
Chapter 2

Introduction to polarization of
light

This Chapter treats the polarization of electromagnetic waves. In Section

2.1 the concept of light polarization is discussed and its Jones formalism is

presented. Next, Section 2.2 shows the coupling between the Jones vector

and the parameters of polarization ellipses, its orientation, and the ratio of

the major and minor axes. The last Section 2.3 analyzes the interaction of

a plane linear polarized wave with the liquid crystal used in spatial light

modulators.

2.1 Description of polarization by a Jones vec-

tor

The polarization of light is due to the orientation of the electrical field vector.

Since an electromagnetical wave is a three dimensional object, it can be

described by superposition of its two orthogonal components orientated in a

plane perpendicular to the propagation direction [56].

Ex = E0xe
i(kz−ωt+ϕx)

Ey = E0ye
i(kz−ωt+ϕy) (2.1)

These components are oscillating in time with the same frequency, however

the amplitudes and phases may differ. Eq. 2.1 can be rewritten in a vector

form with the fast oscillating term separated from the both components
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E = [xE0xe
iϕx + yE0ye

iϕy ]ei(kz−ωt+ϕy)

= Ẽ0e
i(kz−ωt+ϕy) (2.2)

where

Ẽ0 = [xE0xe
iϕx + yE0ye

iϕy ] . (2.3)

The expression in the bracket is no longer dependent from the fast oscillating

component, but from phase shifts and amplitudes. It can be expressed in

form of a vector.

Ẽ0 =

[
E0xe

iϕx

E0ye
iϕy

]
(2.4)

The vector 2.4 is called Jones vector and reflects the polarization state. Since

the relative amplitudes and phases fully determine the state of polarization,

the Jones vector is a complete description of it. To comprehend the physical

meaning of complex amplitudes one can consider Eq. 2.1 with z = 0, ϕx = 0,

ϕy = ε and take the real part of it.

Ex = E0x cos (ωt)

Ey = E0y cos (ωt + ε) (2.5)

This has the form of restricted Lissajous figures with ε as the relative phase

between the components. The restriction is due to the same factor ω placed

in front of the argument t, so in consequence, three possible types of figures

are allowed. A linear polarization is obtained if the relative phase is set

to 0◦± 180◦ where n ∈ Z. An elliptical polarization will result for any

other set of amplitudes and relative phases, including a circular case, when

the amplitudes are equal and the relative phase is 90◦± 180◦. Figure 2.1

illustrates the influence of the phase difference on the resulting Lissajous

figures for fixed, nonequal amplitudes.

It is interesting to notice that for given amplitudes one can get a linear

polarization in two directions depending on the phase difference set to 0◦ or

180◦, as it is shown in Figure 2.1. The difference of 180◦ in phase means

that instead of a maximum of an electric field, a minimum is encountered,
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Figure 2.1: Example Lissajous figures plotted for various relative phase shifts
ε and an amplitude ratio of 0.75. As indicated on top of the graphs, in the
upper row, from left ε = 0◦ is plotted, which corresponds to linear polariza-
tion. Next, two plots are shown for ε = 45◦ and ε = −45◦ with the same
tilted ellipse in both cases. The first plot in the lower row presents an ellipse
with the major axis aligned along the X axis of the coordinate system as a
result of ε = 90◦. The following plot shows the ellipse similar to the one
for ε = −45◦ but with different orientation. The last plot shows the second
possible linear polarization for the fixed amplitudes.
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Figure 2.2: 3D Lissajous figures plotted for negative (upper graph, ε = −45◦)
and positive (bottom graph, ε = 45◦). As depicted, the negative ε results in
a clockwise rotation of the electrical field vector (right hand helicity) and the
positive ε in counterclockwise rotation (left hand helicity) in time.

which results in a change of the direction of the electrical field vector. For

the general case of an ellipse, a 180◦ change of relative phase will mirror the

figure with the symmetry axis along one of the polarization component axis,

as it is for the cases ε = −45◦ and ε = 135◦.

Another interesting property is that there is no alternation of the Lis-

sajous figure if the sign of the phase shift is changed. This is not exactly true

in terms of polarization of an electromagnetical wave. Adding a time axis to

the Lissajous figures helps to clarify the relevance of the phase sign.

x = Ax cos (ωt)

y = Ay cos (ωt + ε)

t = t (2.6)

The parametrical equations 2.6 are plotted in Figure 2.2. For simplicity,

the amplitudes Ax and Ay are chosen to be equal. The influence of the

relative phase sign is apparent in Figure 2.2. The upper plot represents

the Lissajous figure where ε is equal to −45◦. The negative shift results in

clockwise rotation of the vector of the electrical field and the positive shift

results in a counterclockwise rotation.
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There is a more general way to prove the direction of the rotation. One

can transform Eq. 2.5 to the cylindrical coordinates, where

r =
√

Ex
2 + Ey

2

tan(ψ) =
Ex

Ey

z = t

and then one can directly see the behavior of the electrical field vector.

