
Chapter 3

Parallel setup

Previously it was shown that the control over the polarization is limited

when using the commercial double layer modulators due to the fact, that the

obtained polarization states are generated in 45◦ orientated liquid crystals

optical axes. A lack of different commercial solutions makes it interesting

to consider other options. The form of the Jones vector 2.4 and the Eq.

2.15 suggests that absolute control over the polarization can be achieved by

changing the amplitudes and phases of perpendicular polarization compo-

nents. This chapter describes the experimental realization of such a solution,

which is accomplished by overlaying the two orthogonally polarized and in-

dependently phase and amplitude shaped laser beams.

First the mathematical description of such a confinement is provided and

followed by details of the optical layout and its alignment procedures. The

next Section includes the problem of interferometric stability between the

two arms of the interferometer and tests of the polarization manipulation.

After this the detection scheme is presented and finally a few trial pulses are

generated and resolved.

3.1 Mathematical description

The concept of full polarization, phase, and amplitude control is based on

overlapping two laser beams having perpendicular polarization where phase

and amplitude is controlled independently in each beam. One can achieve this

by using an interferometer consisting of shapers in both arms and rotating
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the polarization by 90◦ in one of the arms before recombination. The electric

field after passing such a setup is

E = EP (φaP , φbP ) P + ES(φaS, φbS) S =
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where φaP , φbP and φaS, φbS are the retardances for the P and S field respec-

tively, and E0 is the amplitude of the electric field. The amplitude and the

phase of the components is controlled in the same manner as described in

Section 2.3.

TP = cos2

[
φaP − φbP

2

]

TS = cos2

[
φaP − φbP

2

]

(3.2)

The absolute transmission of the setup is derived from the relations

IP = TP IP0

IS = TSIS0

I = TI0

(3.3)

and the fact that

I = IP + IS

yields

T =
IP0

I0

TP +
IS0

I0

TS (3.4)

In other words, the absolute transmission is the weighted arithmetical mean,

which becomes the mean when the condition IP = IS is fulfilled.

The phase is simply the arithmetic mean of the phase of the two compo-

nents, whereas the relative phase shift ε is given by the difference

ϕ =
1

2
(ϕP + ϕS) =

1

4
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ε = (ϕP − ϕS) =
1

2
((φaP + φbP )− (φaS + φbS)) (3.5)
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The absolute phase shifts of both components are independent, therefore

the same arguments as in Chapter 2 can be used to prove that ϕ and ε can

be changed independently

Next, solving Eq. 3.3 and Eq. 3.5 for the retardances yields
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(3.6)

These equations determine the set of retardances for given transmissions

of both components TP , TS, absolute phase ϕ, and relative phase ε. The

transmission and phase shifts fully determine the modification of the light

passing this setup, but they do not directly describe the resulting polarization

state. The intuitive way to describe polarization is to use the orientation of

the principal axes and the axes ratio. Since the amplitudes and relative phase

shift as a function of the polarization ellipse parameters have been derived in

Section 2.2 it is easy to reformulate Eq. 2.15 to describe the transmissions,

TP and TS, and ε.
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(3.7)

Calculating TP and TS and substituting them in Eq. 3.6 allows for the

intuitive and independent control of all polarization parameters, the relative

intensity (absolute transmission), and the phase.
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Figure 3.1: Two shapers incorporated in a Mach-Zehnder interferometer.
The pulses are first split by the beamsplitter and then they travel along the
arms of the interferometer. In each arm one phase and amplitude shaper is
placed. Afterwards, the beams are recombined by rotating the polarization
with a waveplate in one of the arms and using a polarizing beam splitter.

3.2 Experimental setup

The control of the polarization, except setting the TP and TS transmissions,

relays on choosing and keeping the relative phase shift constant. The con-

cept, as presented in Figure 3.1, is to use an interferometer and influence the

phase and amplitude in both arms by different shapers. Unfortunately, since

the incorporated interferometer is a vital part of the layout, one has to take

care of the mechanical stability of its components. As shown in Section 2.1,

even a small change in the optical path will result in completely different

relative phase shifts and this will impact the polarization dramatically. It is

very impractical to use two separate 4f-shaper layouts for following reasons:

Additional mechanical instabilities are introduced by every element reflecting

the beam in the shaper, so one should minimize the number of reflections

and as well the length of the optical path in order to minimize the influence
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of air fluctuations. Furthermore one should take into account the cost of two

modulators and the required optical and mechanical components. Therefore

we use one 4f-shaper in both arms of the interferometer which is possible

when the beams from each arm enter the first grating of the shaper at differ-

ent incidence angles [59]. Mechanical vibrations or thermal deformations of

common elements like gratings or lenses will have minimal influence on the

relative change of the optical path or even cancel themselves out. Consider-

ing the length of the optical path and the resulting increase of fluctuations

arising from air movement, it will also be much shorter in the proposed par-

allel setup than in the alternative two shapers method. Finally, the cost of

the setup is lower.

