ϕ(Q)− ϕ(P ∩Q)

for all P,Q ∈ P(Λ) with P∪Q ∈ P(Λ) and P∩Q ∈ P(Λ)1. ϕ is called simple
if ϕ(P ) = 0 for all Λ-polytopes with dim(P ) < d. ϕ is homogeneous of
degree r if for all n ∈ N and for all P ∈ P(Λ) we have ϕ(nP ) = nrϕ(P ).

A fundamental valuation is χ : P(Λ)→ Z with χ(P ) = 1 for every non-empty
polytope P . As this valuation coincides with the Euler characteristic on every
polytope, it is itself referred to as the Euler characteristic. An example of
a simple and homogeneous valuation of degree d is the d-dimensional volume
vold.

McMullen showed in [29] that every valuation P(Λ) → G satisfies the so-
called inclusion-exclusion property:

Theorem 1.10 (Inclusion-exclusion property). Let ϕ : P(Λ) → G be a val-
uation and let P1, . . . , Pm ∈ P(Λ) such that

(i) P = P1 ∪ · · · ∪ Pm ∈ P(Λ),

(ii) for all ∅ 6= I ⊆ [m] we have
⋂
i∈I Pi ∈ P(Λ).

Then

ϕ(P ) =
∑

∅6=I⊆[m]

(−1)|I|−1ϕ

(⋂
i∈I

Pi

)
.

For real-valued Λ-valuations this was shown by Betke [5].

McMullen proved, in fact, something stronger, namely that in the context of
valuations, every Λ-polytope can be identified with its characteristic function.

1The assumption P ∩Q ∈ P(Λ) is not necessary. In fact, P ∩Q ∈ P(Λ) already follows
from P,Q, P ∪Q ∈ P(Λ).
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The characteristic function of a polytope P is defined by

1P (x) =

{
1 if x ∈ P,
0 otherwise.

The precise statement is the following:

Theorem 1.11 ([29, Theorem 8.1]). Let ϕ : P(Λ) → G be a valuation. For
Λ-polytopes P1, . . . , Pk and α1, . . . , αk ∈ Z we have

k∑
i=1

αi · ϕ(Pi) = 0 whenever
k∑
i=1

αi · 1Pi = 0.

Generating functions

Let G be an abelian group. Then GZ denotes the set of function Z→ G. Let
S : GZ → GZ, (Sf)(n) = f(n + 1) be the shift operator and let I denote
the identity operator on GZ. The difference operator is defined by

∆: GZ → GZ

f 7→ (n 7→ f(n+ 1)− f(n)),

i.e., ∆ = S − I. A function f : Z → G (or f : N → G) is a polynomial of
degree at most d if ∆d+1f = 0, i.e., if f satisfies the recursion

0 =
d+1∑
i=0

(−1)i
(
d+ 1

i

)
f(n+ i) for all n ∈ N.

If the domain of f is N, we say that f agrees with a polynomial and by
using the recursion “backwards” we can uniquely expand f to a polynomial
Z→ G.

The values f(0),∆f(0), . . . ,∆df(0) uniquely determine f :

f(n) = Snf(0)

= (I + ∆)nf(0)

=
d∑
i=0

(
n

i

)
∆if(0).

On the other hand, f has a unique representation as f(n) =
∑d

i=0

(
n
i

)
ai for

all n ∈ Z, namely ai = ∆if(0) for 0 ≤ i ≤ d.
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The set of formal power series G[[t]] is a Z[t]-module. An element F (t) =∑
n≥0 ant

n ∈ G[[t]] is rational if there are h(t) ∈ G[t] ⊂ G[[t]] and q(t) ∈
Z[t] \ {0} such that q(t) · F (t) = h(t) and we write∑

n≥0

ant
n =

h(t)

q(t)
.

We have the following characterization for polynomiality:

Theorem 1.12 ([49, Corollary 4.3.1]). Let f : Z→ G and d ∈ N. Then the
following are equivalent:

(i) ∑
n≥0

f(n)tn =
h(t)

(1− t)d+1
, where h(t) ∈ G[t] and deg(h) ≤ d,

(ii) ∆d+1f = 0, i.e., f is a polynomial of degree at most d.

Further, the following reciprocity holds:

Theorem 1.13 ([49, Proposition 4.2.3]). Let d ∈ N and let f : Z → G be a
function such that

f(n+ d) + α1f(n+ d− 1) + · · ·+ αdf(n) = 0 for all n ∈ Z.

Then F (t) =
∑

n≥0 f(n)tn is rational as well as

F (t) :=
∑
n≥1

f(−n)tn,

and we have
F

(
1

t

)
= −F (t)

as rational functions.
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Chapter 2

On the combinatorics of
valuations

2.1 Introduction

Enumerating lattice points in polytopes is a classical topic in geometric com-
binatorics. A classical theorem by Ehrhart [14] states that the function
Ehr(nP ) counting lattice points in the n-th dilate of an r-dimensional lattice
polytope P in Rd agrees with a polynomial EhrP (n) of degree r for n ≥ 1,
the Ehrhart polynomial of P . It follows that the generating series — the
Ehrhart series — is rational of the form

EhrP (t) := 1 +
∑
n≥1

EhrP (n)tn =
h∗0(P ) + h∗1(P )t+ · · ·+ h∗r(P )tr

(1− t)r+1
.

The vector h∗ = h∗(P ) := (h∗0(P ), . . . , h∗d(P )) is called the h∗-vector of P
where h∗i (P ) := 0 for all i > r. The importance of the h∗-vector stems from
the fact that it encodes the Ehrhart polynomial in a different polynomial
basis:

EhrP (n) = h∗0(P )

(
n+ r

r

)
+ h∗1(P )

(
n+ r − 1

r

)
+ · · ·+ h∗r(P )

(
n

r

)
.

Although a complete classification of Ehrhart polynomials seems out of sight,
there are non-trivial constraints on the set of Ehrhart polynomials. The
starting point of this chapter are the following two fundamental results:

The first one is Stanley’s Nonnegativity Theorem [42] stating that the
entries of the h∗-vectors are nonnegative integers for all polytopes P . Stanley

15



16 2.1. INTRODUCTION

further showed in [48] that the h∗-vectors are monotone with respect to
inclusion, i.e., for two lattice polytopes P,Q ⊂ Rd such that P ⊆ Q we have
h∗i (P ) ≤ h∗i (Q) for 0 ≤ i ≤ d.

The second one is Ehrhart–Macdonald reciprocity (see e.g. [2, Theorem
4.1]) which states that evaluating the Ehrhart polynomial at negative integers
has a combinatorial meaning, namely (−1)dimPEhrP (−n) equals the number
of points in the relative interior of nP . In particular, the sign of EhrP (n) is
constant for n ∈ Z<0.

The Bernstein–McMullen Theorem (see e.g. [18, Theorem 19.4]) gen-
eralizes Ehrhart’s theorem to counting lattice points in Minkowski sums of
polytopes: It states that for lattice polytopes P1, . . . , Pk ⊂ Rd, the func-
tion counting lattice points in n1P1 + · · · + nkPk agrees with a multivariate
polynomial for integers n1, . . . , nk ≥ 0. Motivated by Ehrhart–Macdonald
reciprocity, we ask for an interpretation for the evaluation of this multivari-
ate polynomial at arbitrary integers n1, . . . , nk ∈ Z. In Section 2.5 we give
an interpretation as the weighted enumeration of lattice points where the
weights are given by the reduced Euler characteristic of certain polytopal
complexes.

We achieve these results by considering translation-invariant valuations.
In the sequel let Λ be a discrete additive subgroup or a vector subspace of Rd

over a subfield of R. A Λ-valuation, or translation-invariant valuation,
is a valuation ϕ : P(Λ) → G, where G is an abelian group, such that for all
t ∈ Λ and all P ∈ P(Λ)

ϕ(P + t) = ϕ(P ).

McMullen [28] showed that for a Λ-valuation ϕ the function ϕ(nP ) agrees
with a polynomial for n ≥ 0. He further showed a reciprocity. In Sec-
tion 2.3 and Section 2.4 we will reproduce these theorems. A fundamental
tool for our work are half-open decompositions of polyhedra as introduced
by Köppe and Verdoolaege [24]. Polynomiality enables us to consider the
coefficients of the numerator polynomial of the rational generating function∑

n≥0 ϕ(nP )tn. A valuation is called h∗-nonnegative if all coefficients of the
numerator are nonnegative, and h∗-monotone if the coefficients are mono-
tone. In Section 2.6.1 we show that h∗-nonnegativity and -monotonicity are,
in fact, equivalent properties of ϕ, and we give a simple characterization of
this class of valuations. This allows us to give a short proof of Stanley’s re-
sults on the monotonicity and nonnegativity of the Ehrhart h∗-vector. Fur-
ther, we are able to reprove a result by Beck, Robins and Sam [3], which
states h∗-nonnegativity and -monotonicity for solid-angle polynomials.
We moreover give an example of a valuation that is not h∗-monotone related
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to Steiner polynomials.

In Section 2.6.2 we characterize all valuations that are h∗-monotone in a weak
sense, such as the Euler characteristic, and in Section 2.6.3 we consider other
related properties of valuations.

In Section 2.7 we investigate the geometry of h∗-nonnegative valuations. We
show in Section 2.7.1 that there exists, up to scaling, only a single real-valued
h∗-nonnegative Rd-valuation — the d-dimensional volume. In Section 2.7.2
we consider real-valued Zd-valuations that are in addition invariant under
lattice transformations. Betke and Kneser showed in [6] that they form
a (d + 1)-dimensional vector space. For d ≤ 2 we completely determine the
set of h∗-nonnegative valuations. We show that it is a simplicial cone and
explicitly give its generators. In the general case d ≥ 0 we prove that it is a
full-dimensional convex cone and conjecture that it is polyhedral.

This chapter is based on joint work with Raman Sanyal.

2.2 Λ-valuations

Let ϕ : P(Λ) → G be a Λ-valuation. The set of all Λ-valuation will be
denoted by Val(Λ). Usually we will tacitly assume that G = R although if
not stated otherwise the results are valid for arbitrary ordered abelian groups,
i.e., groups G with a (partial) order � such that for all a, b, c ∈ G we have
a+ c � b+ c whenever a � b.

By Theorem 1.11 we can extend our definition of ϕ to half-open polytopes:
If B ⊆ ∂P is the union of faces F1, . . . , Fm, then

ϕ(P \B) := ϕ(P )−
∑

∅6=I⊆[m]

(−1)|I|−1ϕ

(⋂
i∈I

Fi

)
. (2.1)

In particular, for B = ∂P we have by Theorem 1.8

ϕ(relintP ) =
∑

F∈L(P )

(−1)dim(P )−dim(F )ϕ(F ).

This can, for example, also be seen from the following results by Sallee, who
showed in [34] that ϕ(relint(P )) is, up to sign, a valuation:

Theorem 2.2.1 (Sallee [34]). Let ϕ be a valuation. Then

ϕ∗(P ) = (−1)dim(P )ϕ(relint(P ))

defines a valuation.
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Clearly, if ϕ is a Λ-valuation, then so is ϕ∗. Sallee furthermore proved the
following:

Theorem 2.2.2 (Sallee [34]). Let ϕ be a valuation. Then

ϕ∗∗ = ϕ.

An important tool are half-open decompositions. Köppe and Verdoolaege
showed in [24] that every subdivision gives rise to a decomposition into half-
open polytopes:

Theorem 2.2.3 ([24, Theorem 3]). Let P ⊂ Rd be a polytope and C a
subdivision of P . Let P1, . . . , Pm be the elements of maximal dimension in C
given by

Pi = {x ∈ Rd : ati,jx ≤ bi,j, 1 ≤ j ≤ li}
for certain facet defining ai,j ∈ Rd and displacements bi,j ∈ R. Let p ∈ aff(P )
outside any facet-defining hyperplane of C, i.e.,

ati,jp 6= bi,j

for all 1 ≤ i ≤ m and 1 ≤ j ≤ li. Let

P̃i = {x ∈ Rd : ati,jx ≤ bi,j, for j such that ai,jp < bi,j,

ati,jx < bi,j, for j such that ai,jp > bi,j}.

Then P̃i = Pi \ |Visp(Pi)|, and

P \ |Visp(P )| =
m⊔
i=1

P̃i

is a decomposition into half-open polytopes. In particular, by choosing p ∈ P ,
we obtain a half-open decomposition of P . If C is a triangulation, we obtain a
decomposition into half-open simplices, where every half-open simplex arises
from a simplex leaving out at most dim(P ) many facets.

If P is a Λ-polytope and C is a subdivision of P using no new vertices, then
every component P̃i is a half-open Λ-polytope. Thus, by Theorem 1.11, we
can determine ϕ(P \ |Visp(P )|) from the half-open decomposition without
using the inclusion-exclusion principle:

ϕ(P \ |Visp(P )|) =
m∑
i=1

ϕ(P̃i).
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p

Figure 2.1: A subdivided polytope with visibility complex (red) and the
corresponding half-open decomposition.

2.3 Polynomiality

For a polytope P ∈ P(Λ) and a Λ-valuation ϕ let ϕ(nP ) be the value of ϕ
at the n-th dilate of P . It is due to McMullen [28] that ϕ(nP ) agrees with a
polynomial ϕP (n) for n ≥ 0. Sometimes we will abuse notation and identify
ϕ(nP ) with the polynomial it agrees with. Using the generating function

Fϕ(P, t) :=
∑
n≥0

ϕ(nP )tn

we will prove:

Theorem 2.3.1 ([28, Theorem 5]). Let P ∈ P(Λ) be an r-dimensional poly-
tope. Then

Fϕ(P, t) =
h∗ϕ,0(P ) + h∗ϕ,1(P )t+ · · ·+ h∗ϕ,r(P )tr

(1− t)r+1
,

where h∗ϕ,r(P ) = ϕ(relint(−P )). In particular, ϕ(nP ) agrees with a polyno-
mial ϕP (n) of degree at most r for all n ≥ 0.

Proof. First, let P ∈ P(Λ) be a simplex with vertices v1, . . . , vr+1. Its ho-
mogenization hom(P ) = {(p, t) ∈ Rd × R≥0 : p ∈ tP} ⊂ Rd+1 is a convex
polyhedral cone generated by ṽ1 := (v1, 1), . . . , ṽr+1 := (vr+1, 1) and can be
partitioned by translates of the half-open parallelepiped

Π = {a1ṽ1 + · · ·+ ar+1ṽr+1 : 0 ≤ ai < 1} ⊂ Rd+1.
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In fact,

hom(P ) =
⊔

s1,...,sr+1∈Z≥0

(Π + s1ṽ1 + · · ·+ sr+1ṽr+1) .

Π

Rd

P

2P

3P
R

1

1

Figure 2.2: Partition of Hom(P ) into translates of the half-open paral-
lelepiped Π (in green).

For every n ≥ 0 we identify {x ∈ Rd+1 : xd+1 = n} with Rd by forgetting the
last coordinate.

Then

Fϕ(P, t) =
∑
n≥0

ϕ(hom(P ) ∩ {xd+1 = n})tn. (2.2)

We observe that (Π + s1ṽ1 + · · · + sr+1ṽr+1) ∩ {xd+1 = n} is a translate of
Π ∩ {xd+1 = n − s1 − · · · − sr+1} by an element in Λ × Z. It is empty if
n− s1 − · · · − sr+1 is negative or > r. Its closure is the hypersimplex

conv({a1ṽ1 + · · ·+ar+1ṽr+1 : ai ∈ {0, 1},
r+1∑
i=1

ai = n−s1−· · ·−sr+1}) ∈ P(Λ).

By the inclusion-exclusion property and by translation-invariance the right-
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hand side of equation (2.2) equals∑
s1,...,sr+1≥0

∑
n≥0

ϕ(Π ∩ {xd+1 = n− s1 − · · · − sr+1})tn

=
∑

s1,...,sr+1≥0

ts1+···+sr+1

r∑
n=0

ϕ(Π ∩ {xd+1 = n})tn

=
1

(1− t)r+1

r∑
n=0

ϕ(Π ∩ {xd+1 = n})tn.

Therefore, by Theorem 1.12, ϕ(nP ) is given by a polynomial for n ≥ 0. We
observe that

Π ∩ {xd+1 = r} = relint(−(P, 1)) + ṽ1 + · · · ṽr+1,

and therefore is a translate of relint(−P ). Thus, h∗ϕ,r(P ) = ϕ(relint(−P )).

For the general case, we consider a triangulation of P . By inclusion-exclusion
we can represent Fϕ(P, t) by

Fϕ(P, t) =
g0(P ) + g1(P )t+ · · ·+ gd(P )td

(1− t)d+1

for all P ∈ P(Λ). Then, P 7→ gd(P ) is a Λ-valuation and for every sim-
plex P ∈ P(Λ) we have gd(P ) = (−1)d−dim(P )ϕ(relint(−P )). Further, P →
(−1)d−dim(P )ϕ(relint(−P )) is a Λ-valuation by Theorem 2.2.1. Thus,

h∗ϕ,dim(P )(P ) = (−1)d−dim(P )gd(P ) = ϕ(relint(−P ))

for all P ∈ P(Λ), as every Λ-valuation is uniquely determined by its values
on simplices in P(Λ) by the inclusion-exclusion property.

There is a multivariate generalization of Theorem 2.3.1 by McMullen:

Theorem 2.3.2 ([28, Theorem 6]). Let ϕ ∈ Val(Λ) and let P1, . . . , Pk ∈
P(Λ). Then ϕ(n1P1 + · · · + nkPk) agrees with a polynomial in n1, . . . , nk
for integers n1, . . . , nk ≥ 0. Its degree in ni is at most dim(Pi) and its total
degree does not exceed dim(P1) + · · ·+ dim(Pk).

The following lemma is needed:

Lemma 2.3.3 ([28, Lemma 2]). Let ϕ ∈ Val(Λ) and Q ∈ P(Λ). Then

ψ(P ) := ϕ(P +Q)

defines a Λ-valuation.
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Proof. We repeat the argument given in [28]: Let P1, P2 ∈ P(Λ) such that
P1 ∪ P2 ∈ P(Λ). Then the claim follows from

(P1 ∪ P2) +Q = (P1 +Q) ∪ (P2 +Q)

and
(P1 ∩ P2) +Q = (P1 +Q) ∩ (P2 +Q).

The first equation is immediate. For the second equation, observe that for
p ∈ (P1 +Q) ∩ (P2 +Q) there are p1 ∈ P1, p2 ∈ P2 and q1, q2 ∈ Q such that

p = p1 + q1 = p2 + q2.

Thus, for all 0 ≤ λ ≤ 1

p = λ(p1 + q1) + (1− λ)(p2 + q2) = λp1 + (1− λ)p2 + λq1 + (1− λ)q2︸ ︷︷ ︸
∈Q

.

As P1 ∪ P2 is convex the segment [p1, p2] is fully contained in P1 ∪ P2, and
therefore, there is a λ ∈ [0, 1] such that λp1 + (1− λ)p2 ∈ P1 ∩P2, as P1 ∪P2

is connected.

Proof of Theorem 2.3.2. We repeat McMullen’s inductive argument here: If
k = 1, then the statement follows from Theorem 2.3.1. For k > 1 we consider
the function ψ defined by

ψ(Pk+1) := ϕ(n1P1 + · · ·+ nkPk + Pk+1).

Then, by Lemma 2.3.3, ψ is a Λ-valuation. By Theorem 2.3.1, ψ(nk+1Pk+1)
is given by a polynomial of degree at most dim(Pk+1) in nk+1,

ψPk+1
(nk+1) =

dim(Pk+1)∑
i=0

(
nk+1

i

)
αi(n1P1 + · · ·+ nkPk)

for nk+1 ≥ 0. For fixed Pk+1 we have αi ∈ Val(Λ). Therefore, by induction
hypotheses, αi(n1P1 + · · ·+ nkPk) agrees with a multivariate polynomial for
n1, . . . , nk ≥ 0 with degree in ni of at most dim(Pi) for 1 ≤ i ≤ k.

For the total degree we introduce a new parameter m and consider

ϕ(m(n1P1 + · · ·+ nkPk)) = ϕ(mn1P1 + · · ·+mnkPk).

Its degree as polynomial in m equals the total degree in n1, . . . , nk and is at
most dim(n1P1 + · · ·+ nkPk) by Theorem 2.3.1.
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2.4 Reciprocity

Let P ∈ P(Λ) and ϕ ∈ Val(Λ). As ϕ(nP ) agrees with the polynomial ϕP (n)
for n ≥ 0, it is natural to ask if there is an interpretation for the evaluation
of ϕP at negative integers. An answer to this question is given by McMullen
in [28]:

Theorem 2.4.1 (McMullen [28]). Let ϕ ∈ Val(Λ) and let P be an r-dimensional
Λ-polytope. Then

ϕP (−n) = (−1)rϕ(relint(−nP ))

for n ≥ 1.

Proof. Again, we first consider the case when P is a simplex with vertex set
{v1, . . . , vr+1}. By Theorem 1.13 we have

Fϕ

(
P,

1

t

)
= −

∑
n≥1

ϕP (−n)tn

as rational functions. For n ≥ 0 we identify {x ∈ Rd+1 : xd+1 = n} with
Rd by forgetting the last coordinate. Now we consider relint(hom(−P )) and
observe

ϕ(relint(hom(−P )) ∩ {xd+1 = n}) = ϕ(relint(−nP )) for n ≥ 1.

We define

Π̃ = {a1(−v1, 1) + · · ·+ ar+1(−vr+1, 1) : 0 < ai ≤ 1 for 1 ≤ i ≤ r + 1}

and observe that relint(hom(−P )) can be partitioned by translates of Π̃. In
fact,

relint(hom(−P )) =
⊔

s1,...,sr+1≥0

(
Π̃ + s1(−v1, 1) + · · ·+ sr+1(−vr+1, 1)

)
.

