7 Experimental Section (Experimenteller Teil)

7.1 General

Reagents and compounds 12, 15, 25, 34, 40, 9-BBN, 59, 60, 72, 99, 115, 118, and 127 were purchased from Fluka, Aldrich, or Acros and were used without further purification. All solvents were purchased from Fluka,Atdrich, oHAcros and were
 literature procedures. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra: Bruker AM270 spectrometer (270 MHz) or Bruker AC500 spectrometer (500 MHz) $\left(\mathrm{CHCl}_{3}\right.$ at $\delta=7.24$ or DMSO at $\delta=2.49$ as internal standard). ${ }^{13} \mathrm{C}$ NMR spectra: Bruker AM 270 spectrometer (67.9 MHz) or Bruker AC 500 spectrometer (126 MHz) (CDCl_{3} at $\delta=77.0$ as internal standard). MS: Varian MAT 711 spectrometer. Melting points: Büchi 510 (open capillaries, uncorrected values). Column chromatography: Merck silica gel 60, 0.040-0.063 mm (230-400 mesh). Analytical TLC: aluminum sheets, silica gel Si $60 \mathrm{~F}_{254}$ (Merck), detection: UV absorption. Elemental analyses: Perkin-Elmer EA 240.
Spectrometric grade methylcyclohexane and acetonitrile were used as solvents for the spectroscopic measurements. UV absorption spectra were measured on an ATI UNICAM UV series UV-02113 spectrometer; fluorescence spectra were recorded on an AMINCO-Bowman series 2 spectrofluorimeter. They were corrected for instrumental sensivity.

All compounds were fully characterized by high field ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$ NMR spectroscopy, correct data from combustion analysis or high resolution mass spectrometry. Combustion analyses were not performed for carboxylic acids 43, 52, 93, 94 and for amine trifluoro acetates 44, 45, 106 and 107 because water could not be removed completely from them. Combustion analyses were not performed for 54 and 124 because they were used without any working up procedure.
For many compounds the number of aromatic carbon signals in the ${ }^{13} \mathrm{C}$ NMR spectra is too low because several signals, especially in the pyrene range, coincide.

7.2 General procedures

Suzuki-cross coupling type 1 (SCC 1)

The bromo or iodo compound (1 eq) and the boronic acid or ester (1 eq) were dissolved in toluene. An aqueous solution of $\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{c}=1 \mathrm{~mol} / \mathrm{l})$ was added. The mixture was degassed and flushed with N_{2} three times and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ was added under N_{2}. Then the mixture was degassed and flushed with N_{2} three times again. The system was refluxed for 2 days, the phases were separated, and the aqueous layer was washed with toluene two times. The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$ and toluene removed.

Suzuki-cross coupling type 2 (SCC 2)

The allyl-compound and 9-BBN were dissolved in dry THF or toluene and the solutions were stirred for $12 \mathrm{~h} . \mathrm{H}_{2} \mathrm{O}$ (3 drops) was added. If THF was used, it was removed now and the residue dissolved in toluene. To the solution the bromo or iodo compound and an aqueous solution of KOH ($\mathrm{c}=1 \mathrm{~mol} / \mathrm{l}$) were added. The mixture was degassed three times and flushed with N_{2} repeatedly. $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ was added under N_{2}, the mixture was degassed and flushed with N_{2} three times again and then refluxed for 2 d . After cooling to room temperature the layers were separated. The aqueous layer was washed twice with toluene and the combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$ and solvent removed.

Amide coupling (HOBt/EDC method)

To a solution of the acid (1.0 eq) in anhyd. $\mathrm{CH}_{2} \mathrm{Cl}_{2} \mathrm{HOBT}(1.1 \mathrm{eq})$ was added and the solution was stirred for 15 min . DIPEA (2.1 eq) and the amine (1.0 eq) were added and solution stirred for 15 min . EDC (1.1 eq) was added and the mixture was stirred for further 15 h at $25^{\circ} \mathrm{C}$, then washed with an aqueous solution of $\mathrm{NaHCO}_{3}(\mathrm{c}=1$ $\mathrm{mol} / \mathrm{l}$), citric acid ($\mathrm{c}=1 \mathrm{~mol} / \mathrm{l}$) brine and $\mathrm{H}_{2} \mathrm{O}$. The organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$ and the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was removed by distillation.

7.3 Synthesis of compounds from chapter 4.3

4,4,5,5-Tetramethyl-2-pyrene-1-yl-[1,3,2]dioxaborolane (10)

Pyrene bromide 11 ($50 \mathrm{~g}, 0.178 \mathrm{~mol}$) was suspended in dry diethyl ether (1 I) and the mixture was cooled down to $-78^{\circ} \mathrm{C}$. A solution of $\mathrm{BuLi}(250 \mathrm{ml}, \mathrm{c}=1.6 \mathrm{M}, 0.400 \mathrm{~mol}$) was added dropwhise. The mixture was allowed to come to room temperature in 6 h , then was cooled down to $-78^{\circ} \mathrm{C}$ again and $\mathrm{B}\left(\mathrm{O}_{\mathrm{i}} \mathrm{Pr}\right)_{3}(101.88 \mathrm{~g}, 125 \mathrm{ml}, 0.542 \mathrm{~mol})$ was added. The mixture came to room temperature while 10 h . Then water (500 ml) was added. The layers were separated and the aqueous layer was washed three times with diethyl ether ($3 \times 300 \mathrm{ml}$). The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$. Filtration over silica gel with first hexane and later with methanol gave the pyrene boronic acid $9(32.74 \mathrm{~g}, 0.01 \mathrm{~mol}, 56 \%)$ as a brown oil. Without further purification the pyrene boronic acid 9 and pinakol ($21 \mathrm{~g}, 0.178 \mathrm{~mol}$) were dissolved in acetone (250 ml) and refluxed for 1 h . After removing of the acetone, the crude product was purified with silica gel. Chromatographic separation with hexane: acetic acid ethyl ester $3: 1$ gave the pyrene pinacol $10(33.9 \mathrm{~g}, 58 \%)$ as a yellow solid.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.51(\mathrm{~s}, 12 \mathrm{H}), 8.0-8.27\left(\mathrm{~m}, 7 \mathrm{H}, \mathrm{H}_{\text {pyrene }}\right), 7.62(\mathrm{~d}, 1 \mathrm{H}$, $\mathrm{H}_{\text {pyrene }}$), 9.12 (d, $1 \mathrm{H}, \mathrm{H}_{\text {pyrene }}$).
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(67.9 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=25.0,83.8,124.0,124.3,124.5,124.8,125.1$, $125.3,125.6,127.4,127.7,128.0,128.4,130.7,131.0,133.4,133.8,136.4$.
MS (El $80 \mathrm{eV} 100^{\circ} \mathrm{C}$): m/z (\%): 328 (100) [$\left.\mathrm{M}^{+}\right]$, 228 (28.58) [$\left.\mathrm{M}^{+}-\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}\right]$
$\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{BO}_{2}$ (328.22): calcd C 80.51 H 6.45 found C 79.89 H 6.69

(4-Amino-phenyl)-acetic acid ethyl ester (17)

Phenyl acetic acid 15 ($50.0 \mathrm{~g}, 0.331 \mathrm{~mol}$) was suspended in a mixture of 150 ml ethanol and 150 ml toluene. Conc. sulfuric acid ($72.8 \mathrm{ml}, 0.728 \mathrm{~mol}$) was added within 15 min . The dark brown solution was refluxed at $140^{\circ} \mathrm{C}$ for 5 h with a water separator. After cooling at $0{ }^{\circ} \mathrm{C}$ a solution of $\mathrm{Na}_{2} \mathrm{CO}_{3}(750 \mathrm{ml}, 1 \mathrm{M})$ was added. The layers were separated, the aqueous layer was washed three times with toluene (300 ml), and the combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$. Recrystallization in a mixture of hexane: acetic acid ethyl ester $10: 1$ gave the ester $17(46.0 \mathrm{~g}, 0.257 \mathrm{~mol}$, 78%) as pale yellow crystals.
${ }^{1} \mathrm{H}$ NMR ($270 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.22\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=9 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 3.46\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$ benzylic), 3.83 (s, 2H, NH2 $), 4.10\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{J}=9 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 6.57\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=9 \mathrm{~Hz}, \mathrm{H}_{\text {aromatic }}\right), 7.02$ (d, $2 \mathrm{H}, \mathrm{J}=9 \mathrm{~Hz}, \mathrm{H}_{\text {aromatic }}$).
${ }^{13} \mathrm{C}$ NMR ($67.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=13.8,40.1,60.3,114.9,123.4,129.6,145.1$, 171.9.
MS (EI, $80 \mathrm{eV}, 50^{\circ} \mathrm{C}$): m/z (\%): 179 (52.09) [$\left.\mathrm{M}^{+}\right]$, 106 (100) [$\left.\mathrm{M}^{+}-\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}_{2}\right]$.
$\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{NO}_{2}$ (179.22): calcd C 67.02, H 7.31, N 7.82, found C 67.01, H 7.34, N 7.93 .

(4-Amino-3,5-dibromo-phenyl)-acetic acid ethyl ester (19)

Phenyl acetic ester 17 ($23.0 \mathrm{~g}, 0.128 \mathrm{~mol}$) was dissolved in conc. acetic acid (300 ml) and cooled to $0{ }^{\circ} \mathrm{C}$. A solution of $\mathrm{Br}_{2}(45.1 \mathrm{~g}, 14.4 \mathrm{ml}, 0.282 \mathrm{~mol})$ in acetic acid (50 ml) was added at $0^{\circ} \mathrm{C}$ within 1 h . The product started to precipitate immediately. The mixture was stirred for 12 h at room temperature. After cooling to $0{ }^{\circ} \mathrm{C}$ the mixture was poured on ice (1 kg). Filtration under vacuum and washing two times with water gave the brominated product $19(37.0 \mathrm{~g}, 87 \%)$ as a light brown solid.
${ }^{1} \mathrm{H}$ NMR ($270 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.24\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=9 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 3.41$ ($\mathrm{s}, 2 \mathrm{H}, \mathrm{CH}_{2}$ benzylic), $4.12\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{J}=9.3 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 7.27\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}_{\text {aromatic }}\right)$.
${ }^{13} \mathrm{C}$ NMR ($67.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=14.0,39.4,60.9,108.4,125.1,132.3,140.9$, 171.0. MS (EI, $80 \mathrm{eV}, 30-40{ }^{\circ} \mathrm{C}$): m/z (\%): 335 (22.4) [M $\left.{ }^{+}\right], 262$ (47.7) [$\left.\mathrm{M}^{+}-\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}_{2}\right], 183$ (7.4) $\left[\mathrm{M}^{+}-\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}_{2} \mathrm{Br}\right], 104$ (15.0) $\left[\mathrm{M}^{+}-\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}_{2} \mathrm{Br}_{2}\right]$.
$\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{NO}_{2}$ (337.01): calcd C 35.64, H 3.29, N 4.16, found C 35.58, H 3.17, N 4.05.

3,5-Dibromo-4-iodo benzoic acid ethyl ester (20)

Ice (100 g), $25 \% \mathrm{HCl}(72 \mathrm{ml}, 0.490 \mathrm{~mol})$ and $18(26 \mathrm{~g}, 0.081 \mathrm{~mol})$ were mixed and stirred for 30 min . Then an aqueous solution of $\mathrm{NaNO}_{2}\left(7.45 \mathrm{~g}\right.$ in $\left.75 \mathrm{ml} \mathrm{H}_{2} \mathrm{O}\right)$ was dropped in within 15 min . The mixture was then stirred for 4 h . The mixture was filtrated and the filtrate was dropped into an aqueous solution of $\mathrm{KI}(136 \mathrm{~g}, 0.820$ $\mathrm{mol}, 150 \mathrm{ml} \mathrm{H}_{2} \mathrm{O}$) under vigorous stirring. The mixture was stirred for 12 h at room temperature. Then $\mathrm{CH}_{2} \mathrm{Cl}_{2}(200 \mathrm{ml})$ and an aqueous solution of sodium disulphite ($200 \mathrm{ml}, \mathrm{c}=1 \mathrm{~mol} / \mathrm{l}$) were added. The organic phase was separated and the aqueous one extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{ml})$. The combined organic layers were extracted with a solution of $\mathrm{NaHCO}_{3}(200 \mathrm{ml}, \mathrm{c}=1 \mathrm{~mol} / \mathrm{I})$ and the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ phase was dried $\left(\mathrm{MgSO}_{4}\right)$. Solvent was removed, recrystallization with ethanol gave iodoester $20(15.3 \mathrm{~g}, 0.035$ mol, 44%) as a pale orange solid.
${ }^{1} \mathrm{H}$ NMR $\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.38\left(\mathrm{t}, \mathrm{J}=9.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{CH}_{2}\right), 4.36(\mathrm{q}, \mathrm{J}=9.3 \mathrm{~Hz}$, $\left.2 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{CH}_{2}\right), 8.14$ (s, $2 \mathrm{H}, \mathrm{H}_{\text {aromatic }}$).
${ }^{13} \mathrm{C}$ NMR ($67.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=14.20,61.91,115.48,131.40,132.55,163.81$.
$\mathrm{MS}\left(\mathrm{El}, 80 \mathrm{eV}, 120{ }^{\circ} \mathrm{C}\right): \mathrm{m} / \mathrm{z}(\%)=431.8(50.3)\left[\mathrm{M}^{+}\right], 402.7(34.2)\left[\mathrm{M}-\mathrm{C}_{2} \mathrm{H}_{5}\right], 386.7$
 $\left.\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}_{2}-\mathrm{I}\right], 180.9$ (6.3) [M-C $\left.\mathrm{C}_{2} \mathrm{O}-\mathrm{Br}-\mathrm{I}\right]$, 152.9 (28.9) [M- $\left.\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}_{2}-\mathrm{Br}-\mathrm{I}\right]$.
$\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{Br}_{2} \mathrm{IO}_{2}$ (431.78) calcd C 24.92, H 1.63, found C 25.07, H 1.62.

(3,5-Dibromo-4-iodo-phenyl) acetic acid ethyl ester (21)

Amino phenyl ester 19 ($14.0 \mathrm{~g}, 41.5 \mathrm{mmol}$) was dissolved in conc. acetic acid (220 ml) and added at $0^{\circ} \mathrm{C}$ to conc. sulfuric acid (40 ml). This solution was added slowly at $0{ }^{\circ} \mathrm{C}$ to a mixture of $\mathrm{NaNO}_{2}(7.5 \mathrm{~g}, 109.0 \mathrm{mmol})$ conc. sulfuric acid (50 ml) and conc. acetic acid (100 ml). After stirring for 1 h at $0^{\circ} \mathrm{C}$ the mixture was added at room temperature to a solution of $\mathrm{KI}(38.0 \mathrm{~g}, 228.0 \mathrm{mmol}), \mathrm{I}_{2}(31.0 \mathrm{~g}, 244.0 \mathrm{mmol})$, urea $(5.0 \mathrm{~g}, 83.0 \mathrm{mmol})$, water (500 ml), and $\mathrm{CHCl}_{3}(140 \mathrm{ml})$. The solution was stirred at room temperature for 1 h , then sodium disulphite ($46.0 \mathrm{~g}, 0.242 \mathrm{~mol}$) was added. The layers were separated, the aqueous layer was washed twice with $\mathrm{CHCl}_{3}(400 \mathrm{ml})$, and the combined organic layers were washed with a solution of $\mathrm{Na}_{2} \mathrm{CO}_{3}(250 \mathrm{ml}, \mathrm{c}=$ $1 \mathrm{~mol} / \mathrm{I})$. The organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$. Chromatographic filtration through silica gel with hexane:acetic acid ethyl ester $3: 1$ gave iodophenyl ester 21 (10.0 g , $22.0 \mathrm{mmol}, 54 \%$) as a yellow solid. $\mathrm{R}_{\mathrm{f}}=0.47$.
${ }^{1} \mathrm{H}$ NMR (270 MHz, CDCl_{3}): $\delta=1.24\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=9 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 3.48\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$ benzylic), 4.14 ($\mathrm{q}, 2 \mathrm{H}, \mathrm{J}=9 \mathrm{~Hz}, \mathrm{CH}_{2}$), 7.47 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{H}_{\text {aromatic }}$).
${ }^{13} \mathrm{C}$ NMR ($67.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=14.0,38.3,60.6,108.1,130.3,132.5,138.1,170.1$. MS (EI, $80 \mathrm{eV}, 140{ }^{\circ} \mathrm{C}$): m/z (\%): 446 (44) [M $\left.{ }^{+}\right]$, 373 (73.2) [$\left.\mathrm{M}^{+}-\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}_{2}\right], 246$ (24.2) [$\left.\mathrm{M}^{+}-\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}_{2} \mathrm{I}\right], 88$ (42.0) $\left[\mathrm{M}^{+}-\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}_{2} \mathrm{Br}_{2} \mathrm{I}\right]$.
$\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{Br}_{2} \mathrm{IO}_{2}$ (447.89): calcd C 26.82, H 2.03, found C 26.65, H 2.09.

Trimethyl-pyrene-1-yl-stannane (24)

Pyrene bromide 11 ($20.0 \mathrm{~g}, 0.071 \mathrm{~mol}$), was dissolved in dry diethyl ether (300 ml) and the mixture was cooled down to $-78{ }^{\circ} \mathrm{C}$. A solution of $\mathrm{BuLi}(57.8 \mathrm{ml}, 1.6 \mathrm{M})$ was added dropwise. The mixture was allowed to come to room temperature in 5 h , then
cooled down to $-78{ }^{\circ} \mathrm{C}$ again and $\mathrm{Sn}\left(\mathrm{CH}_{3}\right)_{3} \mathrm{Cl} 25(19.8 \mathrm{~g}, 0.100 \mathrm{~mol})$ dissolved in dry diethyl ether (200 ml) was dropped in. The mixture came to room temperature during 12 h , and then an aqueous solution of $\mathrm{KF}(100 \mathrm{ml}, 1 \mathrm{M})$ was added. The layers were separated and the aqueous one was washed with diethyl ether (300 ml). The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$. The solvent was removed. Recrystallization with ethanol gave the product 24 ($14.2 \mathrm{~g}, 0.039 \mathrm{~mol}, 55 \%$) as a pale brown solid.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.68$ (s, 9H, CH_{3}), $8.00-8.36$ ($\mathrm{m}, 9 \mathrm{H}, \mathrm{H}_{\text {pyrene }}$).
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-8.05,124.15,124.85,125.69,127.33,127.44$, 127.51, 129.40, 130.82, 131.25, 131.52, 133.62, 136.88, 140.32. (3 signals missing). MS (EI, $140{ }^{\circ} \mathrm{C}, 80 \mathrm{eV}$): m/z (\%) = 366 (42.4) [M $\left.{ }^{+}\right]$, 351 (100) [$\left.\mathrm{M}^{+}-\mathrm{CH}_{3}\right]$, 321 (68.6) [$\mathrm{M}^{+}-\mathrm{C}_{3} \mathrm{H}_{9}$].
EA C ${ }_{19} \mathrm{H}_{18} \mathrm{Sn}(365.04)$ calcd C 62.52 H 4.97 , found C 62.16 H 4.89 .