The beam path showed in Figure 3.2 goes as follows. First, the laser

beam is split and then both beams are directed on the first grating of the

shaper (density of 600 lines per millimeter) on the same spot, but at dif-

ferent incidence angles. From then the spectral components of both beams

are diffracted and they pass through the first lens. Since they entered the

grating at different incidence angles, the grating angular alignment allows

for one component spectra to be distributed right from the center of the

modulator, looking from the propagation direction, and the second compo-

nent spectra left from the center. Afterwards, both spectra are collimated

by the cylindrical lens located in the distance of the focal length and then

pass the Spatial Light Modulator placed at the distance of two focal length

from the first grating. The plane in which the modulator lies is called Fourier

plane from the fact that in this plane the operation performed on the laser

pulse by the grating and the lens is equivalent to a Fourier transformation.

The temporal structure of the pulse is converted into spectral components

which are separated, and therefore can be influenced independently. Since

the 4f-shaper setup has a symmetry axis that lies exactly in the Fourier

plane, after the modulator, the spectra are inverse Fourier transformed by

the following lens and the second grating into two spatially separated beams.

At this point, the described layout is a parallel phase and amplitude shaper

with two separated output beams. The polarization of these beams is still

parallel to the table (P), so afterwards it is rotated by the waveplate in one

of the beams to be orthogonal (S). Then, a delay line is used in order to
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Figure 3.2: Parallel shaper configuration. The beam is first split and then
taking advantage of different incidence angles allows for the diffracted beams
to be sent through different regions of the modulator. After the reflection
from the second grating, the polarization in one of the beams is rotated by
90◦, passes through a delay stage and is spatially and temporally overlapped
with the other one in a polarization beam splitter.
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find the zero delay between both P and S polarized components at the point

of recombination. A polarizer is used as a combining element because it

takes advantage of perpendicular polarizations of overlapping beams and in

consequence no intensity is lost during the process.

In order to achieve the correct spatial overlap, the polarization was ro-

tated by the waveplate regardless the additional chirp introduced by the

element. Another option would be to use a periscope, which has minimal

influence on the pulse phase, but shifts the beam height and, what is far

more inconvenient, rotates the whole transverse beam profile. It would not

matter for the ideal beam geometry TEM00 [16], but with the femtosecond

laser beam propagating off the optical axis of the 4f-shaper telescope this is

rarely the case. As a result of the introduced astigmatism, coma and other

abberation errors the beam spot can be approximated by an ellipse. More-

over, the beam profile can be unsymmetrical, so the parity of the number of

mirrors used in both paths of the setup has its impact as well. The problems

of the correct overlap with the different methods of polarization rotation and

different parity are clarified in Figure 3.3.

Consequences of a poor beam profile can be circumvented by a proper

construction of the setup as long as both beams profiles are similar. Oth-

erwise, the poor overlap causes the resulting polarization to vary across the

beam, which is highly undesirable.

Once the beam profiles match each other we can proceed with the spatial

and temporal overlap. To align the setup properly we need a feedback signal

to optimize on. This can be done by taking advantage of the interferometric

nature of the problem. For two pulses with the same polarization, a time

delay with respect to each other will yield the interference patterns in the

spectrum. The contrast between the maxima and minima of the spectral

peaks is strongly coupled to the overlap. To use this signal as a feedback,

the pulses must be equally polarized first. This is achieved by placing a

45◦ orientated polarizer in the outgoing beam, which will transmit the 45◦

orientated polarization components of the P and S polarized pulses. Then,

by observing the spectral fringes, we can improve the spatial overlap between

the components by aligning the mirrors before the polarizer and the polarizer

itself. An example of improving the overlap during alignment is presented in
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Figure 3.3: Three cases of beam overlap in the parallel setup are presented.
The first row corresponds to using a periscope to rotate the polarization and
the same parity of the number of mirrors for both paths. Unfortunately this
results in a missing overlap in the outer parts of the beam. The second row
shows the polarization rotated by a waveplate and different parity of the
number of used mirrors. Poor overlap is due to the beam asymmetry in P
direction. The last case displays the polarization rotated by a waveplate and
the same parity of the number of used mirrors. In this case a perfect spatial
overlap can be achieved as long as both beam profiles are identical.
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Figure 3.4: The spectra corresponding to good and bad spatial beam overlap,
as indicated in the graph.

Figure 3.4.

The spectral fringes minima do not reach zero as they theoretically should.