By analogous arguments as in the proof of Theorem 2.3.1 we see

F ◦ϕ(−P, t) :=
∑
n>0

ϕ(relint(−nP ))tn =
1

(1− t)r+1

r+1∑
n=1

ϕ(Π̃ ∩ {xd+1 = n})tn.

By observing that Π ∩ {xd+1 = i} (Π defined as in the proof of Theorem
2.3.1) is a translate of Π̃ ∩ {xd+1 = r + 1− i} for 0 ≤ i ≤ r, we obtain

Fϕ(P,
1

t
) = (−1)r+1tr+1 1

(1− t)r+1

r∑
n=0

ϕ(Π ∩ {xd+1 = n}) 1

tn

= (−1)r+1F ◦ϕ(−P, t).
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The result follows by comparison of coefficients of the generating series Fϕ(P, 1
t
)

and (−1)r+1F ◦ϕ(−P, t).
If P ∈ P(Λ) is not a simplex, we triangulate P into simplices in P(Λ) and
conclude with the inclusion-exclusion property, as P 7→ ϕP (−n) and P 7→
(−1)dim(P )ϕ(relint(−nP )) are Λ-valuation.

Remark 2.4.2. The map P 7→ Fϕ(P, t) is a Λ-valuation. We can therefore
extend it to half-open polytopes P \ B as given by equation (2.1). Then
ϕ(n(P \ B)) agrees with a polynomial ϕP\B(n) for n ≥ 1. However, for
n = 0 the values ϕ(n(P \ B)) and ϕP\B(n) can be different: as |P \B| =⊔
F⊂Bface relint(F ), we obtain from Theorem 2.4.1

ϕP\B(0) = ϕP (0)−
∑

F∈L(P )
F⊂B

(−1)dim(F )ϕ({0}) = (1− χ(B))ϕ({0}),

while ϕ(0(P \B)) always equals ϕ({0}).

2.5 Multivariate Ehrhart–Macdonald reciprocity

This section is devoted to a specific valuation, namely to the lattice point
enumerator. For a Zd-polytope or lattice polytope P the lattice point
enumerator Ehr : P(Zd)→ Z counts the number of lattice points in P :

Ehr(P ) =
∣∣P ∩ Zd

∣∣ .
It is immediate that Ehr is a Zd-valuation.

2.5.1 Counting lattice points in Minkowski sums

Specializing Theorem 2.3.2 to the lattice point enumerator yields the so-called
Bernstein–McMullen Theorem [4, 28]:

Theorem 2.5.1 (Bernstein–McMullen Theorem). For P1, . . . , Pk ∈ P(Λ)
the function

EhrP1,...,Pk(n1, . . . , nk) := |(n1 · P1 + · · ·+ nk · Pk) ∩ Zd|

agrees with a multivariate polynomial for integers n1, . . . , nk ≥ 0.

The case k = 1 goes back to Ehrhart (see e.g. [2, Theorem 3.8]).
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Example 2.5.2. For a set of vectors {v1, . . . , vk} ⊂ Zd we define the zono-
tope

Z(v1, . . . , vk) := [0, v1] + · · ·+ [0, vk].

In [47] Stanley gave an explicit formula for the number of lattice points in
Z(v1, . . . , vk).

Theorem 2.5.3 ([47, Lemma 2.2]). Let {v1, . . . , vk} ⊂ Zd. Then

|Z(v1, . . . , vk)∩Zd| =
∑
I⊆[k]

gcd({|m| : m maximal minor of (vi)i∈I ∈ Rd×|I|}),

where the sum is taken over all subsets I of [k] such that {vi}i∈I is linearly
independent, and gcd denotes the greatest common divisor.

Since the minor of a matrix is a multilinear function in the column vectors,
we can calculate the multivariate Ehrhart function for segments explicitly:

Corollary 2.5.4. Let v1, . . . , vk ∈ Zd. Then

Ehr[0,v1],...,[0,vk](n1, . . . , nk) =
∑
I⊆[k]

nIgI ,

where the sum is taken over all subsets I of [k] such that {vi}i∈I is linearly
independent, and gI := gcd({|m| : m maximal minor of (vi)i∈I ∈ Rd×|I|})
and nI :=

∏
i∈I ni.

For the Λ-valuation Ehr(P ) =
∣∣P ∩ Zd

∣∣, Theorem 2.4.1 specializes to the
classical Ehrhart–Macdonald reciprocity (see, e.g., [2, Theorem 4.1]):

Theorem 2.5.5 (Ehrhart–Macdonald reciprocity). Let P be a lattice poly-
tope in Rd. Then

(−1)dimPEhrP (−n) = | relint(nP ) ∩ Zd|

for integers n ≥ 1.

We aim for a general interpretation of evaluating EhrP1,...,Pk(n1, · · · , nk) at
arbitrary integers n1, . . . , nk.

Observation 1. By introducing a parameter t and considering

|(tn1 · P1 + · · ·+ tnk · Pk) ∩ Zd|

we see that EhrP1,...,Pk(−n1, . . . ,−nk) equals

(−1)dim(P1+···+Pk)
∣∣relint(n1 · P1 + · · ·+ nk · Pk) ∩ Zd

∣∣
by Ehrhart–Macdonald reciprocity.
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?

?

m

n

nP+mQ

relint(nP+mQ)

Figure 2.3: Interpretations of EhrP,Q(n,m) by orthants.

Observation 2. By introducing two parameters s and t and considering

|(tn1 · P1 + · · ·+ tnl · Pl + snl+1 · Pl+1 + · · ·+ snkPk) ∩ Zd|

we can conclude that EhrP1,...,Pk(−n1, . . . ,−nl, nl+1, . . . , nk) is equal to

Ehrn1P1+···+nlPl,nl+1Pl+1+···+nkPk(−1, 1).

From these observations we see that it suffices to restrict our considerations
to two lattice polytopes P and Q and to give an interpretation for

EhrP,Q(n,m)

for n < 0 and m ≥ 0. Theorem 2.5.5 asserts that (−1)dimPEhrP (−n) has the
same sign for all n > 0. However, in the multivariate case sign changes are
possible, as the following considerations show.

For a graph G = ([m], E) without loops or multiple edges, let VG = {vij =
ei − ej : ij ∈ E, i < j}. The graphical zonotope is defined by

Z(VG) =
∑
ij∈E

[0, vij].

It is easy to see that a subset I ⊆ E is cycle-free, i.e., a forest, if and only if
{vij = ei − ej : ij ∈ I, i < j} is linearly independent. For a weight function
ω : E → Z, the weight wI of a subgraph I ⊆ E is defined by wI =

∏
ij∈I w(ij).

From Corollary 2.5.4 we obtain the following:
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Corollary 2.5.6. Let ω : E → Z be a weight. Let Er = {ij ∈ E : ω(ij) < 0}
consist of the red-colored edges, let Eb = {ij ∈ E : ω(ij) > 0} consist of the
blue-colored edges and let E0 = {ij ∈ E : ω(ij) = 0}. Then

Ehr{[0,vij ] : ij∈E}((ω(ij))ij∈E) =
∑

I⊆E\E0 forest
|I∩Er |even

|ωI | −
∑

I⊆E\E0 forest
|I∩Er |odd

|ωI | .

Example 2.5.7. For G = K3 with vertices 1, 2, 3 we color the edges 12 and
13 with red and the edge 23 with blue:

1 2

3

K3 contains 7 forests:

1mn² −nm−nm −n −n

Therefore

Ehr([0, v12] + [0, v13],−n; [0, v23],m) = n2 − 2nm+m− 2n+ 1

for n,m > 0. If n � m > 0, then the right-hand side is > 0, however, if
m� n > 0, then it is < 0.

2.5.2 Weighted enumeration

Example 2.5.7 shows that in general EhrP,Q(n,m) does not have a consistent
sign for n < 0 andm ≥ 0. Therefore, we cannot expect a combinatorial inter-
pretation for EhrP,Q(n,m) similar to the one in the univariate case. Instead
we will give an interpretation as weighted counting of lattice points.

For two polytopes P and Q we define the Q-deletion CQ(P ) of P as the set
of faces of P that have empty intersection with Q:

CQ(P ) = {F ⊆ P face : F ∩Q = ∅}.

It is immediate that this is a polyhedral subcomplex of L(P ).

We can give the following interpretation for EhrP,Q(−n,m):
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Theorem 2.5.8. Let P and Q be non-empty lattice polytopes. Then

EhrP,Q(−n,m) = −
∑
p∈Zd

χ̃(CmQ(nP + p)) (2.3)

for n > 0 and m ≥ 0.

Proof. By Lemma 2.3.3, ϕ(P ) = Ehr(P+mQ) defines a valuation. Therefore,
by Theorem 2.4.1,

EhrP,Q(−n,m) = ϕP (−n) =
∑

F∈L(P )

(−1)dim(F )
∣∣(−nF +mQ) ∩ Zd

∣∣ .
For every p ∈ Zd we have p ∈ −nF +mQ if and only if (nF + p)∩mQ 6= ∅.
Thus, ∑

F∈L(P )

(−1)dimF | (−nF +mQ) ∩ Zd | =
∑
p∈Zd

∑
F∈L(P ):

(nF+p)∩mQ6=∅

(−1)dimF

=
∑
p∈Zd

(−χ̃(CmQ(nP + p)),

where the last equation follows from the Euler–Poincaré formula stating that
χ̃(nP ) = 0.

Theorem 2.5.8 allows us to give a geometric proof and interpretation for
Ehrhart–Macdonald reciprocity:

Proof of Theorem 2.5.5. Let Q = {0} and p ∈ Zd. Then for all n ∈ Z we
have EhrP (n) = EhrP,Q(n, 1). Then −p is contained in relint(nP ) if and only
if 0 is contained in relint(nP+p), and in this case CQ(nP+p) is homeomorphic
to a (dim(P )− 1)-sphere whose reduced Euler characteristic is (−1)dim(P )−1.
Further, −p is contained in n∂P if and only if 0 is contained in ∂(nP + p).
In this case, CQ(nP + p) is contractible and therefore χ̃(CQ(nP + p)) = 0. If
−p 6∈ nP , then CQ(nP + p) = nP and therefore χ̃(CQ(nP + p)) = 0.

0

0
nP+p nP+p

0
nP+p

Figure 2.4: CQ(nP + p) in red.
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Therefore,

EhrP (n) = (−1)dim(P )
∣∣{p ∈ Zd : − p ∈ relint(nP )}

∣∣ = (−1)dim(P ) |relint(nP )| .

Remark 2.5.9. It is natural to ask which weights can occur in equation (2.3).
In fact, all possible Euler characteristics can occur: any simplicial complex C
is isomorphic to the Q-deletion of a polytope P , where P and Q are lattice
polytopes. To see this, assume that C is a simplicial complex on vertices
v1, . . . , vm. Let ∆m−1 = conv({e1, . . . , em}) be the (m− 1)-dimensional stan-
dard simplex in Rm. For all I ⊆ [m] let

wI :=
1

|I|
∑
i∈I

ei

be the barycenter of the face conv({ei : i ∈ I}) of ∆. Further, let W =
conv({wI : FI 6∈ C}). Then CW (∆m−1) is isomorphic to C, and by setting
P = m!∆m−1 and Q = m!W we guarantee that C is isomorphic to the Q-
deletion of P , where P and Q are both lattice polytopes.

2.6 Nonnegativity and monotonicity

2.6.1 h∗-nonnegativity and -monotonicity

Let ϕ be a Λ-valuation and P be an r-dimensional Λ-polytope in Rd. We
will study the numerator polynomial of the generating function

Fϕ(P, t) =
∑
n≥0

ϕ(nP )tn =
h∗ϕ,0(P ) + h∗ϕ,1(P )t+ · · ·+ h∗ϕ,r(P )tr

(1− t)r+1
.

We call h∗ϕ(P ) = (h∗ϕ,0(P ), . . . , h∗ϕ,d(P )) the h∗-vector of P (with respect to
ϕ), where we define h∗ϕ,i = 0 for all r < i ≤ d. The polynomial h∗ϕ(P )(t) :=∑d

i=0 h
∗
ϕ,i(P )ti is called the h∗-polynomial of P (with respect to ϕ).

ϕ is called h∗-nonnegative if h∗ϕ,i(P ) ≥ 0 for all Λ-polytopes P and all
0 ≤ i ≤ d. Further, we call ϕ h∗-monotone if for all P,Q ∈ P(Λ) with
P ⊆ Q

h∗ϕ,i(P ) ≤ h∗ϕ,i(Q) for 0 ≤ i ≤ d.

Our main theorem is that both properties are, in fact, equivalent and char-
acterized by a simple property:
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Theorem 2.6.1. Let ϕ be a Λ-valuation. Then the following are equivalent:

(i) ϕ is h∗-monotone,

(ii) ϕ is h∗-nonnegative,

(iii) ϕ(relint(∆)) ≥ 0 for all simplices ∆ ∈ P(Λ).

Proof. (i) to (ii): Let ϕ be a h∗-monotone Λ-valuation. For every Λ-polytope
P we have ∅ ⊆ P . By h∗-monotonicity we therefore obtain

0 = h∗ϕ,i(∅) ≤ h∗ϕ,i(P )

for all 0 ≤ i ≤ d.

(ii) to (iii): Let ϕ be a h∗-nonnegative Λ-valuation. By Theorem 2.3.1 we
have for all r-dimensional simplices ∆ ∈ P(Λ)

h∗ϕ,r(−∆) = ϕ(relint(∆))

which is nonnegative as ϕ is h∗-nonnegative.

(iii) to (i): We partition the proof into three steps.

Step 1: We show h∗-nonnegativity for half-open simplices. Recall that
P 7→ Fϕ(P, t) is a Λ-valuation and can therefore be extended to half-open
simplices: In the sequel let ∆ = conv({v1, . . . , vr+1}) be an r-dimensional
simplex in P(Λ), and for every subset I ⊆ [r+ 1] let FI = conv({vj : j ∈ I}).
Then F∅ = ∅ and for jc := [r + 1] \ {j} let Fjc denote the unique facet
not containing vj. The generating function of a half-open simplex HI =
∆ \

⋃
j∈I Fjc is

Fϕ(HI , t) = Fϕ(∆, t)−
∑
J⊆I

(−1)|J |−1Fϕ

(⋂
j∈J

Fjc , t

)

and can by Theorem 2.3.1 be represented by

h∗ϕ,0(HI) + h∗ϕ,1(HI)t+ · · ·+ h∗ϕ,r(HI)t
r

(1− t)r+1
.

We will show that the coefficients of the numerator polynomial — the h∗-
polynomial of HI — are nonnegative whenever I ( [r + 1]. We define the
homogenization of HI by

hom(HI) = hom(∆) \
⋃
j∈I

hom(Fjc) ⊂ Rd+1.
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ΠHI

Rd

R

1

Figure 2.5: Partition of Hom(HI) into translates of an half-open paral-
lelepiped (in green) for HI a half-open segment.

We identify the hyperplane {x ∈ Rd+1 : xd+1 = n} with Rd by forgetting the
last coordinate. Then we see that ϕHI (n) equals ϕ(hom(HI) ∩ {xd+1 = n})
for n > 1. If I = ∅, then HI is a closed simplex and ϕ({0}) = ϕHI (0) by
Theorem 2.3.1. For ∅ 6= I ( [r + 1] we have that

⋃
j∈I Fjc is contractible

as
⋃
j∈I Fjc is star-convex with respect to any point in the non-empty inter-

section
⋂
j∈I Fjc . Thus, ϕHI (0) = 0 and equals ϕ(hom(HI) ∩ {xd+1 = 0}) =

ϕ(∅). Therefore, ϕHI (n) = ϕ(hom(HI) ∩ {xd+1 = n}) for all n ≥ 0 and all
I ( [r + 1].

We observe that hom(HI) can be partitioned by translates of

ΠHI = {a1v1 + · · ·+ ar+1vr+1 : 0 ≤ aj < 1 for j 6∈ I, 0 < aj ≤ 1 for j ∈ I}.

Explicitly,

hom(HI) =
⊔

s1,...,sr+1≥0

(ΠHI + s1(v1, 1) + · · ·+ sr+1(vr+1, 1)) .

By arguments analogous to those in the proof of Theorem 2.3.1 we obtain

Fϕ(HI , t) =

∑r
i=0 ϕ(ΠHI ∩ {xd+1 = i})ti

(1− t)r+1
.

Thus, ϕ(ΠHI ∩ {xd+1 = i}) = h∗ϕ,i(P ). Every Qi := ΠHI ∩ {xd+1 = i} is a
half-open hypersimplex in P(Λ), i.e., a hypersimplex where certain faces are
left out. Let C be a triangulation of the corresponding closed hypersimplex
Qi with simplices in P(Λ). Then

Qi =
⊔

∆∈C:relint(∆)⊆Qi

relint(∆),
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and therefore

h∗ϕ,i(HI) =
∑

∆∈C:relint(∆)⊆Qi

ϕ(relint(∆)) ≥ 0

by assumption.

Step 2: Now let P ⊆ Q be Λ-polytopes. If dimP = dimQ = r, we
triangulate P and extend it to a triangulation C of Q into simplices in P(Λ)
using the beneath-beyond method. Taking a point in the relative interior
of P outside any facet defining hyperplane of C yields a decomposition of
Q = H1 t . . . t Hm into half-open simplices with Theorem 2.2.3 such that
P = H1 t . . . tHk for some k ≤ m. We therefore obtain

h∗ϕ,i(P ) =
k∑
l=1

h∗ϕ,i(Hl) ≤
k∑
l=1

h∗ϕ,i(Hl) +
m∑

l=k+1

h∗ϕ,i(Hl) = h∗ϕ,i(Q), 0 ≤ i ≤ r,

by Step 1.

Step 3: If dimP < dimQ, then using the beneath-beyond method we
can construct Λ-polytopes P = P0 ⊆ P1 ⊆ · · · ⊆ Pm ⊆ Q and vertices
p0, . . . , pm−1 of Q such that Pj+1 = Pyrpj(Pj) for 0 ≤ j ≤ m−1 and dimPm =
dimQ. By Step 2 it therefore suffices to show that h∗ϕ,i(P ) ≤ h∗ϕ,i(Pyrp(P ))
for arbitrary P ∈ P(Λ) and p ∈ Λ \ aff(P ).

We show more generally that for p ∈ Λ \ aff(∆), the h∗-vector of the half-
open simplex HI is componentwise smaller than the h∗-vector of the (r+ 1)-
dimensional half-open simplex

Pyrp(HI) := Pyrp(∆) \
⋃
i∈I

Pyrp(Fic).

We observe that

ΠPyrp(HI) = {x+ λ(p, 1) : x ∈ ΠHI , 0 ≤ λ < 1}.

For 0 ≤ i ≤ r+ 1 let Qi = ΠPyrp(HI)∩{xd+1 = i} and Q̃i = ΠHI ∩{xd+1 = i}.
Let C be a triangulation of the closed hypersimplex Qi into Λ-simplices. Then
C induces a triangulation of the face Q̃i of Qi and

Qi =
⊔

∆∈C:relint(∆)⊆Qi

relint(∆) and Q̃i =
⊔

∆∈C:relint(∆)⊆Q̃i

relint(∆).
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Therefore

h∗ϕ,i(HI) =
∑

∆∈C:relint(∆)⊆Q̃i

ϕ(relint(∆))

≤
∑

∆∈C:relint(∆)⊆Qi

ϕ(relint(∆)) = h∗ϕ,i(Pyrp(HI)).

Now let P =
⊔
H be a decomposition into half-open simplices. Then

Pyrp(P ) =
⊔

Pyrp(H)

is a decomposition into half-open simplices and by the considerations above

h∗ϕ,i(P ) =
∑

h∗ϕ,i(H) ≤
∑

h∗ϕ,i(Pyrp(H)) = h∗ϕ,i(Pyrp(P ))

which proves the result.

Remark 2.6.2. The condition that ϕ(relint(∆)) ≥ 0 for all simplices ∆ ∈
P(Λ) is clearly equivalent to the condition that ϕ(relint(P )) ≥ 0 for all Λ-
polytopes P , as for every Λ-polytope P there is a triangulation C of P into
simplices in P(Λ), and thus,

ϕ(relint(P )) =
∑
∆∈C

∆6⊆|∂P |

ϕ(relint(∆)) ≥ 0.

As a corollary of Theorem 2.6.1 we can give a short proof of Stanley’s result
on the nonnegativity and monotonicity of the Ehrhart h∗-vector:

Theorem 2.6.3 (Stanley [42],[48]). Ehr : P(Zd) → Z is h∗-monotone and
h∗-nonnegative.

Proof. Let P be a lattice polytope. Then

Ehr(relint(P )) =
∑

F∈L(P )

(−1)dim(P )−dim(F )Ehr(F ) =
∣∣relint(P ) ∩ Zd

∣∣ ≥ 0.

We can apply our results also to solid-angles. The solid-angle ω(P, x) of a
lattice point x ∈ Zd with respect to a lattice polytope P is defined by

ω(P, x) = lim
ε→0

vold(P ∩ Bdε(x))

vold(Bdε(x))
,

where Bdε(x) = {y ∈ Rd : ‖y − x‖ ≤ ε}.
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1

3
8

0

Figure: Solid-angles with respect to a lattice octagon.

For fixed x the map ω(., x) : P(Zd) → R is a valuation. Further, ω(., x)
is simple as the d-dimensional volume is simple. The solid-angle sum
A : P(Zd)→ R defined by

A(P ) =
∑
x∈Zd

ω(P, x)

is a Zd-valuation, as ω(P+y, x+y) = ω(P, x) for all P ∈ P(Zd) and x, y ∈ Zd.
As a sum of simple valuations A is simple and therefore

A(relint(P )) = A(P ) ≥ 0

for all lattice polytopes P . Together with Theorem 2.6.1 this reproves a
theorem by Beck, Robins and Sam:

Theorem 2.6.4 (Beck, Robins, Sam [3]). The solid-angle sum is h∗-monotone
and h∗-nonnegative.

