
Aus dem Institute of Cell Biology and Neurobiology 

der Medizinischen Fakultät  Charité – Universitätsmedizin Berlin   

 

DISSERTATION 

 

 

Hypothermia and C3 peptide promote 
neurite outgrowth and regeneration 

after traumatic CNS injury 
 

 

zur Erlangung des akademischen Grades  

Doctor of Philosophy in Medical Neurosciences  

(PhD in Medical Neurosciences)  

 

vorgelegt der Medizinischen Fakultät  

Charité – Universitätsmedizin Berlin 

 

 

von  

Francesco Boato 

Aus Venedig 

 1



 

 

 

 

 

 

 

 

 

 

 

 

 

   

 

 

 

 

 

 

Gutachter:  1. Prof. Dr. Sven Hendrix  

   2. Prof. Elena E. Pohl  

   3. PD Dr. Kirsten Haastert  

 

Datum der Promotion: 19/11/2010  

 2



Institute of Cell Biology and Neurobiology 
Center for Anatomy 

Charité – Universitätsmedizin Berlin 
 

 
Hypothermia and C3 peptide promote 
neurite outgrowth and regeneration 

after traumatic CNS injury. 
 

 
 

 
by Francesco Boato 

 
 
 
 

Supporting Professor: Prof. Dr. Sven Hendrix 
 

 
International Graduate Program Medical Neurosciences 

Academic year: 2009-2010. 

 3



Table of Contents 
 

1. Preface 

2. Abstract 

3. Introduction and Aims 

4. Results 

5. Discussion 

6. Material and Methods 

7. References 

8. Declaration of own contribution 

9. Complete list of publications 

10. Selbstständigkeitserklärung 

11. Acknowledgments 

 

 

 

 

 

 

 

 

 

 

 

5 

6 

7 

8 

12 

16 

19 

21 

23 

26 

27 

 4



1. Preface 
The present short dissertation has the aim to summarize three relevant and independent publications 

in which I participated during my PhD thesis (Höltje et al. 2009; Schmitt et al. 2009; Boato et al. 2010), 

with particular focus on my direct contribution. The dissertation follows the guidelines of the 

“Publication-Based Thesis” within the context of the “International Graduate Program Medical 

Neurosciences” at the Charité–Universitätsmedizin Berlin. Background information, methodological 

details as well as parts of results, figures and discussion had to be shortened due to space limitations, 

but can be found in the respective publications, which are inserted in their entire form in section 9 of 

this thesis. 
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2. Abstract 
In response to injury and inflammation of the CNS, the expression of inflammatory mediators is often 

altered, and several of these factors contribute directly to the development of the neuronal injury. 

Hypothermia (systemic or brain-selective) influences the inflammatory response and is a well-

established method for neuroprotection after brain trauma. Here we provide evidence that hypothermia 

led to a significant increase of neurite outgrowth from brain slices (independent of neurotrophin 

signalling), accompanied by an increased secretion of TNF-α. Moreover, hypothermia-induced neurite 

extension was abolished after administration of TNF-α inhibitor and in TNF-α knockout mice. We 

suggest then that hypothermia not only exerts protective effects in the CNS, but also support neurite 

outgrowth via TNF-α as a potential mechanism of regeneration.  

Importantly TNF-α is known to exert its action trough the cellular pathway of the small GTPase RhoA, 

which plays an active and versatile role in the formation and development of axons and dendrites. 

Effects of RhoA are often studied by the Rho-inactivating C3 transferase (C3bot) from Clostridium 

botulinum. We previously reported that transferase-deficient C3bot also exerted axonotrophic activity. 

Using organotypical slice cultures and a hippocampal-entorhinal cortex lesion model, we detected 

trophic effects of a 29 amino acid transferase-deficient fragment from the C-terminus of C3bot 

(C3bot154-182) on length and density of outgrowing fibers from the entorhinal cortex, that were 

comparable to the effects elicited by full-length C3bot. In vivo, functional recovery and regeneration of 

corticospinal tract (CST) fibers following spinal cord injury by compression or dorsal hemisection in 

mice was monitored after application of the transferase-deficient C3bot. C3bot154-182 significantly 

improved locomotor restoration in both injury models as assessed by several behavioral paradigms. 

These data were supported by tracing studies showing an enhanced regenerative growth of CST 

fibers in treated animals. Additionally, C3bot154-182 stimulated regenerative growth of raphespinal fibers 

and improved serotonergic input to lumbar α-motoneurons. The observed effects were probably due to 

a non-enzymatic down-regulation of active RhoA by the C3 peptide as indicated by pull-down 

experiments. In conclusion, C3bot154-182 represents a novel, promising tool to foster axonal protection 

and/or repair, as well as functional recovery after traumatic CNS injury. 
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3. Introduction and Aims 
Traumatic brain (TBI) and spinal cord (SCI) injuries are significant causes of death and severe 

disability worldwide; they result in high morbidity and long-term problems in performing the activities of 

daily life (1). Systemic or brain-selective hypothermia has been established as an effective 

neuroprotective treatment in multiple studies (2,3) and moreover can prevent secondary damage, 

which is initiated through inflammatory responses following injury (3). There are some indications that 

hypothermia may not only influence neuronal cell survival, but also promote regenerative responses 

after brain damage (4). For these reasons, and since inflammatory cytokines play a major role in 

modulating neurite outgrowth and regeneration (5, 6), our aim (7) was to investigate whether 

hypothermia and rewarming influence neurite outgrowth after injury via modulation of the post-injury 

cytokine milieu. We demonstrated that tumor necrosis factor-alpha (TNF-α) levels were significantly 

upregulated after hypothermia and rewarming in contrast to IL-1beta, IL-6 and IL-10. In functional 

assays we provide for the first time evidence that for TNF-α involvement in hypothermia-induced 

neurite extension.  