This is due to the different spectral phase for the both components and

unequal spectral intensity of P and S components. Both of these problems

will be discussed and solved later in this Section.

After the spatial overlap is completed, the temporal overlap of both pulses

can be taken care of. At this point, once again, we can use the spectrum

after a 45◦ orientated polarizer, since the interval of the spectral interference

peaks is inverse proportional to the pulse delay, as shown in Figure 3.5. For

zero delay no peak or one peak should be observed depending on the relative

phase of the pulses. That is as well the point when we reach the limit of the

manual alignment of the setup for two independent reasons, the precision of

our mechanical delay and the different spectral intensity and phase of both

polarization components.

When working with the linear table with the manual micrometer screw

it is not possible to reach the order of precision that is required for the

interferometric setup. What we are capable of is to set it within the margin

of error of 10µm which represents temporal displacement of slightly more

than 33 fs. That is barely enough to find the zero delay for pulses with time
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Figure 3.5: Spectra measured for different delays between the P and S pulses
in the parallel setup. The pulses with nonzero delay feature spectral fringes,
with the separation inversly proportional to the relative pulse delay. For a
relative delay equal to zero, the case with destructive interference is shown.

durations of 60 fs. What is required here is a precision high enough to align

the relative phase of pulses which should be in the order of half a wave cycle

(400nm corresponds to 1.3fs). Even if we would reach this accuracy by using

a mirror attached to a piezo actuator, there remains the problem of unequal

intensities and phases of the components.

The difficulty in achieving a proper temporal overlap is based on the fact

that the P and S components propagate through the shaper on separate

paths and so they experience different attenuations and phase shifts within

their own spectrum. The problem is even more complex when the S path

passes a waveplate, which introduces an additional chirp in the pulse.

The spectra for both directions of the polarization can differ in intensity

and as well slightly shift in central wavelength. These effects are due to

the beam splitter and the grating reflectivity. Since we use the grating at

different incoming angles, it reflects the two spectra with a diverse efficiency,

and moreover, the efficiency is also a function of the wavelength. Therefore,

the grating affects the spectrum like a spectral filter which has a different
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Figure 3.6: Spectra of the P and S pulses after and before the amplitude
correction applied to the S spectra.

transmission function depending on the incidence angle. This will result in

unequivalent transmissions and central wavelength shifts. The proper choice

of a beamsplitter can compensate the effect of unequal intensities of the P

and S components, but again, the beamsplitter itself acts like a spectral

filter, too. The transmission-to-reflectivity ratio can slightly vary across the

spectrum and can additionally cause the central wavelength to shift in the

reflected and transmitted beam.

While it is very difficult to compensate such amplitude differences with

optical components, it is easily achievable by using the modulator. They

are corrected by finding the intersection of the P and S spectra, and then

attenuating both components to fit to the common part exactly. Usually,

there is a minimal shift of the central wavelength and one of the spectra is

slightly more intense, so it is enough to apply the amplitude filter on one

component while leaving the other intact, as shown in Figure 3.6.

When the spectral intensities match each other, a similar procedure has to

be applied for the spectral phases of the P and S pulse. Unlike the amplitude,

it is not possible to directly experience the influence in the spectrum or any

other pulse feature by shifting a single pixel phase. The efficient method is
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to expand the spectral phase ϕ(ω) in a Taylor series [17]

ϕ(ω) = a0 + a1(ω − ω0) + a2(ω − ω0)
2 + a3(ω − ω0)

3... (3.8)

and then match the terms corresponding to the different orders for the whole

spectral phase instead of manipulating single pixels. Since the phases influ-

ence the temporal pulse structures mostly, to match the phases we compare

the crosscorrelations of the P and S pulses. This solves the equally important

issue of exact overlap in time, not only the temporal position of the P and S

pulses but as well the shape of the pulse envelope. A change of the ai terms

has the following impact on the pulses:

• a0 zero order phase, it is a common phase shift and does not influence

the pulse structure, but shifts the phase beneath the envelope.

• a1 first order phase, shifts the pulse in time, but does not influence the

shape of the envelope of the pulse.

• a2 second order phase, compresses or broadens the pulse duration while

keeping the symmetry of the envelope.

• a3 third order phase, influences the pulse form by changing the sym-

metry of the envelope.

The alignment is based on iterative modifications of the phase terms. The

first order adjusts the pulse delays to be equal, then by change of the second

order the duration of the pulses is corrected. The third order compensates for

any residual asymmetry in the temporal intensities, which are derived from

a ratio of rise time to fall time in the envelope. The effects of this procedure

is presented in Figure 3.7 where the comparison of the temporal intensities

is shown before and after the tuning. The agreement of the components is

within the measuring errors of the setup and the shaper calibration precision.