An example of a non h∗-monotone valuation is given by Steiner polynomials:

Example 2.6.5. We consider the Rd-valuation S : P(Rd)→ R defined by

S(P ) := vold(P + Bd),

where Bd := Bd1(0) denotes the unit ball. The polynomial tdSP (1/t) =
vold(P + tBd) is called Steiner polynomial and plays an important role
in Hadwiger’s theorem [19]. In fact, its coefficients — the quermassinte-
grals (up to scaling) — form a basis of the vector space of rigid-motion-
invariant valuations on convex bodies. S is not h∗-monotone. To see that,
let P = [0, αe1] be a segment of length α > 0 in Rd. Then

S(relint(P )) = vold(P + Bd)− 2vold(Bd) = αvold−1(Bd−1)− vold(Bd) < 0,

if α is sufficiently small.
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2.6.2 Weak h∗-monotonicity

We call a Λ-valuation ϕ ∈ Val(Λ) weakly h∗-monotone, if ϕ({0}) ≥ 0 and
if for all P,Q ∈ P(Λ) with dim(P ) = dim(Q)

h∗ϕ,i(P ) ≤ h∗ϕ,i(Q) for all i, whenever P ⊆ Q.

Clearly, every h∗-monotone valuation is weakly h∗-monotone. However, the
converse is not true in general:

Example 2.6.6. The Euler characteristic χ, which is χ(P ) = 1 for every
non-empty polytope P , is weakly h∗-monotone but not h∗-monotone, as for
every r-dimensional Λ-polytope P ,∑

n≥0

χ(nP )tn =
(1− t)r

(1− t)r+1
.

Thus, the h∗-polynomial of P has negative coefficients if r > 0 and therefore
χ is not h∗-monotone by Theorem 2.6.1.

Remark 2.6.7. Expanding the generating series such that the denominator
equals (1 − t)dim(P )+1 more generally shows that for a h∗-nonnegative Λ-
valuation ϕ with ϕ({0}) > 0 the degree of ϕP (n) is equal to dim(P ) for all
Λ-polytopes P .

The following theorem characterizes the class of weakly h∗-monotone valua-
tions:

Theorem 2.6.8. Let ϕ be a Λ-valuation. Then the following are equivalent:

(i) ϕ is weakly h∗-monotone,

(ii) ϕ(relint(∆)) +ϕ(relint(F )) ≥ 0 for every simplex ∆ ∈ P(Λ) and every
facet F of ∆.

We will use the subsequent lemma:

Lemma 2.6.9. Let ϕ be a Λ-valuation such that the condition (ii) of Theorem
2.6.8 is satisfied. Then for all 0 ≤ l ≤ r, every r-dimensional simplex
∆ ∈ P(Λ), and every choice of l facets F1, . . . , Fl,

ϕ

(
∆ \

l⋃
i=1

Fi

)
≥ 0.
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Proof. Let ∆ ∈ P(Λ) be an r-simplex with vertices v1, . . . , vr+1 and let Fj
be the facet not containing vj for all 1 ≤ j ≤ r + 1. Then for 0 ≤ l ≤ r

∆ \
l⋃

j=1

Fj =

{
r+1∑
j=1

λjvj : λj > 0 for j ≤ l,

r+1∑
j=1

λj = 1, λj ≥ 0 for all j

}
.

The right-hand side can be partitioned as⊔
[l]⊆I⊆[r]

{
r+1∑
j=1

λjvj : λj > 0 if j ∈ I, λj = 0 if j ∈ [r] \ I,
r+1∑
j=1

λj = 1, λr+1 ≥ 0

}

which equals

⊔
[l]⊆I⊆[r]

relint

 ⋂
j∈[r]\I

Fj

 t relint

 ⋂
j∈[r]\I

Fj ∩ Fr+1

 .

As
⋂
j∈I Fj ∩ Fr+1 is a facet of

⋂
j∈I Fj, the result follows.

Proof of Theorem 2.6.8. (i) to (ii): Let ∆ be an r-dimensional simplex with
vertex set {v1, . . . , vr+1}. Then (ii) holds by definition for r = 0 as ϕ({0}) ≥
0. For r > 0 we can assume that v1 = 0. Then the truncated pyramid P :=
2∆ \∆ is contained in 2∆ and is of dimension r as well. As ϕ is weakly h∗-
monotone we have ϕ(relint(P )) = h∗ϕ,r(−P ) ≤ h∗ϕ,r(−2∆) = ϕ(relint(2∆)).
Therefore

ϕ(relint(∆)) + ϕ(relint(F1)) = ϕ(relint(2∆))− ϕ(relint(P )) ≥ 0,

where Fj denotes the facet of ∆ that does not contain vj.
(ii) to (i): Let P,Q ∈ P(Λ) such that P ⊆ Q and dim(P ) = dim(Q) = r.
If r = 0, then P = Q and h∗ϕ,0(P ) = h∗ϕ,0(Q) = ϕ({0}). If r > 0, we take
a triangulation of P and extend it to a triangulation of Q into simplices in
P(Λ). Taking a point in the relative interior of P that does not lie on any
hyperplane defining a facet in the triangulation, we obtain a partition of Q\P
into half-open simplices by Theorem 2.2.3. The elements in the partition are
of the form

H = ∆ \
l⋃

j=1

Fj, 1 ≤ l ≤ r,

where Fj are facets of ∆, i.e., they arise from simplices excluding at least 1
and at most r facets. Let ∆ have vertices v1, . . . , vr+1 and let Fj be the facet
of ∆ not containing vj. Let

ΠH = {a1ṽ1 + · · ·+ ar+1ṽr+1 : 0 ≤ aj < 1 for j > l, 0 < ai ≤ 1 for j ≤ l},



CHAPTER 2. COMBINATORICS OF VALUATIONS 37

where ṽj = (vj, 1). As in the proof of Theorem 2.6.1 we obtain

h∗ϕ,i(H) = ϕ(ΠH ∩ {xd+1 = i})

for all 0 ≤ i ≤ r. By Lemma 2.6.9 it therefore suffices to show that we can
subdivide the half-open hypersimplex Qi := ΠH ∩ {xd+1 = i} into half-open
simplices, where at least one and at most r facets are left out.

To make life a bit easier, we apply the linear transformation defined by

span(ṽ1, . . . , ṽr+1)→ Rr+1

ṽj 7→ ej, 1 ≤ j ≤ r + 1,

where e1, . . . , er+1 denote the standard vectors in Rr+1.

We then identify Qi with its image

[0, 1]r+1 ∩

{
x ∈ Rr+1

≥0 :
r+1∑
j=1

xj = i, xj > 0 for 1 ≤ j ≤ l, xj < 1 for j > l

}
.

We now consider the set

V :=

{
x ∈ Rr+1 :

r+1∑
j=1

xj = i, xj < 0 for 1 ≤ j ≤ l, xj > 1 for j > l

}
.

Then V has a non-empty relative interior for 1 ≤ l ≤ r. We observe that for
all p ∈ relint(V )

Qi = Qi \ Visp(Qi),

i.e., Qi arises from the closed hypersimplex Qi by cutting out all faces visible
from p. For a triangulation C of a Qi and a point p ∈ relint(V ) that lies
outside every facet defining hyperplane of C we thus obtain, by Theorem
2.2.3, a partition of Qi =

⊔
G into half-open simplices. As p lies outside

Qi, every half-open simplex G in this partition arises from an r-dimensional
simplex by leaving out at least 1 and at most r facets. By Lemma 2.6.9
ϕ(G) ≥ 0, and thus

h∗ϕ,i(H) = ϕ(Qi) =
∑

ϕ(G) ≥ 0.

h∗ϕ,i(H) is therefore nonnegative for every H in the partition of Q\P and we
conclude that

h∗ϕ,i(Q) = h∗ϕ,i(P ) +
∑

h∗ϕ,i(H) ≥ h∗ϕ,i(P ).
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2.6.3 Other properties of Λ-valuations

A valuation ϕ is called monotone if for all Λ-polytopes P and Q

ϕ(P ) ≤ ϕ(Q) whenever P ⊆ Q,

and ϕ is called nonnegative if ϕ(P ) ≥ 0 for all P ∈ P(Λ). Every monotone
Λ-valuation is nonnegative as ∅ ⊆ P for all Λ-polytopes P . However, the
converse is not true in general, as we will see below.

As for h∗-monotonicity we could define a weak notion of monotonicity: ϕ is
weakly monotone if ϕ({0}) ≥ 0 and if for all P,Q ∈ P(Λ) with dim(P ) =
dim(Q) we have ϕ(P ) ≤ ϕ(Q) whenever P ⊆ Q. However, weak monotonic-
ity already implies monotonicity:

Proposition 2.6.10. Let ϕ be a Λ-valuation. Then the following are equiv-
alent:

(i) ϕ is monotone,

(ii) ϕ is weakly monotone.

Proof. (i) to (ii) is immediate. For the other direction we argue that

ϕ(Pyrp(P )) ≥ ϕ(P )

for all Λ-polytopes P and all p ∈ Λ \ aff(P ). If P = ∅, then ϕ(Pyrp(P )) =
ϕ({p}) ≥ 0 by definition. If dim(P ) ≥ 0, then we can assume that p =
0. Then the truncated pyramid 2 Pyrp(P ) \ (Pyrp(P ) \ P )) is contained in
2 Pyrp(P ) and is of the same dimension as Pyrp(P ). Thus, ϕ(Pyrp(P )\P ) ≥ 0
by weak monotonicity of ϕ.

By using the beneath-beyond method, for every pair of Λ-polytopes P and
Q with P ⊆ Q we can construct a chain of Λ-polytopes

P = P1 ⊆ · · · ⊆ Pn ⊆ Q,

where Pi+1 = Pyrpi(Pi) for some pi 6∈ aff Pi and dim(Pn) = dim(Q).

The next result shows that for a Λ-valuation being weakly h∗-monotone is a
stronger property than being monotone:

Proposition 2.6.11. Let ϕ be a weakly h∗-monotone Λ-valuation. Then ϕ
is monotone.
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Proof. By Proposition 2.6.10 it suffices to prove that

ϕ(P ) ≤ ϕ(Q)

for all P,Q ∈ P(Λ) with dim(P ) = dim(Q). Let CP be a triangulation
of P into Λ-polytopes. Then by the beneath-beyond method there exists a
triangulation CQ of Q that extends CP , i.e., CP ⊆ CQ. Let x be a generic point
in the relative interior of P . Using Theorem 2.2.3 we obtain a partition

⊔
H

of Q \P into half-open simplices. Each half-open simplex H in the partition
is of the form

H = ∆ \
l⋃

i=1

Fi,

where ∆ is a simplex, Fi ⊂ ∆ are facets, and 1 ≤ l ≤ dim(P ). By Lemma
2.6.9 we therefore have

ϕ(Q) = ϕ(P ) +
∑

ϕ(H) ≥ ϕ(P ).

Figure 2.6 shows the hierarchy of properties of Λ-valuations discussed in this
section. We will proceed by showing that the reverse implications do not
hold in general.

h∗-nonnegative
m

h∗-monotone
⇓

weakly
h∗-monotone

⇓
monotone
m

weakly monotone
⇓

nonnegative

Figure 2.6: Hierarchy of properties of Λ-valuations.

In [3] Beck, Robins and Sam considered Zd-valuations given by weights on
lattice points. A weight in this context is a function ν : P(Zd) × Zd → R
such that

ν(P ∪Q, x) = ν(P, x) + ν(Q, x)− ν(P ∩Q, x)
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for all P,Q ∈ P(Zd) with P ∪ Q,P ∩ Q ∈ P(Zd). ν is called nonnegative,
if it takes only nonnegative values. Further, it is translation-invariant if
for all P ∈ P(Zd) and all x, y ∈ Zd,

ν(P + y, x+ y) = ν(P, x).

The function
Nν(P ) =

∑
x∈Zd

ν(P, x)

is a Zd-valuation, whenever |Nν(P )| < ∞ for all lattice polytopes P . We
call it the weight valuation associated with the weight ν. For example, if
ω(P, x) is the solid-angle of x with respect to P , then Nω is the solid-angle
sum. For ν(P, x) = |P∩{x}| the valuation Nν is the lattice point enumerator.

The following example shows that weak h∗-monotonicity does not imply h∗-
monotonicity:

Example 2.6.12. Let ν : P(Z)× Z→ Z the weight defined by

ν(P, x) =


2 if dimP = 0,

2 if dimP = 1 and x is the left endpoint of P,
1 otherwise.

It is easy to check, that ν is, in fact, a weight and that Nν is nonnegative
and translation-invariant. Further

Nν(relint([0, 1])) = Nν([0, 1])−Nν({0})−Nν({1}) = −1

and therefore, by Theorem 2.6.1, Nν is not h∗-monotone. In addition

N([0, a])−N({0}) = a

for all a ∈ Z>0. Thus, by Theorem 2.6.8, Nν is weakly h∗-monotone.

The next example shows that a monotone Zd-valuation is not necessarily
weakly h∗-monotone:

Example 2.6.13. Let R be the polytope with vertex set {(0, 0), (2, 0), (2, 1)}
and Q be the segment with endpoints (0, 0) and (1, 1) in R2 (see Figure 2.7).
Let µ be the weight defined by

µ(P, x) = 1P+Q(x).
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R+ =Q Q+R

Figure 2.7: Q, R and Q+R in Example 2.6.13.

Then Nµ is clearly monotone. It is easy to check that

Nµ(relint(R)) =
∑

F∈L(R)

(−1)dim(F )
∣∣F ∩ Z2

∣∣ = 7− 4− 4− 6 + 2 + 2 + 2 = −1,

and Nµ(relint(conv({(2, 0), (2, 1)})) is equal to∑
F∈L(R)

(−1)dim(F )−1
∣∣F ∩ Z2

∣∣ = 4− 2− 2 = 0.

Thus, Nµ(relint(R)) + Nµ(relint(conv({(2, 0), (2, 1)})) = −1 < 0 and there-
fore, by Theorem 2.6.8, Nµ is not weakly h∗-monotone.

This is also a counterexample to a theorem by Beck, Robins and Sam [3]
which states that every nonnegative translation-invariant weight valuation
is h∗-nonnegative and weakly h∗-monotone. In fact, nonnegativity does not
even imply monotonicity as the following example shows:

Example 2.6.14. Let µ : P(Z3)× Z3 → Z be the weight defined by

µ(P, x) = 1P (x) + (−1)dim(P )1relint(P )(x).

By Theorem 2.2.1 this defines a valuation. µ is nonnegative and for 3-
dimensional polytopes Nµ counts the number of lattice points on the bound-
ary. Let P and Q in R2, P ⊂ Q, as in Figure 2.8. Then Nµ is not monotone
as 8 = Nµ(P × [0, 1]) > Nµ(Q× [0, 1]) = 6.

2.7 The geometry of h∗-monotone Λ-valuations

In this section ϕ ∈ Val(Λ) will always be real-valued. Let Val+(Λ) denote
the set of h∗-nonnegative and, by Theorem 2.6.1, equivalently, h∗-monotone
Λ-valuations. The set Val(Λ) of real-valued Λ-valuations is a vector space
over R. We will consider the geometry of Val+(Λ) as a subset of Val(Λ).
The set Val+(Λ) forms a convex cone and by Theorem 2.6.1 it is given by the
inequalities ϕ(relint(∆)) ≥ 0 for all simplices ∆ ∈ P(Λ) and all ϕ ∈ Val+(Λ).
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P

Q

Figure 2.8: P and Q in Example 2.6.14.

2.7.1 Rd-valuations

If Λ = Rd, then the set Val+(Rd) has essentially one single element:

Theorem 2.7.1. Let ϕ ∈ Val+(Rd). Then there is a λ ≥ 0 such that

ϕ = λ vold .

The Hausdorff metric dH : P(Rd)× P(Rd)→ R is defined by

dH(P,Q) = min
{
ε ≥ 0: P ⊆ Q+ εBd, Q ⊆ P + εBd

}
for polytopes P,Q in Rd. The Hausdorff metric naturally induces a topology
and thus, we have the concepts of convergence and continuity of maps on
polytopes.

To prove Theorem 2.7.1 we will use the following result by McMullen:

Theorem 2.7.2 ([28, Theorem 8] ). Every monotone Rd-valuation is con-
tinuous with respect to the Hausdorff metric.

Further, we will need the following lemma (see, e.g., [18, Chapter 16]):

Lemma 2.7.3. Let ϕ be a simple monotone Rd-valuation. Then there is a
λ ≥ 0 such that

ϕ = λ vold .

Proof. We find it instructive to give a proof here. Let Cd = [0, 1]d the d-
dimensional unit cube and λ = ϕ(Cd). Then we have λ ≥ 0 as ϕ is monotone
by assumption. By tiling Cd into nd axes-parallel cubes of side length 1

n
we

obtain ϕ( 1
n
Cd) = λ

nd
for all n ≥ 1 as ϕ is simple. In the same manner we see
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that ϕ(m
n
Cd) =

(
m
n

)d
λ for m

n
∈ Q≥0. As ϕ is monotone, by Theorem 2.7.2,

ϕ is continuous with respect to the Hausdorff metric and we can therefore
conclude that ϕ(aCd) = adλ for all a ∈ R≥0.

Now let P be an arbitrary d-dimensional polytope. Then P =
⋃
p∈ 1

n
Zd(p +

1
n
Cd)∩P . Let An = {p ∈ 1

n
Zd : p+ 1

n
Cd ⊆ P} and Pn = conv(

⋃
p∈An p+ 1

n
Cd).

Then Pn ⊆ P . Let Bn = {p ∈ 1
n
Zd : (p+ 1

n
Cd) ∩ P 6= ∅}. Then

|An| λnd =
∑
p∈An

ϕ(p+ 1
n
Cd) ≤ ϕ(Pn) ≤ ϕ(P ) ≤

∑
p∈Bn

ϕ(p+ 1
n
Cd) = |Bn| λnd ,

as ϕ is simple. We conclude by observing that |An|
nd

and |Bn|
nd

tend to vold(P )
as n→∞.

Proof of Theorem 2.7.1. As ϕ is h∗-nonnegative, it is also monotone by Propo-
sition 2.6.11 and therefore, by Theorem 2.7.2, continuous with respect to the
Hausdorff metric. By Lemma 2.7.3 it suffices to prove that ϕ is simple. For
every polytope P in Rd let g(P ) = (g0(P ), g1(P ), . . . , gd(P )) such that

Fϕ(P, t) =
g0(P ) + g1(P )t+ · · ·+ gd(P )td

(1− t)d+1
.

Then every gi is a continuous nonnegative Λ-valuation for 0 ≤ i ≤ d, and the
numerator polynomial g(P )(t) =

∑d
i=0 gi(P )ti equals h∗ϕ(P )(t)(1− t)d−r if P

is r-dimensional. In particular, gi(P ) = h∗ϕ,i(P ) if dim(P ) = d for 0 ≤ i ≤ d.

Now let Q be a polytope such that dimQ = r < d. We want to show that
ϕ(Q) = 0. We can assume that aff(Q) = {x ∈ Rd : xr+1 = xr+2 = · · · =
xd = 0}. For n ≥ 1 let Qn = Q × [0, 1

n
]d−r. Then Qn → Q in the Hausdorff

metric and therefore h∗ϕ,i(Qn) = gi(Qn) → gi(Q). Thus gi(Q) ≥ 0 for all
0 ≤ i ≤ d, as ϕ is h∗-nonnegative. On the other hand, (1 − t)|g(Q)(t) and
therefore

∑d
i=0 gi(Q) = 0. We conclude that gi(Q) = 0 for all 0 ≤ i ≤ d and

thus ϕ(Q) = 0.

2.7.2 Lattice-invariant valuations

Let ValGLd(Z)(Zd) ⊂ Val(Zd) be the set of real-valued Zd-valuations that are
invariant under transformations in GLd(Z), i.e., transformations that pre-
serve the integer lattice Zd. We call the elements in ValGLd(Z)(Zd) lattice-
invariant valuations. Betke and Kneser showed in [6] that every lattice-
invariant valuation is uniquely determined by its value on the standard sim-
plices:
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Theorem 2.7.4 (Betke, Kneser [6]). For 0 ≤ i ≤ d there is a unique valua-
tion ϕi ∈ ValGLd(Z)(Zd) such that

ϕi(∆j) = δij,

where ∆j = conv(0, e1, . . . , ej) is the j-dimensional standard simplex in Rd

and δij denotes the Kronecker delta. ϕi(P ) = 0 for all lattice polytopes P
with dim(P ) < i. The set {ϕ0, . . . , ϕd} forms a basis of ValGLd(Z)(Zd).

For our purposes we consider a different basis of ValGLd(Z)(Zd):

Proposition 2.7.5. For 0 ≤ i ≤ d there is a unique lattice-invariant valua-
tion ϕ◦i ∈ ValGLd(Z)(Zd) such that

ϕ◦i (relint(∆j)) = δij.

The set {ϕ◦0, . . . , ϕ◦d} forms a basis of ValGLd(Z)(Zd).

Proof. For 0 ≤ i ≤ d we define

ϕ◦i = (−1)iϕ∗i .

Then ϕ◦i ∈ ValGLd(Z)(Zd), and for all 0 ≤ j ≤ d

ϕ◦i (relint(∆j)) = (−1)iϕ∗i (relint(∆j)) = (−1)i(−1)jϕ∗∗i (∆j) = δij,

by Theorem 2.2.2. Linear independence of {ϕ◦0, . . . , ϕ◦d} follows from the
linear independence of {ϕ0, . . . , ϕd} and Theorem 2.2.2.