4-Amino-3-bromo-benzoic acid ethyl ester (28)

Benzoic acid ethyl ester 16 ($14.1 \mathrm{~g}, 86.0 \mathrm{mmol}$) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(200 \mathrm{ml})$ and cooled to $0{ }^{\circ} \mathrm{C}$. A solution of $\mathrm{Br}_{2}(16.5 \mathrm{~g}, 5.3 \mathrm{ml}, 103.0 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{ml})$ was added dropwise in 2 h at $0^{\circ} \mathrm{C}$. The mixture was stirred for 12 h at room temperature. The organic layer was washed first with an aqueous sodium disulphite solution (100 $\mathrm{ml}, \mathrm{c}=1 \mathrm{~mol} / \mathrm{l}$) and two times with water (200 ml). The organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$ and the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was evaporated. Chromatographic separation with hexane:acetic acid ethyl ester 10:1 gave the product 28 ($11.5 \mathrm{~g}, 47.0 \mathrm{~mol}, 55 \%$) as a colorless solid. $\mathrm{R}_{\mathrm{f}}=0.18$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=1.34\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.29\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.57(\mathrm{~s}, 2 \mathrm{H}$, NH_{2}), 6.69 (d, 1H, $\mathrm{H}_{\text {aromatic }}$), $7.75\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{\text {aromatic }}\right), 8.07\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{\text {aromatic }}\right)$. ${ }^{13} \mathrm{C}$ NMR (62.9 MHz, CDCl_{3}) $\delta=14.16,60.48,107.56,114.04,120.57,130.39$, 134.18, 148.17, 165.47.

MS (EI, $\left.80 \mathrm{eV}, 85^{\circ} \mathrm{C}\right) \mathrm{m} / \mathrm{z}=243$ (91.9) $\left[\mathrm{M}^{+}\right], 215$ (23.8) $\left[\mathrm{M}^{+}-\mathrm{C}_{2} \mathrm{H}_{4}\right], 198$ (100) [$\mathrm{M}^{+}-$ $\left.\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}\right], 164$ (7.4) [$\left.\mathrm{M}^{+}-\mathrm{Br}\right]$.
$\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{BrNO}_{2}$ (244.09) calcd C 44.29, H 4.13, N 5.74, found C 44.18, H 4.01, N 5.63.

3-Bromo-4-iodo-benzoic acid ethyl ester (30)

Amino bromo ester 28 (10.2 g, 41.8 mmol) was suspended in $\mathrm{HCl}(40 \mathrm{ml}, 25 \%)$ and ice $(50 \mathrm{~g})$. Then $\mathrm{NaNO}_{2}(3.2 \mathrm{~g}, 46.0 \mathrm{~mol})$ dissolved in water (15 ml) was added dropwise. The mixture was stirred for 3 h at room temperature and then filtrated. The orange filtrate was dropped under vigorous stirring at $0{ }^{\circ} \mathrm{C}$ into a solution of $\mathrm{KI}(35.1$ $\mathrm{g}, 0.209 \mathrm{~mol}$) in water (100 ml). The product started to precipitate immediately. The mixture was stirred 12 h at room temperature. $\mathrm{CH}_{2} \mathrm{Cl}_{2}(250 \mathrm{ml})$ and sodium disulphite $(38.0 \mathrm{~g}, 0.200 \mathrm{~mol})$ were added. The layers were separated and the organic one was dried $\left(\mathrm{MgSO}_{4}\right)$. The $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was removed, the crude product was a brown oil. Chromatographic separation with first hexane and later hexane:acetic acid ethyl ester 20:1 gave the product $30\left(9.3 \mathrm{~g}, 26.2 \mathrm{mmol}, 63 \%\right.$) as a colorless solid. R_{f} (Hex:EE $3: 1)=0.56$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=1.36\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.34\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.57(\mathrm{~d}, 1 \mathrm{H}$, $\mathrm{H}_{\text {aromatic }}$), 7.91 ($\mathrm{d}, 1 \mathrm{H}, \mathrm{H}_{\text {aromatic }}$), 8.21 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}_{\text {aromatic }}$).
${ }^{13} \mathrm{C}$ NMR (62.9 MHz, CDCl_{3}) $\delta=14.13,61.35,107.34,128.65,129.77,131.61$, 133.00, 140.10, 164.47.

MS (EI, $\left.80 \mathrm{eV}, 60^{\circ} \mathrm{C}\right) \mathrm{m} / \mathrm{z}=354$ (83.7) $\left[\mathrm{M}^{+}\right]$, 326 (52.9) $\left[\mathrm{M}^{+}-\mathrm{C}_{2} \mathrm{H}_{4}\right]$, 275 (13.6) $\left[\mathrm{M}^{+}-\right.$ $\mathrm{Br}]$, 199 (2.7) [$\left.\mathrm{M}^{+}-\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{I}\right]$.
$\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{BrlO}_{2}$ (354.97) calcd C 30.45, H 2.27, found C 30.24 , H 2.14.
3-Bromo-4-pyren-1-yl-benzoic acid ethyl ester (31)

For preparation see general procedure for SCC 1:

Br-l-ester 30 ($2.00 \mathrm{~g}, 5.65 \mathrm{mmol}$), pinacol ester 10 ($1.86 \mathrm{~g}, 5.65 \mathrm{mmol}$), toluene (30 $\mathrm{ml}), \mathrm{Na}_{2} \mathrm{CO}_{3}(20 \mathrm{ml}, \mathrm{c}=1 \mathrm{~mol} / \mathrm{l})$, tetrakis(triphenylphosphine)palladium(0) (65.0 mg , $5.65 \times 10^{-2} \mathrm{mmol}$, 4 d .
The residue was recrystallized in hexane. At room temperature the product 31 (0.84 $\mathrm{g}, 1.95 \mathrm{mmol} 34.5 \%$) precipitates as a light brown solid.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=1.46\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.46\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.55(\mathrm{~d}, 1 \mathrm{H}$, $H_{\text {aromatic }}$), 7.65 (d, $1 \mathrm{H}, \mathrm{H}_{\text {pyrene }}$), 7.86 (d, $1 \mathrm{H}, \mathrm{H}_{\text {aromatic }}$), $7.93-8.34\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{H}_{\text {pyrene }}\right), 8.50$ (s, 1H, $\mathrm{H}_{\text {aromatic }}$).
${ }^{13} \mathrm{C}$ NMR (125.8 MHz, CDCl_{3}) $\delta=14.33,61.47,124.34,124.53,124.60$, 124.67, $125.25,125.43,126.13,126.87,127.29,127.84,127.90,128.20,128.41,130.75$, 131.09, 131.21, 131.38, 132.30, 133.84, 135.32, 146.27, 165.23.

MS (EI, $80 \mathrm{eV}, 190{ }^{\circ} \mathrm{C}$) m/z = 428 (98.5) [$\left.\mathrm{M}^{+}\right], 400$ (7.7) [M $\left.\mathrm{M}^{+} \mathrm{C}_{2} \mathrm{H}_{4}\right], 321$ (2.0) [$\mathrm{M}^{+}-$ $\left.\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Br}\right], 226$ (2.2) [$\mathrm{M}^{+}-\mathrm{C}_{16} \mathrm{H}_{10}$].
$\mathrm{C}_{25} \mathrm{H}_{17} \mathrm{BrO}_{2}$ (429.31) calcd C 69.94, H 3.99, found C 69.61, H 3.82 .
HRMS ($\left.{ }^{12} \mathrm{C}_{25}{ }^{1} \mathrm{H}_{17}{ }^{16} \mathrm{O}_{2}{ }^{79} \mathrm{Br}\right)\left[\mathrm{M}^{+}\right]$: calcd 428.04119, found 428.04434 .

4-[3-(3,5-Bis-trimethylsilanyl-phenyl)-propyl]-3-bromo-benzoic acid ethyl ester (33)

For preparation see general procedure for SCC 2

Allyl-di-TMS 32 ($3.00 \mathrm{~g}, 11.40 \mathrm{mmol}$), 9-BBN ($1.67 \mathrm{~g}, 13.70 \mathrm{mmol}$), dry THF (50 ml), 12 h , aqueous solution of $\mathrm{KOH}(20 \mathrm{ml}, 1 \mathrm{M})$, toluene (30 ml), bromo-iodo-ester 30 $(4.04 \mathrm{~g}, 11.40 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.13 \mathrm{~g}, 0.11 \mathrm{mmol}), 4 \mathrm{~d}$. Chromatographic separation with silica gel and hexane: ethyl acetate 10:1 gave the product 33 (2.44 g , $4.96 \mathrm{mmol}, 44 \%$) as a colorless oil. $\mathrm{R}_{\mathrm{f}}=0.09$
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.35\left(\mathrm{~s}, 18 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{Si}\right), 1.44\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, 2.07 (quin, $2 \mathrm{H}, \beta$), 2.80 (t, 2H, α), 2.91 (m, 2H, α), 4.43 ($\mathrm{q}, 2 \mathrm{H}, \mathrm{CH}_{2}$), 7.34 (d, 1H, 2), 7.42 (s, $2 \mathrm{H}, 4), 7.59(\mathrm{~s}, 1 \mathrm{H}, 5), 7.97(\mathrm{~d}, 1 \mathrm{H}, 3), 8.28(\mathrm{~s}, 1 \mathrm{H}, 1)$.
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-1.05,14.26,31.06,35.71,35.98,61.08,124.30$, 128.39, 130.00, 133.60, 133.80, 133.95, 135.77, 139.67, 139.81, 146.71, 165.17.

MS (EI, $\left.20-40{ }^{\circ} \mathrm{C}, 80 \mathrm{eV}\right): \mathrm{m} / \mathrm{z}(\%)=490(40.7)\left[\mathrm{M}^{+}\right], 475$ (94.9) $\left[\mathrm{M}^{+}-\mathrm{CH}_{3}\right], 461$ (26.3) $\left[\mathrm{M}^{+}-\mathrm{C}_{2} \mathrm{H}_{5}\right], 397(25.0)\left[\mathrm{M}^{+}-\mathrm{CH}_{2} \mathrm{Br}\right], 73(30.2)\left[\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}{ }^{+}\right]$.

HRMS ${ }^{12} \mathrm{C}_{24}{ }^{1} \mathrm{H}_{35}{ }^{16} \mathrm{O}_{2}{ }^{28} \mathrm{Si}_{2}{ }^{79} \mathrm{Br}_{1}$ calcd 490.13590 , found 490.13842 .
EA C $24 \mathrm{H}_{35} \mathrm{BrO}_{2} \mathrm{Si}_{2}$ (491.61) calcd C 58.64 H 7.18 , found C 58.18 H 6.8 .

1-(4-Bromo-phenyl)-pyrene (35)

For preparation see general procedure for SCC 1:

Pyrene pinacol 10 ($20.00 \mathrm{~g}, 61.0 \mathrm{mmol}$), bromoiodobenzene 34 (19.00 g, 67.0 mmol), toluene (150 ml), aqueous solution of $\mathrm{Na}_{2} \mathrm{CO}_{3}(150 \mathrm{ml}, \mathrm{c}=1 \mathrm{~mol} / \mathrm{l}$), tetrakis(triphenylphosphine)palladium(0) ($1.41 \mathrm{~g}, 1.22 \mathrm{mmol}$), 2 d , recrystallization in hexane gave 35 ($19.8 \mathrm{~g}, 55.4 \mathrm{mmol}, 91 \%$) as a pale brown solid.
${ }^{1} \mathrm{H}$ NMR (270 MHz, $\left.\mathrm{CDCl}_{3}\right): ~ \delta=7.48\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{H}_{\text {aromatic }}\right), 7.69\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{H}_{\text {aromatic }}\right), 7.87(\mathrm{~d}$, $1 \mathrm{H}, \mathrm{H}_{\text {pyrene }}$), $7.96-8.24\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{H}_{\text {pyrene }}\right)$.
${ }^{13} \mathrm{C}$ NMR ($67.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=121.50,124.57,124.69,124.89,125.19,125.62$, 125.99, 127.21, 127.25, 127.52, 127.66, 128.26, 130.55, 130.72, 130.80, 131.36, 131.46, 132.08, 136.12, 140.02.

MS (EI, $80 \mathrm{eV}, 130{ }^{\circ} \mathrm{C}$): m/z (\%): 356 (99.6) [M $\left.{ }^{+}\right], 277$ (30.5) [$\left.\mathrm{M}^{+}-\mathrm{Br}\right]$.
$\mathrm{C}_{22} \mathrm{H}_{13} \mathrm{Br}(357.25)$ calcd C 73.97, H 3.67, found C $74.04, \mathrm{H} 3.88$.

4,4,5,5-Tetramethyl-2(4-pyren-1-yl)-phenyl-1-yl-1,3,2-dioxaborolane (37)

Pyrene phenyl bromide $35(24.1 \mathrm{~g}, 67.0 \mathrm{mmol})$ was suspended in 450 ml abs. THF and the solution was cooled down to $-78{ }^{\circ} \mathrm{C}$. A solution of n -BuLi $(125.6 \mathrm{ml}, 0.202$ $\mathrm{mol}, \mathrm{c}=1.6 \mathrm{M}$) was added dropwise. The mixture was allowed to come to room temperature in 6 h , then cooled down to $-78{ }^{\circ} \mathrm{C}$ again, and triisopropyl boric acid ester ($44.4 \mathrm{~g}, 54.5 \mathrm{ml}, 0.236 \mathrm{~mol}$) was added. The mixture came to room temperature during 10 h . Then water (250 ml) was added. The layers were separated and the aqueous layer was washed three times with diethyl ether (900 ml). The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$. Filtration over silica gel with first hexane:acetic acid ethyl ester $3: 1$ and later with methanol: $\mathrm{CH}_{2} \mathrm{Cl}_{2} 5: 3$ gave the pyrene phenyl boronic acid 36 ($17.4 \mathrm{~g}, 54.0 \mathrm{mmol}, 80 \%$) as a brown oil. Without further purification the pyrene phenyl boronic acid and pinacol ($7.0 \mathrm{~g}, 59.0 \mathrm{mmol}$) were dissolved in acetone (320 ml) and refluxed for 1 h . The acetone was removed through distillation. Chromatographic separation with hexane:acetic acid ethyl ester $3: 1$ gave the pyrene pinacol 37 ($17.0 \mathrm{~g}, 42.1 \mathrm{mmol}, 62 \%$) as a yellow solid. $\mathrm{R}_{\mathrm{f}}=0.47$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=1.41$ (s, 12H, Pinacol), 7.68 (d, $2 \mathrm{H}, \mathrm{H}_{\text {aromatic }}$), 7.93 8.31 ($\mathrm{m}, 11 \mathrm{H}, \mathrm{H}_{\text {aromatic + pyrene }}$).
${ }^{13} \mathrm{C}$ NMR (67.9 MHz, CDCl_{3}) $\delta=24.87,83.80,124.53,124.73,124.86,125.01$, 125.06, 125.54, 125.86, 127.26, 127.33, 127.43, 128.32, 129.97, 130.59, 130.86, 131.35, 134.81, 137.46, 144.12, 154.68, 155.47.

MS (EI, $\left.80 \mathrm{eV}, 160{ }^{\circ} \mathrm{C}\right) \mathrm{m} / \mathrm{z}=404$ (100) [M $\left.\mathrm{M}^{+}\right], 304$ (18.4) [$\left.\mathrm{M}^{+}-\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}\right]$.
$\mathrm{C}_{28} \mathrm{H}_{25} \mathrm{BO}_{2}$ (404.31) calcd C 83.18, H 6.23, found C 82.89, H 6.33.

2,6-Dibromo-4'-pyren-1-yl-biphenyl-4-carboxylic acid ethyl ester (38)

For preparation see general procedure for SCC 1:

Pinacol ester 37 ($0.50 \mathrm{~g}, 1.24 \mathrm{mmol}$), iodide 20 ($0.54 \mathrm{~g}, 1.24 \mathrm{mmol}$), m-xylene (20 $\mathrm{ml})$, aqueous solution of $\mathrm{Na}_{2} \mathrm{CO}_{3}(10 \mathrm{ml}, \mathrm{c}=1 \mathrm{~mol} / \mathrm{l})$, tetrakis(triphenylphosphine)palladium(0) $\left(32.0 \mathrm{mg}, 2.80 \times 10^{-2} \mathrm{mmol}\right)$, reflux for 4 d , chromatographic separation $R_{f}(H e x: E E 10: 1)=0.13$ gave product $38(0.38 \mathrm{~g}, 0.66$ $\mathrm{mmol}, 53 \%$) as a colorless solid.
${ }^{1} \mathrm{H}$ NMR $\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.43\left(\mathrm{t}, \mathrm{J}=9.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{CH}_{2}\right), 4.43(\mathrm{q}, \mathrm{J}=9.3 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{CH}_{2}$), 7.39 ($\mathrm{d}, \mathrm{J}=9.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{\text {aromatic }}$), 7.72 (d, J = $9.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{\text {aromatic }}$), $7.97-8.29$ ($\mathrm{m}, 9 \mathrm{H}, \mathrm{H}_{\text {pyrene }}$), 8.34 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{H}_{\text {aromatic }}$).
${ }^{13} \mathrm{C} \operatorname{NMR}\left(62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=14.27,61.79,124.63,124.88,125.09,125.15$, 125.99, 127.37, 127.49, 127.60, 128.45, 128.80, 130.47, 130.71, 130.93, 131.44, 132.14, 132.81, 137.01, 139.31, 141.27, 163.93.
$\mathrm{C}_{31} \mathrm{H}_{20} \mathrm{Br}_{2} \mathrm{O}_{2}$ (581.98) calcd C 63.72, H 3.45, found C 63.65, H 3.48 .
MS (EI, $\left.80 \mathrm{eV}, 30-60{ }^{\circ} \mathrm{C}\right): \mathrm{m} / \mathrm{z}(\%)=582$ (50.5), [M $\left.{ }^{+}\right], 554$ (7.3), [M - CO].