Importantly TNF-α is known to exert its action trough the cellular pathway of the small GTPase RhoA 

(8), which are key molecules in orchestrating cytoskeletal rearrangements linking surface signals to 

cytoskeleton-associated proteins (9-11). Bacterial C3 transferases have been used since their 

discovery (over 20 years ago) to study the function of Rho proteins in virtually all cellular systems of 

eukaryotic origin (12,13) and have been proven to foster neurite outgrowth and regeneration (14-18). 

Its mode of action, namely enzymatic inactivation of Rho proteins (especially RhoA) is well 

understood. Non-enzymatic interactions and cellular effects were also recently discovered. Using 

primary cultures of hippocampal neurons, it was demonstrated that C3bot possesses an additional 

axonotrophic function independent from its enzymatic activity (14). Our aim (15) was to identify the 

precise region of C3bot responsible for the neurotrophic effect, by using various C3bot-derived peptide 

fragments that lack enzymatic transferase activity. Application of a 29-amino acid fragment (C3bot154-

182) influenced also fiber outgrowth and reinnervation of target tissues in organotypical 

hippocampal/entorhinal slice cultures, more closely related to the in vivo situation. Furthermore, C3 

proteins were successfully used to improve functional recovery after spinal cord injury (SCI, an 

established in vivo model for investigating the intrinsically limited neuronal regeneration of the CNS) 

(16,17). Since it was clear that C3bot also exerts its growth-promoting effects on neurons by an 

enzyme-independent activity, the aim of our most recent study (18) was to investigate the ability of 

C3bot154-182 to stimulate central axonal repair and functional recovery after contusive SCI or dorsal 

hemisection. Additionally, the effect on the maintenance of neuromuscular junctions of tibial skeletal 

muscles and the putative C3bot154-182-mediated effects on active RhoA levels of certain subsets of 

cultivated neurons were investigated. 
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4. Results 

We investigated the effects of deep hypothermia and rewarming on neurite outgrowth from acute 

organotypic brain slices using a dynamic time–temperature protocol over 24 h. Organotypic brain 

slices were embedded in a three-dimensional collagen matrix and the concave part of the entorhinal 

cortex explants was photo-documented. To confirm that the observed extensions from the brain slice 

are neurites, immunofluorescence was performed using a specific antibody against Tau-1. A specific 

antibody against GFAP as a marker for astrocytes did not mark any extension. Higher magnification of 

Tau-1-labeled neurites showed characteristic growth cones suggesting that these neurites are axons 

and not dendrites. To precisely quantify neurite outgrowth we improved a standard protocol (15,19) by 

using image analysis software. The concave part of the entorhinal cortex explants was 

photodocumented using a 10X objective (see the section material and methods Figure 3). To quantify 

the density of the outgrowing neurites image processing based on the Sobel algorithm was performed. 

The mean intensity was then calculated in a standardized area parallel to the brain slice edge. 

Compared with control brain slices that were kept at 37°C during the experiment, applying the 

dynamic time-temperature protocol over 24 h lead to significantly increased neurite density in brain 

slices after deep hypothermia and rewarming. 

As NT-3 and NT-4 are the major neurotrophins responsible for neurite growth from organotypic brain 

slices we investigated brain slices derived from mice either homozygous for NT-4 deficiency (NT-4-/-) 

or with a combined homozygous NT-4 deficiency and heterozygous NT-3 deficiency (NT-3+/- /NT-4-/-) 

(a full NT-3 knockout is lethal). Neurite growth was still increased by hypothermia in brain slices 

derived from NT-4 KO mice. Furthermore, a combination of NT-4 deficiency and a substantial 

reduction of NT-3, in mice homozygous for NT-4 deficiency and heterozygous for NT-3 deficiency, did 

not abolish the growth-stimulatory effect of hypothermia on neurites. To further investigate whether 

hypothermia-induced neurite outgrowth is independent of neurotrophin signaling, we applied K252a, 

which is a potent inhibitor of the neurotrophin receptors TrkA, TrkB and TrkC in nanomolar 

concentrations (20-22). The application of 100 nM to the culture medium reduced neurite growth from 

control slices, but did not abolish the significant stimulation of neurite growth by deep hypothermia and 

rewarming. In a next step we investigated whether the levels of selected inflammation-associated 

cytokines like IL-1beta, IL-6, IL-10 and TNF-α secreted by organotypic brain slices are modulated 24 h 

after experimental start by deep hypothermia and rewarming. The secretion of IL-1beta (37°C: 2200 

fg/mL ± 110; hypothermia and rewarming: 1200 fg/mL ± 970), IL-6 (37°C: 166 pg/mL ± 9.19; 

hypothermia and rewarming: 168 pg/mL ± 9.90) and IL-10 (37°C: 5700 fg/mL ± 3970; hypothermia and 

rewarming: 6400 fg/mL ± 3360) by organotypic brain slices was not substantially modulated, in 

contrast to TNF-α secretion, which was significantly increased nearly fourfold (37°C: 1200 fg/mL ± 

230; hypothermia and rewarming: 4300 fg/mL ± 1140) after deep hypothermia and rewarming. Based 

on these finding we further explored whether the TNF-α upregulation plays a causal role in stimulating 

neurite extension after hypothermic treatment. As a first step, we demonstrated that TNF-α was 

sufficient to increase neurite extension from brain slices. TNF-α increased neurite density by nearly 

45%, a similar effect like deep hypothermia/rewarming. Next we used the TNF-α inhibitor etanercept, 

which fully abolished the stimulatory effect of hypothermia and rewarming. Furthermore, the absence 
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of endogenous TNF-α in slices derived from TNF-α-deficient mice fully eliminated the effect of deep 

hypothermia and rewarming (7). 