ψ(t, ε) = arctan

(
E0x

E0y

cos(ωt)

cos(ωt + ε)

)
(2.7)

Plotting the orientation of the electrical vector ψ as a function of phase

shift ε and time shows the regions where ψ is rising with time, (change from

black to white) and where it is falling. It is illustrated as well, by the right

insets in Figure 2.3 on which one can see the ψ function plot for a fixed

ε equal 45◦ and −45◦. This example proves that indeed a positive phase

shift between the polarization components corresponds to counterclockwise

rotation and negative relative phase to clockwise rotation of the electrical

field vector. The plot is consistent with the obvious fact described by Eq.

2.7, that setting the phase shift to 0◦±180◦ will give no rotation and therefore

yield the linear polarization.

The transition from the Lissajous figure picture to the Jones vector for-

malism is quite apparent. The short summary of Jones vectors describing a

few selected polarizations is presented in Table 2.1.

2.2 Parametrization of the polarization ellipse

In this Section it is explained how to calculate the resulting Jones vector from

the polarization ellipse with desired major and minor axes and orientation.

The calculation is based on comparing two ellipse equations, one obtained

from the Lissajous figures described by Eq. 2.5 and a rotated Cartesian

ellipse equation.

Obtaining the first equation is done by eliminating the fast oscillating

factor ωt from the Eq. 2.5.
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Figure 2.3: The left side of the Figure shows the contour plot of the ψ
function. The relative phase ε is on the vertical axis and the horizontal
axis is proportional to time multiplied by the factor ω. The shades of gray
indicate ψ(t, ε) values in a way that the change from dark to light colors
depict positive change and opposite, negative change. Two graphs on the
right side present the plot of ψ(t) for ε equal 45◦ and −45◦ and they can be
regarded as horizontal cuts through the contour plot.
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Table 2.1: Jones vectors

Polarization Jones vector

linear, general

[
sin(α)
cos(α)

]

linear, vertical (S)

[
0
1

]

linear, horizontal (P)

[
1
0

]

circular, (+i counterclockwise, −i clockwise)

[
1
±i

]

elliptical, principal axes parallel to x,y axes

[
A
±iB

]

elliptical, general

[
A

B ± iC

]

Ex

E0x

= cos (ωt) (2.8)

Ey

E0y

= cos (ωt + ε)

= cos (ωt) cos (ε)− sin (ωt) sin (ε)

Thus
Ey

E0y

− Ex

E0x

cos (ε) = − sin (ωt) sin (ε) . (2.9)

Since from Eq. 2.8 one can obtain

sin (ωt) =

√
1− Ex

E0x

2

, (2.10)

the Eq. 2.9 is reformulated into

1

sin2(ε)

[[
Ex

E0x

]2

+

[
Ey

E0y

]2

− 2
Ex

E0x

Ey

E0y

cos(ε)

]
= 1 (2.11)
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which represents the ellipse in the same way as the Lissajous curves presented

in the previous Section [56]. The free parameters of the equation are the

amplitudes E0x and E0y and the relative phase shift ε, which are exactly the

same parameters, that are used in the Jones vector formalism.

The Cartesian ellipse equation is given by

x2

a2
+

y2

b2
= 1 . (2.12)

It describes an ellipse with principal axes a and b, with the orientation of

the principal axes fixed. In order to vary the orientation one can transform

this ellipse to rotated Cartesian coordinates. This yields a rotated ellipse

equation with the rotation angle γ.

(x cos(γ) + y sin(γ))2

a2
+

(x cos(γ)− y sin(γ))2

b2
= 1 (2.13)

Both equations, 2.11 and 2.13, describe the same ellipse, one in basis

of the electric field components Ex and Ey, and the second in the Cartesian

coordinates x and y. Therefore the corresponding coefficients (Ex ⇔ x, Ey ⇔
y) are equal.