Val+GLd(Z)(Zd) := ValGLd(Z)(Zd)∩Val+(Zd) denotes the class of h∗-nonnegative
lattice-invariant valuations. A lattice simplex ∆ is called unimodular if
its vertices form an affine lattice basis of aff(∆) ∩ Zd. Every unimodular
simplex can be bijectively mapped to any other unimodular simplex of the
same dimension by an element in GLd(Z) followed by a translation in Zd. A
triangulation that consists of unimodular simplices is a unimodular trian-
gulation.

For every ϕ ∈ ValGLd(Z)(Zd) we have

ϕ =
d∑
i=0

ϕ(relint(∆i))ϕ
◦
i .

Therefore, by Theorem 2.6.1, we see that Val+GLd(Z)(Zd) ⊆ cone{ϕ◦0, . . . ϕ◦d}.
For d ≤ 2 equality holds:
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Proposition 2.7.6. For d ∈ {0, 1, 2}

Val+GLd(Z)(Z
d) = cone{ϕ◦0, . . . , ϕ◦d}.

Proof. If d ≤ 2, then every lattice polytope P ⊂ Rd admits a unimodular
triangulation C, and relint(P ) =

⊔
∆∈C : ∆ 6⊆∂P relint(∆). Therefore

ϕ◦i (relint(P )) = |{∆ ∈ C : ∆ 6⊆ ∂P, dim(∆) = i}| ≥ 0

for all i ≤ d. Thus, by Theorem 2.6.1, we obtain ϕ◦i ∈ Val+GLd(Z)(Zd).

We conjecture the following:

Conjecture 2.7.7. The cone Val+GLd(Z)(Zd) is polyhedral for all d ∈ N.

Further, it would be interesting to see if Val+GLd(Z)(Zd) = cone{ϕ◦0, . . . , ϕ◦d} in
all dimensions d ≥ 0.

So far, we are able to show that Val+GLd(Z) is full-dimensional:

Theorem 2.7.8. For d ≥ 0

dim(Val+GLd(Z)(Z
d)) = d+ 1.

Proof. For m ∈ N we define Ehrm(P ) := Ehr(mP ) for all P ∈ P(Zd). Then
Ehrm is a Zd-valuation and

Ehrm(relint(P )) =
∣∣relint(mP ) ∩ Zd

∣∣ ≥ 0.

Thus, by Theorem 2.6.1, Ehrm is h∗-monotone for all natural numbersm ≥ 0.
For pairwise distinctm1, . . . ,md+1 ∈ N, the valuations Ehrm1 , . . . ,Ehrmd+1

are
linearly independent. To see this, assume that

d+1∑
i=1

λiEhrmi = 0. (2.4)

The evaluation of both sides of (2.4) at the k-dimensional unit cube Ck =
[0, 1]k × {0}d−k yields

d+1∑
i=1

λi(mi + 1)k = 0
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for all 0 ≤ k ≤ d, and this is equivalent to
1 1 · · · 1

(m1 + 1) (m2 + 1) · · · (md+1 + 1)
...

... . . . ...
(m1 + 1)d (m2 + 1)d · · · (md+1 + 1)d




λ1

λ2
...

λd+1

 =


0
0
...
0

 . (2.5)

For pairwise distinctm1, . . . ,md+1, the Vandermonde matrix on the left hand
side of (2.5) is invertible and thus we deduce that λ1 = . . . = λd+1 = 0.
Therefore, Ehrm1 , . . . ,Ehrmd+1

are linearly independent and span a (d + 1)-
dimensional cone contained in Val+GLd(Z)(Zd), which completes the proof.



Chapter 3

Unimodality of h∗-vectors for
zonotopes

3.1 Introduction

One starting point of the previous chapter was Stanley’s Nonnegativity The-
orem [42] stating that the entries of the h∗-vectors of a lattice polytope are
nonnegative. More recently, the question of unimodality became of gen-
eral interest. A vector (h∗0, h

∗
1, . . . , h

∗
d) is called unimodal if there exists a

k ∈ {0, . . . , d} such that

h∗0 ≤ · · · ≤ h∗k ≥ · · · ≥ h∗d.

There are lattice polytopes with non-unimodal h∗-vector. Examples of such
polytopes can, for instance, be found in [31]. However, no integrally closed
examples are known. A lattice polytope P ⊂ Rd is integrally closed if for
all n ≥ 1 and all p ∈ nP ∩ Zd there are p1, . . . , pn ∈ P ∩ Zd such that

p1 + · · ·+ pn = p.

The simplest integrally closed polytope is a unimodular simplex. In particu-
lar, every polytope that has a unimodular triangulation is integrally closed.
Stanley conjectured in [46] that every integrally closed lattice polytope has
a unimodal h∗-vector. Schepers and Van Langenhoven recently proved this
conjecture for lattice parallelepipeds [36]. We follow their line of argumen-
tation and generalize their result to lattice zonotopes. These are integrally
closed as well, as every lattice zonotope can be subdivided into lattice paral-
lelepipeds, which are easily seen to be integrally closed. We streamline their

47
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exposition by giving a combinatorial interpretation to the h∗-vectors of lat-
tice zonotopes. We do not only consider their Ehrhart h∗-vectors but, more
generally, their h∗ϕ-vectors for arbitrary translation-invariant valuations ϕ.
We show that for every h∗-nonnegative translation-invariant valuation ϕ and
every lattice zonotope Z the vector h∗ϕ(Z) is unimodal. More specifically, if
Z is r-dimensional, then a largest coefficient of h∗ϕ(Z) is h∗ϕ, r

2
(Z) if r is even,

and h∗
ϕ, r−1

2

(Z) or h∗
ϕ, r+1

2

(Z) if r is odd.

We start in Section 3.3 by showing unimodality of the Ehrhart h∗-vector of
certain half-open unit cubes. We are able to give a combinatorial meaning to
their h∗-vectors in terms of j-Eulerian numbers, a refinement of Eulerian
numbers, which we investigate in Section 3.2. We then consider half-open
lattice parallelepipeds in Section 3.4. In Section 3.5 we prove unimodality
of the h∗-vectors of arbitrary lattice zonotopes by using half-open decompo-
sitions as introduced by Köppe and Verdoolaege [24].

The results of this chapter are based on a joint project with Matthias Beck
and Emily McCullough and were developed during a research stay at San
Francisco State University.

3.2 Descent statistics

Let Sd denote the symmetric group on the set [d] consisting of all permuta-
tions of the numbers 1, . . . , d. For every permutation σ in Sd the descent
set is defined by

Des(σ) = {i ∈ [d− 1] : σ(i) > σ(i+ 1)}.

The number of descents of σ is denoted by des(σ) = |Des(σ)|. The Eulerian
number A(d, k) counts the number of permutations in Sd with k descents:

A(d, k) = |{σ ∈ Sd : des(σ) = k}| .

We consider a refinement of the descent statistic: the j-Eulerian number

Aj(d, k) = |{σ ∈ Sd : σ(1) = j and des(σ) = k}|

which counts the number of permutations σ with σ(1) = j and k descents.
The corresponding j-Eulerian polynomial is

Aj(d, t) =
d−1∑
k=0

Aj(d, k)tk.
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From the definition it is clear that Aj(d, k) = 0 for k < 0 and k > d− 1.

A polynomial f(t) =
∑m

i=0 ait
i is called unimodal if its coefficient vector

a = (a0, . . . , am) is unimodal. If ak is a largest coefficient, then we say that
f(t) and a have a peak at k.

The polynomial f(t) is called palindromic with center of symmetry at d
2
if

tdf(1
t
) = f(t). If it is in addition unimodal, then the coefficients closest to

the center of symmetry are maximal, i.e., f(t) has a peak at d
2
if d is even,

and at bd
2
c and bd

2
c+ 1 if d is odd.

Example 3.2.1. The polynomial

t2 − t3 + t4

is palindromic with center of symmetry at 3. It is well-known that the Eu-
lerian polynomial

A(d, t) :=
∑
σ∈Sd

tdes(σ)

is palindromic with center of symmetry at d−1
2

and its coefficients form a
unimodal sequence with peak at d−1

2
if d is odd, and peaks at d

2
− 1 and d

2
if

d is even (see, e.g., [10, p. 292]). The j-Eulerian polynomials are in general
not palindromic, for example,

A2(5, t) = 8t+ 14t2 + 2t3.

However, their coefficients form a unimodal sequence, as the next theorem
shows.

Our main theorem for j-Eulerian numbers, which can also be deduced from
[35, Theorem 2.3] and the proof of [35, Theorem 1.1], is the following:

Theorem 3.2.2. For 1 ≤ j ≤ d the coefficients of Aj(d, t) are unimodal.
If d is even, then

Aj(d, 0) ≤ . . . ≤ Aj(d,
d
2
− 1) ≥ . . . ≥ Aj(d, d− 1) if 1 ≤ j ≤ d

2
,

Aj(d, 0) ≤ . . . ≤ Aj(d,
d
2
) ≥ . . . ≥ Aj(d, d− 1) if d

2
< j ≤ d.

If d ≥ 3 is odd, then

A1(d, 0) ≤ . . . ≤ A1(d, bd
2
c − 1) = A1(d, bd

2
c) ≥ . . . ≥ A1(d, d− 1),

Ad(d, 0) ≤ . . . ≤ Ad(d, bd2c) = Ad(d, bd2c+ 1) ≥ . . . ≥ Ad(d, d− 1),

and

Aj(d, 0) ≤ . . . ≤ Aj(d, bd2c) ≥ . . . ≥ Aj(d, d− 1) if 1 < j < d.
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To prove Theorem 3.2.2, we will use the following two lemmata that can also
be found in [8, Lemma 2]. We repeat their proofs given in there.

Lemma 3.2.3 ([8, Lemma 2]).

Aj(d, k) = Ad+1−j(d, d− 1− k), equivalently
Aj(d, t) = td−1Ad+1−j(d,

1
t
).

Proof. Let r ∈ Sd be the permutation defined by r(i) = d + 1 − i for all
1 ≤ i ≤ d. Then σ 7→ r ◦ σ defines a bijection on Sd such that Des(r ◦ σ) =
[d−1]\Des(σ) and permutations starting with j are mapped to permutations
starting with d+ 1− j.

Lemma 3.2.4 ([8, Lemma 2]).

Aj(d+ 1, k) =
∑j−1

l=1 Al(d, k − 1) +
∑d

l=j Al(d, k), equivalently
Aj(d+ 1, t) = t

∑j−1
l=1 Al(d, t) +

∑d
l=j Al(d, t).

Proof. For 1 ≤ j ≤ d+ 1 let Sj = {σ ∈ Sd+1 : σ(1) = j}. Then

Sj =

j−1⊔
l=1

Sjl ∪
d+1⊔
l=j+1

Sjl

where Sjl = Sj ∩ {σ ∈ Sd+1 : σ(2) = l}. The restriction σ̂ of a permutation
σ ∈ Sd+1 to the domain {2, . . . , d + 1} gives rise to a permutation πσ̂ ∈ Sd
by defining πσ̂(a− 1) = b if σ(a) is the b-th smallest number in [d+ 1] \ {j}.
We conclude by observing that des(πσ̂) = des(σ)− 1 if σ ∈ Sjl for 1 ≤ l ≤ j
and des(πσ̂) = des(σ) otherwise.

Proof of Theorem 3.2.2. Our proof differs from the approach given in [35].
We argue by induction on d. The cases d = 2 and d = 3 are easily checked.

d→ d+ 1: Let d+ 1 be even. We then distinguish two cases:

Case 1 ≤ j ≤ d+1
2
: Then

Aj(d+ 1, t) = t

j−1∑
l=1

Al(d, t) +

d+1−j∑
l=j

Al(d, t) +
d∑

l=d+2−j

Al(d, t)

by Lemma 3.2.4. The first and the third summand added give, by Lemma
3.2.3, a palindromic polynomial with center of symmetry at d

2
which, by

induction, has unimodal coefficients with peaks at bd
2
c and bd

2
c + 1. The
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second summand has by induction unimodal coefficients with peak at bd
2
c =

d+1
2
− 1.

Case d+1
2
< j ≤ d+ 1. Then

Aj(d+ 1, t) = t

d+1−j∑
l=1

Al(d, t) + t

j−1∑
l=d+2−j

Al(d, t) +
d∑
l=j

Al(d, t).

The first and the third summand added give a palindromic polynomial with
center of symmetry at d

2
, which has unimodal coefficients with peaks at bd

2
c

and bd
2
c + 1. In this case, the coefficients of the second summand form a

unimodal sequence with peak at bd
2
c+ 1 = d+1

2
.

If d + 1 is odd the claim is easily seen for j ∈ {1, d + 1} by Lemma 3.2.3,
Lemma 3.2.4 and induction. If 2 ≤ j ≤ d we distinguish again two cases:
Case 1 ≤ j < d+1

2
: By Lemma 3.2.4,

Aj(d+ 1, t) = t

j−1∑
l=1

Al(d, t) +

d+1−j∑
l=j

Al(d, t) +
d∑

l=d+2−j

Al(d, t).

The second summand is, by induction and Lemma 3.2.3, a palindromic poly-
nomial with unimodal coefficients and peaks at d

2
− 1 and d

2
. The coefficients

of the first and third summand are unimodal with peak at d
2

= bd+1
2
c.

Case d+1
2
< j ≤ d+ 1: We have

Aj(d+ 1, t) = t

d+1−j∑
l=1

Al(d, t) + t

j−1∑
l=d+2−j

Al(d, t) +
d∑
l=j

Al(d, t).

As in the previous case, the coefficients of the summand in the middle are
unimodal and palindromic, this time with peaks at d

2
and d

2
+ 1. The coeffi-

cients of the first and third summand form again a unimodal sequence with
peak at d

2
= bd+1

2
c.

Remark 3.2.5. Ehrenborg, Readdy and Steingrímmson showed in [13] that
the j-Eulerian numbers have a geometric meaning as mixed volumes of hy-
persimplices. It would be interesting to see whether this yields a geometric
proof of Theorem 3.2.2.

3.3 Half-open unit cubes

For j ∈ {0, . . . , d} we define the half-open unit cube

Cd
j = [0, 1]d \ {x ∈ Rd : x1 = · · · = xj = 0}.
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The j-descent set Desj(σ) ⊆ {0, . . . , d− 1} of a permutation σ ∈ Sd is

Desj(σ) :=

{
Des(σ) ∪ {0} if 1 ≤ σ(1) ≤ j,

Des(σ) if j < σ(1) ≤ d,

and the j-descent number desj(σ) = |Desj(σ)| counts the number of j-
descents of σ.

Lemma 3.3.1. Let σ ∈ Sd be a permutation. Then

|{σ ∈ Sd : desj(σ) = k}| = Aj+1(d+ 1, k).

Proof. The map

ψ : Sd → {σ ∈ Sd+1 : σ(1) = j + 1}

σ 7→

i 7→

j + 1 if i = 1,

σ(i− 1) if i > 1 and σ(i− 1) ≤ j,

σ(i− 1) + 1 otherwise


defines a bijection. We conclude by observing that des(ψ(σ)) = desj(σ) for
all σ ∈ Sd.

We can now give an explicit formula for the Ehrhart series of half-open unit
cubes in terms of j-Eulerian numbers:

Theorem 3.3.2. Let 0 ≤ j ≤ d. Then

Ehr(Cd
j , t) = δj0 +

∑
n≥1

EhrCdj (n)tn =
Aj+1(d+ 1, t)

(1− t)d+1
.

In particular, the coefficients of the numerator polynomial form a unimodal
sequence.

Proof. Let C be the subcomplex of the boundary of Cd = [0, 1]d generated
by the facets F1 := {x1 = 0} ∩ Cd, . . . , Fj := {xj = 0} ∩ Cd. Then

Ehr(Cd
j , t) = Ehr(Cd, t)−

∑
∅6=I⊆[j]

(−1)|I|−1Ehr(
⋂
i∈I

Fi, t)

= 1− χ(C) +
∑
n≥1

EhrCdj (n)tn

= δj0 +
∑
n≥1

EhrCdj (n)tn,
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as C is star-convex with respect to the origin for j > 0, and thus contractible.
For all σ ∈ Sd we define

Cd
j,σ = {x ∈ Cd

j : xσ(1) ≤ · · · ≤ xσ(d), xσ(i) < xσ(i+1) for all i ∈ Des(σ)}.

Then
Cd
j =

⊔
σ

Cd
j,σ

is a partition into half-open simplices.

1

x2

x1

C2
1,τ

C2
1,id

Figure 3.1: Decomposition of C2
1 into C2

1,id and C2
1,τ , where τ = (12).

In fact, we observe that for all σ ∈ Sd, there is an affine bijection between
nCd

j,σ ∩ Zd and the set

T σn :=

{
y = (y0, . . . , yd) ∈ Nd+1 :

d∑
i=0

yi = n, yi > 0 for all i ∈ Desj(σ)

}
given by

x 7→ y = (xσ(1), xσ(2) − xσ(1), . . . , xσ(d) − xσ(d−1), n− xσ(d)).

We observe that T σ0 = ∅ unless σ is the identity and j = 0. Thus,

Ehr(Cd
j,σ, t) =

∑
n≥0

∑
y∈T σn

t
∑d
i=0 yi

=

 ∏
i∈Desj(σ)

∑
yi≥1

tyi

 ·
 ∏
i 6∈Desj(σ)

∑
yi≥0

tyi


=

 ∏
i∈Desj(σ)

t

1− t

 ·
 ∏
i 6∈Desj(σ)

1

1− t


=

tdesj(σ)

(1− t)d+1
.
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Therefore, with Lemma 3.3.1 we conclude

Ehr(Cd
j , t) =

∑
σ∈Sd

Ehr(Cd
j,σ, t) =

∑
σ∈Sd t

desj(σ)

(1− t)d+1
=
Aj+1(d+ 1, t)

(1− t)d+1
.

3.4 Half-open parallelepipeds

In the following let ϕ be a Zd-valuation. Let v1, . . . , vr ∈ Zd be fixed linearly
independent vectors.

For every I ⊆ [r] we define the closed parallelepiped generated by I

♦(I) =

{∑
i∈I

λivi : 0 ≤ λi ≤ 1 for all i ∈ I}

}

and the relatively open parallelepiped, or box, of I by

�(I) =

{∑
i∈I

λivi : 0 < λi < 1 for all i ∈ I

}
.

We set bϕ(I) := ϕ(�(I)). We observe that if ϕ is h∗-nonnegative, then we
obtain from Theorem 2.6.1 bϕ(I) ≥ 0 for all I ⊆ [r].

Further, for all I ⊆ [r] we define the half-open parallelepiped

(I) =

{
r∑
i=1

λivi : 0 < λi ≤ 1 for all i ∈ I, 0 ≤ λi ≤ 1 for all i 6∈ I

}

and the standard half-open parallelepiped generated by I by

Π(I) =

{∑
i∈I

λivi : 0 < λi ≤ 1 for all i ∈ I

}
.

We observe that ♦([r]) = (∅) and that ♦(∅) = Π(∅) = {0}.
The following lemma of Schepers and van Langenhoven [36] was originally
stated only for ϕ(P ) =

∣∣P ∩ Zd
∣∣. Their proof works as well for arbitrary

Zd-valuations.
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Lemma 3.4.1 ([36, Lemma 2.1]). Let ϕ be a Zd-valuation and let I ⊆ [r].
Then

ϕ(n (I)) =
∑
I⊆J

n|J |ϕ(Π(J)).

Proof. To keep this chapter self-contained we give a (slightly modified) proof
here. As v1, . . . , vr are linearly independent, for every x ∈ ♦([r]) there are
unique λ1, . . . , λr ∈ [0, 1] such that

x =
r∑
i=1

λivi.

Let Jx = {i ∈ [r] : λi > 0}. Then we have x ∈ Π(J) if and only if Jx = J .
We observe that x ∈ (I) if and only if I ⊆ Jx and therefore we can partition

(I) =
⊔
I⊆J

Π(J).

Further, for all J ⊆ [r] and all n ≥ 1 we can tile nΠ(J) with n|J | translates
of Π(J). Therefore, by translation-invariance of ϕ,

ϕ(n (I)) =
∑
I⊆J

ϕ(nΠ(J)) =
∑
I⊆J

n|J |ϕ(Π(J)).

Applying Lemma 3.4.1 to the linearly independent standard basis vectors
e1, . . . , ed and the lattice point enumerator we obtain the following corollary:

Corollary 3.4.2. Let 0 ≤ j ≤ d. Then the Ehrhart polynomial of the half-
open unit cube Cd

j equals

EhrCdj (n) =
∑
[j]⊆J

n|J |,

where we define [0] := ∅.

Lemma 3.4.3. Let ϕ be a Zd-valuation. Then for all I ⊆ [r]

ϕ(Π(I)) =
∑
J⊆I

bϕ(J).
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Proof. For x ∈ Π(I) there are unique λi ∈ (0, 1] for all i ∈ I such that

x =
∑
i∈I

λivi.

Let Jx = {i ∈ I : λi = 1} ⊆ I. For all J ⊆ I we have J = Jx if and only if
x ∈ �(I \ J) +

∑
i∈J vi. Therefore

Π(I) =
⊔
J⊆I

(
�(I \ J) +

∑
i∈J

vi

)

and the result follows by the translation-invariance of ϕ.

The following theorem generalizes [36, Proposition 2.2].

Theorem 3.4.4. Let ϕ be a Zd-valuation. Then for all I ⊆ [r] we obtain

Fϕ( (I), t) =

∑
K⊆[r] bϕ(K)A|I∪K|+1(r + 1, t)

(1− t)r+1
.

Proof. We follow the line of argumentation in [36, Proposition 2.2]. By
Lemma 3.4.1 and Lemma 3.4.3,

Fϕ( (I), t) =
∞∑
n=0

tn
∑
J : I⊆J

n|J |ϕ(Π(J))

=
∞∑
n=0

tn
∑
J : I⊆J

n|J |
∑

K : K⊆J

bϕ(K)

=
∑
K⊆[r]

bϕ(K)
∞∑
n=0

tn
∑

J : I∪K⊆J

n|J |.