After recombination, alignment of the beams, and software fine tuning

of the polarization components, the setup is capable of full control over the

pulse polarization, phase, and amplitude.
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Figure 3.7: SFG crosscorrelations of the P and S pulses after (a) and before
the phase correction (b).

3.3 Stability of the setup

The use of an interferometer as part of the shaping mechanism is a step

which requires a much higher stability of the employed optomechanical com-

ponents. As mentioned in the previous Section, the main reason for using the

parallel configuration in one shaper setup is to minimize a potential source

of additional fluctuations. To properly estimate the relative phase stability,

the change of the beam polarization was recorded. This was done by rotating

the outgoing polarization by 45◦ by the waveplate, and then transmitting the

beam through a S orientated polarizer. This is equivalent to passing the beam

through a 45◦ orientated polarizer but since both elements, waveplate and

the S orientated polarizer were part of the diagnostic setup, they were em-

ployed in this measurement. This configuration creates two equally polarized

and temporally overlapped pulses originating from the P and S components.

By changing the relative phase ε between the components while leaving the

amplitude of the components unaltered, one can maximize or minimize the

intensity. Constructive interference corresponds to linear polarization at the

angle of 45◦ and destructive interference to linear polarization at −45◦. To

determine the stability we used the Sum Frequency Generation (SFG) signal

of these shaped pulses with the reference pulses and recorded if the signal re-

mained constant in time. We performed these measurements with an initial

relative phase corresponding to constructive (ε = 0◦) and then destructive

33



constructive interference

destructive interference

one polarization component
no interference

Figure 3.8: Relative phase stability shown on the SFG signal. The light
polarization from the parallel shaper was rotated by 45◦ and overlapped
with the reference pulse in a nonlinear crystal. The intensity of the resulting
sum frequency signal was measured.

(ε = 180◦) interference. Afterwards, to compare the stability of the obtained

signals, we performed the same measurement with one polarization compo-

nent blocked, which is insensitive to relative phase fluctuations. The above

described measurements are shown in Figure 3.8.

Only the single polarization component which is insensitive to the relative

phase shows fluctuation below ±4% in a time frame of 14 minutes. The

relative deviations recorded with both components present and the initial ε

set to zero were of the same magnitude, whereas for destructive interference,

the relative fluctuations were about ±17%, which was due to a lower signal

to noise ratio. This time frame allows for performing short coherent control

experiments but in case of problems demanding higher stability over extended

periods of time we are considering an active phase stabilization. This could

be done by observing the “leaking” intensity after the combining polarizing

beam splitter (polarizer) as shown on Figure 3.9, and constructing a positive

feedback loop to the control of the delay stage, the precision and speed of
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Figure 3.9: Part of the parallel setup where the beam is combined. The
“leaking” intensity is used as a feedback signal to monitor and correct the
relative phase shift by changing the position of the delay stage.

which would be sufficient to correct the phase shifts.

3.4 Polarization manipulation

After ensuring stable working conditions we can start to test the manipu-

lation of polarization. Our observable, as in the case of the stability, is the

power of the polarization shaped beam passing through a polarizer. For these

tests the relation between the transmitted intensity and the polarizer orien-

tation has to be apprehended quantitatively to plot the simulated curves.

The calculation is based on the concept of projection. It assumes that for a

given elliptical polarization the amplitude of an electrical field transmitted

through a polarizer is equal to the projection of this ellipse on the axis of the

polarizer, as presented in Figure 3.10.

The projection is found as follows. The free parameter d of the tangent

y = tan(θ − 90◦)x + d (3.9)

35



q
g

q

d

p

polarizer
axis

Ex

Ey

y=Tan[ -
]x+d

q 90°

Figure 3.10: The concept of an ellipse projection p on the axis of a polarizer,
which defines the transmitted intensity.

is found in the way that this line is a tangent to the ellipse

(x cos(γ) + y sin(γ))2

a2
+

(x cos(γ)− y sin(γ))2

b2
= 1 (3.10)

and at the same time by choosing the line slope equal tan[θ − 90◦] it is

perpendicular to the axis of the polarizer orientated at the angle θ. The

obtained parameter d is

d =

√
a2 + b2 + (a2 − b2) cos(2(γ − θ))

2 sin2(θ)
. (3.11)

Since the free parameter d and the projection p is coupled by the relation

sin(θ) =
p

d
(3.12)

it follows

p =
1√
2

√
a2 + b2 + (a2 − b2) cos(2(γ − θ)). (3.13)

As the projection p is equal to the amplitude of the electrical field after the

polarizer, the power recorded after the polarizer is proportional to the square
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of the projection

P (a, b, γ, θ) =
1

2
(a2 + b2 + (a2 − b2) cos(2(γ − θ))). (3.14)

By using the transformation 2.16 we can rewrite Eq. 3.14 as

P (I, r, γ, θ) =
1

2
I

[
1− r2 − 1

r2 + 1
cos(2(γ − θ))

]
. (3.15)

This equation permits to test the independent manipulation the polarization

ellipse parameters.