1

E0x
2 sin2(ε)

=
cos2(γ)

a2
+

sin2(γ)

b2

1

E0y
2 sin2(ε)

=
sin2(γ)

a2
+

cos2(γ)

b2

cos(ε)

sin2(ε)

1

E0xE0y

=
sin(γ) cos(γ)

b2
− sin(γ) cos(γ)

a2
(2.14)

This provides the coupling of the principal axes a and b of an ellipse,

the orientation γ with the amplitudes E0x and E0y, and the relative phase ε.

Depending on the requirements, Eq. 2.14 can be used to solve two inverse

problems. The first asks which polarization ellipse (a, b, γ) is generated with

the given electric field (E0x, E0y, ε). The inverse problem is what electric field

is needed to obtain the desired polarization state, which seems to be much

more interesting, since one would like to control the polarization state by

choosing proper electric field amplitudes E0x and E0y and the relative phase

ε. The solution is
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E0x(a, b, γ) =

√
1

2
(a2 + b2 + (a2 − b2) cos(2γ))

E0y(a, b, γ) =

√
1

2
(a2 + b2 + (b2 − a2) cos(2γ))

ε(a, b, γ) =
sin(2γ)

| sin(2γ)| arccos

√
(a2 + b2)2

(a4 + b4 + a2b2(cot2(γ) + tan2(γ)))
(2.15)

which describe E0x, E0y, and ε as a function of the principal axes and the

orientation of the polarization ellipse.

This description of an ellipse is not very useful in terms of light polariza-

tion since a change in the major axis results in a change of the polarization

state of an electromagnetic wave together with the intensity. Other ways to

parameterize an ellipse are better and more intuitive in this case. Instead

of this parametrization one can manipulate the ratio of the principal axes r

and the intensity independently. Substituting

r =
b

a

I = a2 + b2 (2.16)

the relations 2.15 take the form:

E0x(I, r, γ) =

√
1

2
I

[
1− (r2 − 1)

(r2 + 1)
cos(2γ)

]

E0y(I, r, γ) =

√
1

2
I

[
1 +

(r2 − 1)

(r2 + 1)
cos(2γ)

]

ε(I, r, γ) =
sin(2γ)

| sin(2γ)| arccos

√
(r2 − 1)2

(1 + r4 + r2(cot2(γ) + tan2(γ)))
(2.17)

One can see that the parameter I is the intensity since

E0x
2 + E0y

2 = I

is fulfilled.

Applying relations 2.17 allows to change the polarization state parameters

like the ratio of principal axes and orientation in an independent way by
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choosing the suitable electrical fields. This relation could as well be used to

calculate the Jones vectors for given polarization states.

2.3 Jones matrices for the phase retarder and

the nematic crystal modulator

A number of several optical elements influence the orientation of the po-

larization. The nature of their interaction with an optical wave allows to

categorize those devices into three classes: polarizers, phase retarders, and

rotators.

The transmission (or reflectivity) of a polarizer depends very strongly on

the relative orientation of the polarizer and the incoming polarization of the

light. In other words, a horizontally orientated polarizer will transmit all of

the horizontally polarized light and none of the vertically polarized.

Phase retarders do not cut out any of the polarization components, in-

stead of that they introduce a phase retardation between them. As it was

explained in the Section before, by changing the relative phase between the

components an restrained control over the polarization can be achieved.

The last type, a rotator, turns the incident light polarization by some

predefined angle. The rotators usually take the advantage of a property of

optically active materials like quartz, or they rotate the whole beam spatially,

so unlike retarders, the angle of rotation is not dependent from the incident

polarization. Apart from these categories one has to remember that the

reflectivity of every high reflective mirror design for a nonzero incidence angle

is polarization sensitive.

An effect of such elements on a light wave can be described in a similar

way as the polarization state. The matrices that are multiplied by the Jones

vector result in a vector describing the polarization state after the element

are called Jones matrices. There are found by solving Eq. 2.18.

[
a b
c d

] [
xi

yi

]
=

[
x′i
y′i

]
(2.18)

Therefore, if the influence on the incident polarizations

[
xi

yi

]
is known, the
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Table 2.2: Jones matrix

Component Jones matrix

Horizontal (P) polarizer [PP]

[
1 0
0 0

]

Vertical (S) polarizer [PS]

[
1 0
0 0

]

Phase retarder

[
eiεx 0
0 eiεy

]

Rotator

[
cos(β) − sin(β)
sin(β) cos(β)

]

corresponding Jones matrix can be found. A set of Jones matrices for a few

elements is presented in Table 2.2.