(2,6-Dibromo-4'-pyren-1-yl-biphenyl-4-yl) acetic acid ethyl ester (39)

For preparation see general procedure for SCC 1:
lodophenyl ester 21 ($5.54 \mathrm{~g}, 12.40 \mathrm{~mol}$), pyrene phenyl pinacol 37 ($5.00 \mathrm{~g}, 12.40$ mmol), xylene (50 ml), aqueous solution of $\mathrm{Na}_{2} \mathrm{CO}_{3}(25 \mathrm{ml}$, 1 M), tetrakis(triphenylphosphine)palladium(0) (286.0 mg, 0.25 mmol$), 3 \mathrm{~d}$. Chromatographic separation through silica gel with hexane:acetic acid ethyl ester 20:1 gave product 39 ($3.23 \mathrm{~g}, 5.40 \mathrm{mmol}, 44 \%$) as a colorless solid. R_{f} (Hex:EE 3:1) $=0.38$.
${ }^{1} \mathrm{H}$ NMR ($270 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.34\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=9 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 3.57\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$ benzylic), 4.26 (q, 2H, J = $9 \mathrm{~Hz}, \mathrm{CH}_{2}$), 7.46 (d, 2H, J $=9 \mathrm{~Hz}, \mathrm{H}_{\text {aromatic }}$), 7.65 (s, 2H, Haromatic), 7.76 (d, 2H, J = $9 \mathrm{~Hz}, \mathrm{H}_{\text {aromatic }}$), 7.93-8.37 (m, 9H, $\mathrm{H}_{\text {pyrene }}$).
${ }^{13} \mathrm{C}$ NMR (125.8 MHz, CDCl_{3}): $\delta=14.16,39.93,61.32,124.43,124.60,124.80$, 124.87, 125.06, 125.16, 125.93, 127.34 127.38, 127.49, 127.62, 128.14, 129.01, 130.32, 130.55, 130.86, 131.36, 132.70, 136.23, 137.13, 139.60, 140.74, 141.44, 170.45.

MS (EI, $\left.80 \mathrm{eV}, 280^{\circ} \mathrm{C}\right): \mathrm{m} / \mathrm{z}(\%)=596(51.0)\left[\mathrm{M}^{+}\right], 523(7.2)\left[\mathrm{M}^{+}-\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}_{2}\right], 365$ (11.5) [$\mathrm{M}^{+}-\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}_{2} \mathrm{Br}_{2}$], 276 (4.2) [$\left.\mathrm{C}_{22} \mathrm{H} 12\right]$.
$\mathrm{C}_{32} \mathrm{H}_{22} \mathrm{Br}_{2} \mathrm{O}_{2}$ (598.33) calcd C 64.24, H 3.71, found C 64.06, H 3.87.

2,6-Bis-(3-tert-butoxycarbonylamino-propyl)-4'-pyren-1-yl-biphenyl-4-carboxylic acid ethyl ester (41)

For preparation see general procedure for SCC 2:

Allylamine 40 ($0.70 \mathrm{~g}, 4.11 \mathrm{mmol}$), $9-\mathrm{BBN}(0.63 \mathrm{~g}, 5.15 \mathrm{mmol})$, di-bromoester 38 $(0.15 \mathrm{~g}, 0.26 \mathrm{mmol})$, toluene (10 ml), $\mathrm{KOH}(10 \mathrm{ml}, \mathrm{c}=1 \mathrm{~mol} / \mathrm{l}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(25 \mathrm{mg}$, 0.02 mmol), reflux for 5 d , chromatographic separation through silica gel with hexane:acetic acid ethyl Ester 7:1 gave product 41 ($85.0 \mathrm{mg}, 0.12 \mathrm{mmol}, 45 \%$). $\mathrm{R}_{\mathrm{f}}=$ 0.08 .
${ }^{1} \mathrm{H}$ NMR $\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.43\left(\mathrm{~s}, 18 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.48\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=9.3 \mathrm{~Hz}, \mathrm{CH}_{3}\right)$, 1.76 (tt, 4H, J = $9.3 \mathrm{~Hz}, \mathrm{CH}_{2}$), $2.62\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=9.3 \mathrm{~Hz}, \mathrm{H}_{\text {benzylic }}\right), 3.13\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{NH}-\right.$), 4.51 ($\mathrm{q}, 4 \mathrm{H}, \mathrm{J}=9.3 \mathrm{~Hz}, \mathrm{CH}_{2}$ ester +NH), $7.40\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=9.3 \mathrm{~Hz}, \mathrm{H}_{\text {aromatic }}\right), 7.79$ (d, $2 \mathrm{H}, \mathrm{J}=9.3 \mathrm{~Hz}, \mathrm{H}_{\text {aromatic }}$), 7.94 (s, $2 \mathrm{H}, \mathrm{H}_{\text {aromatic }}$), $8.05-8.40\left(\mathrm{~m}, 9 \mathrm{H}, \mathrm{H}_{\text {pyrene }}\right)$.
${ }^{13} \mathrm{C}$ NMR (125.8 MHz, CDCl_{3}): $\delta=14.36,28.60,30.96,31.30,40.15,60.96,79.00$, 124.59, 124.78, 124.84, 124.88, 125.00, 125.11, 125.97, 127.06, 127.34, 127.43, 127.71, 128.24, 128.34, 129.01, 129.59, 130.52, 130.59, 130.86, 131.36, 136.95, 137.94, 140.16, 140.41, 145.48, 155.83, 166.63.

MS (+FAB, $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{DMSO} / \mathrm{MNBA}\right): ~ \mathrm{~m} / \mathrm{z}(\%)=740$ (50.8), $\left[\mathrm{M}^{+}\right], 566$ (11.6), $\left[\mathrm{M}^{+}-\right.$ $\mathrm{C}_{8} \mathrm{H}_{14} \mathrm{O}_{4}$], 465 (12.7), [$\mathrm{M}^{+}-\mathrm{C}_{13} \mathrm{H}_{23} \mathrm{O}_{6}$], 539 (11.3), [M^{+}- pyrene], 538 (14.2), [$\mathrm{M}^{+}-$ $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{O}_{4}$.
$\mathrm{C}_{47} \mathrm{H}_{52} \mathrm{~N}_{2} \mathrm{O}_{6}$ (740.86) calcd C 76.19, H 7.07, N 3.78, found C 75.65, H 7.14, N 3.44.
HRMS $\left({ }^{12} \mathrm{C}_{47}{ }^{1} \mathrm{H}_{52}{ }^{14} \mathrm{~N}_{2}{ }^{16} \mathrm{O}_{6}\right)\left[\mathrm{M}^{+}\right] 740.382538$ found 740.38452 .

[2,6-Bis-(3-tert-butoxycarbonylamino-propyl)-4'-pyren-1-yl-biphenyl-4-yl] acetic acid ethyl ester (42)

For preparation see general procedure for SCC 2:

Ally amine $40(4.2 \mathrm{~g}, 26.70 \mathrm{mmol})$, $9-\mathrm{BBN}(4.1 \mathrm{~g}, 33.40 \mathrm{mmol})$, dry THF (20 ml); xylene (25 ml), dibromo ester 39 ($1.0 \mathrm{~g}, 1.70 \mathrm{mmol}$), $\mathrm{KOH}(25 \mathrm{ml}, \mathrm{c}=1 \mathrm{~mol} / \mathrm{l})$, tetrakis(triphenylphosphine)palladium(0) ($81.0 \mathrm{mg}, 0.07 \mathrm{mmol}$), 2 d .
Chromatographic separation through silica gel with first hexane:acetic acid ethyl ester 7:1 and later changed to $3: 1$ gave the product 42 ($0.98 \mathrm{~g}, 1.30 \mathrm{mmol}, 76 \%$) as a yellow fluorescent oil. Freeze drying in benzene gave product 42 as a colorless solid.
${ }^{1} \mathrm{H}$ NMR (270 MHz, CDCl_{3}): $\delta=1.31\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=9 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.39\left(\mathrm{~s}, 18 \mathrm{H}, \mathrm{CH}_{3 \mathrm{Boc}}\right)$, 1.69 (tt, $4 \mathrm{H}, \mathrm{J}=9 \mathrm{~Hz}, \mathrm{CH}_{2}$), $2.50\left(\mathrm{t}, 4 \mathrm{H} \mathrm{J}=9 \mathrm{~Hz}, \mathrm{CH}_{2}\right.$ benzylic), $3.04\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right.$), 3.65 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{CH}_{2}$ benzylic), 4.22 ($\mathrm{q}, 2 \mathrm{H}, \mathrm{J}=9 \mathrm{~Hz}, \mathrm{CH}_{2}$ ester), 4.48 (s, 2H,NH), 7.10 (s, $2 \mathrm{H}, \mathrm{H}_{\text {aromatic }}$), 7.33 (d, 2H, J = $9 \mathrm{~Hz}, \mathrm{H}_{\text {aromatic }}$), 7.69 (d, 2H, J = $9 \mathrm{~Hz}, \mathrm{H}_{\text {aromatic }}$), 7.93 8.34 (m, 9H, H ${ }_{\text {pyrene }}$).
${ }^{13} \mathrm{C}$ NMR ($67.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=14.07,28.20,30.86,31.22,40.11,40.93,60.72$, 78.77, 124.46, 124.68, 124.78, 124.95, 125.82, 127.22, 127.51, 127.60, 128.25, 129.48, 130.27, 130.41, 130.77, 131.25, 133.12, 137.07, 138.45, 139.44, 139.62, 140.06, 155.77, 171.59.

MS (EI, $80 \mathrm{eV}, 230{ }^{\circ} \mathrm{C}$): m/z (\%): 754 (100) [M $\left.{ }^{+}\right], 680$ (62.3) [$\left.\mathrm{M}^{+}-\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}\right], 624$ (34.4) [$\mathrm{M}^{+}-\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{NO}_{2}$], 553 (6.0) [$\left.\mathrm{M}^{+}-\mathrm{C}_{16} \mathrm{H}_{9}\right]$.
$\mathrm{C}_{48} \mathrm{H}_{54} \mathrm{~N}_{2} \mathrm{O}_{6}$ (754.96) calcd C 76.36, H 7.21, N 3.71, found C 75.85, H 7.08, N 3.57. HRMS $\left({ }^{12} \mathrm{C}_{48}{ }^{1} \mathrm{H}_{54}{ }^{16} \mathrm{O}_{6}{ }^{14} \mathrm{~N}_{2}\right)\left[\mathrm{M}^{+}\right]$calcd. 754.398188 , found 754.39508 .

[2,6-Bis-(3-tert-butoxycarbonylamino-propyl)-4'-pyren-1-yl-biphenyl-4-yl]acetic acid (43)

The G1 ester 42 ($0.70 \mathrm{~g}, 0.93 \mathrm{mmol}$) was suspended in methanol (15 ml). KOH ($0.156 \mathrm{~g}, 0.93 \mathrm{mmol}$) and 5 drops of water were added. To give a clear solution the mixture was refluxed for 2 h . The solvent was removed by distillation and the residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{ml})$ and water (25 ml). Acetic acid ($0.10 \mathrm{~g}, 1.67 \mathrm{mmol}$) was added. The phases were separated and the aqueous one was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ two times (50 ml). The combined organic phases were dried $\left(\mathrm{MgSO}_{4}\right)$ and the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was removed. Chromatographic separation through silica gel with first $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and later $\mathrm{CH}_{2} \mathrm{Cl}_{2}$:methanol $5: 1$ gave the product 43 as a colorless solid $(0.594 \mathrm{~g}$, $0.817 \mathrm{mmol}, 88 \%) . \mathrm{R}_{\mathrm{f}}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}:\right.$ methanol $\left.5: 1\right)=0.58$.
${ }^{1} \mathrm{H}$ NMR (270 MHz, $\left.\mathrm{CD}_{3} \mathrm{OD}\right): ~ \delta=1.24\left(\mathrm{~s}, 18 \mathrm{H}, \mathrm{H}_{\text {вос }}\right), 1.57\left(\mathrm{tt}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 2.34(\mathrm{t}, 4 \mathrm{H}$, CH_{2} benzylic), 2.87 ($\mathrm{t}, 4 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{NH}$), $3.57\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$ benzylic), $7.03\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}_{\text {aromatic }}\right.$), 7.17 (d, $2 \mathrm{H}, \mathrm{H}_{\text {aromatic }}$), 7.45 (d, $2 \mathrm{H}, \mathrm{H}_{\text {aromatic }}$), $7.79-8.17$ (m, 9H, $\mathrm{H}_{\text {pyrene }}$).
${ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{CD}_{3} \mathrm{OD}$): $\delta=27.35,30.40,30.62,37.47,42.80,78.29$, 123.90, 124.07, 124.16, 124.28, 124.30, 125.27, 126.63, 126.90, 126.95, 127.18, $127.73,129.12,129.70,130.03,130.33,130.86,135.09,136.58,138.42,138.45$, 139.13, 139.29, 156.31, 157.55.

MS (EI, $\left.80 \mathrm{eV}, 230{ }^{\circ} \mathrm{C}\right) \mathrm{m} / \mathrm{z}=681(0.3)\left[\mathrm{M}^{+}-\mathrm{COOH}\right], 44(95.6)\left[\mathrm{CO}_{2}{ }^{+}\right]$.
MS (+FAB, MNBA/CH2Cl 2 m/z = $727(0.26)[\mathrm{M}+\mathrm{H}]^{+}$.

2,6-Bis-(3-amino-propyl)-4'-pyren-1-yl-biphenyl-4-carboxylic acid ethyl ester bis trifluoroacetate (44)

The procedure was analogous to the one described for compound 45 preparation.

41 ($85.0 \mathrm{mg}, 0.115 \mathrm{mmol}$), $\mathrm{CHCl}_{3}(5 \mathrm{ml}), \mathrm{CF}_{3} \mathrm{COOH}$ (1 ml), 1 h , yielded in 44 (78.6 $\mathrm{mg}, 0.100 \mathrm{mmol}, 89$ \%).
${ }^{1} \mathrm{H}$ NMR ($270 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta=1.41\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.88\left(\mathrm{tt}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 2.62(\mathrm{t}, 4 \mathrm{H}$, $\mathrm{H}_{\text {benzylic }}$), 2.85 (t, 4H, CH_{2}), 4.43 (q, $2 \mathrm{H}, \mathrm{H}_{\text {ester }}$), 7.37 (d, 2H, $\mathrm{H}_{\text {aromatic }}$), 7.74 (d, 2 H , $\mathrm{H}_{\text {aromatic }}$), $7.97-8.34\left(\mathrm{~m}, 11 \mathrm{H}, \mathrm{H}_{\text {Pyrene }}+\right.$ aromatic $)$.
${ }^{13} \mathrm{C}$ NMR (62.9 MHz, $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta=14.65,30.02,31.65,40.48,62.36,114.79,125.74$, 125.93, 126.09, 126.22, 126.51, 127.38, 128.47, 128.73, 128.83, 129.14, 129.59, $130.46,130.82,131.35,132.05,132.32,132.95,138.12,139.03,141.18,142.08$, 147.24, 167.92.

MS (+FAB, DMSO/MNBA) m/z (\%) = 541 (100) $\left[\mathrm{M}^{+}-\mathrm{CF}_{3} \mathrm{COOH}^{2} / \mathrm{CF}_{3} \mathrm{COO}^{-}\right]$.

[2,6-Bis-(3-amino-propyl)-4'-pyren-1-yl-biphenyl-4-yl]-acetic acid ethyl ester bis trifluoroacetate (45)

Di-boc protected ester 42 ($0.111 \mathrm{~g}, 0.147 \mathrm{mmol}$) was dissolved in chloroform (7 ml), trifluoroacetic acid was added (1 ml), and the color turned from pale yellow to orange. The solution was stirred for 1 h at room temperature. The solvents were removed through distillation. Freeze drying of the residue gave the product 45 ($101 \mathrm{mg}, 0.129$ mmol, 88 \%) as a brown solid.
${ }^{1} \mathrm{H}$ MNR (270 MHz, CD $\left.{ }_{3} \mathrm{OD}\right) \delta=1.24\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.82\left(\mathrm{tt}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 2.53\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{CH}_{2}\right.$ benzylic), 2.81 ($\mathrm{t}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{NH}$), 3.67 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{CH}_{2}$ benzylic), $4.17\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right.$), 7.15 (s , $2 \mathrm{H}, \mathrm{CH}_{2}$ aromatic), 7.34 (d, $2 \mathrm{H}, \mathrm{CH}_{2}$ aromatic), 7.67 ($\mathrm{d}, 2 \mathrm{H}, \mathrm{CH}_{2}$ aromatic), $7.86-8.29(\mathrm{~m}, 9 \mathrm{H}$, $\mathrm{H}_{\text {pyrene }}$).
${ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta=14.54,29.99,31.57,40.43,41.64,62.05,125.84$, 125.94, 126.09, 126.32, 127.21, 128.38, 128.53, 128.67, 129.26, 129.48, 130.93, 131.76, 132.06, 132.22, 132.80, 135.36, 138.25, 139.62, 140.49, 141.00, 141.44, 173.62 ppm.
$\mathrm{MS}(+\mathrm{FAB}) \mathrm{m} / \mathrm{z}=555$ (100) $\left[\mathrm{M}^{+}-\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}^{2} \mathrm{CF}_{3} \mathrm{COO}^{-}\right]$, 510 (9.3) $\left[\mathrm{M}^{+}-\right.$ $\left.\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H} / \mathrm{CF}_{3} \mathrm{COO}^{-} \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}\right]$.