By Corollary 3.4.2, ∑
J : I∪K⊆J

n|J | = EhrCr|I∪K|(n).

Therefore, the claim follows by Theorem 3.3.2.

As a corollary we obtain unimodality of the h∗-vectors of half-open paral-
lelepipeds:
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Corollary 3.4.5. Let ϕ be a h∗-nonnegative Zd-valuation and let I ⊆ [r].
Let h∗ϕ( (I)) = (h∗ϕ,0, . . . , h

∗
ϕ,r, 0, . . . , 0) be the h∗-vector of the half-open par-

allelepiped (I). Then

h∗ϕ,0 ≤ . . . ≤ h∗ϕ, r
2
≥ . . . ≥ h∗ϕ,r if r is even,

and

h∗ϕ,0 ≤ . . . ≤ h∗
ϕ, r−1

2
and h∗

ϕ, r+1
2
≥ . . . ≥ h∗ϕ,r if r is odd.

In particular, h∗ϕ( (I)) is unimodal.

Proof. By Theorem 3.4.4

h∗ϕ( (I)) =
∑
K⊆[r]

bϕ(K)A|I∪K|+1(r + 1, t).

As ϕ is h∗-nonnegative we have bϕ(K) ≥ 0 for all K ⊆ [r]. By Theorem 3.2.2
the coefficients of A|I∪K|+1(r + 1, t) form a unimodal sequence with peak at
b r+1

2
c = r

2
if r is even, and peak at r+1

2
− 1 = r−1

2
or r+1

2
if r is odd, and so

does any nonnegative linear combination.

3.5 Zonotopes

Let Q be a parallelepiped and let F1, . . . , Fm be a collection of facets of Q. We
call Q \

⋃m
i=1 Fi an illuminated half-open parallelepiped if

⋂m
i=1 Fi 6= ∅.

Lemma 3.5.1. Let Q \
⋃m
i=1 Fi be an r-dimensional illuminated half-open

parallelepiped. Then there are linearly independent vectors v1, . . . , vr ∈ Zd
and a set I ⊆ [r] such that Q \

⋃m
i=1 Fi and (I) are equal up to translation

in Zd.

Proof. Let w ∈
⋂m
i=1 Fi 6= ∅ be a vertex of Q. As Q is simple the vertex

figure at w is a simplex, i.e., every facet containing w is uniquely determined
by the neighbor vertex of w it does not contain. For 1 ≤ i ≤ m let wi be
the neighbor of w which is not contained in Fi and let wm+1, . . . , wr be the
other neighbors of w. Let vi := wi − w for all 1 ≤ i ≤ r. Then we set
I = {1, . . . ,m} and obtain

Q \
m⋃
i=1

Fi = (I) + w.
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We use the following well-known fact due to Shephard [37].

Theorem 3.5.2 ([37, Theorem 54]). Every zonotope has a subdivision into
parallelepipeds.

Proof. We repeat Shephard’s inductive argument. Let Z be an r-dimensional
zonotope. We can assume that Z = {

∑m
i=1 λiui : 0 ≤ λi ≤ 1} for u1, . . . , um ∈

Rd. We argue by induction on m and inductively define a fine mixed subdi-
vision of Z, i.e., a subdivision into parallelepipeds. If m = r, then u1, . . . , um
are linearly independent and Z is itself a parallelepiped. If m > r then
Z ′ = {

∑m−1
i=1 λiui : 0 ≤ λi ≤ 1} has by induction hypothesis a subdivision C

into parallelepipeds. Now let F1, . . . , Fl be the faces of C that are visible from
a point tum for very large t� 0. Then C∪

⋃l
i=1{Fi+[0, um]} is a subdivision

of Z into parallelepipeds.

Corollary 3.5.3. Let Z be an r-dimensional zonotope. Then Z can be par-
titioned into r-dimensional illuminated half-open parallelepipeds.

Proof. Let C be a subdivision of Z into parallelepipeds. Now we choose a
point p in Z that does not lie on any facet defining hyperplane of C and obtain
a decomposition D =

⊔
H into half-open parallelepipeds using Theorem

2.2.3. Then every part H of D is illuminated because suppose H was not
illuminated, then its closure H has two parallel facets F, F ′ such that H ⊆
H \ {F, F ′}. Thus, F and F ′ are both visible from p which is a contradiction
as they are parallel.

As a consequence we get the following theorem.

Theorem 3.5.4. Let ϕ be a h∗-nonnegative Zd-valuation and let Z be an
r-dimensional lattice zonotope with h∗ϕ(Z) = (h∗ϕ,0, . . . , h

∗
ϕ,r, 0, . . . , 0). Then

h∗ϕ,0 ≤ . . . ≤ h∗ϕ, r
2
≥ . . . ≥ h∗ϕ,r if r is even

and
h∗ϕ,0 ≤ . . . ≤ h∗

ϕ, r−1
2

and h∗
ϕ, r+1

2
≥ . . . ≥ h∗ϕ,r if r is odd.

In particular, h∗ϕ(Z) is unimodal.

Proof. By the proof of Theorem 3.5.2 and Corollary 3.5.3 we can partition
Z into illuminated r-dimensional half-open lattice parallelepipeds Z =

⊔
H.

For every H in D there are, by Lemma 3.5.1, linearly independent vectors
v1, . . . , vr ∈ Zd and an index set I ⊆ [r] such that H = (I) + t with t ∈ Zd.
By Corollary 3.4.5, H has a unimodal h∗-vector with peak at r

2
if r is even
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and peak at r−1
2

or at r+1
2

if r is even. As P → Fϕ(P, t) is a Zd-valuation we
have Fϕ(Z, t) =

∑
Fϕ(H, t), and thus, h∗ϕ(Z) =

∑
h∗ϕ(H). Therefore h∗ϕ(Z)

is a positive linear combination and unimodal as well, as all summands satisfy
the same condition on the position of a peak.

p

Figure 3.2: A zonotope and one of its half-open decomposition into paral-
lelepipeds.





Part II

Order preserving maps





Chapter 4

Arithmetic of marked order
polytopes

4.1 Introduction

Posets are among the most fundamental objects in combinatorics. For a
finite poset P, Stanley [38] considered the problem of counting (strictly)
order preserving maps from P into n-chains and showed that many problems
in combinatorics can be cast into this form. Here, a map λ : P → [n] into
the n-chain is order preserving if λ(p) ≤ λ(q) whenever p ≺P q and the
inequality is strict for strict order preservation. In [38] it is shown that
the number of order preserving maps into a chain of length n is given by
a polynomial ΩP(n) in the positive integer n and the number of strictly
order preserving maps is related to ΩP(n) by a combinatorial reciprocity (see
Section 4.2.5).

In this paper we consider the problem of counting the number of order pre-
serving extensions of a map λ : A → Z from an induced subposet A ⊆ P
to P. Clearly, this number is finite only when A comprises all minimal and
maximal elements of P and we tacitly assume this throughout. It is also
obvious that no extension exists unless λ is order preserving for A and we
define ΩP,A(λ) as the number of order preserving maps λ̂ : P→ Z such that
λ̂|A = λ. By adjoining a minimum and maximum to P, we can see that
ΩP,A(λ) generalizes the order polynomial.

The function ΩP(n) can be studied from a geometric perspective by relating
it to the Ehrhart function of the order polytope [45], the set of order
preserving maps P → [0, 1]. The finiteness of P asserts that this is indeed
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a convex polytope in the finite-dimensional real vector space RP. The order
polytope is a lattice polytope whose facial structure is intimately related
to the structure of P and which has a canonical unimodular triangulation,
again described in terms of the combinatorics of P. Standard facts from
Ehrhart theory (see, for example, [2]) then assert that ΩP(n) is a polynomial
of degree |P|. We pursue this geometric route and study the marked order
polytope

OP,A(λ) :=
{
λ̂ : P→ R order preserving : λ̂(a) = λ(a) for all a ∈ A

}
in RP. Marked order polytopes were considered (and named) by Ardila,
Bliem, and Salazar [1] in connection with representation theory. In the case
that A is a chain, the polytopes already appear in [43]; see Section 4.2.4.
The set OP,A(λ) defines a polyhedron for any choice of A ⊆ P but it is a
polytope precisely when min(P) ∪ max(P) ⊆ A. It follows that ΩP,A(λ) =∣∣OP,A(λ) ∩ ZP

∣∣. In Section 4.2 we elaborate on the geometric-combinatorial
properties of OP,A(λ) and we show that ΩP,A(λ) is a piecewise polynomial
over the space of integer-valued order preserving maps λ : A → Z. We
give an explicit description of the polyhedral domains for which ΩP,A(λ) is
a polynomial and we give a combinatorial interpretation for ΩP,A(−λ). We
close by “transferring” our results to the marked chain polytopes of [1].

In Section 4.3, we use our results to give a geometric interpretation of a com-
binatorial reciprocity for monotone triangles that was recently described
by Fischer and Riegler [17]. A monotone triangle is a triangular array of
numbers such as

5
4 5

3 5 7
3 4 7 8

1 4 6 8 9

(4.1)

with fixed bottom row such that the entries along the directions ↘ and ↗
are weakly increasing and strictly increasing in direction →; a more formal
treatment is deferred to Section 4.3. Monotone triangles arose initially in
connection with alternating sign matrices [30] and a significant amount of
work regarding their enumerative behavior was done in [15]. In particular,
it was shown that the number of monotone triangles is a polynomial in the
strictly increasing bottom row. In [17] a (signed) interpretation is given for
the evaluation of this polynomial at weakly decreasing arguments in terms
of decreasing monotone triangles. In our language, monotone triangles
are extensions of order preserving maps over posets known as Gelfand-
Tsetlin patterns plus some extra conditions. These extra conditions can
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be interpreted as excluding the lattice points in a natural subcomplex of
the boundary of OP,A(λ). We investigate the combinatorics of this subcom-
plex and give a geometric interpretation for the combinatorial reciprocity of
monotone triangles.

Finally, a well-known result of Stanley [40] gives a combinatorial interpre-
tation for the evaluation of the chromatic polynomial χΓ of a graph Γ at
negative integers in terms of acyclic orientations. We give a combinatorial
reciprocity for the situation of counting extensions of partial colorings which
was considered by Herzberg and Murty [21].

The results of this chapter are joint work with Raman Sanyal and appeared
in [23]1.

4.2 Marked order polytopes

Marked order polytopes as defined in the introduction naturally arise as
sections of a polyhedral cone, the order cone, which parametrizes order
preserving maps from a finite poset P to R. The order cone is the “cone-
analog” of the order polytope which was thoroughly studied in [45] and whose
main geometric results we reproduce before turning to marked order poly-
topes. For a finite set S we identify RS with the vector space of real-valued
functions S → R.

4.2.1 Order cones

The order cone is the set L(P) ⊆ RP of order preserving maps P→ R

L(P) = {φ ∈ RP : φ(p) ≤ φ(q) for all p �P q}.

This is a closed convex cone and the finiteness ofP ensures that L(P) is poly-
hedral (i.e., bounded by finitely many halfspaces). The cone is not pointed
and the lineality space of L(P) is spanned by the indicator functions of the
connected components of P. Said differently, the largest linear subspace
contained in L(P) is spanned by the functions χ : P → {0, 1} that satisfy
χ(p) = χ(q) whenever there is a sequence p = p0p1 . . . pk−1pk = q such that
pipi+1 are comparable in P.

1First Published in SIAM Journal on Discrete Mathematics 28 (3), published by the
Society of Industrial and Applied Mathematics (SIAM). c© 2014 Society of Industrial and
Applied Mathematics.
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The cone L(P) ⊆ RP is of full dimension |P| and its facet-defining equations
are given by φ(p) = φ(q) for every cover relation p ≺·P q. Every face F ⊆
L(P) gives rise to a (in general not induced) subposet G(F ) ofP whose Hasse
diagram is given by those p ≺·P q for which φ(p) = φ(q) for all φ ∈ F . Such
a subposet G(F ) arising from a face F ⊆ L(P) is called a face partition.
The following characterization of face partitions is taken from [45].

Proposition 4.2.1. A subposet G ⊆ P is a face partition if and only if for
every p, q ∈ G with p �G q we have [p, q]P ⊆ G.

Equivalently, the directed graph obtained from the Hasse diagram of P by
contracting the cover relations in G is an acyclic graph and, after removing
transitive edges, is the Hasse diagram of a poset that we denote by P/G.
Note that G is typically not a connected poset. The face corresponding to
such a graph G is then

FP(G) = {φ ∈ L(P) : φ is constant on every connected component of G}

and FP(G) is isomorphic to L(P/G) by a linear and lattice preserving map.

The order cone has a canonical subdivision into unimodular cones that stems
from refinements of P induced by elements of L(P). To describe the con-
stituents of the subdivision, recall that I ⊆ P is an order ideal if p �P q
and q ∈ I implies p ∈ I. Let φ ∈ L(P) be an order preserving map with
range φ(P) = {t0 < t1 < · · · < tk}. Then φ induces a chain of order ideals

IP• : I0 $ I1 $ I2 $ · · · $ Ik = P

by setting Ij = {p ∈ P : φ(p) ≤ tj}. If the posetP is clear from the context,
we drop the superscript and simply write I•. Conversely, a given chain of
order ideals I• is induced by φ ∈ L(P) if and only if φ is constant on Ij \ Ij−1

for j = 0, 1, . . . , k (with I−1 = ∅) and

φ(I0) < φ(I1 \ I0) < φ(I2 \ I1) < · · · < φ(Ik \ Ik−1).

This defines the relative interior of a (k + 1)-dimensional simplicial cone in
L(P) whose closure we denote by F (I•). Chains of order ideals are ordered
by refinement and the maximal elements correspond to saturated chains of
order ideals or, equivalently, linear extensions of P. For a saturated chain
I•, we have Ij \Ij−1 = {pj} for j = 0, 1, . . . ,m = |P|−1 and pi ≺P pj implies
i < j. In this case

F (I•) =
{
φ ∈ RP : φ(p0) ≤ φ(p1) ≤ · · · ≤ φ(pm−1)

}
.



CHAPTER 4. MARKED ORDER POLYTOPES 67

Modulo lineality space, this is a unimodular simplicial cone spanned by the
characteristic functions φ0, φ1, . . . , φm−1 : P→ {0, 1} with φk(pj) = 1 if and
only if j ≥ k. Faces of F (I•) correspond to the coarsenings of I• and since
every φ ∈ L(P) induces a unique I• = I•(φ), this proves the following result,
which was first shown by Stanley [45] for the order polytope L(P) ∩ [0, 1]P.

Proposition 4.2.2. Let P be a finite poset. Then

TP =
{
F (IP• ) : IP• chain of order ideals in P

}
is a subdivision of L(P) into unimodular simplicial cones.

4.2.2 Marked order polytopes

In the following let A ⊆ P always denote an induced subposet of a finite poset
P, and let min(P) ∪max(P) ⊆ A. For an order preserving map λ : A→ R,
the marked order polytope

OP,A(λ) =
{
λ̂ ∈ L(P) : λ̂(a) = λ(a) for all a ∈ A

}
= L(P) ∩ ExtP,A(λ)

is the intersection of the order cone with the affine space ExtP,A(λ) = {λ̂ ∈
RP : λ̂|A = λ}. Every face of OP,A(λ) is a section of a face H of L(P) with
ExtP,A(λ) and is itself a marked order polytope. We denote the dependence
of H on λ by H(λ). We can describe them in terms of face partitions.

Proposition 4.2.3. Let G be a face partition of P and let λ : A → R be
an order preserving map for an induced subposet A ⊆ P. Then ExtP,A(λ)
meets FP(G) in the relative interior if and only if the following holds for all
a, b ∈ A: Let Ga,Gb ⊆ P be the connected components of G containing a and
b, respectively.

i) If λ(a) < λ(b), then ⋃
p∈Ga

P�p ∩
⋃
q∈Gb

P�q = ∅.

ii) If λ(a) = λ(b) and there are comparable elements ã ∈ Ga and b̃ ∈ Gb,
then Ga = Gb.

In this case, FP(G)∩ExtP,A(λ) is linearly isomorphic to OP/G,A/G(λG), where
λG : A/G→ R is the well-defined map on the quotient.
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Proof. Let P/G be the quotient poset associated to the face partition G.
The quotient A/G is a subposet of P/G and λG : A/G → R is a well-
defined map if condition i) holds. Moreover, the induced map λG is order
preserving for A/G if condition i) holds, and in fact strictly if ii) holds. Thus
FP(G)∩ExtP,A(λ) is linearly isomorphic to OP/G,A/G(λG) which is of maximal
dimension.

We call a face partition compatible with λ if it satisfies the conditions above.
In particular, taking the intersection of all compatible face partitions of P,
we obtain OP,A(λ) as an improper face.

Corollary 4.2.4. Let P be a finite poset, A ⊆ P be an induced subposet,
and λ : A→ R an order preserving map. Then OP,A(λ) is a convex polytope
of dimension

dimOP,A(λ) = |P \ {p ∈ P : a � p � b for a, b ∈ A with λ(a) = λ(b)}| .

Proof. The presentation as the affine section of a cone marks OP,A(λ) as a
convex polyhedron. As every element of P has by assumption a lower and an
upper bound in A, it follows that OP,A(λ) is a polytope. The right-hand side
is exactly the number of elements ofP whose values are not yet determined by
λ and OP,A(λ) has at most this dimension. On the other hand, Lemma 4.2.5
shows the existence of a subpolytope of exactly this dimension.

4.2.3 Induced subdivisions and arithmetic

Intersecting every cell of the canonical subdivision TP of L(P) with the affine
space ExtP,A(λ) induces a subdivision of OP,A(λ) that we can explicitly de-
scribe. To describe the cells in the intersection, let I• be a chain of order
ideals of P. For a ∈ P we denote by i(I•, a) the smallest index j for which
a ∈ Ij. We call a chain of order ideals I• of P compatible with λ if

i(I•, a) < i(I•, b) if and only if λ(a) < λ(b)

for all a, b ∈ A. The crucial observation is that relintF (I•)∩ExtP,A(λ) is not
empty if and only if I• is compatible with λ and in this case F (I•)∩ExtP,A(λ)
is of a particularly nice form.

Lemma 4.2.5. Let P be a finite poset, A ⊆ P be an induced subposet and
λ : A → R an order preserving map. If I• is a chain of order ideals of P
compatible with λ, then the induced cell F (I•) ∩ ExtP,A(λ) is a Cartesian
product of simplices.
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Proof. Let λ(A) = {t0 < t1 < · · · < tr} be the range of λ and pick elements
a0, a1, . . . , ar ∈ A with λ(ai) = ti. Let ij = i(I•, aj) for j = 0, 1, . . . , r and,
since I• is compatible with λ, we have 0 = i0 < i1 < · · · < ir = k. It follows
that F (I•) ∩ ExtP,A(λ) is the set of all φ ∈ RP such that φ is constant on
Ih \ Ih−1 for h = 0, 1, . . . , k (with I−1 = ∅) and

φ(I0) ≤ φ(I1 \ I0) ≤ · · · ≤ φ(Ii1 \ Ii1−1) ≤ · · · ≤ φ(Ik \ Ik−1).

= = =

λ(a0) λ(a1) λ(ar)

Thus, F (I•)∩ExtP,A(λ) is linearly isomorphic to F0×F1×· · ·×Fr−1, where,
by setting sj = φ(Ij \ Ij−1),

Fj = { λ(aj) ≤ sij+1 ≤ sij+2 ≤ · · · ≤ sij+1−1 ≤ λ(aj+1) } (4.2)

is a simplex of dimension dj = ij+1 − ij − 1.

Thus the canonical subdivision of L(P) induces a subdivision of OP,A(λ) into
products of simplices indexed by compatible chains of order ideals. This is
the key observation for the following result.

Theorem 4.2.6. Let P be a finite poset and let A ⊆ P be an induced subposet
with min(P) ∪ max(P) ⊆ A. For integer-valued order preserving maps λ :
A→ Z, the function

ΩP,A(λ) = |OP,A(λ) ∩ ZP|

is a piecewise polynomial over the order cone L(A). The cells of the canonical
subdivision of L(A) refine the domains of polynomiality of ΩP,A(λ). In other
words, ΩP,A(λ) is a polynomial restricted to any cell F (IA• ) of the subdivision
of L(A).

Proof. Lemma 4.2.5 shows that for fixed λ : A → Z every maximal cell in
the induced subdivision of OP,A(λ) is a product of simplices and the proof
actually shows that, after taking successive differences, the simplices Fj of
(4.2) are lattice isomorphic to

(λ(aj+1)−λ(aj))·∆dj =
{
y ∈ Rdj

≥0 : y1 + y2 + · · · + ydj ≤ λ(aj+1)−λ(aj)
}
.

(4.3)
Elementary counting then shows that

|F (I•)∩ExtP,A(λ)∩ZP| =
r−1∏
j=0

|Fj∩ZP| =
r−1∏
j=0

(
λ(aj+1)− λ(aj) + dj

dj

)
, (4.4)
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which is a polynomial in λ of degree d0 + d1 + · · · + dr−1 = dimF (I•) ∩
ExtP,A(λ). Applying the inclusion-exclusion principle to the induced subdi-
vision of OP,A(λ) shows that ΩP,A is the evaluation of a polynomial at the
given λ. To complete the proof, note that λ, λ′ : A → R have the same
collections of compatible chains of order ideals whenever λ, λ′ ∈ relintC for
some cell C in the canonical subdivision TA of L(A).