The control over the polarization parameters is performed by using re-

lation 3.7 to determine the proper transmissions and relative phase shifts.

First, a scan of the polarization rotation was performed. This was done by

varying the orientation γ for a few selected axes ratios. The output polarizer

was aligned to θ = 45◦, which is the configuration sensitive to both compo-

nents transmissions and relative phase shift. As Eq. 3.15 suggests and the

simulation in Figure 3.11(a) shows, the maximum modulation of the func-

tion should be observed for linear pulses where the ratios are close to zero (or

infinity), when the term r2−1
r2+1

is maximized (or minimized). A flat function

results for circularly polarized light, where r = 1 and

r2 − 1

r2 + 1
= 0.

The experimental scans in 3.11(b) are in good agreement with the the-

oretical curves. A visible deviation can be noticed for the ratio set to one,

where a constant signal should be recorded. To clarify the source of the noise

observed in this case the same scans have been experimentally conducted for

a polarizer orientated at θ = 0◦ and θ = 90◦ without changing other pa-

rameters, where the signal is independent from the relative phase and the

results showed minimal deviation from theory, therefore we claim that the

noise observed in the scans for θ = 45◦ is due only to the unstabilized relative

phase.

Next, ratio scans were performed while keeping the orientation of the

polarization constant. The ratio was changed in the range from 0 to 1, which

covers elliptical states from linear polarization to circular. Our observable

is again the intensity after the rotatable polarizer in the outgoing beam.
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Figure 3.11: Simulated (a) and experimental (b) scans of the major axis
orientation at a few constant ratios. The outgoing beam is passing through
a 45◦ orientated polarizer, afterwards the intensity is recorded by a power
meter for the experimental curve, whereas for the theoretical curves, Eq. 3.15
was used. Different curves correspond to diverse axes ratios.
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In this picture a signal change from Imax to Imax/2 is observed for a scan

starting from linear polarization oriented along our test polarizer axis (γ−θ =

0◦ ± n × 180◦, where n ∈ Z) and a change form 0 to Imax/2 is observed for

perpendicular orientation (γ − θ = 90◦ ± n × 180◦). Furthermore, from the

obvious symmetry reasons all the scans should end at the same value for

ratio r = 1. Moreover, there is a setting of relative orientation (γ− θ) where

the signal remains constant during the scan. Mathematically, this is fulfilled

when the term cos(2(γ − θ)) = 0 in 3.15. Therefore, the signal remains

constant for γ − θ = 45◦ ± n × 90◦ while changing the ratio. Since the

simulations and measurements are executed for the polarizer orientated at

θ = 45◦, the scans are flat for the γ = 0◦ ± n × 90◦. The simulation and

experimental graphs are presented in Figure 3.12.

The presented experimental scans agree well with the calculations. They

finish at almost the same value for r = 1. For γ = 0 the results differ from the

simulation and this could be explained by an imperfect or changing relative

phase alignment.

The last parameter we can control is the intensity of the light, but as it

is simple linear dependence from the transmission it will not be shown here

since proper functioning of the transmission is the most basic test and a part

of calibration process of the modulator [37, 60].

This Section showed the independent manipulation of the parameters of

the polarization state of light. The orientation of the polarization ellipse and

the ratio of the principal axes can be chosen freely and independently from

each other. After choosing these parameters one can still change the rotation

of the vector of the electrical field from clockwise to counterclockwise, but

this feature has not been experimentally tested. It is important to stress out,

that all the polarization state parameters as well as the absolute phase and

transmission can be chosen autonomously for different spectral components,

leading to more complex pulse structures.

3.5 Detection

The control over the spectral phase, amplitude, and polarization permits to

tailor the temporal intensity profiles together with the temporal polarization
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(a)
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Figure 3.12: Theoretical and experimental scans of the axes ratio of the po-
larization ellipse. The outgoing beam is passing through a 45◦ orientated
polarizer and afterwards, the intensity is calculated or measured. The differ-
ent curves correspond to diverse orientations of the polarization ellipse.
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of the pulse. In the frame of this thesis only very simple single pulses are

generated, where mostly a flat spectral phase is applied. Nevertheless, the

proper detection requires the characterization of two orthogonal polarization

components of the pulse. Apart from the temporal or the spectral intensi-

ties it is necessary to determine precisely the relative phase between both

components. The available tools to resolve the temporal or spectral features

of such pulses are either based on the POLLIWOG (Polarization Labeled

Interference versus Wavelength of Only a Glint) [61, 62, 63] or the TRE

(Time Resolved Ellipsometric) [64, 65, 66, 62] method.