[2,6-Bis-[(3-\{2[2,6-bis-(3-tert-butoxycarbonylamino-propyl)-4'-pyren-1-yl-biphenyl-4-yl]ethanoylamino\}-propyl)4'-pyren-1-yl-biphenyl-4-yl]-acetic acid ethyl ester (50)

For preparation see general procedure for amide coupling

G1 acid 43 (125.0 mg, 0.172 mmol), dry methylene chloride (20 ml), 1hydroxybenzotriazole (HOBT) ($29.0 \mathrm{mg}, 0.189 \mathrm{mmol}$), diisopropyl ethylamine (DIPEA) $(47.2 \mu \mathrm{l}, 35.0 \mathrm{mg}, 0.271 \mathrm{mmol})$, amine 45 ($64.1 \mathrm{mg}, 0.082 \mathrm{mmol}$), N '-(3-dimethylaminopropyl)-N-ethyl-carbodiimide hydrochloride (EDC) ($36.3 \mathrm{mg}, 0.189$ mmol), 15 h at $25^{\circ} \mathrm{C}$.
Chromatographic separation with silica gel and hexane:acetic acid ethyl ester 1:2 and freeze drying gave the product $50(122.0 \mathrm{mg}, 0.062 \mathrm{mmol}, 75 \%)$ as a colorless solid. $\mathrm{R}_{\mathrm{f}}=0.23$.
${ }^{1} \mathrm{H}$ NMR ($270 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=1.17-1.43\left(\mathrm{~m}, 39 \mathrm{H}, \mathrm{H}_{\mathrm{boc}}+\mathrm{CH}_{3}\right.$ ester), 1.55 (tt, 8 H , CH_{2}), $1.74\left(\mathrm{tt}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 2.38\left(\mathrm{t}, 8 \mathrm{H}, \mathrm{CH}_{2}\right.$ benzylic), $2.48\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{CH}_{2}\right.$ benzylic), $2.94(\mathrm{~m}, 8 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{~N}$), $3.21\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right.$), $3.45\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{CH}_{2}\right.$ benzylic), $3.65\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$ benzylic), 4.21 (q , $2 \mathrm{H}, \mathrm{CH}_{2}$ ester) , $4.34(\mathrm{~m}, 4 \mathrm{H}, \mathrm{NH}), 5.77(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NH}), 6.94\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{H}_{\text {aromatic }}\right), 7.10(\mathrm{~s}, 2 \mathrm{H}$, $H_{\text {aromatic }}$), 7.24 (d, $4 \mathrm{H}, \mathrm{H}_{\text {aromatic }}$), 7.38 (d, $2 \mathrm{H}, \mathrm{H}_{\text {aromatic }}$), 7.60 (d, $4 \mathrm{H}, \mathrm{H}_{\text {aromatic }}$), 7.72 (d, $2 \mathrm{H}, \mathrm{H}_{\text {aromatic }}$), $7.93-8.38\left(\mathrm{~m}, 27 \mathrm{H}, \mathrm{H}_{\text {pyrene }}\right)$.
${ }^{13} \mathrm{C}$ NMR (125.8 MHz, CDCl_{3}) $\delta=13.97,28.07,30.49,30.70,30.80,30.90,39.25$, 39.70, 40.72, 43.26, 60.67, 78.52, 124.31, 124.47, 124.57, 124.65, 124.77, 125.65, 127.04, 127.33, 127.41, 128.01, 129.25, 129.46, 130.07, 130.20, 130.28, 130.55, $131.03,132.98,134.14,136.68,136.81,138.15,138.43,139.22,139.36,139.91$, 155.66, 170.83, 171.63.
$\mathrm{MS}(+\mathrm{FAB}) \mathrm{m} / \mathrm{z}=1973(7.1)\left[\mathrm{M}^{+}+\mathrm{H}\right]$.
$\mathrm{C}_{130} \mathrm{H}_{134} \mathrm{~N}_{6} \mathrm{O}_{12}$ (1972.52) calcd C 79.16, H 6.85, N 4.26, found C 79.24, H 7.06, N 3.91.

2,6-Bis(3-\{2[2,6-bis-(3-tert-butoxycarbonylamino-propyl)-4'-pyren-1-yl-biphenyl-4-yl]ethanoylamino\}-propyl)4'-pyren-1-yl-biphenyl-4-carboxylic acid ethyl ester

 (51)

For preparation see general procedure for amide coupling:

Acid 43 ($0.12 \mathrm{~g}, 0.165 \mathrm{mmol}$), dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (20 ml), $\mathrm{HOBT}(34 \mathrm{mg}, 0.25 \mathrm{mmol}), 15 \mathrm{~min}$, amine 44 ($60.5 \mathrm{mg}, 0.08 \mathrm{mmol}$), DIPEA ($50 \mu \mathrm{l}, 0.26 \mathrm{mmol}$), 30 min , EDC (36 mg , 0.182 mmol), 15 h stirring, chromatographic separation with silica gel and hexane:acetic acid ethyl ester 1:2 yielded in $51(84 \mathrm{mg}, 0.043 \mathrm{mmol}, 54 \%) R_{f}=0.31$.
${ }^{1} \mathrm{H}$ NMR ($270 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.15-1.38\left(\mathrm{~m}, 36 \mathrm{H}, \mathrm{H}_{\text {boc }+ \text { ester }}\right), 1.45\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.55$ (tt, $8 \mathrm{H}, \mathrm{CH}_{2}$), $1.75\left(\mathrm{tt}, 8 \mathrm{H}, \mathrm{CH}_{2}\right), 2.39\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 2.53\left(\mathrm{tt}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 2.96(\mathrm{~m}, 8 \mathrm{H}$, CH_{2}), 3.21 (t, $4 \mathrm{H}, \mathrm{CH}_{2}$), 3.42 ($\mathrm{s}, 4 \mathrm{H}, \mathrm{H}_{\text {benzylic }}$), 4.39-4.49(m, 6H, $\mathrm{NH}+\mathrm{CH}_{2}$), $5.75-$ 5.90 (s, 2H, NH), 6.97 (s, $4 \mathrm{H}, \mathrm{H}_{\text {aromatic }}$), 7.24 (d, $4 \mathrm{H}, \mathrm{H}_{\text {aromatic }}$), 7.35 (d, $2 \mathrm{H}, \mathrm{H}_{\text {aromatic }}$), 7.60 (d, $4 \mathrm{H}, \mathrm{H}_{\text {aromatic }}$), 7.75 (d, $2 \mathrm{H}, \mathrm{H}_{\text {aromatic }}$), 7.84 (s, $2 \mathrm{H}, \mathrm{H}_{\text {aromatic }}$), $7.90-8.34(\mathrm{~m}, 27 \mathrm{H}$, $\mathrm{H}_{\text {pyrene }}$).
${ }^{13} \mathrm{C}$ NMR (125.8 MHz, CDCl_{3}): $\delta=14.43,28.29,30.71,31.04,31.11,39.44,39.89$, 43.69, 61.07, 78.95, 124.59, 124.81, 124.90, 124.97, 125.09, 125.24, 125.97, 126.07, 127.37, 127.61, 127.72, 127.87, 128.34, 129.16, 129.52, 129.63, 130.39, 130.54, 130.61, 130.69, 130.88, 131.38, 134.17, 136.77, 137.15, 138.08, 138.34, 139.70, 139.75, 140.16, 140.33, 140.46, 145.52, 155.85, 166.70, 171.05.

MS (+FAB, 2KV, MNBA/CH $\mathrm{Cl}_{2} / \mathrm{DMSO}$): m/z (\%) = 1957 (0.48) [$\left.\mathrm{M}^{+}\right]$, 1958 (0.8) $\left[\mathrm{M}+\mathrm{H}^{+}\right], 1981.0(0.3)\left[\mathrm{M}+\mathrm{Na}^{+}\right]$.
$\mathrm{C}_{129} \mathrm{H}_{132} \mathrm{~N}_{6} \mathrm{O}_{12}$ (1956.99) calcd C 79.11, H 6.79, N 4.29, found C 78.14, H 6.50, N 4.26.

[2,6-Bis-(3-\{2[2,6-bis-(3-tert-butoxycarbonylamino-propyl)-4'-pyren-1-yl-biphenyl-4-yl]ethanoylamino\}-propyl)4'-pyren-1-yl-biphenyl-4-yl-]acetic

The G2 ester 50 ($0.29 \mathrm{~g}, 0.148 \mathrm{mmol}$) was dissolved in THF (5 ml) and MeOH (20 $\mathrm{ml}) . \mathrm{KOH}(0.57 \mathrm{~g}, 0.01 \mathrm{~mol})$ and 10 drops of water were added. The mixture was refluxed for 5 h . The solvent was removed through distillation and the residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{ml})$ and water (25 ml). Acetic acid ($1.20 \mathrm{~g}, 0.02 \mathrm{~mol}$) was added. The phases were separated and the aqueous one was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(50 \mathrm{ml})$ two times. The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$ and the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was removed. Freeze drying with benzene gave the product $52(0.27 \mathrm{~g}, 0.141 \mathrm{mmol}$, 95 \%) as a pale yellow solid.
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=1.32\left(\mathrm{~s}, 36 \mathrm{H}, \mathrm{H}_{\text {boc }}\right), 1.5-1.67\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{CH}_{2}\right), 1.67-1.81$ ($\mathrm{m}, 4 \mathrm{H}, \mathrm{CH}_{2}$), 2.28-2.68 (m, 12H, CH2), 2.68-3.10 (m, 8H, CH CH), 3.10-3.31 (m, 4H, $\mathrm{CH}_{2} \mathrm{~N}$), 3.46 ($\mathrm{s}, 4 \mathrm{H}, \mathrm{CH}_{2}$ benzylic), 3.71 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{CH}_{2}$ benzylic), 4.28-4.50 ($\mathrm{s}, 4 \mathrm{H}, \mathrm{NH}$), 5.76 (s, 2H, NH), 6.88-7.15 (m, 6H, Haromatic), 7.25-7.40 (m, 4H, Haromatic), 7.53-7.80 (m, 8H, $\mathrm{H}_{\text {aromatic }}$), $7.80-8.34$ ($\mathrm{m}, 27 \mathrm{H}, \mathrm{H}_{\text {pyrene }}$).
${ }^{13} \mathrm{C}$ NMR (125.8 MHz, CDCl_{3}) $\delta=28.33,30.74,31.08,39.59,39.91,43.70,79.05$, 124.64, 124.85, 124.93, 125.13, 126.03, 127.41, 127.75, 128.08, 128.37, 129.56, 129.74, 130.44, 130.57, 130.91, 131.42, 134.37, 137.17, 138.39, 139.76, 140.32, 155.88, 156.0, 171.07.

MS (+FAB, 2KV, MNBA/CHCl 3) m/z (\%) = $1945(100)\left[\mathrm{M}^{+}+\mathrm{H}\right]$.

7.4 Synthesis of compounds from chapter 4.4

(2,5 Dihexyl-4'-trimethyl stannanyl-biphenyl-4-yl-)trimethyl-silane (54)

Sodium powder ($6 \mathrm{~g}, 151 \mathrm{mmol}$) was suspended in abs. DMF. At $0^{\circ} \mathrm{C}$ a solution of trimethylstannanyl chloride ($10.00 \mathrm{~g}, 50.2 \mathrm{mmol}$) in abs. DMF (20 ml) was added dropwise in 15 min . The reaction mixture was stirred for 12 h at room temperature and the color turned from grey to green. The mixture was filtrated under N_{2}. To the filtrate a solution of Br-biphenyl 53 ($9.37 \mathrm{~g}, 19.8 \mathrm{mmol}$) dissolved in abs. DMF (30 ml) was dropped within 30 min at $0^{\circ} \mathrm{C} . \mathrm{NaBr}$ started to precipitate immediately; the color changed from green to colorless. The mixture was stirred for 12 h at room temperature.
An aqueous solution of $\mathrm{KF}(20 \mathrm{ml}, \mathrm{c}=2 \mathrm{~mol} / \mathrm{l})$ was added to the reaction mixture. After filtration of the precipitate, the organic layer was separated and dried $\left(\mathrm{MgSO}_{4}\right)$. The DMF was removed by distillation. The product 54 is a colorless oil $(9.20 \mathrm{~g}, 16.5$ mmol, 83.3 \%).
${ }^{1} \mathrm{H}$ NMR $\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.36\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{Sn}\right), 0.43\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{Si}\right), 0.93(\mathrm{t}, \mathrm{J}$ $\left.=9.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.00\left(\mathrm{t}, \mathrm{J}=9.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.09-1.83\left(\mathrm{~m}, 16 \mathrm{H}, \mathrm{CH}_{2}\right), 2.62(\mathrm{t}, \mathrm{J}$ $=9.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}$ benzylic), $2.91\left(\mathrm{t}, \mathrm{J}=9.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$ benzylic), $7.12\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{\text {aromatic }}\right)$, 7.38 (d, J = $9.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{\text {aromatic }}$), 7.45 (s, $1 \mathrm{H}, \mathrm{H}_{\text {aromatic }}$), $7.60(\mathrm{~d}, \mathrm{~J}=9.3 \mathrm{~Hz}, 2 \mathrm{H}$, $H_{\text {aromatic }}$).
MS (El, $\left.80 \mathrm{eV}, 60{ }^{\circ} \mathrm{C}\right): \mathrm{m} / \mathrm{z}(\%)=473$ (22.7) $\left[\mathrm{M}^{+}-\mathrm{C}_{6} \mathrm{H}_{13}\right], 400$ (34.1) $\left[\mathrm{M}^{+}-\mathrm{C}_{6} \mathrm{H}_{13}{ }^{-}\right.$ $\left.\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right]$, 393 (20.3) $\left[\mathrm{M}^{+}-\mathrm{Sn}\left(\mathrm{CH}_{3}\right)_{3}\right]$, 388 (9.4) $\left[\mathrm{M}^{+}-\mathrm{C}_{12} \mathrm{H}_{26}\right]$, $320(9.8)\left[\mathrm{M}^{+}-\mathrm{Sn}\left(\mathrm{CH}_{3}\right)_{3^{-}}\right.$ $\left.\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right], 235(13.5)\left[\mathrm{M}^{+}-\mathrm{Sn}\left(\mathrm{CH}_{3}\right)_{3}-\mathrm{TMS}-\mathrm{Hex}\right], 73$ (100) [TMS ${ }^{+}$].

1,3,6,8-Tetrakis-(2',5'-dihexyl-4'-trimethylsilanyl-biphenyl-4-yl)-pyrene (55)

Tetrabromopyrene $13(1.60 \mathrm{~g}, 3.08 \mathrm{mmol})$ and stannanylbiphenyl $54(8.60 \mathrm{~g}, 15.4$ mmol) were dissolved in toluene (100 ml). The mixture was degassed and flushed with N_{2} three times. Then tetrakis(triphenylphosphine)palladium(0) (0.28 g, 0.242 mmol) was added under N_{2} and the mixture was degassed and flushed with N_{2} three times again. The mixture was refluxed for 2 d , the color changed from yellow to blue. Then an aqueous solution of $\mathrm{KF}(20 \mathrm{ml}, \mathrm{c}=2 \mathrm{~mol} / \mathrm{l})$ was added, the precipitate was removed, and the layers were separated. The aqueous layer was washed with toluene (20 ml). The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$ and the toluene removed. Recrystallization with diethyl ether gave the product $55(2.10 \mathrm{~g}, 1.18 \mathrm{mmol}$, 38 \%) as a yellow solid.
Melting point: 207-209 ${ }^{\circ} \mathrm{C}$
${ }^{1} \mathrm{H}$ NMR $\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.55\left(\mathrm{~s}, 36 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{Si}\right), 1.00\left(\mathrm{t}, \mathrm{J}=9.3 \mathrm{~Hz}, 12 \mathrm{H}, \mathrm{CH}_{3}\right)$, $1.10\left(\mathrm{t}, \mathrm{J}=9.3 \mathrm{~Hz}, 12 \mathrm{H}, \mathrm{CH}_{3}\right), 1.21-1.97\left(\mathrm{~m}, 64 \mathrm{H}, \mathrm{CH}_{2}\right), 2.86\left(\mathrm{t}, \mathrm{J}=9.3 \mathrm{~Hz}, 8 \mathrm{H}, \mathrm{CH}_{2}\right.$ aromatic), $2.93\left(\mathrm{t}, \mathrm{J}=9.3 \mathrm{~Hz}, 8 \mathrm{H}, \mathrm{CH}_{2}\right.$ aromatic), $7.36\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{H}_{\text {aromatic }}\right), 7.59(\mathrm{~s}, 4 \mathrm{H}$, $H_{\text {aromatic }}$), 7.69 (d, J = $8.3 \mathrm{~Hz}, 8 \mathrm{H}, \mathrm{H}_{\text {aromatic }}$), $7.90\left(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 8 \mathrm{H}, \mathrm{H}_{\text {aromatic }}\right.$), 8.33 (s, $2 \mathrm{H}, \mathrm{H}_{\text {pyrene }}$), 8.52 ($\mathrm{s}, 4 \mathrm{H}, \mathrm{H}_{\text {pyrene }}$).
${ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.64\left(\mathrm{~s}, \mathrm{CH}_{3}-\mathrm{Si}\right)$, $14.16\left(\mathrm{~s}, \mathrm{CH}_{3}-\mathrm{CH}_{2}\right)$, 22.62, 22.66, 29.33, 29.76, 31.62, 31.87, 32.15, 32.62, 32.86, 36.07, 125.48, 126.19, 128.29, $129.25,130.32,130.73,135.79,136.37,136.68,137.42,139.48,141.52,142.21$, 146.07.

MS (EI, $\left.80 \mathrm{eV}, 250-300{ }^{\circ} \mathrm{C}\right): \mathrm{m} / \mathrm{z}(\%)=1771(67.1)\left[\mathrm{M}^{+}\right], 1698(6.7)\left[\mathrm{M}^{+}-\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right], 73$ (19.7) $\left[\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}{ }^{+}\right]$.
$\mathrm{C}_{124} \mathrm{H}_{170} \mathrm{Si}_{4}$ (1773.05) calcd C 84.00 H 9.66 , found C 83.83 H 9.61 .