A weaker version of Theorem 4.2.6 can also be derived from the theory of
partition functions [11, Chapter 13]. It can be seen that over L(A), the
marked order polytope is of the form

OP,A(λ) = {x ∈ Rn : Bx ≤ c(λ)} ,

where B ∈ ZM×n is a fixed matrix with n = |P| and c : RA → RM is
an affine map. Moreover, B is unimodular. It follows from the theory of
partition functions that the function ΦB : ZM → Z given by

g 7→ |{x ∈ Zn : Bx ≤ g}|

is a piecewise polynomial over the cone CB ⊂ RM of (real-valued) g such that
the polytope above is non-empty. The domains of polynomiality are given by
the type cones for B; see McMullen [27]. Consequently, we have ΩP,A(λ) =
ΦB(c(λ)). It follows that L(A) is linearly isomorphic to a section of CB
and the canonical subdivision TA is a refinement of the induced subdivision
by type cones. It is generally difficult to give an explicit description of the
subdivision of CB by type, not to mention the sections of type cones by the
image of c(λ). So, an additional benefit of the proof presented here is the
explicit description of the domains of polynomiality.

In the context of representation theory, the lattice points of certain marked
order polytopes bijectively correspond to basis elements of irreducible repre-
sentations; cf. the discussion in [1, 7]. Bliem [7] used partition functions
of chopped and sliced cones to show that in the marking λ, the dimen-
sion of the corresponding irreducible representation is given by a piecewise
quasipolynomial. Theorem 4.2.6 strengthens his result to piecewise polyno-
mials. Bliem [7, Warning 1] remarks that his ‘regions of quasi-polynomiality’
might be too fine in the sense that the quasi-polynomials for adjacent regions
might coincide. This also happens for the piecewise polynomial described in
Theorem 4.2.6. In the simplest case A = P and ΩP,A ≡ 1.

Question 1. What is the coarsest subdivision of L(A) for which ΩP,A(λ) is
a piecewise polynomial?
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For this it would be necessary to give a combinatorial condition when two
adjacent cells of TA carry the same polynomial.

Example 4.2.7. Consider the following poset P given by its Hasse diagram:

b

c

q

p

a

Let A = {a, b, c} and let λ : A → Z be an order preserving map. If λ(a) <
λ(b) < λ(c), then there are two compatible linear extensions of P:

a ≺ b ≺ p ≺ q ≺ c
a ≺ p ≺ b ≺ q ≺ c

The number of lattice points in the corresponding maximal cells of OP,A(λ)

are
(
λ(c)−λ(b)+2

2

)
and (λ(c)− λ(b) + 1)(λ(b)− λ(a) + 1), respectively. Taking

into account overcounting we have to subtract the number of order preserving
extensions of λ toP for which p and b have the same value. These correspond
to lattice points in the cell given by the chain of order ideals

{a} ⊂ {a, b, p} ⊂ {a, b, p, q} ⊂ {a, b, p, q, c}

and their number is λ(c)− λ(b) + 1. Therefore in total ΩP,A(λ) equals(
λ(c)− λ(b) + 2

2

)
+ (λ(c)− λ(b) + 1)(λ(b)− λ(a) + 1)− (λ(c)− λ(b) + 1).

If λ(b) < λ(a) < λ(c), then the only compatible linear extension is

b ≺ a ≺ p ≺ q ≺ c

and thus

ΩP,A(λ) =

(
λ(c)− λ(a) + 2

2

)
.
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4.2.4 Chains and Cayley cones

Let us consider the special case in which A ⊆ P is a chain. It turns out
that in this case the relation between L(P) and L(A) is very special. A
pointed polyhedral cone K ⊂ Rn is called a Cayley cone over L if there is
a linear projection π : K → L onto a pointed simplicial cone L such that
every ray of K is injectively mapped to a ray of L. In case K is not pointed,
then K ∼= K ′ × U , where K ′ is pointed and U is a linear space and we
require L ∼= L′ × U and π is an isomorphism on U . Cayley cones are the
“cone-analogs” of Cayley configurations/polytopes [12, Sect. 9.2] which are
precisely the preimages under π of bounded hyperplane sections L ∩H.

Proposition 4.2.8. Let P be a finite poset. If A ⊆ P is a chain and
min(P) ∪max(P) ⊆ A, then L(P) is a Cayley cone over L(A).

Proof. The restriction map π(φ) = φ|A for φ ∈ L(P) is a surjective linear
projection. Since A is a chain and min(P)∪max(P) ⊆ A, A and P are con-
nected posets. The lineality spaces are spanned by 1A and 1P, respectively,
and π is an isomorphism on lineality spaces. Moreover, L0(A) = L(A)/(R·1A)
is linear isomorphic to the cone of order preserving maps A → R≥0 which
map min(A) = {a0} to 0, which shows that L0(A) is simplicial.

Thus, we only need to check that π : L0(P) → L0(A) maps rays to rays.
It follows from the description of face partitions (Proposition 4.2.1) that the
rays of L0(P) are spanned by indicator functions of proper filters. Let φ
be such an indicator function. Then φ|A : A → {0, 1} is also an indicator
function of a proper filter of A which proves the claim.

Here is the main property of Cayley cones that make them an indispensable
tool in the study of mixed subdivisions and mixed volumes.

Proposition 4.2.9. Let K be a pointed Cayley cone over L. Let r1, . . . , rk
be linearly independent generators of L and let Ki = π−1(ri) be the fiber over
the generator ri. Then for every point p ∈ L,

π−1(p) = µ1K1 + µ2K2 + · · · + µrKr,

where µ1, µ2, . . . , µr ≥ 0 are the unique coefficients such that p =
∑

i µiri.

Proof. Let {sij ∈ K : 1 ≤ i ≤ k, 1 ≤ j ≤ mi} be a minimal generating set
of K such that π(sij) = ri. It follows that Ki = conv{sij : 1 ≤ j ≤ mi}.
Thus, if µij ≥ 0 are such that∑

i,j

µijsij ∈ π−1(p),
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then, by the uniqueness of the µi, we have
∑

j µij = µi and
∑

j µijsij ∈
µiKi.

If A = {a0 ≺P a1 ≺P · · · ≺P ak} is a chain, recall that φ0, φ1, . . . , φk : A →
{0, 1} with φi(aj) = 1 if and only if j ≥ i is a minimal generating set of L(A).
If λ : A→ R is an order preserving map, then unique coordinates of λ ∈ L(A)
with respect to {φi} are given by µ0 = λ(a0) and µi = λ(ai) − λ(ai−1) for
1 ≤ i ≤ r.

Corollary 4.2.10. Let P be a finite poset and A ⊆ P a chain such that
min(P) ∪max(P) ⊆ A. Let Φi = OP,A(φi) for i = 1, 2, . . . , k. Then for any
order preserving map λ : A→ R,

OP,A(λ) = µ01P + µ1Φ1 + µ2Φ2 + · · · + µkΦk. (4.5)

This was already observed by Stanley [43, Theorem 3.2] and used to show that
the number of order preserving maps extending a given map on a chain A ⊂ P
satisfies certain log-concavity conditions. This is done by identifying the
numbers as mixed volumes which are calculated from the Cayley polytope.

In particular, ΩP,A(λ) counts the number of lattice points in the Minkowski
sum (4.5). By Theorem 2.3.2 we have that ΩP,A(λ) is a multivariate poly-
nomial in µ1, . . . , µk, where the degree in µi does not exceed dim(Φi) for
1 ≤ i ≤ k. We can even say more: It follows from Theorem 4.2.6 and
equation (4.4) that over a maximal cell C ∈ TA, the function ΩP,A(λ) can
be written as a polynomial f(µ) in the coordinates µ = (µ1, . . . , µk). The
degree of f(µ) in every variable µi is given by

degµi f(µ) = dim Φi = |P \ (P�ai−1
∪P�ai)|.

The degree in λi is more difficult to determine.

Question 2. What is degλi ΩP,A(λ) in terms of the combinatorics of P?

If A ⊆ P is a chain with minimum a0 and maximum ak, then the degree of
λ0 and λk agrees with µ1 and µk. A related situation is implicitly treated
in Fischer [15]: The number α(n; k1, k2, . . . , kn) of monotone triangles with
bottom row k = (k1 ≤ k2 ≤ · · · ≤ kn) is a polynomial in k and is of degree
n−1 in every variable ki. In Section 4.3, it is shown that α(n;k) is essentially
the number of integer-valued order preserving extensions from a particular
poset with some extra conditions (i.e., certain faces of the marked order
polytope are excluded). However, it appears that these extra conditions do
not influence the degree.
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4.2.5 Combinatorial reciprocity

For a special choice of A, we recover the classical order polytope.

Example 4.2.11 (Order polytopes). Let P′ be the result of adjoining a
minimum 0̂ and maximum 1̂ to a finite poset P. Let A = {0̂, 1̂} and for
n > 0 let λn : A → Z be the order preserving map with λn(0̂) = 1 and
λn(1̂) = n. Then ΩP′,A(λn) = ΩP(n) is the order polynomial of P which
counts the number of order preserving maps from P to [n]. Equivalently,
ΩP′,A(λn) equals the Ehrhart polynomial of the order polytope L(P)∩ [0, 1]P

evaluated at n − 1. Ehrhart–Macdonald reciprocity (Theorem 2.5.5) then
yields that

(−1)|P|ΩP(−n) = (−1)dim OP′,A(λn) ΩP′,A(λ−n)

equals the number of strictly order preserving maps into [n]. This is a classical
result by Stanley [38].

We wish to extend this combinatorial reciprocity to our more general setting.
We say that an extension λ̂ : P→ R of λ is strict if λ̂(p) = λ̂(q) and p ≺ q
implies that a � p ≺ q � b for some a, b ∈ A with λ(a) = λ(b).

Theorem 4.2.12. Let P be a finite poset and let A ⊆ P be an induced
subposet with min(P) ∪ max(P) ⊆ A. If λ : A → Z is an order preserving
map, then

(−1)dim OP,A(λ) ΩP,A(−λ)

equals the number of strict order preserving extensions of λ.

Note that if F (IA• ) is the unique cell of the subdivision of L(A) that contains
λ in the relative interior, then ΩP,A(λ) is the evaluation of a polynomial
and it is this polynomial that is evaluated at −λ in the course of Theorem
4.2.12. From the geometric point of view, (−1)dim OP,A(λ) ΩP,A(−λ) counts the
number of lattice points in the relative interior ofOP,A(λ). This is reminiscent
of Ehrhart–Macdonald reciprocity and in fact follows from it.

Proof. For fixed λ, let IA• such that λ ∈ relintF (IA• ). Then ΩP,A restricted to
relintF (IA• ) is given by some polynomial p(x) ∈ R[xa : a ∈ A]. For n ∈ Z>0,
we have that nλ ∈ relintF (IA• ) and thus ΩP,A(nλ) = p(nλ). As ΩP,A(nλ)
equals the number of lattice points in nOP,A(λ), it follows that p(nλ) is
the Ehrhart polynomial of OP,A(λ). Now, Ehrhart–Macdonald reciprocity
implies that the number of points in the relative interior of OP,A(λ) equals

(−1)d Ehr(OP,A(λ),−1) = (−1)dp(−λ) = (−1)dΩP,A(−λ),

where d = dim OP,A(λ).
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4.2.6 Marked chain polytopes

Let us close by transferring our results to the marked chain polytopes of
Ardila, Bliem, and Salazar [1]. To that end we write φ(C) =

∑
{φ(c) :

c ∈ C} for a subset C ⊆ P and φ : P → R. For a pair of posets A ⊂ P
with min(P) ∪ max(P) ⊆ A and an order preserving map λ : A → R, the
marked chain polytope is the convex polytope

CP,A(λ) =

{
φ ∈ RP

≥0 : φ(C) ≤ λ(b)− λ(a) for all a, b ∈ A
and every chain C ⊆ [a, b]

}
.

The unmarked version of the chain polytope was introduced in [45] to show
that certain invariants ofP (such as ΩP(n)) depend only on the comparability
graph of P. The marked chain polytopes were introduced in [1] in connection
with representation theory. Stanley defined a lattice preserving, piecewise
linear map from the order polytope to the chain polytope and this transfer
map was extended in [1] to relate the arithmetic of marked order polytope
and marked chain polytopes. Thus, appealing to of [1, Theorem 3.4] proves
the following.

Corollary 4.2.13. For a finite poset P and an induced subposet A ⊆ P with
min(P) ∪max(P) ⊆ A, the function

λ 7→ |CP,A(λ) ∩ ZP|

is a piecewise polynomial over L(A) ∩ ZA and evaluating at −λ equals the
number of lattice points in the relative interior of CP,A(λ) times (−1)dim CP,A(λ).

4.3 Monotone triangle reciprocity

A monotone triangle of order n, as exemplified in (4.1), is a triangular
array of integers a = (ai,j)1≤j≤i≤n ∈ Z such that the entries

(M1) weakly increase along the northeast direction: ai,j ≤ ai−1,j for all 1 ≤
j < i ≤ n;

(M2) weakly increase along the southeast direction: ai,j ≤ ai+1,j+1 for all
1 ≤ j ≤ i < n; and

(M3) strictly increase in the rows: ai,j < ai,j+1 for all 1 ≤ j < i < n.

The number of monotone triangles with fixed bottom row k = (k1 ≤ k2 ≤
· · · ≤ kn) is finite and denoted by α(n; k1, k2, . . . , kn). Monotone triangles
originated in the study of alternating sign matrices [30], where it was shown
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3
3 3

4 3 3
4 4 3 2

4 4 3 3 1

Figure 4.1: An example of a decreasing monotone triangle.

that alternating sign matrices of order n exactly correspond to monotone
triangles with bottom row (1, 2, . . . , n). The study of enumerative properties
of monotone triangles with general bottom row was initiated in [15], where it
was shown that α(n; k1, k2, . . . , kn) is a polynomial in the strictly increasing
arguments. Note that our definition of a monotone triangle slightly differs
from that of Fischer [15] in that we do not require that the bottom row is
strictly increasing.

More precisely, there is a polynomial that agrees with α(n;k) for increasing
k = (k1 ≤ k2 ≤ · · · ≤ kn) and, by abuse of notation, we identify α(n;k) with
this polynomial. As a polynomial, α(n;k) admits evaluations at arbitrary
k ∈ Zn and it is natural to ask if there are domains for which the values
α(n;k) have combinatorial significance. An interpretation for the values of
α at weakly decreasing arguments was given by Fischer and Riegler [17] in
terms of signed enumeration of so called decreasing monotone triangles. A
decreasing monotone triangle (DMT) is again a triangular array b =
(bi,j)1≤j≤i≤n ∈ Z such that

(W1) the entries weakly decrease along the northeast direction: bi,j ≥ bi−1,j

for 1 ≤ j < i ≤ n;
(W2) the entries weakly decrease along the southeast direction: bi,j ≥ bi+1,j+1

for 1 ≤ j ≤ i < n;
(W3) there are no three identical entries per row; and
(W4) two consecutive rows do not contain the same integer exactly once.

The collection of DMTs with bottom row k = (k1 ≥ k2 ≥ · · · ≥ kn) ∈ Zn
is denoted by Wn(k). For a DMT b, two adjacent and identical elements
in a row are called a duplicate-descendant if either they are in the last
row or the row below contains exactly the same pair. In the example, the
duplicate-descendants are underlined. The number of duplicate-descendants
of b is denoted by dd(b).

The precise reciprocity statement now is as follows.
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Theorem 4.3.1 ([17, Theorem 1]). For weakly decreasing integers k = (k1 ≥
k2 ≥ · · · ≥ kn),

α(n; k1, k2, . . . , kn) = (−1)

(
n
2

) ∑
b∈Wn(k)

(−1)dd(b).

In this section we give a geometric proof of Theorem 4.3.1 by relating (de-
creasing) monotone triangles to special order preserving maps. A Gelfand–
Tsetlin poset GTn of order n is the poset on {(i, j) ∈ Z2 : 1 ≤ j ≤ i ≤ n}
with order relation

(i, j) �GTn (k, l) :⇐⇒ k − i ≤ l − j and j ≤ l.

The Hasse diagram for GTn is given in Figure 4.2. Throughout, we let

(n, 1) = κ1

(n, 2) = κ2

(n, 3) = κ3

(n, i) = κi

(n, n− 2) = κn−2

(n, n− 1) = κn−1

(n, n) = κn

Figure 4.2: Hasse diagram for the Gelfand–Tsetlin poset of order n (in solid
black).

A = {κ1, κ2, . . . , κn} ⊂ GTn be the n-chain of elements κj = (n, j) with
1 ≤ j ≤ n, depicted by the circled elements in Figure 4.2. An increasing
sequence k = (k1 ≤ k2 ≤ · · · ≤ kn) corresponds to an order preserving
map k : A → Z by setting k(κi) = ki. We call an order preserving map
a : GTn → Z a weak monotone triangle (also known as a Gelfand–
Tsetlin pattern). Here is the main observation.
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Observation 3. Monotone triangles a = (aij)1≤j≤i≤n ∈ Z(n+1
2 ) for a given

bottom row k = (k1 ≤ k2 ≤ · · · ≤ kn) ∈ Zn bijectively correspond to integer-
valued order preserving maps a : GTn → Z extending k : A → Z and such
that ai,j < ai,j+1 for all 1 ≤ j < i < n.

To put this initial observation to good use, we pass to real-valued order
preserving maps and we call an order preserving map a : GTn → R extending
k a monotone triangle if it satisfies (M3). Hence, the monotone triangles
with bottom row k form a special subset of the marked order polytope for
GTn,

GT n(k) := OGTn,A(k).

Let us denote Bn = {(i, j) : 1 ≤ j < i < n} and for (i, j) ∈ Bn define

Qij = {a ∈ L(GTn) : ai,j = ai,j+1} ,

the set of real-valued weak monotone triangles that fail (M3) nonexclusively
at position (i, j). The Hasse diagram of the face partition Gij = G(Qij) of
Qij is a diamond in GTn:

(i,j+1)

(i,j)

(i−1,j)Gij = (i+1,j+1)

It is easy to see that Gij is a compatible face partition for any strictly in-
creasing bottom row k and together with a count of parameters we have the
following geometric result.

Proposition 4.3.2. Let k = (k1 < k2 < · · · < kn). For (i, j) ∈ Bn, the set
Qij(k) ⊆ GT n(k) is a face of codimension 3.

This yields a geometric perspective on monotone triangles.

Corollary 4.3.3. For k = (k1 ≤ k2 ≤ · · · ≤ kn), the monotone triangles
with bottom row k are precisely the lattice points in

GT n(k) \
⋃

(i,j)∈Bn

Qij(k). (4.6)

Notice that if k contains three identical elements kj = kj+1 = kj+2, then
GT n(k) ⊆ Qn−1,j(k) and the above set is empty. Hence, the number of
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monotone triangles with bottom row k can be nonzero only if k contains at
most pairs of identical elements.

Corollary 4.3.3 allows us to write α(n;k) as a polynomial by inclusion-
exclusion on the set of faces {Qij(k) : (i, j) ∈ Bn}. More refined, we will con-
sider the poset of non-empty intersections of faces of the form Qij and obtain
α(n;k) as a polynomial by Möbius inversion on that poset. This will be rela-
tively easy, once we have a characterization of the face partitions of such finite
intersections. Towards this goal we call a subposet G ⊆ GTn a diamond
poset if the Hasse diagram of G is a union of graphs Gi,j. In addition, we
call a diamond poset closed if Gi,j,Gi,j+1 ⊂ G implies Gi−1,j,Gi+1,j+1 ⊂ G.
That is,

Gi,j+1

Gi,j

(i,j)

(i,j+1) ∈ G =⇒

(i−1,j) (i+1,j+1)

∈ G.

Lemma 4.3.4. Let F ⊆ L(GTn) be a non-empty face. Then

F =
⋂

(i,j)∈I

Qij

for some I ⊆ Bn if and only if G(F ) is a closed diamond poset.

Proof. The face F is exactly the intersection of all facets for which the cor-
responding cover relation is in G(F ). If G(F ) is a closed diamond poset,
then every cover relation is contained in at least one diamond and hence F
is exactly the intersection of all Qij for which Gij ⊆ G(F ).

For the converse, we can assume that G = G(F ) is connected and we let
G′ =

⋃
{Gij : F ⊆ Qij} be the largest diamond poset contained in G. If

G 6= G′, then by Proposition 4.2.1 there is a nontrivial directed path P =
p0p1 . . . pk that meets G′ only in a connected component containing p0 and pk.
In particular no edge of P is contained in a diamond of G and, furthermore, P
cannot contain vertices (i, j) and (i, j+1). Indeed, by Proposition 4.2.1, this
would imply that Gij ⊂ G′, which contradicts P ∩ G′ = {p0, pk}. It follows
that c = pi+1 − pi ∈ Z2 is a constant direction for all i = 0, 1, . . . , k − 1.

Let us assume that c = (1, 0). Thus, every vertex ph along P has constant
second coordinate ` = (ph)2. Let R be an undirected(!) path connecting p0
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and pk in G′ such that
ρ(R) =

∑
r∈R

|r2 − `|

is minimal. Such a path exists, as p0 and pk are in the same connected
component of the underlying undirected graph of G′, and ρ(R) > 0. (Indeed,
we have ρ(R) = 0 if and only if R = P after orienting edges.) But then
R contains a sequence of vertices (i, j), (i − 1, j), (i, j + 1) with j < l or
(i, j), (i+ 1, j+ 1), (i, j+ 1) with j ≥ l, and the value of ρ(R) can be reduced
by rerouting along Gi,j:

(i,j+1)

(i,j)

(i−1,j) (i+1,j+1)

(i,j+1)

(i,j)

(i−1,j) (i+1,j+1)

Hence, by contradiction, R = P and G = G′.

Let us define Q as the set of all closed diamond subposets of GTn ordered
by reverse inclusion. In light of the above lemma,

Q ∼=
{ ⋂

(i,j)∈I

Qij : I ⊆ Bn
}

is a meet-semilattice with greatest element 1̂ = 1̂Q := ∅ corresponding to
L(GTn). The Möbius function of Q can now be described in the language of
diamond posets. Let us write

I(G) = {(i, j) ∈ Bn : Gij ⊆ G}

for G ∈ Q.