Since there are strong evidences that TNF-α influences nurite growth trough the cellular pathway of 

RhoA (8), which is a small GTPase very important in orchestrating cytoskeletal rearrangements (9-11), 

we studied the effect on neurite outgrowth, neuroprotection and regeneration mediated by bacterial C3 

transferases or derived peptides, which are intensively used to study the function of Rho proteins. The 

C3 isoforms C3bot (from Clostridium botulinum) and C3lim (from Clostridium limosum) can perform an 

enzymatic inactivation of Rho by ADP-ribosylation. As previously shown, C3bot additionally harbors an 

axonotrophic activity, which is independent from its enzymatic activity and not shared by C3 proteins 

from other sources (14).  Using overlapping peptides from the C3bot sequence, we identified (15) a 

small peptide of 29 amino acids (covering residues 154-182) from the C-terminal region of C3bot that 

promotes both axonal and dendritic growth, as well as branching of hippocampal neurons, at 

submicromolar concentrations. Several C3bot constructs, including the short peptide, enhanced the 

number of axonal segments from mid- to higher-order segments. C3bot154-182 also increased the 

number of synaptophysin-expressing terminals, up-regulated various synaptic proteins, and 

functionally increased the glutamate uptake. Staining against the vesicular glutamate and GABA 

transporters further revealed that the effect was attributable to a higher number of glutamatergic and 

GABAergic inputs on proximal dendrites of enhanced green fluorescent protein (EGFP)-transfected 

neurons (results not discussed). Furthermore, we studied the influence of C3 proteins on axon 

outgrowth under conditions closely related to the in vivo situation, namely the organotypical brain slice 

culture. Dissected entorhinal cortex slices were incubated for 48 h with C3bot (a concentration of 300 

nM was used to overcome a putative restricted diffusion of full-length protein into the collagen matrix 

used) and C3bot154-182 (50 nM). Length and density of regrowing axons mainly belonging to the 

perforant path in the in vivo situation were evaluated. Both parameters were significantly increased by 

both C3bot and the peptide. C3bot154-182 increased axonal length and density by 44 and 37%, 

respectively. Full-length C3bot was able to increase the length by 60% and density by 38%. We then 

used another organotypical culture system that allows investigating the ability of axons to reinnervate 

target tissues after lesion. The hippocampal-entorhinal cortex coculture is widely used to study axon 

growth and pathfinding (23,24). We used an EGFP/wild-type culture model that combines the 

entorhinal cortex of a β-actin-EGFP mouse with the hippocampus of a wild-type mouse. EGFP-

expressing axons are clearly detectable in the nonfluorescent wild-type hippocampus. Special 

emphasis was taken on the perforant path that originates from the upper layers of the entorhinal cortex 

and terminates in the marginal zones of the hippocampus and the outer molecular layers of the 

dentate gyrus. Slice cocultures were incubated with C3bot or C3bot154-182 for 48 h as in the outgrowth 

assay. In contrast to the control conditions, in which only a moderate reinnervation of wild-type 

hippocampus by EGFP expressing axons of the perforant path was observable (Figure.1A-D) both full-

length C3bot and C3bot154-182 enhanced the reinnervation significantly by 40% (Figure 1E). 

Prompted by these results we investigated the in vivo effects of the 29-amino acid fragment C3bot154-

182 on functional recovery after contusion injury or dorsal hemisection of the spinal cord in mice. Gel 

foam patches soaked in C3bot154-182 solution (40 µM, 610 ng per animal) were applied directly above 
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the injury site. We analyzed the locomotor function in these mice using the Basso Mouse Scale (25), 

an open-field test and Rotarod treadmill to analyze the performance under forced movement. 

 

 

EB A C3botcontrol 

             
Figure 1. Reinnervation of hippocampus by 
fibers of perforant path is enhanced by 
C3bot154-182and C3bot.  
A, B, C. β-Actin-EGFP expressing entorhinal 
cortex (EC) was cocultured with a littermate wild-
type hippocampus (HC). Reinnervation of 
hippocampus by green fluorescent fibers of 
perforant path (PP) was followed after application 
of C3bot154-182 or C3bot for 48 h. D. Schematic 
illustration of the model. Explants were positioned 
rearranging correct anatomy. CA, cornu ammonis; 
DG, dentate gyrus. E. Measurements of 
fluorescence intensity of ingrowing fibers. 
Application of both C3bot154-182 and C3bot 
enhanced perforant path formation by 40%. 

 

 

In the BMS analysis, the locomotor function was significantly increased during the whole observation 

period in contusion-injured mice treated with C3bot154-182 patches. The motor performance of both 

treated and untreated mice was more affected in the hemisection model than after contusion injury. 