1,3,6,8-Tetrakis-(2',5'-dihexyl-4'iodo-biphenyl-4-yl-)pyrene) (56)

Core 55 ($1.00 \mathrm{~g}, 0.56 \mathrm{mmol}$) was dissolved in abs. $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{ml})$. To the yellow solution $\mathrm{ICl}(0.55 \mathrm{~g}, 3.38 \mathrm{mmol})$ in abs. $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{ml})$ was dropped in within 1 h at $78{ }^{\circ} \mathrm{C}$. The color changed from yellow to dark blue. The mixture was stirred for 1 h at $-78{ }^{\circ} \mathrm{C}$. Then the mixture was poured into an aqueous solution of sodium disulphite ($100 \mathrm{ml}, \mathrm{c}=1 \mathrm{~mol} / \mathrm{l}$) under vigorous stirring. The layers were separated, the aqueous one was washed two times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(60 \mathrm{ml})$. The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$, the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was removed. The yellow product $56(1.07 \mathrm{~g}, 0.54 \mathrm{mmol}$, 96%) was recrystallized in diethyl ether.
${ }^{1} \mathrm{H}$ NMR ($270 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.79\left(\mathrm{t}, \mathrm{J}=9 \mathrm{~Hz}, 12 \mathrm{H}, \mathrm{CH}_{3}\right), 0.90(\mathrm{t}, \mathrm{J}=9 \mathrm{~Hz}, 12 \mathrm{H}$, CH_{3}), 1.07-1.76 ($\mathrm{m}, 64 \mathrm{H}, \mathrm{CH}_{2}$), $2.59\left(\mathrm{t}, \mathrm{J}=9 \mathrm{~Hz}, 8 \mathrm{H}, \mathrm{CH}_{2}\right.$ benzylic), $2.71(\mathrm{t}, \mathrm{J}=9 \mathrm{~Hz}$, $8 \mathrm{H}, \mathrm{CH}_{2}$ benzylic $), 7.14$ ($\mathrm{s}, 4 \mathrm{H}, \mathrm{H}_{\text {aromatic }}$), $7.48\left(\mathrm{~d}, \mathrm{~J}=9 \mathrm{~Hz}, 8 \mathrm{H}, \mathrm{H}_{\text {aromatic }}\right.$), 7.72 ($\mathrm{d}, \mathrm{J}=9$ $\mathrm{Hz}, 8 \mathrm{H}, \mathrm{H}_{\text {aromatic }}$), $7.76\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{H}_{\text {aromatic }}\right), 8.12\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}_{\text {pyrene }}\right), 8.31\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{H}_{\text {pyrene }}\right)$.
${ }^{13} \mathrm{C}$ NMR ($67.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=14.10,22.53,22.62,29.13,30.37,31.27,31.51$, $31.67,32.28,40.39,99.60,125.42,128.23,129.10,130.40,130.73,137.04,139.68$, 139.92, 140.04, 140.25, 141.59, 142.68.

MS (EI, $\left.80 \mathrm{eV}, 380{ }^{\circ} \mathrm{C}\right)$: m/z (\%) = 1987 (85.5) [M $\left.{ }^{+}\right], 1860(22.5)\left[\mathrm{M}^{+}-\mathrm{I}\right), 1733$ (3.7) [$\left.\mathrm{M}^{+}-2 \mathrm{I}\right]$.
$\mathrm{C}_{112} \mathrm{H}_{134} \mathrm{I}_{4}(1987.89)$ calcd C 67.67 H 6.79 , found C 67.50 H 6.62 .
Melting point: $151^{\circ} \mathrm{C}$

1,3,6,8 Tetrakis-[4'(3-tert-butoxycarbonylamino-propyl)-2',5'-dihexyl-biphenyl-4-yl)-pyrene (57)

For preparation see general procedure for SCC 2:

Allylamine 40 ($2.64 \mathrm{~g}, 16.8 \mathrm{mmol}$), 9-BBN ($2.46 \mathrm{~g}, 20.16 \mathrm{mmol}$), abs. THF (20 ml), 100 ml toluene and 50 ml aqueous KOH ($\mathrm{c}=1 \mathrm{~mol} / \mathrm{l})$, Tetraiodocore $56(3.36 \mathrm{~g}, 1.69$ $\mathrm{mmol})$, tetrakistriphenylphoshinepalladium(0) ($155 \mathrm{mg}, 0.134 \mathrm{mmol}$), refluxed for 2 days. Chromatographic separation with silica gel, hexane:acetic acid ethyl ester 3:1 gave the product $57(2.64 \mathrm{~g}, 1.25 \mathrm{mmol}, 74 \%)$ as yellow solid. $\mathrm{R}_{\mathrm{f}}=0.11$.
${ }^{1} \mathrm{H}$ NMR $\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.77\left(\mathrm{t}, 12 \mathrm{H}, \mathrm{CH}_{3}\right), 0.86\left(\mathrm{t}, 12 \mathrm{H}, \mathrm{CH}_{3}\right), 1.10-1.72(\mathrm{~m}$, $100 \mathrm{H}, \mathrm{CH}_{3 \text { boc }}+\mathrm{CH}_{2}$), $1.96\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{CH}_{2}\right), 2.63\left(\mathrm{~m}, 24 \mathrm{H}, \mathrm{CH}_{2}\right.$ benzylic), 3.24 (s, 8 H , CH_{2}), 4.61 (s, $4 \mathrm{H}, \mathrm{NH}$), 7.10 ($\mathrm{s}, 4 \mathrm{H}, \mathrm{H}_{\text {aromatic }}$), 7.12 ($\mathrm{s}, 4 \mathrm{H}, \mathrm{H}_{\text {aromatic }}$), 7.50 (d, 8 H , $\mathrm{H}_{\text {aromatic }}$), 7.74 ($\mathrm{d}, 8 \mathrm{H}, \mathrm{H}_{\text {aromatic }}$), 8.15 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{H}_{\text {pyrene }}$), 8.31 ($\mathrm{s}, 4 \mathrm{H}, \mathrm{H}_{\text {pyrene }}$).
${ }^{13} \mathrm{C}$ NMR (125.7 MHz, CDCl_{3}): $\delta=13.99,22.50,26.71,27.53,28.29,29.12,29.41$, 29.56, 29.86, 31.15, 31.45, 31.64, 32.19, 32.62, 40.48, 41.69, 78.76, 125.29, 126.03, 128.08, 129.21, 129.57, 129.90, 130.11, 130.79, 137.05, 137.58, 137.66, 138.26, 139.05, 141.07, 155.86.
$\mathrm{MS}\left(+\mathrm{FAB}, \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MNBA}\right) \mathrm{m} / \mathrm{z}(\%)=2113(100)\left[\mathrm{M}^{+}+\mathrm{H}\right], 2057$ (32.0) $\left[\mathrm{M}^{+}-\mathrm{C}_{4} \mathrm{H}_{8}\right]$, 2038 (17.0) [$\left.\mathrm{M}^{+}-\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}\right], 1957$ (3.3) [$\left.\mathrm{M}^{+}-\mathrm{C}_{8} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{~N}\right]$.
$\mathrm{C}_{144} \mathrm{H}_{198} \mathrm{~N}_{4} \mathrm{O}_{8}(2113.17)$ calcd C 81.85 H 9.44 N 2.65 , found C 81.69 H 9.46 N 2.55.

1,3,6,8-Tetrakis-(4'[3-aminopropyl]-2',5'-dihexyl-biphenyl-4-yl)-pyrene trifluoroacetate (58)

Boc protected core $57(2.0 \mathrm{~g}, 0.946 \mathrm{mmol})$ was dissolved in $\mathrm{CHCl}_{3}(50 \mathrm{ml})$. Trifluoracetic acid was added (6 ml) and the solution was stirred for 3 h at room temperature. Solvents were removed and crude product $58(1.7 \mathrm{~g}, 0.918 \mathrm{mmol}, 97$ \%) was freeze dried with dioxane.
${ }^{1} \mathrm{H}$ NMR ($270 \mathrm{MHz}, \mathrm{DMSO}$): $\delta=0.69\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{CH}_{3}\right), 0.82\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{CH}_{3}\right), 0.89-1.62$ $\left(\mathrm{m}, 64 \mathrm{H}, \mathrm{CH}_{2}\right), 1.82\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{CH}_{2}\right), 2.45\left(\mathrm{~m}, 24 \mathrm{H}, \mathrm{CH}_{2}\right), 2.86\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{CH}_{2}\right), 7.00(\mathrm{~s}$, $4 \mathrm{H}, \mathrm{H}_{\text {aromatic }}$), 7.09 ($\mathrm{s}, 4 \mathrm{H}, \mathrm{H}_{\text {aromatic }}$), 7.36 (d, $4 \mathrm{H}, \mathrm{H}_{\text {aromatic }}$), 7.58 (d, $8 \mathrm{H}, \mathrm{H}_{\text {aromatic }}$), 7.84 (m, 12H, $\mathrm{NH}_{3}{ }^{+}$), 8.00 (s, 2H, $\mathrm{H}_{\text {pyrene }}$), 8.15 (s, $4 \mathrm{H}, \mathrm{H}_{\text {pyrene }}$).
${ }^{13} \mathrm{C}$ NMR (125.8 MHz, DMSO) $\delta=13.45,13.52,14.02,21.68,21.82,28.03,28.31$, $28.51,29.75,30.42,30.61,30.96,31.27,31.94,38.74,118.23,124.51,125.34$, 127.32, 128.66, 129.51, 130.08, 136.48, 136.90, 137.23, 137.52, 138.12, 138.47, 140.49, 158.54, 158.78.

MS (+FAB, DMSO/MNBA) (\%) m/z = 1713 (100) $\left[\mathrm{M}^{+}+\mathrm{H}-\mathrm{C}_{8} \mathrm{~F}_{12} \mathrm{O}_{8} \mathrm{H}_{4}\right]$.
$\mathrm{C}_{132} \mathrm{H}_{170} \mathrm{~F}_{12} \mathrm{~N}_{4} \mathrm{O}_{8}(2168.72)$ calcd C 73.11 H 7.90 N 2.58 , found C 72.96 H 7.85 N 2.41.

1,3,6,8-Tetrakis-\{4'-[3-(4-cyano-benzoylamino)-propyl]-2',5'-dihexyl-biphenyl-4-yl\}-pyrene (61)

For preparation see general procedure for amide coupling.

Cyano-benzoic acid 59 (149 mg, 1.01 mmol), HOBT (169 mg, 1.10 mmol), dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{ml})$, tetra amine core $58(500 \mathrm{mg}, 0.23 \mathrm{mmol})$, DIPEA ($300 \mathrm{mg}, 2.30$ $\mathrm{mmol})$, EDC ($212 \mathrm{mg}, 1.10 \mathrm{mmol}$), 1 d . Chromatographic separation with silica gel and $\mathrm{CH}_{2} \mathrm{Cl}_{2}: 2 \% \mathrm{MeOH}$ gave the product $61(250 \mathrm{mg}, 0.112 \mathrm{mmol}, 49 \%)$ as a yellow solid. $\mathrm{R}_{\mathrm{f}}=0.52$.
${ }^{1} \mathrm{H}$ NMR $\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.87\left(\mathrm{t}, 12 \mathrm{H}, \mathrm{CH}_{3}\right), 0.89\left(\mathrm{t}, 12 \mathrm{H}, \mathrm{CH}_{3}\right), 0.91-1.70(\mathrm{~m}$, $64 \mathrm{H}, \mathrm{CH}_{2}$), 2.06 (quin, $8 \mathrm{H}, \mathrm{CH}_{2}$), $2.50-3.00\left(\mathrm{~m}, 24 \mathrm{H}, \mathrm{CH}_{2}\right), 3.64\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{CH}_{2}\right), 6.71$ $(\mathrm{t}, 4 \mathrm{H}, \mathrm{NH}), 7.18\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{H}_{\text {aromatic }}\right), 7.20\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{H}_{\text {aromatic }}\right), 7.53\left(\mathrm{~d}, 8 \mathrm{H}, \mathrm{H}_{\text {aromatic }}\right), 7.68-$ $7.90\left(\mathrm{~m}, 24 \mathrm{H}, \mathrm{H}_{\text {aromatic }}\right), 8.23\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}_{\text {pyrene }}\right), 8.41\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{H}_{\text {pyrene }}\right)$.
${ }^{13} \mathrm{C}$ NMR ($68 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=13.97$, 22.41, 22.48, 28.29, 29.12, 29.40, 29.97, $30.63,31.14,31.43,31.45,31.60,32.24,32.63,40.38,114.68,117.88$ (CN), 125.30, 126.01, 127.51, 128.09, 129.17, 129.57, 129.90, 130.21, 131.00, 132.18, 136.97, 137.76, 137.87, 137.92, 138.48, 139.25, 139.31, 140.82, 165.51.

MS (EI, $350{ }^{\circ} \mathrm{C}, 80 \mathrm{eV}$): m/z (\%) = 2228 (0.7) [M $\left.{ }^{+}\right]$, $2055(4.7)\left[\mathrm{M}^{+}-\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{~N}_{2} \mathrm{O}\right]$.
EA $\mathrm{C}_{156} \mathrm{H}_{178} \mathrm{~N}_{8} \mathrm{O}_{4}$ (2229.17) calcd C 84.05 H 8.05 N 5.03 , found C 83.94 H 8.07 N 4.78.

Melting point: $177-182^{\circ}$

1,3,6,8-Tetrakis-\{2',5'-dihexyl-4'-[3-(4-nitro-benzoylamino)-propyl]-biphenyl-4-yl\}-pyrene (62)

For preparation see general procedure for amide coupling.

Nitro-benzoic acid 60 ($169 \mathrm{mg}, 1.10 \mathrm{mmol}$), HOBT ($169 \mathrm{mg}, 1.10 \mathrm{mmol}$), dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(25 \mathrm{ml})$, tetra amine core $58(500 \mathrm{mg}, 0.23 \mathrm{mmol})$, DIPEA ($300 \mathrm{mg}, 2.30 \mathrm{mmol}$), EDC ($212 \mathrm{mg}, 1.10 \mathrm{mmol}$), 2 d . Chromatographic separation with silica gel and $\mathrm{CH}_{2} \mathrm{Cl}_{2}: 2$ $\% \mathrm{MeOH}$ and freeze drying with benzene gave the product 62 ($200 \mathrm{mg}, 0.087 \mathrm{mmol}$, 38%) as a yellow solid. $R_{f}=0.58$.
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.80\left(\mathrm{t}, 12 \mathrm{H}, \mathrm{CH}_{3}\right), 0.86\left(\mathrm{t}, 12 \mathrm{H}, \mathrm{CH}_{3}\right), 0.11-1.72(\mathrm{~m}$, $64 \mathrm{H}, \mathrm{CH}_{2}$), 2.05 (quin, $8 \mathrm{H}, \mathrm{CH}_{2}$), $2.54-2.72\left(\mathrm{~m}, 16 \mathrm{H}, \mathrm{CH}_{2}\right), 2.80\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{CH}_{2}\right), 3.64$ $\left(\mathrm{m}, 8 \mathrm{H}, \mathrm{CH}_{2}\right), 6.18(\mathrm{t}, 4 \mathrm{H}, \mathrm{NH}), 7.03\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{H}_{\text {aromatic }}\right), 7.05\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{H}_{\text {aromatic }}\right), 7.47(\mathrm{~d}$, $8 \mathrm{H}, \mathrm{H}_{\text {aromatic }}$), 7.76 (d, $8 \mathrm{H}, \mathrm{H}_{\text {aromatic }}$), 7.81 (d, $8 \mathrm{H}, \mathrm{H}_{\text {aromatic }}$), 8.17 (s, $2 \mathrm{H}, \mathrm{H}_{\text {pyrene }}$), 8.24 (d, $8 \mathrm{H}, \mathrm{H}_{\text {aromatic }}$), $8.35\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{H}_{\text {pyrene }}\right)$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}): $\delta=14.00,22.47,22.54,29.18,29.47,30.14,30.64$, $31.21,31.50,31.67,32.31,32.70,40.56,123.66,125.38,126.09,127.95,128.19$, $129.23,129.65,130.00,130.30,131.13,137.05,137.88,137.97,138.01,139.39$, 139.48, 140.18, 140.86, 149.42, 165.26. (2 signals missing)

MS (+FAB, $\left.\mathrm{CHCl}_{3} / \mathrm{MNBA}\right): \mathrm{m} / \mathrm{z}(\%)=2309(100)\left[\mathrm{M}^{+}+\mathrm{H}\right]$.
EA $\mathrm{C}_{152} \mathrm{H}_{178} \mathrm{~N}_{8} \mathrm{O}_{12}(2309.13)$ calcd C 79.06 H 7.77 N 4.85 , found C 78.99 H 7.63 N 4.62.

1,3,6,8-Tetrakis-[4'-(3-\{3,5-bis-[3-(tetrahydro-pyran-2-yloxy)-propoxy]-benzoylamino\}-propyl)-2',5'-dihexyl-biphenyl-4-yl]-pyrene (65)

For preparation see general procedure for amide coupling.

G1-acid 63 ($85.1 \mathrm{mg}, 0.194 \mathrm{mmol}$), HOBT ($27.4 \mathrm{mg}, 0.203 \mathrm{mmol}$), dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (20 $\mathrm{ml})$, DIPEA ($50.1 \mathrm{mg}, 0.387 \mathrm{mmol}$), tetra-amine-core 58 ($92.0 \mathrm{mg}, 0.042 \mathrm{mmol}$), EDC ($38.9 \mathrm{mg}, 0.203 \mathrm{mmol}$), 14 h . Chromatographic separation with silica gel and first MeOH , then $\mathrm{MeOH}: \mathrm{CH}_{2} \mathrm{Cl}_{2} 5: 3$ gave dendrimer $65(96.0 \mathrm{mg}, 0.028 \mathrm{mmol}, 67 \%)$ as a yellow solid. $\mathrm{R}_{\mathrm{f}}\left(\mathrm{MeOH}: \mathrm{CH}_{2} \mathrm{Cl}_{2} 5: 3\right)=0.42$
${ }^{1} \mathrm{H}$ NMR ($270 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.83(\mathrm{t}, 12 \mathrm{H}, \mathrm{o}), 0.88\left(\mathrm{t}, 12 \mathrm{H}, \mathrm{o}^{〔}\right), 1.03-1.87(\mathrm{~m}, 112$ H, k, k', l, l', m, m', n, n', 8, 9, 10), $1.87-2.17$ (m, 24H, h, 5), 2.63 (m, 16H, j, j'), 2.75 (m, 8H, g), $3.41-3.69$ (m, 24H, i, 6, 11), $3.75-4.00$ (m, 16H, 6', 11'), 4.10 (t, 16H, 4), 4.58 (t, 8H, 7), 6.26 (t, 4H, 1), 6.58 (s, 4H, 3), 6.87 (s, 4H, e/f), 6.89 (s, 4H, e/f), $7.14(\mathrm{~s}, 8 \mathrm{H}, 2), 7.48(\mathrm{~d}, 8 \mathrm{H}, \mathrm{d}), 7.74(\mathrm{~d}, 8 \mathrm{H}, \mathrm{c}), 8.15(\mathrm{~s}, 2 \mathrm{H}, \mathrm{a}), 8.34(\mathrm{~s}, 4 \mathrm{H}, \mathrm{b})$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}): $\delta=13.99,19.51,22.53,25.39,29.19,29.46,29.63$, $29.96,30.63,31.06,31.20,31.51,31.69,32.02,32.10,32.33,32.73,33.14,40.17$, 43.04, 62.24, 63.85, 65.30, 98.92, 104.37, 105.47, 126.13, 127.67, 128.21, 128.54, 129.31, 129.97, 130.17, 130.34, 130.96, 136.89, 137.22, 137.79, 138.14, 139.30, 141.19, 160.27 (Ar-O), 167.33 (C=O).