Lemma 4.3.5. Let G ∈ Q and I = I(G). Then

µQ(G, 1̂) =

{
0 if (i, j), (i, j + 1) ∈ I,
(−1)|I| otherwise.

Proof. Let A be the collection of atoms of the interval [G, 1̂]Q, that is, the
elements of Q covering G. To prove the first claim, we will use the Crosscut
Theorem 1.9:

µQ(G, 1̂) = N0 − N1 + · · · + (−1)iNi,
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whereNk is the number of k-element subsets S ⊆ A such that 1̂ is the smallest
joint upper bound for the elements in S. Now if there is some Q ≺ 1̂Q such
that every H ∈ A is smaller than Q, then this implies Nk = 0 for all k and
the claim follows.

To that end, let (i0, j0) ∈ I(G) with (i0 + 1, j0), (i0 + 1, j0 + 1) ∈ I(G) and
i0 minimal. We claim that (i0, j0) ∈ I(H) for every H ∈ A. Indeed, assume
that (i0, j0) 6∈ I(H). By Lemma 4.3.4, we have that H ∪Gi0,j0 is a diamond
poset but not closed, asH ∈ A by assumption. This forces Gi0,j0−1 or Gi0,j0+1

to be in G, and establishing then the closedness condition has to introduce
some Gi,j ⊆ G with i < i0. However, this contradicts the choice of i0 and we
can take Q = Qi0j0 .

If there is no index pair (i, j) ∈ I such that (i, j + 1) ∈ I, we observe
that the closedness condition for G is vacuous. This stays true for every
diamond subposet which is in bijection to the subsets of I(G). Hence [G, 1̂]Q
is isomorphic to the boolean lattice on |I(G)| elements.

Lemma 4.3.5 yields a partial explanation of condition (W3): A weak mono-
tone triangle a : GTn → R with strictly increasing bottom row satisfies (W3)
and (W4) if and only if a ∈ relintF for some face F with G = G(F ) ∈ Q
and µQ(F, 1̂) 6= 0. For that reason, let us define the essential subposet of Q
as

Qess =
{
G ∈ Q : µQ(G, 1̂) 6= 0

}
.

Hence, we can identify Qess with the collection of closed diamond posets G
of GTn such that Gi,j ∪ Gi,j+1 6⊆ G. In particular, 1̂ ∈ Qess and from the
definition of Möbius functions it follows that µQess(G, 1̂) = µQ(G, 1̂) for all
G ∈ Qess.

We can now write the number of lattice points in (4.6) as a polynomial in k.
For clarity, let us emphasize that the combinatorics of QGTn,A(k) is indepen-
dent of the actual choice of a strictly order preserving map k : A→ R. In this
case, everyG ∈ Qess is a compatible face partition of a distinct face of GT n(k)
which we can identify with the marked order polytope OGTn/G,A/G(k).

Theorem 4.3.6. For k = (k1 ≤ k2 ≤ · · · ≤ kn), the number of monotone
triangles with bottom row k is given by

α(n;k) =
∑

G∈Qess

(−1)|I(G)|ΩGTn/G,A/G(k)

and thus is a polynomial. In particular, α(n;k) = 0 whenever kj = kj+1 =
kj+2.



82 4.3. MONOTONE TRIANGLE RECIPROCITY

Proof. If k is strictly order preserving, then the above formula is exactly
Möbius inversion (see Theorem 1.7) of the function fG(k) = ΩGTn/G,A/G(k)
for G ∈ Qess, by Corollary 4.3.3 and Lemmata 4.3.4 and 4.3.5.

If k has two but not three identical entries, then G ∈ Qess is not compatible
with k but can be completed to a compatible face partition Ḡ. It is easy to
see that Ḡ arises from G by adding the cover relations (n, j) ≺GTn (n− 1, j)
and (n− 1, j) ≺GTn (n, j + 1) for every 1 ≤ j < n with kj = kj+1. The map
G 7→ Ḡ is injective on Qess and the image is a poset under reverse inclusion
isomorphic to Qess. Hence, the above formula counts the number of lattice
points in (4.6).

If k has three identical entries, then (4.6) is the empty set and α(n;k) = 0.
Consequently, we have to show that the right-hand side is also identically
zero for all such k. It suffices to assume that k has exactly three identical
entries as every bottom row with more than three identical elements belongs
to the boundary of some cell for which the interior consists of bottom rows
with exactly three identical elements. So, let us assume that kj = kj+1 = kj+2

are the only equalities for k. Let G ∈ Qess and Ḡ its completion to a face
partition compatible with k. Then ΩGTn/Ḡ,A/Ḡ(k) appears in the sum on the
right-hand side with multiplicity∑{

(−1)|I(H)| : H ∈ Qess, H̄ = Ḡ
}
.

For any such H, let (i, j) ∈ Bn be the lexicographic smallest pair such that
Gi+1,j∪Gi+1,j+1 ⊆ H̄ = Ḡ. (Existence follows from kj = kj+1 = kj+2.) Hence
Gi,j ⊆ H̄ by closedness. We distinguish two cases:

1. If Gij ⊆ H, then the largest diamond subposet H ′ ⊂ H not containing
Gij is closed as H ∈ Qess, and H̄ ′ = Ḡ as Gi+1,j ∪Gi+1,j+1 ⊆ H̄.

2. If Gij 6⊆ H, then set H ′ = H ∪ Gij. By the minimality of (i, j) we have
that H ′ is closed diamond and H̄ ′ = Ḡ.

This defines a perfect matching on
{
H ∈ Qess : H̄ = Ḡ

}
, and |I(H)| =

|I(H ′)| ± 1 shows that the multiplicity of ΩGTn/Ḡ,A/Ḡ(k) is zero.

Coming back to the reciprocity statement for monotone triangles, we note
that b = (bij)1≤j≤i≤n is a DMT if and only if −b : GTn → R is a weak
monotone triangle satisfying (W3) and (W4).

Proposition 4.3.7. Let a = (aij)1≤j≤i≤n ∈ Z(n+1
2 ) be a weak monotone tri-

angle with bottom row k = (k1 ≤ k2 ≤ · · · ≤ kn) with no three identical
elements. Then −a is a DMT with bottom row −k if and only if there is a
unique G ∈ Qess with corresponding face F ⊆ GT n(k) such that a ∈ relintF .
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Proof. Let F be the face of GT n(k) that has a in the relative interior and let
G′ = G(F ) be its compatible face partition. If k is not strictly increasing,
then G′ contains cover relations that reach into A. Let G ⊆ G′ be the
subposet that arises by deleting those not contained in a diamond. Then G
is a face partition and ExtGTn,A(λ) ∩ FGTn(G) = F .

Now (W4) is equivalent to the condition that every cover relation in G is
contained in a diamond. Otherwise there are index pairs (i, j), (i+1, k) ∈ Bn
with k ∈ {j, j + 1} such that bi,j = bi+1,k and bi,j−1 < bi,j < bi,j+1 and
bi,k−1 < bi,k < bi,k+1, which contradicts (W4). Since k does not contain
three identical elements, G is the unique diamond poset that gives rise to F .
Moreover, G ∈ Qess if and only if every point in the relative interior of F
satisfies (W3).

Let us extend the notion of duplicate-descendants to real-valued weak mono-
tone triangles satisfying (W3) and define dd(F ) for a non-empty face F ⊆
GT n(k) as the number of duplicate-descendants for an arbitrary a ∈ relintF .

Lemma 4.3.8. Let k = (k1 ≤ k2 ≤ · · · ≤ kn) with no three identical elements
and let m be the number of pairs of identical elements. Let G ∈ Qess with
corresponding face F ⊆ GT n(k). Then

|I(G)| + codimF +m ≡ dd(F ) mod 2.

Proof. We induct on l = |I(G)|. For l = 0, we have F = GT n(k), which is
of codimension 0 and dd(F ) = m by definition.

For l > 0 there is a diamond Gij ⊆ G that shares at most one edge with
another diamond or a “half-diamond” coming from a pair of equal numbers
at the bottom row. Let G′ ⊂ G be the largest diamond poset not containing
Gij and let F ′ be the corresponding face. By induction, the claim holds for
G′ and |I(G)| = |I(G′)|+ 1.

If Gij∩G(F ′) does not contain an edge, then dd(F ) = dd(F ′) and codimF =
codimF ′+ 3. In the remaining case, Gij shares exactly one edge with G(F ′)
and thus dd(F ) = dd(F ′)+1. On the other hand, adding Gij to G(F ′) binds
two degrees of freedom and codimF = codimF ′ + 2.

Proof of Theorem 4.3.1. By Theorem 4.3.6, α ≡ 0 restricted to the set of
order preserving maps −k : A → Z with three identical entries. As α is a
polynomial, it follows that this extends to α(n;k). This proves the claim in
this case as Wn(k) = ∅.
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Let us assume that k hasm pairs of identical elements. Then dimGT n(−k) =(
n
2

)
−m. For G ∈ Qess let us denote by FG(−k) the corresponding non-empty

face of GT n(−k). By Theorems 4.3.6 and 4.2.12,

α(n;k) = (−1)

(
n
2

) ∑
G∈Qess

(−1)|I(G)|+m+codimFG(−k)| relintFG(−k) ∩ ZGTn|,

where we use codimFG(−k) =
(
n
2

)
−m−dimFG(−k). The claim now follows

from Proposition 4.3.7 and Lemma 4.3.8.

4.4 Extending partial graph colorings

Let Γ = (V,E) be a graph and k a positive integer. A k-coloring of Γ
is simply a map c : V → [k]. The coloring is called proper if c(u) 6= c(v)
for every edge uv ∈ E. It is well known that the number of proper k-
colorings of Γ is given by a polynomial in k, the chromatic polynomial
χΓ(k). Generalizing these notions, Murty and Herzberg [21] considered the
problem of counting extensions of partial colorings of Γ. For a given subset
A ⊆ V and a partial coloring c : A → [k], an extension of c of size n is an
n-coloring ĉ : V → [n] such that ĉ(a) = c(a) for all a ∈ A. If ĉ is moreover a
proper coloring, then ĉ is called a proper extension. Such extensions only
exist for n ≥ k.

Theorem 4.4.1 ([21, Theorem 1]). Let Γ = (V,E) be a graph and c : A→ [k]
a partial coloring for A ⊆ V . Then either there are no proper extensions or
there is a polynomial χΓ,c(n) of degree |V | − |A| such that

χΓ,c(n) = |{ĉ : V → [n] : ĉ proper coloring with ĉ(a) = c(a) for all a ∈ A}|

for all n ≥ k.

We give an alternative proof of their result and a combinatorial interpre-
tation for χΓ,c(−n) extending the combinatorial reciprocity of Stanley [40]
for the ordinary chromatic polynomial. Recall that an orientation σ of Γ
assigns every edge e a head and a tail. An orientation is acyclic if there are
no directed cycles. An orientation σ is weakly compatible with a given
coloring c : V → [n] if σ orients an edge e = uv along its color gradient, that
is, from u to v whenever c(u) < c(v).

Theorem 4.4.2. Let Γ = (V,E) be a graph and let c : A → [k] be a partial
coloring for A ⊆ V . Let A1, A2, . . . , Ak be the partition of A into color classes
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induced by c. For n ≥ k we have that (−1)|V \A| χΓ,c(−n) is the number of
pairs (ĉ, σ), where ĉ : V → [n] is a coloring extending c, and σ is a weakly
compatible acyclic orientation such that there is no directed path with both
endpoints in Ai for some i = 1, 2, . . . , k.

In the case that no two vertices of A get the same color, the result simplifies.

Corollary 4.4.3. Let Γ = (V,E) be a graph and A ⊆ V . If c : A → [k]
is injective and n ≥ k, then |χΓ,c(−n)| equals the number of pairs (ĉ, σ),
where ĉ is an n-coloring extending c, and σ is an acyclic orientation weakly
compatible with ĉ.

It is also possible to give an interpretation for the evaluations at−n for n < k.
Here, we constrain ourselves to one particularly interesting evaluation.

Corollary 4.4.4. Let Γ = (V,E) be a graph and c : A→ [k] a partial coloring
for A ⊆ V . Then |χΓ,c(−1)| equals the number of acyclic orientations of Γ for
which there is no directed path from a to b whenever a, b ∈ A with c(a) ≥ c(b).

Furthermore, choosing A = ∅, we see that χΓ,c = χΓ and the above theo-
rem specializes to the classical reciprocity for chromatic polynomials due to
Stanley [40] .

Corollary 4.4.5 ([40, Theorem 1.2]). For a graph Γ, |χΓ(−n)| equals the
number of pairs (c, σ) for which c is an n-coloring and σ is a weakly com-
patible acyclic orientation. In particular, |χΓ(−1)| is the number of acyclic
orientations of Γ.

Example 4.4.6. Consider the following graph Γ with A = {a, b}:

Let c : A → [k] be a coloring. If c(a) = c(b), then for all n ≥ k the number
of extensions of c to a proper n-coloring of Γ is

χΓ,c(n) = (n− 1)(n− 2)
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and (−1)2χΓ,c(−1) = 6 is the number of acyclic orientations of Γ where there
is no directed path between a and b:

If c(a) > c(b), then

χΓ,c(n) = (n− 2)(n− 3) + (n− 2) = (n− 2)2

and (−1)2χΓ,c(−1) = 9 counts the number of acyclic orientations where there
is no directed path from a to b, i.e., there are three additional acyclic orien-
tations:

The case c(a) < c(b) is clearly analogous.

Proofs. First observe that we may assume that no two vertices of A are
assigned the same color by c. Indeed, assume that c(a) = c(b) for some
a, b ∈ A. If ab is an edge of Γ, then no proper coloring can extend c and
χΓ,c ≡ 0. Moreover, in any orientation of Γ there is a directed path between
a and b. If ab 6∈ E, let Γab be obtained from Γ by identifying a and b. Then
c descends to a partial coloring cab on Γab and it is easy to see that there is
a bijective correspondence between extensions of size n of c and cab. As for
acyclic orientations, note that an acyclic orientation of Γ yields an acyclic
orientation of Γab if and only if there is no directed path between a and b.
So, henceforth we assume that c : A→ [k] is injective.

Let Γ′ be the suspension of Γ, that is, the graph Γ with two additional
vertices 0̂, 1̂ that are connected to all vertices of Γ. For n ≥ k, let us consider
all extensions of c to proper colorings ĉ : V ′ → {0, 1, . . . , n + 1} such that
ĉ(0̂) = 0 and ĉ(1̂) = n+ 1. Every such coloring ĉ gives rise to a unique com-
patible acyclic orientation σ by directing every edge along its color gradient.
By definition, 0̂ is a source and 1̂ is a sink. The acyclicity of σ implies that
we can define a partially ordered set Γσ on V ′ by setting u �Γσ v if there is
directed path from u to v. Extending A to A′ = A ∪ {0̂, 1̂} and c to c′n by

c′n(a) =


0 if a = 0̂,

n+ 1 if a = 1̂, and
c(a) otherwise,
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it follows that every proper coloring ĉ of Γ′ that extends c′n and induces σ
is a strict order preserving map ĉ : Γσ → {0, 1, . . . , n + 1} extending c′n and
vice versa. By Theorem 4.2.12

χΓ,c(n) =
∑
σ

(−1)|V \A|ΩΓσ ,A′(−c′n), (4.7)

where the sum is over all acyclic orientations of Γ′ such that for every a, b ∈ A′
there is no directed path from a to b whenever c(a) > c(b). This shows that
χΓ,c(n) is a sum of polynomials in n with positive leading coefficients. For n
sufficiently large, there is an extension of c such that every vertex V \A gets
a color > k. For the corresponding poset Γσ, the summand ΩΓσ ,A′(−c′n) is of
degree |V | − |A| in n, which completes the proof of Theorem 4.4.1.

Let A′ = {0̂ = a0, a1, . . . , ar−1, ar = 1̂} so that i < j implies c′n(ai) < c′n(aj).
That is, c′n is a strictly order preserving map for the chain A′ with c′n(0̂) = 0
and c′n(1̂) = n + 1. Hence, we can consider the right-hand side of (4.7) as
a polynomial in the colors (0 = c0 < c1 < c2 < · · · < cr = n + 1) of A′.
However, the number of proper extensions of c is independent of the actual
values of c : A → [k] for all k ≤ n. Indeed, if k′ ≤ n and d : A → [k′] is a
different injective partial coloring, then there is a permutation π : [n] → [n]
that takes c to d, and π defines a bijection between the proper extensions of
c and the proper extensions of d. It follows that the right-hand side of (4.7)
is a polynomial independent of c1, . . . , cr−1 and

(−1)|V \A|χΓ,c(−n) =
∑
σ

ΩΓσ ,A′(−c′−n) =
∑
σ

ΩΓσ ,A′(c
′
n−2 − χA),

where χA : A→ {0, 1} is the characteristic function on A. Every summand is
the number of order preserving maps Γσ → {0, 1, . . . , n−1} extending c′n−2−
χA. Translating back, this is exactly the number of pairs of (not necessarily
proper) extensions of c and a weakly compatible acyclic orientations of Γ
which yields Theorem 4.4.2. As the right-hand side of (4.7) is independent
of c1, . . . , cr−1,

(−1)|V \A|χΓ,c(−1) =
∑
σ

ΩΓσ ,A′(−c′−1) =
∑
σ

ΩΓσ ,A′(0).

Here every summand is one, so the right-hand side counts the number of
acyclic orientations such that for every a, b ∈ A there is no directed path
from a to b whenever c(a) > c(b), which proves Corollary 4.4.4.





Chapter 5

Counting modulo symmetry

5.1 Introduction

Counting objects up to symmetry is a basic problem of enumerative combina-
torics. A fundamental result in this context is Pólya’s enumeration theorem
which is concerned with counting labelings of a set of objects modulo sym-
metry. Here a labeling of a set X is defined as a map f : X → Y where Y
is the set of labels. If G is a group acting on X then G also acts on the set
of labelings Y X := {f : X → Y }. Pólya’s enumeration theorem now states:

Theorem 5.1.1 (Pólya’s enumeration theorem [33]). Let G be a finite group
acting on a finite set X and let Y be a finite set of n = |Y | labels. Then∣∣Y X/G

∣∣ =
1

|G|
∑
g∈G

nc(g)

where Y X/G is the collection of orbits of Y X and c(g) is the number of cycles
of g as permutation of X.

In this chapter we give a new perspective on this theorem by generalizing it
in terms of posets and order preserving maps. More precisely, we consider a
finite poset P and a group G acting on P by automorphisms. Then G acts
in a natural way also on the set of all order preserving maps Hom(P, [n])
from P into the n-chain [n] = {1 < · · · < n}. We show that the number
of orbits of Hom(P, [n]) is given by a polynomial ΩP,G(n) which we call
the orbital order polynomial. Pólya’s enumeration theorem then follows
by specializing this result to antichains. Further we give a combinatorial
interpretation for ΩP,G(−n) in terms of orbits of strictly order preserving

89



90 5.2. ORDER PRESERVING PÓLYA ENUMERATION

maps. This naturally generalizes the classical polynomiality and reciprocity
theorems for order preserving maps due to Stanley [38]. These results can
be furthermore generalized to counting (P, ω)-partitions up to symmetry.

The results can be applied to graph colorings. We consider a finite group
G acting by automorphisms on a finite simple graph Γ = (V,E) and the
function χΓ,G(n) counting proper colorings c : V → [n] up to group action.
Cameron and Kayibi [9] seem to be the first who considered this function
which they called the orbital chromatic polynomial. Previously, Hanlon
[20] treated the case of G being the automorphism group of Γ. It is easy to
see that χΓ,G(n) indeed agrees with a polynomial for all n ≥ 1. We further
give a representation as a sum of order polynomials.

We also give a combinatorial interpretation for evaluating this polynomial at
negative integers in terms of acyclic orientations and compatible colorings.
This naturally generalizes Stanley’s reciprocity theorem for graph colorings
[40].

The content of this chapter appeared in [22].

5.2 Order preserving Pólya enumeration

5.2.1 Groups

LetG be a finite group with identity element e andX be a finite set. A group
operation of G on X is a map · : G×X → X such that g · (h · x) = (gh) · x
and e · x = x for all g, h ∈ G and x ∈ X. We say that G operates or acts
on X. For every g ∈ G we denote by Xg the fixpoints of g, i.e., Xg = {x ∈
X : g · x = x}. For an element x ∈ X we denote by Gx = {g · x : g ∈ G} the
orbit of x. The set of all orbits partitions X and is called X/G.

Burnside’s lemma (see e.g. [51, Theorem 10.5]) gives a formula for the num-
ber of orbits in terms of fixpoints:

Theorem 5.2.1 (Burnside’s lemma). Let G be a finite group acting on a
finite set X. Then

|X/G| =
1

|G|
∑
g∈G

|Xg|.

For an element x ∈ X, the stabilizer of x is Stab(x) = {g ∈ G : g · x = x}.
The operation can be restricted to any subgroup H ⊆ G. For g ∈ G we
denote by 〈g〉 = {e, g, g2, . . .} the cyclic subgroup generated by g. The orbit
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of x under the action of 〈g〉 is denoted by [x]g and is called a cycle of g. In
particular, c(g) = |X/〈g〉| is the number of cycles of g. Identifying g with
the corresponding permutation on X gives the usual notion of cycles.

Example 5.2.2. Let G = Sn be the symmetric group acting on [n] =
{1, . . . , n} in the usual way. Every permutation σ ∈ Sn can be written
as product of disjoint cycles in Sn and this representation is unique up to
interchanging the order of the cycles in the product. In this case [x]σ = {y ∈
[n] : y and x are in the same cycle} and c(σ) is the number of cycles in the
unique representation as product of disjoint cycles.

If a set X has additional structure we say that a group G acts by automor-
phisms on X if the group operation respects the structure, that is, for all
g ∈ G the map x 7→ g · x is a structure preserving bijection.