The clear beneficial effect of the C3 peptide in the former model was particularly pronounced during 

the last two weeks of the observation period; in the case of hemisection, the observation period was 

extended to four weeks (compared to three weeks in the contusion model) as the lesion was more 

severe. Since correct foot placing is associated with proper CST function (26,27), we also analyzed 

stepping and correct paw positioning scores for the contusion model. Treated animals showed 

improved stepping and especially paw positioning from day 8 on, with substantial improvement over 

subsequent days, whereas control animals had minimal scores throughout the observation period. 

Furthermore, C3bot154-182 application increased the latency for the mice to fall from the Rotarod in both 

models. Detailed photodocumentation revealed that treated mice displayed more efficient climbing 

behavior on the turning wheel, while control mice showed a tendency to lose grip early, at low rotation 

speed. After completing the behavioral examination we addressed whether the improved recovery of 

treated animals included enhanced axonal growth of descending spinal motor fibers. Analysis of the 

BDA-traced corticospinal tract showed a significantly increased percentage of nerve fibers between 

the end of the tract and the center of the contusion injury lesion. Moreover, the number of fibers 

passing through the lesion center was significantly increased at 0.5 mm (Figure 2A-C). In line with the 

latter, an increased number of BDA-positive fibers caudal to the lesion site was detected following 

hemisection and treatment with the C3 peptide (Figure 2D-F). We even detected an increased 
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percentage of regenerating nerve fibers as far as 5 mm caudal from the lesion center (Figure 2F). 

Taken together, the data at this stage provided strong evidence of a C3bot154-182-mediated 

improvement of axonal sprouting and/or regeneration following damage to the spinal cord. 

Additionally, the early onset of improvement, especially in the BMS tests following contusion injury, 

indicated that the C3 peptide might also have neuroprotective effects. 

To detect possible effects of C3bot154-182 on the lesion size and reactive gliosis, spinal cord sections 

were double-stained for glial acidic fibrillary protein (GFAP) and myelin basic protein (MBP). 

Evaluation of contusion-induced lesion size revealed a reduction of tissue damage by 25% following 

administration of C3 peptide. On the other hand, gliosis as measured by perilesional GFAP expression 

by reactive astrocytes was not significantly altered by C3bot154-182. In the hemisection model, neither 

lesion size nor astrogliosis were affected by the peptide. However, recovery of function after SCI might 

not exclusively rely on regenerative growth of CST fibers.  

To test for beneficial effects of C3 peptide on other tracts beside the CST we visualized serotonergic 

raphespinal projections by an anti-serotonin (5HT) antiserum in mice injured by hemisection. In the 

ventral funiculus the total length of serotonergic fibers was assessed cranial and caudal to the lesion 

site. Whereas the total fiber length cranial to the lesion was unaltered after application of C3bot154-182, 

it was significantly increased caudal to the lesion at more than 3-fold compared to control mice. 

Serotonergic fibers set up a network of projections to the grey matter in order to contact interneurons 

and motoneurons. Research has suggested that serotonergic fibers originating from the brainstem 

might form conventional synapses with theses neurons within the ventral horn (28). It is well 

established that serotonergic input to spinal motoneurons activates motor functions (29). 

Consequently, we addressed the question whether treatment with C3 peptide leads to an increased 

serotonergic input to lumbar motoneurons and whether this contributes to the improved motor 

outcome. At lumbar levels L1-L2 we counted 5HT-positive boutons on α-motoneurons of the ventral 

horn. We found that application of C3bot154-182 considerably increased the average number of 

serotonergic contacts from 3.6 (per 100 µm cell perimeter) to 10.3. Notably, the increased 

serotonergic contacts corresponded very well to the increased density of serotonergic fibers within the 

ventral funiculus caudal to the lesion site. Taken together, these data provide strong evidence for a C3 

peptide-mediated improved serotonergic input to lumbar α-motoneurons, thereby contributing to an 

enhanced hind limb motor performance. 

In addition to the investigations described above, we studied the putative effects of C3bot154-182 

treatment on the neuromuscular junctions of tibial muscles of the hind limb (M. tibialis cranialis) 

following injury at the end of the observation period. The tibial muscles are crucially involved in lifting 

the paw during movement on both level surfaces and when clinging to a (rotating) rod. After 

longitudinal sectioning, we applied the established labeling technique using Alexa Fluor 488-coupled 

α-bungarotoxin (30) to visualize and quantify motor endplates. Following contusion, the number of 

motor endplates decreased by 17% (normalized to the number of muscle fibers) in the control/SCI 

group compared to intact mice. This reduction in the number of motor endplates was completely 

prevented by administration of C3bot154-182. After hemisection, loss of endplates in general was more 

severe. The number of endplates in the PBS group was declined to 55%. Treatment with the C3 
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peptide restored the number of endplates to 85%. No obvious differences in the size or general 

morphology of endplates were detected between the groups.  

To gain insight into the molecular mechanisms contributing to the observed morphological changes we 

determined active RhoA levels by Rhotekin pull-down analysis from hippocampal cell lysates. RhoA is 

known to be crucially involved in actin and microtubule dynamics. Application of C3bot154-182 at final 

concentrations of 10 or 30 nM to hippocampus cultures resulted in a strong reduction of active RhoA 

levels, while total RhoA protein expression was unchanged. Thus, despite the lack of enzymatic 

activity, the C3 peptide is likely to exert its effects by means of a RhoA-dependent mechanism.  