MALDI-FOF MS m/z = $3395.8\left[\mathrm{M}+\mathrm{H}^{+}\right.$
EA C $2_{216} \mathrm{H}_{294} \mathrm{~N}_{4} \mathrm{O}_{28}(3394.45)$ calcd C 76.42 H 8.73 N 1.65 , found C 75.94 H 8.55 N 1.21.

1,3,6,8-Tetrakis-(4'-\{3-[3,5-bis-(3-\{3,5-bis-[3-(tetrahydro-pyran-2-yloxy)-propoxy]-benzoylamino\}-propoxy)-benzoylamino]-propyl\}-2',5'-dihexyl-biphenyl-4-yl)-pyrene (66)

For preparation see general procedure for amide coupling.

G2-acid 64 ($307 \mathrm{mg}, 0.276 \mathrm{mmol}$), HOBT ($40 \mathrm{mg}, 0.295 \mathrm{mmol}$), dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (20 ml), DIPEA ($74 \mathrm{mg}, 0.572 \mathrm{mmol}$), tetra-amine-core 58 ($100 \mathrm{mg}, 0.046 \mathrm{mmol}$), EDC (76 $\mathrm{mg}, 0.295 \mathrm{mmol}$), 2 d . Chromatographic separation with silica gel and first MeOH , then $\mathrm{MeOH}: \mathrm{CH}_{2} \mathrm{Cl}_{2} 5: 3$ gave dendrimer $67(120 \mathrm{mg}, 0.020 \mathrm{mmol}, 43 \%)$ as a yellow solid. $\mathrm{R}_{\mathrm{f}}\left(\mathrm{MeOH}: \mathrm{CH}_{2} \mathrm{Cl}_{2} 5: 3\right)=0.41$
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.74(\mathrm{t}, 12 \mathrm{H}, \mathrm{o}), 0.80(\mathrm{t}, 12 \mathrm{H}, \mathrm{o}), 1.00-1.80(\mathrm{~m}, 160$ H, k, k', I, l', m, m‘, n, n', 14, 15, 16), $1.84-2.08$ (m, 56H, h, 5, 11), 2.56 (m, 16H, j, $\left.\mathrm{j}^{\prime}\right), 2.70(\mathrm{~m}, 8 \mathrm{H}, \mathrm{g}), 3.30-3.55\left(\mathrm{~m}, 56 \mathrm{H}, \mathrm{i}, 6,12^{\text {‘ }}, 17{ }^{\text {' }}\right.$), $3.55-3.87$ (m, 32H, 12, 17), 3.98 (m, 48H, 4, 10), 4.49 (m, 16H, 13), 6.45 (s, 4H, 3), 6.49 (s, 8H, 9), 6.60 (s, 4H, 1), 6.75 (s, $8 \mathrm{H}, 7$), 6.83 (s, $24 \mathrm{H}, 2,8$), 7.03 (s, $4 \mathrm{H}, \mathrm{e} / \mathrm{f}), 7.05$ (s, $4 \mathrm{H}, \mathrm{e} / \mathrm{f}), 7.40$ (d, 8 H , d), $7.65(\mathrm{~d}, 8 \mathrm{H}, \mathrm{c}), 8.08(\mathrm{~s}, 2 \mathrm{H}, \mathrm{a}), 8.26(\mathrm{~s}, 4 \mathrm{H}, \mathrm{b})$.
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=14.02$, 19.50, 22.47, 22.53, 25.33, 28.93, 29.19, 29.47, 29.51, 29.84, 30.58, 31.09, 31.17, 31.48, 31.51, 31.68, 32.29, 32.69, 37.57, 40.23, 62.27, 63.81, 65.17, 66.26, 98.91, 104.37, 105.45, 105.67, 128.12, 129.26, 129.60, 129.91, 130.17, 130.85, 136.57, 136.97, 137.06, 137.76, 138.19, 139.14, 141.11, 159.78 (G1:Ar-O), 160.14 (G2:Ar-O), 167.17 (G1:C=O), 167.46 (G2:C=O). (6 signals missing)
MALDI-FOF MS m/z = 6102.52 $[\mathrm{M}+\mathrm{Na}]^{+}$
EA $\mathrm{C}_{360} \mathrm{H}_{494} \mathrm{~N}_{12} \mathrm{O}_{68}$ (6077.27) calcd C 71.14 H 8.19 N 2.77 , found C 70.18 H 7.86 N 2.50.

1,3,6,8-Tetrakis-(4’[3-\{2-[2,6-bis-(3-\{2-[2,6-bis-(3-tert-butoxycarbonylamino-propyl)-4'-pyren-1-yl-biphenyl-4-yl]-ethanoylamino\}-propyl)-4'-pyren-1-yl-biphenyl-4-yl]-ethanoylamino\}propyl]-2',5'-dihexyl-biphenyl-4-yl)-pyrene (67)

For preparation see general procedure for amide coupling:

G2-acid 52 ($0.17 \mathrm{~g}, 0.087 \mathrm{mmol}$), HOBT ($14.6 \mathrm{mg}, 0.095 \mathrm{mmol}$), deprotected core 58 $(43 \mathrm{mg}, 0.020 \mathrm{mmol})$, DIPEA $(21.6 \mathrm{mg}, 29 \mu \mathrm{l}, 0.167 \mathrm{mmol})$ and EDC $(18.3 \mathrm{mg}, 0.095$ mmol) and dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{ml})$ were used. Chromatographic separation through silica gel with $\mathrm{CH}_{2} \mathrm{Cl}_{2}: 5 \% \mathrm{MeOH}$ gave the product $67(0.15 \mathrm{~g}, 0.016 \mathrm{mmol}, 81 \%)$ as a yellow oil $R_{f}=0.65$. The product was recrystallized with acetone.
${ }^{1} \mathrm{H}$ NMR $\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=0.72-0.98\left(\mathrm{~m}, 24 \mathrm{H}, \mathrm{H} 31,31^{\prime}\right)$, 1.07-2.00 (m, 264 H , H6, 12, 18, 27-30, 27'-30', 21), 2.41 (m, 32 H, H17), 2.50 (m, 16 H, H11), 2.55-2.79 ($\mathrm{m}, 24 \mathrm{H}, \mathrm{H} 5,26,26^{\prime}$), 2.84-3.10 (m, $32 \mathrm{H}, \mathrm{H} 19$), 3.14-3.31 (24 H H7, 13), 3.48 (s, 16 H, H15), 3.62 (s, $8 \mathrm{H}, \mathrm{H} 8$), 4.41 ($\mathrm{s}, 16 \mathrm{H}, \mathrm{H} 20$), 5.89 (s, $8 \mathrm{H}, \mathrm{H} 14$), 6.45 (s, $4 \mathrm{H}, \mathrm{H} 8$), 7.00 (s, $16 \mathrm{H}, \mathrm{H} 16$), 7.05-7.21 (m, $16 \mathrm{H}, \mathrm{H} 3,4,10$), 7.24 (d, $16 \mathrm{H}, \mathrm{H} 24$), 7.36 (d, 8 H , H22), 7.46 (d, 8H, H2), 7.62 (d, 16 H, H25), 7.65-7.82 (16 H, H1, 23), 7.93-8.43 (m, $114 \mathrm{H}, \mathrm{H}_{\text {pyrene }}$).
${ }^{13} \mathrm{C}$ NMR (125.8 MHz, CDCl_{3}) $\delta=14.08,15.06,22.48,22.57,28.28,29.22,29.49$, $29.82,30.69,30.86,31.03,31.16,31.48,31.57,31.70,32.25,32.70,39.13,39.43$, 39.87, 43.63, 61.71, 66.45, 71.42, 78.93, 124.55, 124.77, 124.85, 124.94, 125.04, 125.16, 125.92, 126.0, 127.32, 127.45, 127.58, 127.68, 128.07, 128.29, 129.24, $129.49,129.69,129.93,130.19,130.37,130.49,130.58,130.83,131.33,134.24$,
134.48, 136.95, 137.07, 137.73, 137.77, 138.31, 138.61, 139.15, 139.65, 139.71, $140.15,140.27,141.02,155.87,171.07,171.24$.
$\mathrm{MS}\left(+\mathrm{FAB}, \mathrm{MNBA} / \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{DMSO}\right) \mathrm{m} / \mathrm{z}(\%)=9441(100)\left[\mathrm{M}^{+}+\mathrm{Na}\right]$.
$\mathrm{C}_{636} \mathrm{H}_{678} \mathrm{~N}_{28} \mathrm{O}_{44}$ (9418.51) calcd C 81.11 H 7.26 N 4.16 , found C 80.79 H 7.32 N 3.96 .

7.5 Synthesis of compounds from chapter 4.5

2-Amino-3,5-dibromo-terephthalic acid dimethyl ester (73)

Amino-terephthalic acid dimethyl ester $72(51.0 \mathrm{~g}, 0.244 \mathrm{~mol})$ was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(200 \mathrm{ml})$ and refluxed. Then $\mathrm{Br}_{2}(23.0 \mathrm{~g}, 0.147 \mathrm{~mol})$ dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20$ ml) was added dropwise. The mixture was refluxed for 12 h , then allowed to cool to room temperature; water and aqueous KOH were added for neutralization. The phases were separated and the aqueous one was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (200 ml). The combined organic phases were washed with an aqueous disulphite solution ($\mathrm{c}=$ $1 \mathrm{~mol} / \mathrm{l}, 250 \mathrm{ml}$). The $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ phase was separated and dried $\left(\mathrm{MgSO}_{4}\right)$, recrystallization in hexane:ethyl acetate $3: 1$ gave product $73(84.8 \mathrm{~g}, 0.232 \mathrm{~mol}, 95$ $\%$) as pale orange crystals.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=3.82\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.93\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 6.46(\mathrm{~s}, 2 \mathrm{H}$, NH_{2}), 7.93 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}_{\text {aromatic }}$).
${ }^{13} \mathrm{C}$ NMR (62.9 MHz, CHCl_{3}): $\delta=52.10,52.82,102.38,107.37,112.24,133.59$, 141.40, 146.49, 165.84, 166.02.

MS (EI, $80 \mathrm{eV}, 120{ }^{\circ} \mathrm{C}$): m/z (\%) = 365 (57.8) [M $\left.{ }^{+}\right], 333(38.72)\left[\mathrm{M}^{+}-\mathrm{CH}_{3} \mathrm{OH}\right], 222$ (6.3) $\left[\mathrm{M}^{+}-\mathrm{C}_{2} \mathrm{H}_{8} \mathrm{BrO}_{2}\right], 144$ (4.3) $\left[\mathrm{M}^{+}-\mathrm{C}_{2} \mathrm{H}_{8} \mathrm{Br}_{2} \mathrm{O}_{2}\right]$.
$\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{NO}_{4} \mathrm{Br}_{2}(366.99)$ calcd C 32.73 H 2.47 N 3.82 , found C 32.82 H 2.55 N 4.02 .

2,6-Dibromo-terephthalic acid dimethyl ester (74)

6-Amino-2,5-dibromo-terephthalicacid dimethyl ester 73 ($36.0 \mathrm{~g}, 0.098 \mathrm{~mol}$) was dissolved in methanol (600 ml) and conc. sulphuric acid (40 ml) was dropped in. After heating to $50^{\circ} \mathrm{C}$, sodium nitrite ($16.8 \mathrm{~g}, 0.244 \mathrm{~mol}$) was added. The reaction mixture was heated up to the boiling point, which started a very strong gas development at $70{ }^{\circ} \mathrm{C}$. After 2 h the flask was cooled to $0^{\circ} \mathrm{C}$ and ice water (500 ml) was added for the total precipitation of the product, which was suctioned off. Chromatographic separation with silica gel and hexane:ethyl acetate 10:1 gave the product $74(28.6 \mathrm{~g}$, 0.081 mol, 83%) as colorless solid. $R_{f}=0.37$ (hexane:ethyl acetate 3:1).
${ }^{1} \mathrm{H}$ NMR (270 MHz, CDCl_{3}): $\delta=3.83\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.93\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 8.07(\mathrm{~s}, 2 \mathrm{H}$, $H_{\text {aromatic }}$).
${ }^{13} \mathrm{C}$ NMR (67.9 MHz, CDCl_{3}): $\delta=52.71,53.02,119.57,132.18,132.54,132.98$, 140.91, 163.54, 165.64.

MS (EI, $80 \mathrm{eV}, 30-60{ }^{\circ} \mathrm{C}$) m/z (\%) = 350 (17.7) [M $\left.{ }^{+}\right]$, 271 (1.0) $\left[\mathrm{M}^{+}-\mathrm{Br}\right], 319$ (48.5) [$\left.\mathrm{M}^{+}-\mathrm{CH}_{3} \mathrm{O}\right]$, 291 (2.5) $\left[\mathrm{M}^{+}-\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right]$, 276 (4.7) $\left[\mathrm{M}^{+}-\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}_{2}\right]$, 197 (2.5) $\left[\mathrm{M}^{+}-\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}_{2} \mathrm{Br}\right]$. $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{Br}_{2} \mathrm{O}_{4}(351.98)$ calcd C 34.12 H 2.29 , found C 33.92 H 2.13 .

3-Bromo-4'-pyren-1-yl-biphenyl-2,5-dicarboxylic acid dimethyl ester (75)

For preparation see general procedure for SCC 1:

4,4,5,5-Tetramethyl-2-pyren-1-yl-1,3,2-dioxaborolane 37 ($1.66 \mathrm{~g}, 4.10 \mathrm{mmol}$), 2,5 dibromo terephthalic acid dimethylester $74(1.50 \mathrm{~g}, 4.10 \mathrm{mmol})$, toluene (20 ml), $\mathrm{Na}_{2} \mathrm{CO}_{3}(20 \mathrm{ml}, \mathrm{c}=1 \mathrm{~mol} / \mathrm{l})$, tetrakis(triphenylphosphine) palladium(0) ($85 \mathrm{mg}, 7.4 \mathrm{x}$ $\left.10^{-2} \mathrm{mmol}\right) 2 \mathrm{~d}$. Chromatographic separation through silica gel with hexane:ethyl acetate $10: 1$ gave the product 75 ($1.35 \mathrm{~g}, 2.46 \mathrm{mmol}, 58 \%$) as a yellow solid. R_{f} (hexane:ethyl acetate 3:1) $=0.28$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=3.86\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.91\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 7.55(\mathrm{~d}, 2 \mathrm{H}$, $\mathrm{H}_{\text {aromatic }}$), 7.67 ($\mathrm{d}, 2 \mathrm{H}, \mathrm{H}_{\text {aromatic }}$), $7.84-8.34\left(\mathrm{~m}, 11 \mathrm{H}, \mathrm{H}_{\text {pyrene+aromatic }}\right)$.
${ }^{13} \mathrm{C}$ NMR (67.9 MHz, CDCl_{3}): $\delta=52.42,52.56,111.61,111.65,119.44,119.75$, $124.49,124.55,124.62,124.71,125.04,125.84,127.13,127.28,127.35,127.50$, 128.08, 129.63, 130.52, 130.63, 131.17, 131.96, 132.12, 136.34, 137.06, 138.64, 141.15, 141.34.

MS (EI, $80 \mathrm{eV}, 220{ }^{\circ} \mathrm{C}$): m/z (\%) = 548 (96.9) [M $\left.{ }^{+}\right], 517$ (4.4) [$\left.\mathrm{M}^{+}-\mathrm{CH}_{3} \mathrm{O}\right], 469$ (1.0) $\left[\mathrm{M}^{+}-\mathrm{Br}\right], 348(13.8)\left[\mathrm{M}^{+}-\mathrm{C}_{16} \mathrm{H}_{8}\right], 202(5.6)\left[\mathrm{C}_{16} \mathrm{H}_{10}{ }^{+}\right]$.
HRMS (${ }^{12} \mathrm{C}_{32}{ }^{1} \mathrm{H}_{21}{ }^{79} \mathrm{Br}^{16} \mathrm{O}_{4}$) [M $\left.{ }^{+}\right]$: calcd 548.06232 found 548.06683 .
$\mathrm{C}_{32} \mathrm{H}_{21} \mathrm{BrO}_{4}$ (549.42) calcd C 69.96 H 3.85 , found C 70.47 H 4.28 .

2-Bromo-6-pyren-1-yl-terephthalic acid dimethyl ester (77)

For preparation see general procedure for SCC 1:

Pyrene pinacol 10 ($2.50 \mathrm{~g}, 5.68 \mathrm{mmol}$), ester 74 ($3.00 \mathrm{~g}, 8.52 \mathrm{mmol}$), toluene (100 $\mathrm{ml}), \mathrm{Na}_{2} \mathrm{CO}_{3}(100 \mathrm{ml}, \mathrm{c}=1 \mathrm{~mol} / \mathrm{l}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.19 \mathrm{~g}, 0.154 \mathrm{mmol}), 3 \mathrm{~d}$;
Chromatographic separation with hexanes-EtOAc, 10:1 gave the product $77(2.00 \mathrm{~g}$, $4.23 \mathrm{mmol}, 74.4 \%) . \mathrm{R}_{\mathrm{f}}=0.32$
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=3.32\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.91\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 7.80(\mathrm{~d}, 1 \mathrm{H}$, $\mathrm{H}_{\text {aromatic }}$), 7.90 ($\mathrm{d}, 1 \mathrm{H}, \mathrm{H}_{\text {aromatic }}$), $7.95-8.27\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{H}_{\text {aromatic }}\right), 8.43\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{\text {aromatic }}\right)$.
${ }^{13} \mathrm{C}$ NMR (125.8 MHz, CDCl_{3}): $\delta=52.23,52.57,119.67,124.11,124.42,124.54$, 125.33, 125.48, 126.15, 127.03, 127.19, 127.96, 127.98, 128.90, 130.73, 131.21, 131.26, 131.37, 131.82, 132.68, 140.56, 141.02, 164.97, 166.91.

MS (EI, $\left.170{ }^{\circ} \mathrm{C}, 80 \mathrm{eV}\right) \mathrm{m} / \mathrm{z}(\%)=472(96.9)\left[\mathrm{M}^{+}\right], 439(2.7)\left[\mathrm{M}^{+}-\mathrm{CH}_{3} \mathrm{O} / \mathrm{H}_{2}\right], 393$ (1.8) [$\left.\mathrm{M}^{+}-\mathrm{Br}\right], 275$ (24.1) $\left[\mathrm{M}^{+}-\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{BrO}_{4}\right]$.
$\mathrm{C}_{26} \mathrm{H}_{17} \mathrm{BrO}_{4}$ (473.32) calcd C 65.98 H 3.62 , found C 66.16 H 3.77 .