Let us consider a phase retarder, which is a plate cut from a birefringent

crystal. The light traveling along the phase retarder will undergo the double

refraction. More precisely, there is a slow and a fast optical axis. The

electrical field oscillating along the fast axis will experience less retardation

than in the case when it oscillates along the perpendicular, slow axis. The

retardation of the fast and the slow axis are εx and εy, respectively, and when

the difference between them is 180◦, the retarder is called a half waveplate

and in case of 90◦ a quarter waveplate. A half wave plate in a beam of

linearly polarized light rotates the polarization by the angle given by twice

the difference between the fast axis and the orientation of the polarization.

To clarify the mechanism, one can imagine linear polarization of light as

a superposition of two waves perpendicularly polarized along the fast and

the slow axis of a waveplate. Introducing phase shift of a half wave (180◦)

will result in a change of polarization. The angle of rotation depends on

the amplitudes of these components along the waveplate axes. Applying the

Jones formalism, Eq. 2.19 shows the effect of a half waveplate with the fast
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axis orientated parallel to the table (0◦) on a parallel (P) polarized light.

[
e−i∗π/2 0

0 ei∗π/2

] [
1
0

]
=

[ −i
0

]
(2.19)

The outcome is a vector representing exactly the same P polarization multi-

plied by a factor −i which is due to the phase shift of 180◦ experienced by

passing the plate. This example shows that if the fast axis is parallel to the

polarization no rotation occurs. It is not the case for the rotated half wave-

plate. Corresponding Jones matrices for rotated half waveplate HW [β] and

quarter waveplate QW [β] can be found by applying the rotation operator on

a waveplate.

HW [β] =

[
cos[β] − sin[β]
sin[β] cos[β]

] [
e−i∗π/2 0

0 ei∗π/2

] [
cos[−β] − sin[−β]
sin[−β] cos[−β]

]

QW [β] =

[
cos[β] − sin[β]
sin[β] cos[β]

] [
e−i∗π/4 0

0 ei∗π/4

] [
cos[−β] − sin[−β]
sin[−β] cos[−β]

]

(2.20)

where β is the angle of rotation.

HW [45◦]P =

[
0 −i
−i 0

] [
1
0

]
=

[
0
−i

]
(2.21)

Multiplying this matrix by P polarization has the effect of rotating it 90◦ of

the plane of the electrical field oscillation, as expected.

Waveplates and nematic liquid crystals used in a spatial light modulator

are very similar in the way of interacting with the electromagnetical waves

since the crystals are birefringent as well. The crucial difference between

liquid crystals and waveplates is, that an extraordinary index of refraction of

the nematic crystals can be changed in a controlled way by applying a voltage

[37, 57, 58]. This is why one can regard these crystals as waveplates with a

variable phase retardance. In order to describe and analyze this phenomenon

let us first define a few matrices for simplifying the calculations.

The rotation matrix as a function of the rotation angle is given by Eq.

2.22 as

R[β] =

[
cos[β] −sin[β]
sin[β] cos[β]

]
. (2.22)
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For a nematic crystal with the extraordinary axis orientated parallel to the

table one finds

LC[φ] =

[
e

1
2
iφ 0

0 e−
1
2
iφ

]
e

1
2
iφ (2.23)

where φ denotes the retardation or the phase shift difference between the fast

and the slow axis in the crystal (difference retardance), which is controlled

by an external voltage. Having these Jones matrices we are able to show the

interaction of light with crystals for a single pixel in the modulator and in

this way analyze shaping in frequency domain.

It is important to point out that it is very common to use P polarized

light in pulse shapers, while the efficiency of the incorporated gratings is much

higher, so from this point on we will assume the incoming light polarization

as P. As the example of a waveplate orientated parallel to the polarization

shows, for crystals with parallel axes only the phase alteration will occur.

LC[φ] · E0e
iωt

[
1
0

]
= E0e

iωteiφ

[
1
0

]
(2.24)

Therefore this structure of the crystals is used in single array spatial light

modulators to influence the phase of the pulse. As exhibited, for the case of an

incoming P polarized light, the amplitude and the polarization state remains

unchanged but the phase is altered. It is relatively easy to demonstrate that

for polarizations perpendicular to the crystal optical axis the phase as well

as the polarization will remain unaltered. The optical axes of the crystals

have to be rotated in order to influence the phase and the polarization state.

The appropriate matrix of this confinement is calculated in 2.25.