Characterization of the pulse with POLLIWOG does not involve nonlin-

ear processes unlike FROG (Frequency Resolved Optical Gating) [62, 67,

68, 69, 70] or the autocorrelation [62, 71, 72, 73, 74] and it is based on record-

ing various spectra. The shaped pulses are superimposed with the reference,

45◦ linearly polarized, pulses with slight delay set in between, which remains

constant during the measurement. This creates an interference pattern in

the spectrum of the reference pulses combined with the polarization shaped

ones. By using the polarizer, the spectra for two perpendicular polarization

components of that interference can be recorded. The separation of spectral

fringes of the spectrum resulting from the delayed pulses provides the only

information about the delay, but the modulation of the peaks depends on the

relative phase and the intensities of both interfering frequencies. Therefore,

the spectra of both polarization components for the reference and shaped

pulse are also required to determine the relative phase. In order to get the

phase of the shape pulse, the reference pulse phase still has to be specified

additionally by use of other techniques. Next, having the spectra and the

phases of the shaped pulse polarization components, the Fourier transform

will give the temporal structure of the pulse.

This technique of measuring six spectra is very sensitive as it uses the

linear detectors like spectrometers, therefore it is very useful in case of weak

signals. Unfortunately it also requires interferometric stability between the

reference pulse and shaped pulse, which in case of our parallel setup is not

a very comfortable solution. It is a problem of placing an interferometer in

another interferometer arm and then stabilizing the whole setup. Another

minor disadvantage is the indirect method of evaluating the temporal struc-
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ture of the pulse by Fourier transformation.

Alternatively, one can directly measure the temporal shape of both polar-

ization pulse components, which is done in the Time Resolved Ellipsometric

(TRE) procedure. The diagnostic setup is based on crosscorrelation with

additional waveplates in the path of the shaped pulses. The usually used

nonlinear crystal for generating SFG signals is highly polarization sensitive,

so the signal is proportional to the S polarization component of the shaped

pulses. Information about the temporal amplitudes and relative phases is ex-

tracted with the help of a rotatable half waveplate and a quarter waveplate

placed in the beam. To explain the procedure the Jones matrices calculus

is used to show the intensity of the S polarization component of the shaped

pulse

IS(α, β) =
1

2

(
E2

0x(t) + E2
0y(t) +

cos(2α)
(
(E2

0y(t)− E2
0x(t)) cos(2(α− 2β))−

2E0x(t)E0y(t) cos(ε(t)) sin(2(α− 2β)) +

2E0x(t)E0y(t) sin(ε(t)) sin(2α)
))

(3.16)

where α and β are the angles of the half waveplate and the quarter waveplate

respectively. Equation 3.16 is not very intuitive, but for the correct choice

of angles of the waveplates it can directly provide the amplitudes E0x(t) and

E0x(t) and the relative phase ε(t).

IS(0◦, 0◦) = E2
0y(t)

IS(0◦, 45◦) = E2
0x(t)

IS(45◦, 45◦) =
1

2

(
E2

0x(t) + E2
0y(t) + 2E0x(t)E0y(t) sin(ε(t))

)

(3.17)

It is emphasized here that IS(45◦, 45◦) is dependent from sin(ε(t)) which

is an antisymmetric function. This important fact allows to measure the sign

of the relative phase shift and determine if the electric field vector is rotating

counterclockwise or clockwise.
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Figure 3.13: Simplified version of the TRE method. The shaped pulse po-
larization is first rotated by a waveplate, then the S polarization component
is extracted by a polarizer. Afterwards, the beam is focused and overlapped
spatially in a BBO crystal with the reference beam that experiences an ad-
justable delay. The resulting SFG is recorded by a photomultiplier or a
spectrometer as a function of reference pulse delay.

TRE involves less data processing then POLLIWOG and does not de-

mand for interferometric stability and characterization of the reference pulse.

The disadvantages are the necessary rotation of two waveplates and neces-

sity of performing several crosscorrelations. In the frame of this work a

method based on the TRE concept was used and the crosscorrelations were

performed only with the half waveplate present in the beam. The remain-

ing half waveplate is capable only of rotating the polarization orientation

without influencing the ellipticity of the pulse. This makes the use of the

diagnostic much more intuitive than the original TRE, and as well simplifies

the procedure of rotating. As shown latter, by simplifying the setup we lose

the possibility of measuring the sign of relative phase. By applying the same

calculus as for TRE we obtain the intensity of the S polarization component.