 

 

 

Figure 2. Quantification of nerve fibers between the 
tract end and the lesion center and caudal to the 
lesion in two models of spinal cord injury in mice.  
A. Cross section of spinal cord at thoracic level 4 (T4) 
illustrating tracing of the left CS. BF, brightfield 
illumination; DF, darkfield illumination; dfu, dorsal 
funiculus; gm, grey matter; wm, white matter. B. 
Enlargement of the boxed area in A depicting the dorsal 
corticospinal tract (CST). C. The percentage of labeled 
nerve fibers was significantly increased in contusion-
injured mice treated with C3bot154-1822 compared with 
controls. Bars represent the percentage of nerve fibers 
in the area between the end of the CST and the lesion 
center (TE-LC) and in the area 0.5 mm distal to the 
lesion center (0.5 mm from LC). PBS, n=6 animals; 
C3bot154-182, n=5 animals D. Parasaggital spinal cord 
sections of mice that underwent SCI by dorsal 
hemisection. Images show CST tracing. TE, tract end; 
LC, lesion center. E. Higher magnification of the 
numbered and boxed areas in D. Arrowheads indicate 
nerve fibers between the tract end and the lesion site, 
arrows indicate fibers passing the lesion center. F. The 
percentage of labeled nerve fibers caudal to the lesion 
was significantly increased in hemisection-injured mice 
treated with C3bot154-182 compared with control mice. 
Bars indicate the percentage of nerve fibers in the area 
TE-LC and in the area 0.5 mm , 2 mm and 5 mm distal 
to the lesion center. PBS, n=5 animals; C3bot154-182, n=7 
animals. *P<0.05. 

 

 

 

5. Discussion  

TBI and SCI are major sources of death and disability. Around 40% of the TBI patients are left with 

permanent neurological disabilities and the percentage is even higher when talking about SCI (1). In 

addition to the emotional effects the financial burden is also enormous. One well-established method 

for neuroprotection in the context of TBI is the direct application of systemic or brain-restricted 

hypothermia to prevent secondary injury (31). In a meta-analysis looking at the effects of hypothermia 

on clinical neurological outcome in patients with TBI, most investigations showed that cooling can be 

effective if the treatment is initiated early and continued for long enough and if patients are rewarmed 

slowly (2). Therefore, in our cell culture model, acute organotypic brain slices were directly cooled 

down to 17°C and after 2 h the slices were rewarmed over a period of 2 h to 37°C.  
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We and others have previously demonstrated that hypothermia also modulates the brain immune 

system (4,19,32,33). Based on these findings we addressed the question of whether hypothermia may 

support not only neuronal cell survival (4,32) but also regenerative responses after brain damage (31). 

In contrast to previous studies focused mainly on neuroprotection we investigated whether 

hypothermia induces neurite growth via neurotrophins and/or inflammation-associated cytokines that 

have been shown to modulate neurite outgrowth and regeneration (5,6). Organotypic brain slice 

cultures underwent a dynamic time-temperature protocol of deep hypothermia and rewarming over 24 

h resulting in a significant increase of neurite growth. 

Organotypic brain slices are a well-established in vitro model to study neurite plasticity, growth and 

regeneration (24). As brain slices are acutely cut out of the living brain they are in fact a trauma model 

because most neurites are dissected, the blood–brain barrier is heavily damaged, many cells die, and 

astrocytes and immune cells become highly activated (34-36).  As NT-3 and NT-4 are the major 

neurotrophins responsible for neurite growth in organotypic brain slices (24), we investigated whether 

these neurotrophins are also responsible for the hypothermia-induced increase in neurite growth. 

Surprisingly, hypothermia still increases neurite growth even in the absence of NT-4 in brain slices 

derived from NT-4 KO mice. Furthermore, the additional reduction in NT-3 secretion, in mice 

homozygous for NT-4 deficiency and heterozygous for NT-3 deficiency, does not abolish the growth-

stimulatory effect of hypothermia on neurites. To address the question of whether hypothermia-

induced neurite outgrowth is independent of neurotrophin signaling, we applied K252a, which is a 

potent inhibitor of the neurotrophin receptors TrkA, TrkB and TrkC in nanomolar concentrations (20-

22). Surprisingly, neurotrophin receptor inhibition by K252a application did not abolish hypothermia-

induced increase in neurite extension. These data indicate that the increase of neurite extension by 

hypothermia is independent of neurotrophin signaling. The analysis of the levels of IL-1beta, IL-6, IL-

10 and TNF-α, which are known to influence neurite extension, revealed that only TNF-α secretion is 

significantly increased (nearly four-fold) after deep hypothermia and rewarming of organotypic brain 

slices. TNF-α is a pleiotropic cytokine that induces neuroprotective and neurotoxic effects after CNS 

injury (37-39). In the present study we have demonstrated that TNF-α increases neurite outgrowth in 

brain slices by nearly 45%, thus, at a level comparable with the stimulatory effects of hypothermia. The 

use of the TNF-α inhibitor as well as the absence of endogenous TNF-α in slices derived from TNF-α-

deficient mice fully abolished the effect of deep hypothermia and rewarming. In line with this 

discussion, it has been shown that chilling and rewarming of murine brain slices lead to a substantial 

proliferation of dendritic spines of mature hippocampal neurons (40). Similar structural changes have 

been reported for dendrites of CA3 pyramidal cells in ground squirrels after arousal from hibernation 

(41), suggesting a physiological role of neuronal plasticity after hypothermia and rewarming. The role 

of TNF-alpha in these processes is not known. However, in the context of our study it will be important 

to analyze whether the TNF-α-induced neurite growth shown in the present study is truly beneficial 

(i.e., pro-regenerative) or whether it may even have detrimental effects such as contributing to 

posttraumatic epileptogenesis. The data presented so far clearly show that TNF-α is necessary and 

sufficient to increase neurite outgrowth in the context of deep hypothermia and rewarming. This part of 

the study provides for the first time evidence that hypothermia not only exerts protective effects in the 
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CNS but also supports neurite outgrowth via TNF-α upregulation as a possible mechanism of 

regeneration.  