Let P be a finite poset. Then a group G acts on P by automorphisms if for
all g ∈ G and for all p and q in P we have g · p ≺ g · q whenever p ≺ q.

For a finite simple graph Γ = (V,E), an action of a group G on V respects
the structure of Γ if for all edges uv ∈ E there is an edge between g · u and
g · v for all g ∈ G.

The operation of G on X induces an operation on Y X . This induced op-
eration is defined by (g · f)(x) = f(g−1x) for all g ∈ G, f ∈ Y X and x ∈ X.

5.2.2 Order preserving maps

LetP be a finite poset. We denote the set of all order preserving maps fromP
to [n] by Hom(P, [n]). The subset of strictly order preserving maps is denoted
by Hom◦(P, [n]). Their cardinalities are given by the order polynomials
ΩP(n) and Ω◦P(n) respectively. We recall Stanley’s classical result discussed
in Example 4.2.11:

Theorem 5.2.3 (Stanley [38]). For a finite poset P the function ΩP(n)
agrees with a polynomial of degree |P| for all n ≥ 1, and

Ω◦P(n) = (−1)|P|ΩP(−n).

For every finite group G acting on P by automorphisms we define a partial
order on P/G by defining Gx ≺ Gy whenever there are x̃ ∈ Gx and ỹ ∈ Gy
such that x̃ ≺ ỹ.
This, in fact, yields a poset, the quotient poset (see, e.g., [44]).
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Lemma 5.2.4. Let P be a finite poset and G a finite group acting by auto-
morphisms on P. Then P/G is a poset.

Proof. For irreflexivity we observe that every orbit Gx is an antichain. To
see this, suppose gx ≺ hx for some g, h ∈ G and consequently x ≺ g−1hx.
Then it follows that x ≺ g−1hx ≺ (g−1h)2x ≺ · · · ≺ x, as g−1h has finite order
which is a contradiction as P is a poset.

For transitivity, let x̃ ∈ Gx, ỹ, ȳ ∈ Gy and z̄ ∈ Gz with x̃ ≺ ỹ and ȳ ≺ z̄.
Then there exists a g ∈ G with gỹ = ȳ and we have gx̃ ≺ gỹ = ȳ ≺ z̄.

For g ∈ G we define Pg = P/〈g〉. Then Pg is a poset with c(g) elements.

An order preserving action of G on P induces an action on Hom(P, [n]) and
Hom◦(P, [n]) as subsets of [n]P. We define the orbital order polynomials
ΩP,G(n) = |Hom(P, [n])/G| and Ω◦P,G(n) = |Hom◦(P, [n])/G| for n ≥ 1. The
following main theorem states that ΩP,G(n) and Ω◦P,G(n) are indeed polyno-
mials for n ≥ 1 and gives formulas in terms of order polynomials:

Theorem 5.2.5. Let G be a finite group acting by automorphisms on a finite
poset P. Then

ΩP,G(n) =
1

|G|
∑
g∈G

ΩPg(n), (5.1)

Ω◦P,G(n) =
1

|G|
∑
g∈G

Ω◦Pg(n) (5.2)

for n ≥ 1. In particular, ΩP,G(n) and Ω◦P,G(n) agree with polynomials of
degree |P| for n ≥ 1.

Proof. We only show equation (5.1) as the argument for equation (5.2) is
analogous. By Theorem 5.2.1,

|Hom(P, [n])/G| = 1

|G|
∑
g∈G

|Hom(P, [n])g| .

By definition, φ ∈ Hom(P, [n])g if and only if φ(g−1x) = φ(x) for all x ∈ P.
But this is equivalent to φ being constant on [x]g. Therefore

Hom(P, [n])g → Hom(Pg, [n])

φ 7→ ([x]g 7→ φ(x))

is a one-to-one correspondence. Further, observe that deg ΩPg(n) = c(g) =
|P| if and only if g acts trivially on P, and c(e) = |P|.
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By applying Theorem 5.2.5 to antichains, we get Pólya’s enumeration theo-
rem in the language of posets:

Corollary 5.2.6. Let G be a finite group acting by automorphisms on a finite
antichain A, and let Y = [n]. Then∣∣Y A/G

∣∣ =
1

|G|
∑
g∈G

nc(g).

Proof. As A is an antichain we have Hom(A, [n]) = Y A. The result follows
by observing that Ag is an antichain with c(g) elements for all g ∈ G and
ΩAg(n) = n|Ag |.

Example 5.2.7. Let Sk be the symmetric group acting on an antichain
A = {x1, . . . , xk} on k elements by permuting indices, and let Y = [n]. Then

{φ ∈ Y A : 1 ≤ φ(x1) ≤ · · · ≤ φ(xk) ≤ n}

is a set of representatives of Hom(A, Y )/Sk and therefore

ΩA,Sk(n) = Ω[k](n) =

(
n+ k − 1

k

)
.

5.2.3 Combinatorial reciprocity

Let G be a finite group acting on a finite poset P by automorphisms. As
the number of orbits |Hom(P, [n])/G| agrees with a polynomial by Theorem
5.2.5, we ponder the question if there is a combinatorial interpretation for
evaluating this polynomial at negative integers. To this end, we have to
consider a certain class of order preserving maps. The sign sgn(g) of an
element g ∈ G is defined as the sign of g as a permutation of P and is
equal to (−1)|P|+c(g). An order preserving map φ ∈ Hom(P, [n]) is called
even if for all g ∈ Stab(φ) we have sgn(g) = 1. The set of all even order
preserving maps is denoted by Hom+(P, [n]), and we define Hom◦+(P, [n]) :=
Hom+(P, [n]) ∩ Hom◦(P, [n]) to be the set of even strictly order preserving
maps. One observes that the action of G on Hom(P, [n]) restricts to an
action on Hom+(P, [n]). For these notions the following reciprocities hold:

Theorem 5.2.8. Let G be a finite group acting by automorphisms on a finite
poset P. Then

ΩP,G(−n) = (−1)|P|
∣∣Hom◦+(P, [n])/G

∣∣ , (5.3)

Ω◦P,G(−n) = (−1)|P| |Hom+(P, [n])/G| . (5.4)
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Proof. Again, we only show equation (5.3) as equation (5.4) follows by anal-
ogous arguments. By equation (5.1) and Theorem 5.2.3,

ΩP,G(−n) =
1

|G|
∑
g∈G

(−1)|Pg |Ω◦Pg(n). (5.5)

We observe that |Pg| = c(g) is the number of orbits under the action of 〈g〉.
Therefore equation (5.5) becomes

ΩP,G(−n) = (−1)|P|
1

|G|
∑
g∈G

sgn(g) |Hom◦(P, [n])g|

= (−1)|P|
1

|G|
∑

φ∈Hom◦(P,[n])

∑
g∈Stab(φ)

sgn(g).

For φ ∈ Hom◦(P, [n]) and g0 ∈ Stab(φ) such that sgn(g0) = −1 there is a
bijection

{g ∈ Stab(φ) : sgn(g) = 1} −→ {g ∈ Stab(φ) : sgn(g) = −1}
g 7→ g0g.

Hence,
∑

g∈Stab(φ) sgn(g) = 0 whenever φ is not even. Therefore the right-
hand side of equation (5.5) equals

(−1)|P|
1

|G|
∑
g∈G

∣∣Hom◦+(P, [n])g
∣∣

which equals (−1)|P|
∣∣Hom◦+(P, [n])/G

∣∣ by Theorem 5.2.1.

In the setting of Pólya’s enumeration theorem the statement simplifies:

Corollary 5.2.9. Let G be a finite group acting on a finite antichain A, and
let Y = [n]. Then

ΩA,G(−n) = (−1)|A| |Hom+(A, [n])/G| .

Proof. This follows from the fact that every order preserving map from an
antichain is automatically strictly order preserving.

Example 5.2.10. In Example 5.2.7 we have φ ∈ Hom+(A, [n]) if and only
if φ is injective. Therefore

{φ ∈ Y A : 1 ≤ φ(x1) < · · · < φ(xk) ≤ n}

is a set of representatives for Hom+(A, [n])/Sk. Therefore

|Hom+(A, [n])/Sk| = Ω◦[k](n) =

(
n

k

)
.
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Remark 5.2.11. An alternative, geometric route is by way of Ehrhart theory
of order polytopes. Geometrically the setting can be translated into counting
lattice points in order polytopes where the action of the group is given by
permuting coordinates. This complements results by Stapledon [50] who
considers lattice preserving group actions and counts lattice points inside
stable rational polytopes.

5.2.4 (P, ω)-partitions

Theorems 5.2.5 and 5.2.8 hold, in fact, in greater generality for (P, ω)-
partitions which were first considered by Stanley in [39]. Let P be a poset
and let ω : P→ R, such that ω(p) 6= ω(q) whenever p and q are comparable.
An order preserving map f ∈ Hom(P, [n]) is a (P, ω)-partition if for all
p, q ∈ P

p ≺ q and ω(p) > ω(q) =⇒ f(p) < f(q).

The pairs {(p, q) : p ≺ q, ω(p) > ω(q)} are called inversions. There-
fore, a (P, ω)-partition is an order preserving map which is strict on in-
versions given by ω. Let Homω(P, [n]) be the set of all (P, ω)-partitions
P→ [n]. We observe that if ω is order preserving then Homω(P, [n]) simply
equals Hom(P, [n]). If ω is order reversing then we have Homω(P, [n]) =
Hom◦(P, [n]).

Stanley considered in [39] the (P, ω)-polynomial Ωω
P(n) = |Homω(P, [n])|

and showed the following generalization of Theorem 5.2.3:

Theorem 5.2.12 (Stanley [39]). Let P be a finite poset and ω : P→ R be a
map, such that ω(p) 6= ω(q) whenever p and q are comparable. Then Ωω

P(n)
agrees with a polynomial of degree |P| for n ≥ 1 and

Ωω
P(−n) = (−1)|P|Ω−ωP (n).

Now let G be a group acting on P by automorphisms that preserve inver-
sions, i.e. for all g ∈ G we have ω(p) < ω(q) ⇔ ω(gp) < ω(gq) for all
comparable p and q. For g ∈ G we define ωg : Pg → R by ωg([x]g) =

1
|〈g〉|
∑

x̃∈[x]g
ω(x̃). It is easy to see that ωg takes different values on comparable

elements in Pg. Analogously to the case of ordinary order preserving maps,
we define the orbital (P, ω)-polynomial Ωω

P,G(n) = |Homω(P, [n])/G|, and
Homω

+(P, [n]) = Homω(P, [n]) ∩ Hom+(P, [n]). By very similar arguments
as in the proofs of Theorem 5.2.5 and Theorem 5.2.8 we have the following
generalization:
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Theorem 5.2.13. Let P be a finite poset and ω : P → R be a map, such
that ω(p) 6= ω(q) whenever p and q are comparable. Let G be a finite group
that acts on P by inversion preserving automorphisms. Then

Ωω
P,G(n) =

1

|G|
∑
g∈G

Ω
ωg
Pg

(n),

Ωω
P,G(−n) = (−1)|P|

∣∣Hom−ω+ (P, [n])/G
∣∣ .

5.3 Graphs

Let Γ = (V,E) be a finite simple graph and let G be a finite group acting
on Γ by automorphisms. Recall from Section 4.4 that an n-coloring of Γ is
a map c : V → [n]. The coloring is called proper if c(v) 6= c(w) whenever
there is an edge between v and w. The action of G on Γ induces an action
on the set of all colorings, and also on the set of all proper colorings which
we denote by Coln(Γ). The orbital chromatic polynomial χΓ,G is defined
by χΓ,G(n) = |Coln(Γ)/G| for all n ≥ 1. Further recall that an orientation
σ : E → V of Γ assigns to every edge e a vertex of e called its head. An
orientation is acyclic if there are no directed cycles. Every acyclic orientation
σ induces a partial order on the vertex set of Γ by defining v ≺σ w if there
is a directed path from v to w. For the corresponding poset we write Γσ. G
acts on the set Σ of all acyclic orientations of Γ: For an edge uv we define
(g · σ)(uv) = g · σ(g−1 · uv). The next theorem gives us an expression of
χΓ,G(n) in terms of order polynomials. In particular, χΓ,G(n) is a polynomial
for all n ≥ 1.

Theorem 5.3.1. Let Γ be a graph and let G be a group acting on Γ. Then
G acts on Coln(Γ) and

χΓ,G(n) =
1

|G|
∑
g∈G

∑
σ∈Σg

Ω◦Γσg (n)

for all n ≥ 1. In particular, χΓ,G(n) agrees with a polynomial of degree |Γ|
for all n ≥ 1.

Proof. By Theorem 5.2.1,

|Coln(Γ)/G| = 1

|G|
∑
g∈G

|Coln(Γ)g| .
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Let φ be an element of Coln(Γ)g and let σ be the acyclic orientation induced
by the coloring φ, i.e., an edge e = uv is oriented from u to v whenever
φ(u) < φ(v). Then φ is a strictly order preserving map from Γσ into [n] and
σ is fixed by g, because for every edge vw ∈ E we have v ≺σ w by definition
if and only if φ(v) < φ(w), and as φ is fixed by g, this implies φ(gv) < φ(gw)
which is equivalent to gv ≺σ gw, i.e., σ ∈ Σg.

Example 5.3.2. Let k > 2. We consider a cycle Ck on k vertices {xi}i∈Zk .
Then its symmetry group is the dihedral group

Dk = 〈r, s | rk = 1, s2 = 1, srs−1 = r−1〉

which acts on Ck by

r · xi = xi+1

s · xi = x−i.

Then

χCk,Dk(n) =
1

2k

(
k∑
l=1

∣∣∣Coln(Ck)r
l
∣∣∣+

k∑
l=1

∣∣∣Coln(Ck)sr
l
∣∣∣) .

Let c ∈ Coln(Ck). If l = 2q is even, then sr2q · c = c ⇔ (rq · c) = s · (rq · c)
and therefore∣∣∣Coln(Ck)sr

l
∣∣∣ =

∣∣Coln(Ck)s
∣∣ =

{∣∣Coln([k
2

+ 1])
∣∣ if k is even,

0 otherwise.

If l = 2q + 1 is odd, then sr2q+1 · c = c ⇔ (rq+1 · c) = rs · (rq+1 · c) and
therefore ∣∣∣Coln(Ck)s·r

l
∣∣∣ =

∣∣Coln(Ck)rs
∣∣ = 0,

as rs · x0 = x1, and x0 and x1 are connected by an edge. Further, for all
1 ≤ l ≤ k, ∣∣∣Coln(Ck)r

l
∣∣∣ =

{
|Coln(Cm)| if m = gcd(l, k) 6= 1,

0 otherwise.

If k > 1 is odd, we therefore get

χCk,Dk(n) =
1

2
χCk,Zk(n),

with Zk := Z/kZ = 〈r〉 ⊂ Dk. If k = p > 2 is a prime this simplifies even
further:

|Coln(Cp)/Dp| =
1

2p
|Coln(Cp)| .

This is reminiscent of counting necklaces with colored beads (see, e.g., [51,
Chapter 35]).
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A pair (c, σ) consisting of a coloring c : V → [n] and an acyclic orientation
σ : E → V is called weakly compatible if for every edge e = uv we have
σ(uv) = v whenever c(u) < c(v). We define

Σn(Γ) = {(c, σ) ∈ [n]V × Σ: weakly compatible}

IfG acts on Γ by automorphisms, it also acts on Σn(Γ) by g·(c, σ) = (g·c, g·σ)
for all (c, σ) ∈ Σn(Γ) and g ∈ G. An element (c, σ) ∈ Σn(Γ) is called even
if for all g ∈ Stab((c, σ)) we have sgn(g) = 1 as permutation of the vertices.
We denote the set of all even elements of Σn(Γ) by Σn,+(Γ). The action of G
restricts to an action on Σn,+(Γ). We get the following reciprocity statement:

Theorem 5.3.3. Let Γ be a graph and G a group acting on Γ. Then

χΓ,G(−n) = (−1)|Γ| |Σn,+(Γ)/G|

Proof. By Theorem 5.3.1 and Theorem 5.2.3 and sgn(g) = (−1)|Γ|+c(g),

χΓ,G(−n) = (−1)|Γ|
1

|G|
∑
g∈G

sgn(g)
∑
σ∈Σg

ΩΓσg (n).

As in the proof of Theorem 5.2.5, we see ΩΓσg (n) = |Hom(Γσ, [n])g|, and we
observe

|Σn(Γ)g| =
∑
σ∈Σg

|Hom(Γσ, [n])g|. (5.6)

Now we argue the same way as in the proof of Theorem 5.2.8: By equation
(5.6) we obtain that χΓ,G(−n) equals

(−1)|Γ|
1

|G|
∑
g∈G

sgn g |Σn(Γ)g| = (−1)|Γ|
1

|G|
∑

(c,σ)∈Σn(Γ)

∑
g∈Stab((c,σ))

sgn(g). (5.7)

For (c, σ) ∈ Σn(Γ) and g0 ∈ Stab((c, σ)) such that sgn g0 = −1 as a permu-
tation of the vertices, there is a bijection

{g ∈ Stab((c, σ)) : sgn(g) = 1} −→ {g ∈ Stab((c, σ)) : sgn(g) = −1}
g 7→ g0g.

Hence,
∑

g∈Stab((c,σ)) sgn(g) = 0 whenever (c, σ) is not even. Therefore the
right-hand side of equation (5.7) equals

(−1)|Γ|
1

|G|
∑
g∈G

|Σn,+(Γ)g|

which by Theorem 5.2.1 equals (−1)|Γ| |Σn,+(Γ)/G|.
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An easy interpretation can be given in the case of G = Z2:

Corollary 5.3.4. Let Γ be a graph and let Z2 = {e, τ} act on Γ by automor-
phisms such that sgn τ = −1. Then

χΓ,Z2(−1) = (−1)|Γ|
|Σ+|

2

where Σ+ = Σ1,+(Γ) is the set of even acyclic orientations of Γ.

For G acting trivially on Γ we again recover Stanley’s reciprocity theorem of
the chromatic polynomial (see Corollary 4.4.5):

Corollary 5.3.5 ([40, Theorem 1.2]). Let Γ be a graph and χΓ its chromatic
polynomial. Then |χΓ(−n)| equals the number of weakly compatible pairs
(c, σ) consisting of a n-coloring c and an acyclic orientation σ of Γ. In
particular, |χΓ(−1)| is the number of acyclic orientations of Γ.

Similarly to Theorem 5.2.8 there is a twin reciprocity in the case of graph
colorings. We say that an n-coloring c of Γ is even if for all g ∈ Stab(c) we
have sgn g = 1 and define Coln,+(Γ) as the set of all even proper n-colorings
of Γ. Then the action of G on Coln(Γ) restricts to an action on Coln,+(Γ). We
further define χ+

Γ,G(n) = |Coln,+(Γ)/G| as the function counting the number
of orbits of even proper n-colorings for n ≥ 1. By arguments similar to those
in Theorem 5.3.1 and Theorem 5.3.3, we then have the following:

Proposition 5.3.6. Let Γ be a graph and G a group acting on Γ by auto-
morphisms. Then χ+

Γ,G(n) agrees with a polynomial of degree |Γ| for n ≥ 1
and

χ+
Γ,G(−n) = (−1)|Γ| |Σn(Γ)/G| .
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Zusammenfassung

Die vorliegende Arbeit beschäftigt sich mit der Struktur translationsinva-
rianter Bewertungen auf Polytopen und damit im Zusammenhang stehenden
Abzählproblemen mit geometrischen Lösungsansätzen.

Den Ausgangspunkt des ersten Kapitels bilden zwei Resultate von Richard
Stanley: Zum einen sein bahnbrechendesNonnegativity Theorem [42], welches
aussagt, dass der Ehrhart h∗-Vektor jedes Gitterpolytops nur nichtnegative
ganze Zahlen enthält. Zum anderen zeigt er in [48], dass dieser Vektor eine
Monotonieeigenschaft besitzt. In Kapitel 2 untersuchen wir allgemein trans-
lationsinvariante Bewertungen auf diese Eigenschaften hin. Unser Hauptre-
sultat ist, dass Nichtnegativität und Monotonie äquivalent sind, und wir
geben eine einfache Charakterisierung an. In Kapitel 3 zeigen wir, dass der
h∗-Vektor eines Zonotops unimodal ist, falls die entsprechende translation-
sinvariante Bewertung die Monotoniebedingung erfüllt.

Der zweite Teil der Arbeit behandelt Abzählprobleme für ordnungserhal-
tenden Abbildungen. Für gegebene partielle Ordnungen A ⊆ P und eine
ordnungserhaltende Abbildung λ : A → [n] zeigen wir in Kapitel 4, dass die
Anzahl der Fortsetzungen von λ nach P durch ein stückweise multivariates
Polynom gegeben ist. Angewandt auf das Zählen von Fortsetzungen von
Graphenfärbungen verallgemeinert dies einen Satz von Herzberg und Murty
[21]. Zudem enumerieren wir Monotone Triangles, welche in engem Zusam-
menhang mitAlternating Sign Matrices stehen, und können einen kurzen geo-
metrischen Beweis einer Reziprozität von Fischer und Riegler [17] angeben.
In Kapitel 5 zählen wir ordnungserhaltende Abbildungen von P nach [n] bis
auf Symmetry. Wir zeigen, dass die Zählfunktion ein Polynom in n ist und
beweisen eine ordnungstheoretische Verallgemeinerung von Pólya’s Enume-
ration Theorem [33]. Zudem zeigen wir eine Reziprozität und wenden unsere
Resultate darauf an Graphenfärbungen bis auf Symmetrie zu zählen.

Kapitel 2 und 4 basieren auf der Zusammenarbeit mit Raman Sanyal. Kapitel
4 erschien in [23]. Kapitel 3 ist Teil eines gemeinsamen Projekts mit Matthias
Beck and Emily McCullough. Kapitel 5 wurde in [22] veröffentlicht.
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