3-(3-tert-Butoxycarbonylamino-propyl)-4'-pyren-1-yl-biphenyl-2,5,-dicarboxylic acid dimethyl ester (78) and 4'-Pyren-1-yl-biphenyl-2,5-dicarboxylic acid dimethyl ester (76)

78

76

For preparation see general procedure for SCC 2:

Protected ally amine 40 ($0.97 \mathrm{~g}, 6.19 \mathrm{mmol}$), dry toluene (25 ml), 9-BBN ($1.15 \mathrm{~g}, 9.40$ $\mathrm{mmol}), 12 \mathrm{~h}$, aqueous solution of $\mathrm{KOH}(20 \mathrm{ml}, \mathrm{c}=1 \mathrm{~mol} / \mathrm{l})$, bromo-aryl 75 (0.85 g , 1.55 mmol), tetrakis(triphenylphosphine)palladium(0) ($22 \mathrm{mg}, 1.9 \times 10^{-5} \mathrm{mmol}$), 36 h . Chromatographic separation through silica gel with hexane:ethyl acetate 3:1 gave product $78(0.47 \mathrm{~g}, 0.75 \mathrm{mmol}, 48 \%)$ as a yellow solid and the proton substituted product 76 ($94.0 \mathrm{mg}, 0.20 \mathrm{mmol}, 13 \%$) as a colorless solid. R_{f} (hexane:ethylacetate $3: 1)$ for $76=0.24$ and for $78=0.08$.

For 78:
${ }^{1} \mathrm{H}$ NMR (270 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=1.45\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3}\right.$ bос), $1.93\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.77(\mathrm{t}, 2 \mathrm{H}$, CH_{2} benzylic), $3.19\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{N}\right), 3.74\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.96\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.82(\mathrm{~s}, 1 \mathrm{H}$, NH), 7.57 ($\mathrm{d}, 2 \mathrm{H}, \mathrm{H}_{\text {aromatic }}$), 7.69 ($\mathrm{d}, 2 \mathrm{H}, \mathrm{H}_{\text {aromatic }}$), $7.91-8.29\left(\mathrm{~m}, 11 \mathrm{H}, \mathrm{H}_{\text {pyrene+aromatic }}\right)$.
${ }^{13} \mathrm{C}$ NMR (125.8 MHz, CDCl_{3}) $\delta=28.23,30.58,31.31,39.82,52.08,52.16,78.80$, 124.44, 124.54, 124.66, 124.96, 125.78, 127.10, 127.26, 127.39, 128.01, 128.11, $128.54,129.08,130.40,130.44,130.60,130.92,131.13,136.58,136.71,138.50$, 139.68, 140.01, 140.45, 155.82, 166.06, 169.56.

MS (EI, $80 \mathrm{eV}, 200{ }^{\circ} \mathrm{C}$) m/z (\%): 627 (18.0) [$\left.\mathrm{M}^{+}\right]$, 571 (11.2) $\left[\mathrm{M}^{+}-\mathrm{C}_{4} \mathrm{H}_{8}\right]$, 554 (47.9) [$\left.\mathrm{M}^{+}-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{O}\right], 523$ (3.9) $\left[\mathrm{M}^{+}-\mathrm{C}_{5} \mathrm{H}_{12} \mathrm{O}_{2}\right], 496$ (2.7) $\left[\mathrm{M}^{+}-\mathrm{C}_{6} \mathrm{H}_{13} \mathrm{NO}_{2}\right]$.
HRMS $\left({ }^{12} \mathrm{C}_{40}{ }^{1} \mathrm{H}_{37}{ }^{14} \mathrm{~N}^{16} \mathrm{O}_{6}\right)\left[\mathrm{M}^{+}\right]$calcd 627.26208, found 627.26422 .
$\mathrm{C}_{40} \mathrm{H}_{37} \mathrm{NO}_{6}$ (627.73) calcd C 76.54 H 5.94 N 2.23 , found C 76.18 H 5.73 N 1.95.

For 76:
${ }^{1} \mathrm{H} \operatorname{NMR}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=3.77\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.96\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 7.53$ (d, 2 H , $H_{\text {aromatic }}$), 7.69 (d, 2H, $\mathrm{H}_{\text {aromatic }}$), 7.93 (d, 1H, $\mathrm{H}_{\text {aromatic }}$), $7.96-8.31(\mathrm{~m}, 10 \mathrm{H}$, $\mathrm{H}_{\text {pyrene }}$ +aromatic).
${ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=52.25,52.40,124.63,124.84,125.0,125.13,126.0$, 127.37, 127.46, 127.55, 127.83, 128.20, 128.35, 128.50, 128.69, 129.87, 130.42, 130.69, 130.95, 131.48, 131.83, 132.55, 134.89, 137.11, 139.18, 140.58, 140.93, 142.15, 166.14, 168.55.

MS (EI, $80 \mathrm{eV}, 130{ }^{\circ} \mathrm{C}$): m/z (\%) = 470 (100) [M $\left.{ }^{+}\right]$, 439 (1.8) [$\left.\mathrm{M}^{+}-\mathrm{CH}_{3} \mathrm{O}\right], 350$ (6.9) $\left[\mathrm{M}^{+}-\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{4}\right], 220$ (9.2) $\left[\mathrm{M}^{+}-\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{O}_{2}\right]$.
HRMS $\left({ }^{12} \mathrm{C}_{32}{ }^{1} \mathrm{H}_{22}{ }^{16} \mathrm{O}_{4}\right)\left[\mathrm{M}^{+}\right]$calcd 470.15181 , found 470.15664 .

2-(3-tert-Butoxycarbonylamino-propyl)-6-pyren-1-yl-terephthalic acid dimethyl ester (79)

For preparation see general procedure for SCC 2:

Allylamine 40 ($1.29 \mathrm{~g}, 8.23 \mathrm{mmol}$), dry toluene (25 ml), 9-BBN ($1.51 \mathrm{~g}, 12.30 \mathrm{mmol}$), $\mathrm{KOH}(30 \mathrm{ml}, \mathrm{c}=1 \mathrm{~mol} / \mathrm{l}), 77(1.00 \mathrm{~g}, 2.06 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(47 \mathrm{mg}, 41.2 \mathrm{mmol}), 3 \mathrm{~d}$.

Chromatographic separation with silica gel and hexane:acetic acid ethyl ester 10:1 yielded in 79 ($0.91 \mathrm{~g}, 1.65 \mathrm{mmol}, 80 \%) . \mathrm{R}_{\mathrm{f}}$ (Hexane:ethylacetate 3:1) $=0.28$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.40\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3}\right.$ boc $), 1.95\left(\mathrm{tt}, 2 \mathrm{H}, \mathrm{CH}_{2}-\beta\right), 2.80(\mathrm{~m}, 2$ $\mathrm{H}, \mathrm{CH}_{2}$ benzylic), 3.15 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$), $3.23\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{N}\right.$), $3.90\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.80(\mathrm{~s}$, $1 \mathrm{H}, \mathrm{NH}$), 7.80 (d, $1 \mathrm{H}, \mathrm{H}_{\text {aromatic }}$), $7.85(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 7.94-8.23\left(\mathrm{~m}, 9 \mathrm{H}, \mathrm{H}_{\text {aromatic }}\right)$.
${ }^{13} \mathrm{C}$ NMR (125.8 MHz, CDCl_{3}): $\delta=20.44,28.07,28.28,30.80,31.41,36.08,39.96$, $51.74,52.26,78.90,124.04,124.40,124.45,124.90,125.04,125.19,125.97,127.0$, 127.19, 127.59, 128.16, 129.76, 129.46, 130.07, 130.66, 130.68, 130.85, 131.14, 134.29, 138.47, 139.47, 139.76, 155.87, 166.24, 169.01.

MS (EI, $210{ }^{\circ} \mathrm{C}, 80 \mathrm{eV}$): m/z (\%) = 551 (64.6) $\left[\mathrm{M}^{+}\right], 495$ (16.6) $\left[\mathrm{M}_{-} \mathrm{C}_{4} \mathrm{H}_{8}{ }^{+}\right], 477$ (100) [$\left.\mathrm{M}^{+}-\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}\right], 451$ (26.7) [$\left.\mathrm{M}^{+}-\mathrm{C}_{5} \mathrm{H}_{8} \mathrm{O}_{2}\right], 389$ (15.9) $\left[\mathrm{M}^{+}-\mathrm{C}_{7} \mathrm{H}_{14} \mathrm{O}_{4}\right]$.
$\mathrm{C}_{34} \mathrm{H}_{33} \mathrm{NO}_{6}$ (551.64) calcd C 74.03 H 6.03 N 2.54 , found C 74.01 H 6.16 N 2.32 .

2-Bromo-6-(3-tert-butoxycarbonylamino-propyl)-terephthalic acid dimethyl ester (80)

For preparation see general procedure for SCC 2.

Boc protected allyl 40 ($0.23 \mathrm{~g}, 1.44 \mathrm{mmol}$), 9-BBN ($0.40 \mathrm{~g}, 3.27 \mathrm{mmol}$), dry THF (15 $\mathrm{ml})$, 12 h , di-bromo-di-ester $74(2.02 \mathrm{~g}, 5.74 \mathrm{mmol}$), toluene (100 ml), aqueous solution of $\mathrm{Na}_{2} \mathrm{CO}_{3}(20 \mathrm{ml}, 1 \mathrm{M}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.13 \mathrm{~g}, 0.11 \mathrm{mmol})$, 1d. Chromatographic separation with silica gel and hexane:ethyl acetate $3: 1$ gave the product $80(0.18 \mathrm{~g}$, $0.42 \mathrm{mmol}, 29 \%$) as a colorless oil. $\mathrm{R}_{\mathrm{f}}=0.20$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.38\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3}\right), 1.75$ (quin $2 \mathrm{H}, \beta$), $2.59(\mathrm{t}, 2 \mathrm{H}, \alpha)$, $3.08(\mathrm{~m}, 2 \mathrm{H}, \gamma), 3.86\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.92\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.66(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 7.80(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{H}_{\text {aromatic }}$), 8.04 (s, 1H, $\mathrm{H}_{\text {aromatic }}$).
${ }^{13} \mathrm{C}$ NMR ($63 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=28.32,30.95,31.24,39.85,52.48,52.68,79.12$, 119.29, 129.02, 129.95, 131.19, 132.24, 141.01, 155.87, 165.04, 167.73.

MS (El, $\left.100{ }^{\circ} \mathrm{C}, 80 \mathrm{eV}\right): \mathrm{m} / \mathrm{z}(\%)=429(0.1)\left[\mathrm{M}^{+}\right], 373(2.4)\left[\mathrm{M}^{+}-\mathrm{C}_{4} \mathrm{H}_{8}\right], 328(6.0)\left[\mathrm{M}^{+}-\right.$ $\left.\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{O}_{2}\right], 271(6.5)\left[\mathrm{M}^{+}-\mathrm{C}_{8} \mathrm{H}_{16} \mathrm{NO}_{2}\right]$.
HRMS ${ }^{12} \mathrm{C}_{18}{ }^{1} \mathrm{H}_{24}{ }^{14} \mathrm{~N}_{1}{ }^{16} \mathrm{O}_{6}{ }^{79} \mathrm{Br}_{1}$ calcd 429.07870 , found 429.07653 .

2-(3-tert-Butoxycarbonylamino-propyl)-6-(3-pyren-1-yl-propyl)-terephthalic acid dimethyl ester (82)

For preparation see general procedure for SCC 2:

Allyl-pyrene 81 ($1.40 \mathrm{~g}, 5.77 \mathrm{mmol}$), allylamine 40 ($0.90 \mathrm{~g}, 5.74 \mathrm{mmol}$), 9-BBN (1.76 $\mathrm{g}, 14.4 \mathrm{mmol}$), toluene (40 ml), 12 h , aqueous solution of $\mathrm{Na}_{2} \mathrm{CO}_{3}(40 \mathrm{ml})$, dibromo ester 20 ($2.02 \mathrm{~g}, 5.74 \mathrm{mmol}$), reflux for 5 d .
Chromatographic separation with silica gel and hexane:acetic acid ethyl ester 3:1 gave product $82(0.21 \mathrm{~g}, 0.36 \mathrm{mmol}, 6 \%)$ as a pale yellow oil. $\mathrm{R}_{\mathrm{f}}=0.11$
${ }^{1} \mathrm{H}$ NMR ($270 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.41\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3}\right.$ boc $), 1.77\left(\mathrm{tt}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.15(\mathrm{tt}, 2 \mathrm{H}$, CH_{2}), $2.56\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.75\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.09\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.60\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, 3.88 (s, 3H, CH3 $), 4.71(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 7.62-8.38\left(\mathrm{~m}, 11 \mathrm{H}, \mathrm{H}_{\text {aromatic }}\right)$.
${ }^{13} \mathrm{C}$ NMR ($125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=28.33,30.70,31.34,32.86,33.18,33.60,39.88$, 51.94, 52.21, 79.04, 123.19, 124.66, 124.70, 124.83, 124.97, 125.75, 126.57, 126.96, 127.22, 127.41, 127.91, 128.06, 128.50, 129.77, 130.62, 130.76, 130.86, 131.29, 135.92, 137.54, 138.98, 139.49, 155.87, 166.47, 169.77.

MS (EI, $\left.80 \mathrm{eV}, 220{ }^{\circ} \mathrm{C}\right) \mathrm{m} / \mathrm{z}(\%)=593$ (3.6) [M $\left.{ }^{+}\right], 537$ (11.2) $\left[\mathrm{M}^{+}-\mathrm{C}_{4} \mathrm{H}_{8}\right], 519$ (20.5) $\left[\mathrm{M}^{+}-\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}\right], 492$ (5.4) $\left[\mathrm{M}^{+}-\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{O}_{2}\right], 460$ (2.8) $\left[\mathrm{M}^{+}-\mathrm{C}_{6} \mathrm{H}_{13} \mathrm{O}_{3}\right], 215$ (100) [$\mathrm{M}^{+}-$ $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{NO}_{6}$].
HRMS ($\left.{ }^{12} \mathrm{C}_{37}{ }^{1} \mathrm{H}_{39}{ }^{14} \mathrm{~N}^{16} \mathrm{O}_{6}\right)\left[\mathrm{M}^{+}\right]$calcd 593.27774 , found 593.27368 .

2,6-Bis-(3-tert-butoxycarbonylamino-propyl)-terephthalic acid dimethyl ester (83)

For preparation see general procedure for SCC 2.

Boc protected allyl $40(1.72 \mathrm{~g}, 11.0 \mathrm{mmol})$, $9-\mathrm{BBN}(2.00 \mathrm{~g}, 16.0 \mathrm{mmol})$, dry toluene $(20 \mathrm{ml}), 12 \mathrm{~h}$, di-bromo-di-ester $74(1.28 \mathrm{~g}, 3.6 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}\left(0.05 \mathrm{~g}, 4.3 \times 10^{-2}\right.$ $\mathrm{mmol}), 1 \mathrm{~d}$. chromatographic separation with silica gel and hexane:ethyl acetate $3: 1$ gave the product $83(1.32 \mathrm{~g}, 2.6 \mathrm{mmol}, 72 \%)$ as a yellow oil. $\mathrm{R}_{\mathrm{f}}=0.06$.
${ }^{1} \mathrm{H}$ NMR ($270 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.38\left(\mathrm{~s}, 18 \mathrm{H}, \mathrm{CH}_{3}\right), 1.57$ (quin $4 \mathrm{H}, \beta$), $1.55(\mathrm{t}, 4 \mathrm{H}, \alpha)$, 3.07 (m, 4H, γ), $3.84\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.89\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.69(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}), 7.69(\mathrm{~s}, 2 \mathrm{H}$, $\mathrm{H}_{\text {aromatic }}$).
${ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}): $\delta=28.22,30.64,31.27,39.81,52.12,52.19,78.89$, 127.85, 130.86, 137.47, 138.93, 155.84, 166.29, 169.78.

MS (EI, $\left.60-100{ }^{\circ} \mathrm{C}, 80 \mathrm{eV}\right): \mathrm{m} / \mathrm{z}(\%)=508(0.2)\left[\mathrm{M}^{+}\right], 452(0.8)\left[\mathrm{M}^{+}-\mathrm{C}_{4} \mathrm{H}_{8}\right], 407(2.9)$ $\left[\mathrm{M}^{+}-\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{O}_{2}\right], 278(60.1)\left[\mathrm{M}^{+}-\mathrm{C}_{11} \mathrm{H}_{20} \mathrm{O}_{4} \mathrm{~N}\right]$.
HRMS ${ }^{12} \mathrm{C}_{26}{ }^{1} \mathrm{H}_{40}{ }^{14} \mathrm{~N}_{2}{ }^{16} \mathrm{O}_{8}$ calcd 508.27847, found 508.27633 .
EA $\mathrm{C}_{26} \mathrm{H}_{40} \mathrm{~N}_{2} \mathrm{O}_{8}$ (508.61) calcd C 61.40 H 7.93 N 5.51 , found C 60.87 H 7.73 N 4.93 .

1-[3-(4-Bromo-phenyl)-propyl]-pyrene (86)

For preparation see general procedure for SCC 2.

Allyl pyrene 81 ($4.28 \mathrm{~g}, 17.7 \mathrm{mmol}$), 9-BBN ($3.00 \mathrm{~g}, 24.6 \mathrm{mmol}$), dry THF (10 ml), 12 h, Bromo-iodo benzene $34(5.00 \mathrm{~g}, 17.7 \mathrm{mmol}$), xylene (35 ml), aqueous solution of $\mathrm{KOH}(25 \mathrm{ml}, 1 \mathrm{M}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.41 \mathrm{~g}, 0.35 \mathrm{mmol}), 4 \mathrm{~d}$. Chromatographic separation with silica gel and hexane gave the product 86 ($1.20 \mathrm{~g}, 3.01 \mathrm{mmol}, 17 \%$) as a colorless solid. R_{f} (hexane:ethyl acetate 20:1) $=0.29$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=2.16$ (quin, $2 \mathrm{H}, \beta$), $2.72\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.32(\mathrm{t}, 2 \mathrm{H}$, CH_{2}), 7.06 ($\mathrm{d}, 2 \mathrm{H}, \mathrm{H}_{\text {aromatic }}$), 7.44 (d, $2 \mathrm{H}, \mathrm{H}_{\text {aromatic }}$), 7.82 ($\mathrm{d}, 1 \mathrm{H}, \mathrm{H}_{\text {pyrene }}$), $7.90-8.32$ ($\mathrm{m}, 8 \mathrm{H}, \mathrm{H}_{\text {pyrene }}$).
${ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}): $\delta=32.76,32.94,35.08,119.50,123.16,124.65$, 124.71, 124.82, 124.93, 125.01, 125.75, 126.55, 127.08, 127.17, 127.42, 128.52, 129.76, 130.15, 130.80, 131.31, 136.18, 140.97. (1 signal missing).