Most probably, as previously shown (8), TNF-α influence neurite outgrowth trough the cellular pathway 

of a small GTPase, namely RhoA which has been intensively studied in virtually any CNS injury model 

in vitro and in vivo for his capacity of orchestrating cytoskeletal rearrangements (9-11). Interestingly 

the C3 isoforms C3bot and C3lim are able to enzymatic inactivation of Rho by ADP-ribosylation and 

are then extensively used in cell biology to analyze Rho-dependent effects on axonal and dendritic 

development. Since C3bot additionally harbors an axonotrophic activity, which is independent from its 

enzymatic activity and not shared by C3 proteins from other sources (14) we studied the effect of a 29 

amino acids long enzyme-deficient peptide derived from the C-terminal part of C3bot (C3bot154-182). 

C3bot154-182 exhibits trophic effects on neuronal morphology, and enhances axonal outgrowth and 

regeneration (reinnervation) in organotypical brain slices. In contrast to full-length enzyme-deficient 

C3botE174Q (14), C3bot154-182 also alters dendritic morphology. In hippocampal primary cultures, 

C3bot154-182 resulted in significant enhancement of axonal and dendritic outgrowth. Whether or how 

C3bot peptides enter the neuron is unclear so far.  

C3 proteins have proven to foster neuronal survival and regeneration in a variety of model systems, 

e.g., the optic nerve (42). The present study (15) demonstrates the beneficial outcome of C3 protein 

treatment for neuronal outgrowth and even reinnervation of denervated target tissues such as the 

hippocampus formation by perforant path fibers of the entorhinal cortex. One might speculate whether 

the enhanced ingrowth of fibers is the mere result of a boosted growth program of entorhinal neurons 

alone or also results from alterations within the target tissue like the expression of attractive cues. So 

far, however, there is no evidence for C3 protein effects on such mechanisms. Above all, it 

undoubtedly shows that a short region of C3bot exhibiting no enzymatic activity is sufficient to trigger 

comparable promoting effects. Since C3bot-mediated effects described so far may not exclusively rely 

on ADP ribosylation of Rho proteins, but rather reflect the net outcome of differentially triggered 

pathways converging in putative common downstream cytoskeletal targets also in vivo, we tested the 

peptide in two models of spinal cord injury.  

Our latest study clearly shows that treatment with C3bot154-182 is also effective in vivo and results in 

improved recovery from spinal cord injury. We studied two spinal cord injury models. Although the 

most common type of SCI in humans involves compressive impact (43,44), cutting CST fibers by 

performing a hemisection up to at least the central canal creates a more defined lesion and allows 

distinguishing between newly formed, therefore regenerated, and spared fibers (43,45). Two 

experimental settings designed to observe functional recovery after spinal cord injury detected an 

improved motor performance in treated animals as early as within the first week following compression 

injury. This early onset of improved functional recovery might indicate not only beneficial effects on 

neurological repair mechanisms but also a neuroprotective effect of C3bot154-182. This evidence was 

underlined by the fact that treatment with the peptide resulted in reduced tissue damage (lesion size) 

following contusive SCI.  

The lesion size was unaltered after dorsal hemisection and the beneficial effects of the peptide 

appeared later than using the contusion injury model. In the latter, the BMS score demonstrated 

significant benefit only two days post-injury and this positive trend persisted throughout the almost 3-
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week observation period. Upon completion, treated animals exhibited a higher degree of coordination 

between fore limbs and the affected hind limbs (25). Additionally, improved locomotor restoration, such 

as frequent plantar stepping and parallel paw position relative to the body axis, contributed to the 

improved outcome. Both plantar stepping and especially paw positioning showed the highest 

improvement following C3bot154-182 treatment during the final 2 weeks of the observation period. 

Furthermore, the BMS open-field data were well supported by the Rotarod forced-movement 

experiments and emphasized the effectiveness of the treatment. Hemisection represented a more 

severe injury in general (both control and treated animals performed worse than after contusion injury, 

according to the BMS scores and the Rotarod experiments). Nevertheless, in both tests the effect of 

the C3 peptide could be observed, particularly in the final days of the observation period.  