IS(α) = E2
0y cos2(2α)(t) + E2

0x(t) sin2(2α)

+E0x(t)E0y(t) sin(4α) cos(ε(t))

(3.18)

In this case, the function is much more intuitive and three angles can be

found, so the amplitudes E0x(t) and E0x(t) and the absolute value of the

relative phase ε(t) are easily obtained.
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IS(0◦, ) = E2
0y(t)

IS(45◦) = E2
0x(t)

IS(22.5◦) =
1

2

(
E2

0x(t) + E2
0y(t) + 2E0x(t)E0y(t) cos(ε(t))

)

(3.19)

The set of equation 3.19 is very similar to 3.17, with one difference. IS(22.5◦)

is a function dependent from cos(ε(t)), which is a symmetrical function and

for this reason it is not possible to extract the sign of the relative phase. This

analysis method based on three settings of the waveplate, although useful,

has not been used in data evaluation done in the frame of this work, because

it is very sensitive to the noise present in the recorded signal.

Since our goal is to directly retrieve the polarization parameters, ratio of

principal axes, orientation of the major axis, and intensity as a function of

time, the data processing is based on the concept of projection introduced

in Section 3.4. As the phase matching conditions discriminate the pulse

polarization in the way a polarizer does, one can describe the resulting cross-

correlation sum frequency generation (SFG) signal as a projection on the

nonlinear crystal axis. Equation 3.15 can be applied here with a change of

the term describing the relative orientation including the waveplate instead

of the polarizer.

ISFG(I(t), r(t), γ(t), α) =
1

2
I(t)

[
1− r(t)2 − 1

r(t)2 + 1
cos(2(γ(t)− 2α))

]
(3.20)

There are two possible approaches to this problem. The first one is to an-

alytically find the desired polarization parameters from the set of equations

describing the projections at different settings of the waveplate angle. As it

is shown in Figure 3.14, at least three projections are needed to character-

ize the ellipse. The choice of angles for the projections at 0◦, 45◦, and 90◦

corresponds to waveplate angles α equal to 0◦, 22.5◦ and 45◦ simplifies the

equations to
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Figure 3.14: The detection of the polarization ellipse. The orientation of an
ellipse is indicated by an angle γ and the orientation of the crystal axis to the
orientation of the ellipse by an angle 2α. The three projections are indicated
by E0◦ , E90◦ and E2α.

I0◦ =
1

2
I(t)

[
1− r(t)2 − 1

r(t)2 + 1
cos(2γ(t))

]

I45◦ =
1

2
I(t)

[
1− r(t)2 − 1

r(t)2 + 1
sin(2γ(t))

]

I90◦ =
1

2
I(t)

[
1 +

r(t)2 − 1

r(t)2 + 1
cos(2γ(t))

]

(3.21)

where I2α = ISFG(I(t), r(t), γ(t), α). Solving this set of equation for I(t),

r(t), and γ(t) yields

I(t) = I0◦ + I90◦

γ(t) =
1

2
arctan

[
I0◦ − 2I45◦ + I90◦

I0◦ − I90◦

]

r(t) =

√
−I3

0◦ + 3I2
0◦I90◦ + I0◦I90◦(−4I45◦ + I90◦) + I90◦(−2I45◦ + I90◦)2

I0◦(I0◦ − 2I45◦)2 + I0◦I90◦(I0◦ − 4I45◦) + 3I0◦I2
90◦ − I3

90◦

(3.22)
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Figure 3.15: The intensity ISFG(α) with the indicated parameters of the
polarization ellipse. The orange squares denote the measured intensities to
which the curve is fitted.

The relation describing the ratio is a rather complicated function of the

three projections. Also it should be pointed out, in the γ(t) equations when

the term I0◦ − I90◦ is close to zero, γ(t) will be extremely sensitive to experi-

mental noise present in the crosscorrelation traces, especially in the beginning

and the end of the pulse where the intensity is small. For those reasons we

decided to apply another method to extract the polarization parameters from

the crosscorrelations. Let us consider the function 3.20 at a fixed time and

all polarization parameters.

ISFG(α) =
1

2
I

[
1− r2 − 1

r2 + 1
cos(2(γ − 2α))

]
(3.23)

It will behave like a cosine function of the half waveplate orientation. As

we can derive from the equation, as Figure 3.15 shows, the function offset is

equal to 1
2
I, the phase shift is the orientation γ, and the amplitude of the

modulation is equal to 1
2
I r2−1

r2+1
. The simplest thing to do in this situation

is to record a few crosscorrelations and fit Equation 3.20 for every point in

time with I(t), r(t), and γ(t) as free parameters of the fit. This way the

outcome, since it depends on more then 3 projections, is less sensitive to the

experimental noise of the crosscorrelation setup.
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3.6 Test pulses

Once control over the polarization state by applying Equations 3.6 and 3.7

is achieved, test pulses were generated and measured. The resulting pulse

crosscorrelations with the retrieved parameters are presented in the following

figures.