R[45◦] · LC[φ] ·R[−45◦] = e
1
2
iφ

[
cos[φ

2
] i sin[φ

2
]

i sin[φ
2
] cos[φ

2
]

]
(2.25)

The electric field after such a layer is found by multiplying matrix 2.25 by a

P polarized electric field.

e
1
2
iφ

[
cos[φ

2
] i sin[φ

2
]

i sin[φ
2
] cos[φ

2
]

]
· E0e

iωt

[
1
0

]
= E0e

iωte
1
2
iφ

[
cos[φ

2
]

i sin[φ
2
]

]
(2.26)
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Figure 2.4: Arrangement of two arrays of crystal. Optical axes are orientated
at 45◦ in the first array and −45◦ in the second.

For a single array of nematic crystals orientated 45◦ with regard to the

incoming polarization, the change of the phase is inseparably coupled with

the polarization state. When two layers of crystals rotated 45◦ in a first row

(b) and −45◦ in the second (a), are combined as shown in Figure 2.4, then

it is possible to influence the phase and polarization separately.

Analyzing the Jones matrices in the same matter, as for a single array,

gives the Jones matrix of such a modulator.

R[−45◦] · LC[φb] ·R[45◦] ·R[45◦] · LC[φa] ·R[−45◦]

= e
1
2
i(φa+φb)

[
cos[ (φa−φb)

2
] i sin[ (φa−φb)

2
]

i sin[ (φa−φb)
2

] cos[ (φa−φb)
2

]

]
(2.27)

Next, the electrical field is calculated as in the case above.

e
1
2
i(φa+φb)

[
cos[ (φa−φb)

2
] i sin[ (φa−φb)

2
]

i sin[ (φa−φb)
2

] cos[ (φa−φb)
2

]

]
· E0e

iωt

[
1
0

]

= E0e
iωte

1
2
i(φa+φb)

[
cos[φa−φb

2
]

i sin[φa−φb

2
]

]
(2.28)

This solution includes the Jones vector identifying the polarization and

phase factor. Since one can independently handle the difference of the phase

shifts φa − φb, and the sum of them φa + φb, autonomous manipulation of
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polarization and phase is possible. It is important at this point to stress that

the Jones vector in the above described cases takes a form of

[
A
±iB

]
and as

shown in the Table 2.1, it corresponds to a restricted elliptical polarization

with the major axis parallel or perpendicular to the incoming polarization. In

terms of polarization manipulation, this solution cannot provide the full range

of possibilities since it is not capable of simply turning the linear polarization.

By tuning φa − φb one can only change the ratio of the principal axes.

Let us consider cutting off the S polarization component of the laser field

described by the equation 2.28. It is experimentally accomplished by adding

a P adjusted polarizer after the modulator crystals.

[
1 0
0 0

]
·E0e

iωte
1
2
i(φa+φb)

[
cos[ (φa−φb)

2
]

i sin[ (φa−φb)
2

]

]
= E0e

iωte
1
2
i(φa+φb)

[
cos[ (φa−φb)

2
]

0

]

(2.29)

Since there is only one polarization component present, modulating the dif-

ference of phase shifts results in a change of the amplitude of the transmitted

light. The corresponding electrical field will take the form

Eph+amp = E0e
iωte

1
2
i(φa+φb) cos[

(φa − φb)

2
] . (2.30)

The transmission and phase shift introduced by such a setup is given by Eq.

2.31

T = cos2[
(φa − φb)

2
]

ϕph+amp =
1

2
(φa + φb) (2.31)

Therefore combining a double layer modulator with a polarizer is a most

common way to design an independent phase and amplitude modulator.

2.4 Summary

In the first Section of this Chapter the light polarization was discussed. The

analogy between the Lissajous curves and the polarization resulting from

the two perpendicular polarization components of the light wave was shown.

Next, this approach was used to present the influence of the components
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amplitudes of the orthogonal polarization components together with their

relative phase shift on the the resulting light polarization.

In the next Section the polarization ellipse was described by the ratio

of the major axes, the orientation, and the rotation direction. Then, the

amplitudes of the orthogonal polarization components together with relative

phase shift are found as a function of the ellipse parameters. It is done by

comparing ellipses described in basis of electric field components with the

one in Cartesian coordinates. This relation allows for the generation of the

desired polarization states by choosing the proper amplitudes and the relative

phase shift.

The last Section uses at the beginning the Jones formalism to show the

interaction of the polarization optics with light. Then, by applying the anal-

ogy between waveplates and liquid crystals used in shapers, an analysis of the

light interaction with the single and the double array shaper was provided.

The mechanism of phase only, phase, and amplitude, and limited phase and

polarization shaping was presented.
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