To determine whether the improved functional recovery after SCI was reflected by histological 

differences between the different treatment groups, we first quantified BDA+ axons of the corticospinal 

tract (CST). In animals treated with C3bot154-182 a significantly enhanced number of BDA-labeled axons 

caudal to the lesion site were observed following both contusion injury and hemisection. Increased 

numbers of fibers cranial to the lesion were also observed in the case of contusion. Indicators such as 

distance or time course of growth can also be employed to characterize axonal response in terms of 

plasticity, sprouting or regeneration (46). Particularly in the hemisection model, we detected alterations 

in axonal growth over moderate distances (< 1 mm from the corticospinal tract end), which might 

indicate local regenerative sprouting, but also over a distance as far as 5 mm from the lesion center, 

which is likely to represent regeneration. We can exclude that the fibers detected caudal to the lesion 

originated from uninjured ventral CST fibers because in our hemisection model the ventral funiculus 

was severed by a median cut in addition to the transection of the dorsal half of the spinal cord. Based 

on morphological criteria the BDA+ fibers crossing the lesion site appear to represent newly 

established fibers, even if in the compression injury model we cannot exclude that they represent 

branching from spared fibers. Supporting our CST data, an enhanced number of serotonergic fibers 

caudal to the lesion were observed in mice treated with C3bot154-182 following hemisection. Moreover, 

serotonergic input to lumbar α-motoneurons of the ventral horn was enhanced by the peptide to a 

similar degree. The primary role of 5HT in the mammalian spinal cord mainly originating from 

medullary raphe nuclei seems to be the facilitation of motor performance, as well as the coordination 

between motor, autonomic and sensory systems (47-50). Our findings of improved serotonergic input 

to lumbar motoneurons thus provide strong evidence for one likely mechanism that leads to enhanced 

functional recovery in mice treated with C3bot154-182. However, a mixture of axonal responses, 

including those of local circuits, for example at lumbar spinal cord segments harboring the hind limb α-

motoneurons, may have additionally contributed to the observed improved clinical outcome. Animals 

treated with C3bot154-182 exhibited also a reduced motor endplate loss in a tibial muscle (M. tibialis 

cranialis) following both lesion types. Following hemisection, the number of motor endplates was more 

strongly reduced than after contusion of the spinal cord.  

As mentioned above, numerous studies have demonstrated that clostridial C3 proteins foster axonal 

repair mechanisms after traumatic injury to the CNS inhibiting the small GTPase Rho. The pull-down 

studies presented here provide the first evidence of the molecular mechanisms of C3bot154-182 action. 

Our data clearly show that also C3bot154-182 can reduce active RhoA levels by an as yet unknown non-
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enzymatic mechanism. Possibilities include that RhoA may be influenced directly by the internalized 

peptide or indirectly via GEF (guanine nucleotide exchange factors) inhibition or GAP (GTPase 

activating proteins) activation. In summary, our data indicate a direct, neuron-specific effect because 

no enzyme-independent effects were observed on glial cells in response to C3 preparations (51-53). 

The clear specificity of effects makes this peptide an excellent candidate for fostering neuronal-

process growth without eliciting potentially unwanted glia-derived side effects (characteristic of the full 

length enzyme). Taken together, these data indicate that this short C3bot-derived amino acid fragment 

C3bot154-182 is a novel and promising tool to specifically enhance process outgrowth of central neurons 

and promote recovery after traumatic injury to the CNS. 

 

6. Material and Methods 

Animals and factors: C57BL/6 wild-type mice, NT-3 and NT-4 knockout mice [NT-3+/+/NT-4-/- and 

NT-3+/-/NT-4-/-] as well as TNF-α-deficient mice (54) were used for the experiments on postnatal day 

two. Balb/c mice for in vivo experiments were used at 9–11 weeks old. K252a (Calbiochem, 

Schwalbach, Germany), which is a potent inhibitor of TrkA, TrkB and TrkC (20-22), was used in 

concentrations of 100 nM or 1 mM in dimethyl sulfoxide (DMSO). Etanercept (Enbrel® Whyeth, 

Munster, Germany) was used in a concentration of 80 mg/mL (55). C3bot154-182 was synthesized at IPF 

PharmaCeuticals GmbH (Hannover, Germany). C3bot was expressed as recombinant GST-fusion 

protein in E. coli TG1 harboring the respective DNA fragment in the plasmid pGEX-2T (15).  
 

 
 
 
 

 
B A  
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Figure 3. Quantification by image analysis reveals 
stimulation of neurite outgrowth by hypothermia and 
rewarming.  
A, B. Representative photomicrographs of a brain slice 
with intermediate outgrowth (A) and a brain slice with 
strong outgrowth (B). C, D. To quantify the density of the 
outgrowing neurites (arrowheads) image processing based 
on the Sobel algorithm was performed to determine the 
mean intensity in a standardized area parallel to the brain 
slice edge (indicated as white boxes).  

Acute organotypic slice cultures: Collagen type I from rat tail was dissolved in 0.1 M acetic acid at a 

final concentration of 2 mg/mL. All organotypic slice cultures were prepared on postnatal day 2 from 

mouse entorhinal cortex as previously described (19). The collagen cultures were incubated for 24 h 

or 48 h. To analyze reinnervation of the denervated hippocampus an entorhinal cortex of a β-actin-

EGFP mouse was combined with a hippocampus of a wild-type (EC-HC). The cultures were prepared 

on membrane (Millipore) and incubated for 48h as described above (24). Time-temperature protocol 
and Enzyme-linked immunosorbent assay (ELISA): Acute organotypic brain slices were cooled 