The first pair of test pulses is presented in Figure 3.16. The upper graph

shows a linearly P polarized pulse. This pulse is achieved by setting TS = 0,

so there are no distortions from the relative phase fluctuations or from offset

errors present. The ratio of this pulse taken at the maximal intensity is equal

to 0.07, which is the minimal value that can be achieved for this kind of setup.

For comparison, the intensity ratio IS

IP
for the used Coherent RegA 9050 laser

system is defined to be in the order of 1:500, therefore it corresponds to an

amplitude ratio of 0.04, which is in the same order of magnitude as the

retrieved pulse ratio.

The lower graph in Figure 3.16 presents a linearly polarized pulse with the

orientation γ set to 60◦. The retrieved orientation was (56 ± 4)◦. Contrary

to the last pulse, this one requires relative phase stability. The ratio is 0.18

and since this corresponds to a contrast Imajor/Iminor of more than 30, it is

quite satisfying.

After the linear pulses, the elliptical pulse and the circular are presented

in Figure 3.17. The upper graph illustrates an elliptically polarized pulse.

The major axis direction was set to be 45◦, and (40± 4)◦ was achieved. The

ratio was adjusted to 0.5 and the value retrieved was 0.44.

The next example is a circularly polarized pulse. In this case the retrieved

axes ratio was 0.99. Naturally, it is not possible to retrieve the orientation

for this case, so the algorithm yields arbitrary values.

Since we are capable of manipulating the parameters of the polarization

independently for every single pixel this method allows to create complex

pulse structures with a dynamic polarization. An example of a rotating

major axis of the polarization ellipse is given in Figure 3.18. In this graph

the orientation of the major axis is changing from −30◦ to 30◦ while the axes

ratio stays on the same level.

It is also possible to generate multi pulse structures with independently
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Figure 3.16: Example pulses. The upper graph presents the linearly polar-
ized pulse with the orientation set to 0◦. Retrieved intensity, polarization
orientation, and axes ratio for the crosscorrelation are plotted as a function
of the delay of the reference pulse. The lower graph shows a linearly polarized
pulse with the orientation set to 60◦.
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Figure 3.17: Example pulses. The upper graph presents an elliptical pulse
with the axes ratio set to 0.5 and the orientation to 45◦. The lower graph
shows a circularly polarized pulse.

49



-0.2 -0.1 0.0 0.1 0.2 0.3
-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

 Intensity

 

In
te

ns
ity

 / 
a.
u.

Delay / ps

0.0

0.2

0.4

0.6

0.8

1.0

 O
rie

nt
at

io
n 

of
 p

ol
ar

iz
at

io
n 

/ d
eg

.

 M
aj

or
 a

xe
s 

ra
tio

 

 

Ratio

-45

-30

-15

0

15

30

45

60
 Orientation

 

Figure 3.18: Pulse structure where the orientation of the polarization changes
in time from −30◦ to 30◦ while the axes ratio remains on the same level.

chosen polarization parameters for every pulse, which are going to be dis-

cussed in detail in [75, 76].

3.7 Summary

In this chapter a new, parallel shaper design for independent and complete

control of the spectral phase, amplitude, and polarization of femtosecond

pulses was presented. The optical setup is based on the simple well-known

fact that two superimposed orthogonally polarized waves create elliptically

polarized light where the state of the polarization can be manipulated by

change of the relative phase and intensities. First, the transmission and the

phase function of the polarization ellipse parameters (I, r, γ, Sign[ε]) were

derived, so it is possible to choose polarization states defined by these pa-

rameters. Next, the construction of the setup and the alignment procedures

were discussed in great detail. Instead of using two separate 4f-shaper setups,
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one is utilized as two arms of a interferometer and a waveplate is used to ro-

tate the polarization in one of the arms before the recombination. The use

of one shaper minimizes the influence of the vibration of the common optical

elements on the relative phase stability. Then, it was shown that the setup

is capable of changing all polarization parameters independently and since

they describe the polarization completely, all possible polarization states can

be generated. In order to characterize the phase amplitude and polarization

shaped pulse structures, a simple and intuitive detection scheme was intro-

duced and experimentally examined. The generated test pulses were resolved

and show good agreement with the targets.

The introduced parallel shaper setup is to the authors knowledge the

first experimental demonstration of full control over polarization, phase, and

amplitude. The difficulties with the long term relative phase stability can be

overcome, for example by application of an active stabilization.
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