Image processing 
EC EC 

D C 

Area frame: 100.000 px² Area frame: 100.000 px² 
Mean intensity: 22.12 Mean intensity: 54.30 
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down from 37°C to 17°C for 2 h, followed by rewarming up to 37°C for a period of 2 h. After a follow-up 

phase of 20 h at 37°C cytokine release and neurite outgrowth were analyzed. Normothermic control 

slices were incubated at 37°C throughout the experiments. Conditioned medium from slice cultures 

was tested for IL-6, TNF-α, IL-1beta and IL-10 using ELISAs according to the manufacturer’s 

instructions (BD Bioscience, Heidelberg, Germany). Spinal cord injury, corticospinal tract tracing 
and locomotion tests: Spinal cord compression injury, CST tracing and analysis was performed as 

described previously (56). Briefly, Balb/C mice underwent a partial laminectomy at thoracic level T8, 

and a contusion lesion was performed with a SPI Correx Tension/Compression Gage (Penn Tool) at 

20 cN for 1 s. For the spinal cord bilateral dorsal hemisection, iridectomy scissors were used to 

transect left and right dorsal funiculus, the dorsal horns (57) and additionally the ventral funiculus. 

After positioning of the gelfoam patch on top of the perforated dura, the muscles were sutured. A small 

hole was then drilled into the skull and a Hamilton syringe was inserted into the motor cortex to apply 2 

µl biotinylated dextran amine (10% BDA). BDA+ CST nerve fibers cranial and caudal to the lesion were 

counted in serial sections (56) and normalized to the number of labeled fibers within a standardized 20 

µm-wide area across the mid dorso-ventral diameter of the CST in cross sections at the T4 level 

cranial to the lesion. Mice were continuously tested for functional recovery within three or four weeks 

(contusion injury or hemisection, respectively) following SCI with the Basso Mouse Scale (25). 

Subscores for stepping performance and correct paw positioning were evaluated individually. Also 

Rotarod performance (58) was determined continuously up to the end of the observation periods. 

Histological staining and analysis: The entorhinal cortices (ECs) and EC-HC were washed and 

fixed for 20 minutes in 4% PFA. Spinal cord and M. tibialis cranialis cryosections (respectively 20 and 

30 µm thick) from PFA perfused animals and ECs were then incubated with 10% normal goat serum 

(NGS; Sigma) and 0.2% Triton X-100 (Sigma). For ECs the first antibody, Tau-1 (mouse monoclonal, 

Millipore) or glial fibrillary acidic protein (GFAP; mouse monoclonal, Sigma), was added for 2h. The 

ECs were then incubated for 2 h at RT with the secondary antibody.  To evaluate neurite density of the 

ECs we used a standard protocol for the evaluation of neurite outgrowth as described previously 

(15,24), which was improved using image analysis software based on the Sobel algorithm (Image J, 

NIH) to precisely quantify neurite density (Figure 3). To evaluate EC-HC reinnervation 

Photomicrographs were then analyzed with MetaMorph Image Software (VisitronSystems) to 

determine the average intensity of the GFP positive axons in a standardized area. For measurement 

of lesion size and gliosis in the injured spinal cord we performed a double-staining against GFAP and 

myelin basic protein (MBP, rabbit polyclonal). Quantification of GFAP expression was performed by 

intensity analysis as previously described (59). For analysis of serotonergic fibers and 5HT-positive 

boutons sections were incubated with a polyclonal anti 5-HT antiserum. 5-HT expressing fibers were 

documented and analysed using Image J. For camera lucida tracing, Adobe Photoshop software was 

used. The number of 5HT-positive boutons on motoneurons was calculated as previously described 

(60). For motor endplate staining on M. tibialis cranialis, sections were incubated for 2 hours at RT 

with 2 µg/ml Alexa Fluor 488-conjugated α-bungarotoxin (Molecular Probes). Every second section 

was analyzed and the total number of motor endplates per individual section was determined. As 

secondary antibody goat anti-mouse AL488 (A11029, Invitrogen) was used for ECs, Alexa Fluor 594 

horse anti-mouse and Alexa fluor 488 goat anti-rabbit for EGFP and MBP staining, and Alexa 488 goat 
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anti-rabbit (Molecular Probes) for 5-HT. Primary cultures: For hippocampal neurons cells were 

prepared from hippocampi from mice at E16, dissociated mechanically centrifugated and plated on 

glass cover slips precoated with poly-L-lysine/collagen. One day after plating, C3bot peptide was 

added to the culture medium and at five days in vitro (DIV5) neurons were fixed and permeabilized. 

Hippocampal neurons were stained by antibody against neurofilament protein (NFP) and microtubule 

associated proteins 2 (MAP2) (Chemicon International) overnight and at 4°C and secondary 

antibodies were applied for 2h. Hippocampal neurons were documented using a DFC 490 digital 

camera and morphometrically analyzed using Neurolucida software (MicroBrightField). Rho GTPase 

pull-down assay: The Rho binding domain C21 was expressed as GST fusion protein in E. coli and 

purified by affinity chromatography using glutathione-sepharose. Hippocampal neurons were lysed and 

the obtained suspension was sonicated and centrifugated. Lysates were then added to glutathione-

bound GST-C21 (rhotekin) for 1 h (4°C). Bound proteins were mobilized by incubation with Laemmli 

sample buffer at 95 °C for 10 min. Samples were subjected to SDS-PAGE and Western blot analysis. 
Statistical analysis: Data represent mean values ± SEM. Locomotion tests were analyzed using a 

two-way ANOVA. Statistical significance of cytochemical data was tested using the Mann Whitney U 

test. In general, p-values < 0.05, < 0.01, or < 0.001 were marked *, **, or ***, respectively. 
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