MS (EI, $180{ }^{\circ} \mathrm{C}, 80 \mathrm{eV}$): m/z (\%) = 399 (6.8) [M $\left.{ }^{+}\right], 320$ (5.1) $\left[\mathrm{M}^{+}-\mathrm{Br}\right], 215$ (100) [pyrene $+\mathrm{CH}_{2}{ }^{+}$], 202 (7.2) [pyrene ${ }^{+}$].
EA $\mathrm{C}_{25} \mathrm{H}_{19} \mathrm{Br}$ (399.33) calcd C 75.19 H 4.80 , found C 75.24 H 4.89 .

4,4,5,5-Tetramethyl-2-[4-(3-pyrene1-yl-propyl)-phenyl]-[1,3,2]-dioxaborolane (88)

Pyrene bromide 86 ($670 \mathrm{mg}, 1.67 \mathrm{mmol}$), was dissolved in dry THF (15 ml) and the yellow solution was cooled down to $-78{ }^{\circ} \mathrm{C}$. A solution of BuLi ($2.1 \mathrm{ml}, 1.6 \mathrm{M}$) was added dropwise. The mixture was allowed to come to room temperature in 4 h , then cooled down to $-78{ }^{\circ} \mathrm{C}$ again and $\mathrm{B}\left(\mathrm{O}_{\mathrm{i}} \mathrm{pr}\right)_{3}(0.96 \mathrm{ml}, 4.17 \mathrm{mmol})$ was added. The mixture came to room temperature during 12 h , and then water (20 ml) was added. The layers were separated and the aqueous one was washed three times with diethyl ether (60 ml). The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$. Filtration over silica gel with first hexane:ethyl acetate $3: 1$ and later with acetone gave the boronic acid 87. Without further purification pinacol ($212 \mathrm{mg}, 1.79 \mathrm{mmol}$) was added to the solution and it was refluxed for 2 h . After removing the acetone, the crude product was purified with silica gel. Chromatographic separation with hexane: ethyl acetate $3: 1$ gave the product 88 ($286 \mathrm{mg}, 0.64 \mathrm{mmol}, 38 \%$) as a colorless solid. R_{f} (hexane:ethyl acetate 10:1) $=0.35$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.44\left(\mathrm{~s}, 12 \mathrm{H}, \mathrm{CH}_{3}\right), 2.25$ (quin, $2 \mathrm{H}, \beta$), $2.87(\mathrm{t}, 2 \mathrm{H}$, CH_{2}), 3.38 (t, 2H, CH_{2}), 7.35 (d, $2 \mathrm{H}, \mathrm{H}_{\text {aromatic }}$), 7.86 (d, $1 \mathrm{H}, \mathrm{H}_{\text {pyrene }}$), 7.93 (d, 2 H , $\mathrm{H}_{\text {aromatic }}$), $7.99-8.27$ (m, $\left.8 \mathrm{H}, \mathrm{H}_{\text {pyrene }}\right)$.
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=24.80,32.86,32.92,35.95,83.57,123.24,124.57$, 124.68, 124.71, 124.93, 124.98, 125.66, 126.46, 127.09, 127.41, 127.95, 128.52, $129.70,130.81,131.32,134.93,136.43,145.52$. (2 signals missing).
MS (EI, $\left.80-90^{\circ} \mathrm{C}, 80 \mathrm{eV}\right): \mathrm{m} / \mathrm{z}(\%)=446(48.3)\left[\mathrm{M}^{+}\right]$, 215 (100) [pyrene+CH $\left.{ }^{+}\right]$.
HRMS ${ }^{12} \mathrm{C}_{31}{ }^{1} \mathrm{H}_{31}{ }^{11} \mathrm{~B}_{1}{ }^{16} \mathrm{O}_{2}$ calcd 446.24171 , found 446.24533 .
EA C ${ }_{31} \mathrm{H}_{31} \mathrm{BO}_{2}$ (446.39) calcd C 83.41 H 7.00 , found C 83.43 H 7.08 .

4'-(3-Pyrene-1-yl-propyl)-biphenyl-2,5-dicarboxylic acid dimethyl ester (89)

For preparation see general procedure for SCC 1

Di-bromide 74 ($497 \mathrm{mg}, 1.410 \mathrm{mmol}$), pyrene-propyl-pinacol 88 ($611 \mathrm{mg}, 1.370$ mmol), toluene (30 ml), aqueous solution of $\mathrm{Na}_{2} \mathrm{CO}_{3}(20 \mathrm{ml}, 1 \mathrm{M}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(24 \mathrm{mg}$, $0.021 \mathrm{mmol})$, 2d, chromatographic separation with silica gel and hexane:ethyl acetate $3: 1$ gave a colorless oil, freeze drying with benzene gave the product 89 as a colorless solid ($40 \mathrm{mg}, 0.078 \mathrm{mmol}, 6 \%$). $\mathrm{R}_{\mathrm{f}}=0.23$
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.24$ (quin, $2 \mathrm{H}, \mathrm{CH}_{2}$), $2.85\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.40(\mathrm{~m}, 2 \mathrm{H}$, CH_{2}), 3.65 (s, $3 \mathrm{H}, \mathrm{CH}_{3}$), 3.93 (s, $3 \mathrm{H}, \mathrm{CH}_{3}$), 7.28 (s, $4 \mathrm{H}, \mathrm{H}_{\text {aromatic }}$), 7.36 (s, 1 H , $H_{\text {aromatic }}$), 7.83 (d, 1H, $\mathrm{H}_{\text {aromatic }}$), 7.88 (d, $1 \mathrm{H}, \mathrm{H}_{\text {aromatic }}$), $7.95-8.28$ ($\mathrm{m}, 9 \mathrm{H}, \mathrm{H}_{\text {pyrene }}$).
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=32.99,33.16,35.51,52.18,52.37,123.31,124.66$, 124.77, 124.83, 124.99, 125.08, 125.77, 126.57, 127.21, 127.48, 127.89, 128.27, 128.30, 128.39, 128.61, 129.64, 129.80, 130.87, 131.40, 131.70, 132.32, 134.90, 136.51, 137.73, 141.65, 142.27, 166.20, 168.74.

MS (EI, $\left.150-200^{\circ} \mathrm{C}, 80 \mathrm{eV}\right): \mathrm{m} / \mathrm{z}(\%)=512(56.1)\left[\mathrm{M}^{+}\right], 481(1.6)\left[\mathrm{M}^{+}-\mathrm{CH}_{3} \mathrm{O}\right], 215$ (100) [pyrene $+\mathrm{CH}_{2}{ }^{+}$].

HRMS $\left({ }^{12} \mathrm{C}_{35}{ }^{1} \mathrm{H}_{28}{ }^{16} \mathrm{O}_{4}\right)$ calcd: 512.19876, found: 512.19574.

2-(3-Ammonio-propyl)-6-pyrene-1-yl-terephthalic acid iodide (93) and 2-(3-tert-Butoxycarbonylamino-propyl)-6-pyrene-1-yl-terephthalic acid (94)

Probe-di-ester 79 ($250 \mathrm{mg}, 0.453 \mathrm{mmol}$), dry Nal ($570 \mathrm{mg}, 3.800 \mathrm{mmol}$) and TMSCI ($320 \mu \mathrm{l}, 2.540 \mathrm{mmol}$), were dissolved in dry acetonitrile $(2 \mathrm{ml})$ and were heated at 80 ${ }^{\circ} \mathrm{C}$ for 6 d . Water (5 ml) was added and di acid ammonia salt 93 precipitated. An aqueous solution of NaOH was added until $\mathrm{pH}=12$. Then $\mathrm{Boc}_{2} \mathrm{O}$ ($500 \mathrm{mg}, 2.29$ mmol) was added. The solution was stirred at room temperature for 2 d . Acetic acid was dropped in until the product $94(200 \mathrm{mg}, 0.382 \mathrm{mmol}, 84 \%)$ precipitated as a yellow solid, which was sucked off and washed with water.

Di-Acid ammonia salt 93:
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}$): $\delta=2.00(\mathrm{~m}, 2 \mathrm{H}, \beta), 2.59-2.74(\mathrm{~m}, 2 \mathrm{H}, \alpha), 2.83(\mathrm{~m}, 2 \mathrm{H}$, γ), $7.68\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{\text {aromatic }}\right), 7.80\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{\text {pyrene }}\right), 7.90\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{\text {aromatic }}\right), 7.98(\mathrm{~d}, 1 \mathrm{H}$, $\left.\mathrm{H}_{\text {pyrene }}\right), 8.00-8.32$ ($\mathrm{m}, 7 \mathrm{H}, \mathrm{H}_{\text {pyrene }}$).
${ }^{13} \mathrm{C}$ NMR (126 MHz, DMSO): $\delta=28.06,28.86,37.31,123.90,123.92,124.16$, 124.84, 125.10, 125.65, 126.22, 126.99, 127.18, 127.35, 127.83, 128.37, 128.99, 129.73, 130.00, 130.42, 130.84, 135.69, 136.11, 136.71, 167.54, 171.40. (2 signals missing).
MS (+FAB, DMSO/glycerole): m/z (\%) = 446 (1.7) [M $\left.{ }^{+}-\mathrm{I}-\mathrm{H}+\mathrm{Na}\right], 424$ (4.0) [$\left.\mathrm{M}^{+}-\mathrm{I}\right]$.

Di acid-boc-protected-amine 94:
${ }^{1} \mathrm{H}$ NMR (270 MHz, MeOH): $\delta=1.43\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3}\right), 1.94(\mathrm{~m}, 2 \mathrm{H}, \beta), 2.86(\mathrm{~m}, 2 \mathrm{H}, \alpha)$, $3.15(\mathrm{~m}, 2 \mathrm{H}, \gamma), 6.93(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NH}), 7.72\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{\text {pyrene }}\right), 7.82\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{\text {aromatic }}\right), 7.94$ (d, $\left.1 \mathrm{H}, \mathrm{H}_{\text {pyrene }}\right), 8.00-8.30\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{H}_{\text {pyrene }}+\right.$ aromatic $)$.
MS (-FAB, MNBA/CH2Cl 2): m/z (\%) = 522 (66.0) $\left[\mathrm{M}^{-}-\mathrm{H}\right], 404(11.7)\left[\mathrm{M}^{-} \mathrm{C}_{5} \mathrm{H}_{13} \mathrm{NO}_{2}\right]$.

7.6 Synthesis of compounds from chapter 4.6

2-Bromo-5-pyrene-1-yl-terephthalic acid dimethyl ester (96)

For preparation see general procedure for SCC 1:

Pyrene pinacol 10 ($5.0 \mathrm{~g}, 15.23 \mathrm{mmol}$), ester 95 ($6.0 \mathrm{~g}, 17.05 \mathrm{mmol}$), toluene (150 $\mathrm{ml}), \mathrm{Na}_{2} \mathrm{CO}_{3}(150 \mathrm{ml}, \mathrm{c}=1 \mathrm{~mol} / \mathrm{l}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.37 \mathrm{~g}, 0.32 \mathrm{mmol}), 6 \mathrm{~d}$;
Chromatographic separation with silica gel and hexane: ethyl acetate $10: 1 \mathrm{R}_{\mathrm{f}}$ (Hex:EE $3: 1)=0.31$ yielded in 96 : ($3.6 \mathrm{~g}, 7.50 \mathrm{mmol}, 49.3 \%$) as a light yellow solid.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=3.34\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.92\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 7.80(\mathrm{~d}, 1 \mathrm{H}$, $\mathrm{H}_{\text {pyrene }}$), 7.83 (d, $1 \mathrm{H}, \mathrm{H}_{\text {pyrene }}$), 7.90 (s, $1 \mathrm{H}, \mathrm{H}_{\text {aromatic }}$). $7.94-8.30\left(\mathrm{~m}, 7 \mathrm{H}, \mathrm{H}_{\text {pyrene }}\right), 8.38$ (s, $1 \mathrm{H}, \mathrm{H}_{\text {aromatic }}$).
${ }^{13} \mathrm{C}$ NMR (67.9 MHz, CDCl_{3}): $\delta=52.11,52.57,120.46,123.99$, 124.16, 124.28, $124.44,124.99,125.24,125.90,126.35,127.19,127.50,127.84,128.40,130.55$, 130.81, 131.13, 134.22, 134.51, 134.72, 134.94, 135.59, 140.64, 165.58.

MS (EI, $180{ }^{\circ} \mathrm{C}, 80 \mathrm{eV}$): m/z (\%) = 472 (97.6) [M $\left.{ }^{+}\right]$, 441 (3.3) [$\left.\mathrm{M}^{+}-\mathrm{CH}_{3} \mathrm{O}\right], 463$ (8.3) [$\left.\mathrm{M}^{+}-\mathrm{CH}_{3} \mathrm{OBr}\right], 275$ (54.5) [$\left.\mathrm{M}^{+}-\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{BrO}_{4}\right]$.
EA C ${ }_{26} \mathrm{H}_{17} \mathrm{BrO}_{4}(473.32 \mathrm{~g} / \mathrm{mol})$ calcd. C 65.98 H 3.62 found C 65.76 H 3.46 .

2-(3-tert-Butoxycarbonylamino-propyl)-5-pyrene-1-yl-terephthalic acid dimethyl ester (97)

For preparation see general procedure for SCC 2:

Allylamine $40(4.03 \mathrm{~g}, 25.64 \mathrm{mmol})$, dry toluene (100 ml), 9-BBN ($7.76 \mathrm{~g}, 63.50$ $\mathrm{mmol}), \mathrm{KOH}(100 \mathrm{ml}, \mathrm{c}=1 \mathrm{~mol} / \mathrm{l}), 96(4.0 \mathrm{~g}, 8.45 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.19 \mathrm{~g}, 0.16$ mmol), 4 d .

Chromatographic separation with silica gel and hexane:acetic acid ethyl ester 10:1 R_{f} (Hexane:ethylacetate 3:1) $=0.28$, yielded in 97 ($3.48 \mathrm{~g}, 6.31 \mathrm{mmol}, 75 \%$). Freeze drying in benzene gave 97 as a pale yellow solid.
${ }^{1} \mathrm{H}$ NMR ($270 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.47\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3}\right.$ boc), $1.94\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}-\beta\right), 3.13(\mathrm{~m}, 2$ $\mathrm{H}, \mathrm{CH}_{2}$ benzylic), $3.26\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{N}\right) 3.30\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.86\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.86$ (s, $1 \mathrm{H}, \mathrm{NH}$), 7.71 (d, $1 \mathrm{H}, \mathrm{H}_{\text {pyrene }}$), 7.83 ($\mathrm{d}, 1 \mathrm{H}, \mathrm{H}_{\text {pyrene }}$), $7.90-8.28$ ($\mathrm{m}, 9 \mathrm{H}, \mathrm{H}_{\text {aromatic+pyrene }}$).
${ }^{13} \mathrm{C}$ NMR (125.8 MHz, CDCl_{3}): $\delta=28.41,31.20,31.77,40.33,52.00,52.23,79.03$, 124.26, 124.46, 124.56, 124.71, 124.95, 125.17, 125.94, 126.76, 127.40, 127.64, $128.72,130.70,130.80,131.35,131.96,132.52,134.50,135.62,139.27,142.92$, 152.07, 167.08, 167.21.

MS (EI, 120-150 $\left.{ }^{\circ} \mathrm{C}, 80 \mathrm{eV}\right): \mathrm{m} / \mathrm{z}(\%)=551$ (20.2) [M $\left.{ }^{+}\right]$, 494 (26.4) [$\mathrm{M}^{\left.-\mathrm{C}_{4} \mathrm{H}_{9}{ }^{+}\right], 476}$ (100) $\left[\mathrm{M}^{+}-\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}\right]$.

EA $\mathrm{C}_{34} \mathrm{H}_{33} \mathrm{NO}_{6}(551.64)$ calcd C 74.03 H 6.03 N 2.54 , found C 74.01 H 6.11 N 2.45 .

4-(3-tert-Butoxycarbonylamino-propyl)-4'-pyrene-1-ylmethyl-biphenyl-2,5dicarboxylic acid dimethyl ester (98)

For preparation see general procedure for SCC 2:

Allylamine 40 ($0.56 \mathrm{~g}, 3.55 \mathrm{mmol}$), dry toluene (25 ml), 9-BBN ($0.65 \mathrm{~g}, 5.32 \mathrm{mmol}$), $\mathrm{KOH}(30 \mathrm{ml}, \mathrm{c}=1 \mathrm{~mol} / \mathrm{l})$, diester $105(1.0 \mathrm{~g}, 1.78 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.04 \mathrm{~g}, 0.04$ mmol), 3 d .
Chromatographic separation with silica gel and hexane:acetic acid ethyl ester 3:1 $\mathrm{R}_{\mathrm{f}(\text { Hexane:ethylacetate } 3: 1)}=0.11$. yielded in $98(0.71 \mathrm{~g}, 1.11 \mathrm{mmol}, 62 \%)$ as a pale yellow solid.
${ }^{1} \mathrm{H}$ NMR (270 MHz, CDCl_{3}): $\delta=1.43\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3}\right.$ bос), $1.78(\mathrm{~m}, 2 \mathrm{H}, \beta), 2.95(\mathrm{~m}, 2 \mathrm{H}$, $\alpha), 3.15(\mathrm{~m}, 2 \mathrm{H}, \gamma), 3.61\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.81\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.67\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.85(\mathrm{~s}$, $1 \mathrm{H}, \mathrm{NH}), 7.18\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}_{\text {aromatic }}\right), 7.62\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{\text {aromatic }}\right), 7.77-8.12\left(\mathrm{~m}, 9 \mathrm{H}, \mathrm{H}_{\text {pyrene }}+\right.$ aromatic), 8.15 (d, $1 \mathrm{H}, \mathrm{H}_{\text {pyrene }}$).
${ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}): $\delta=28.30,30.92,31.53,38.85,40.10,52.04,52.08$, $78.84,123.53,124.65,124.73,124.90,124.96,125.73,126.74,127.31,128.08$, 128.27, 128.36, 128.96, 130.06, 130.62, 131.15, 131.41, 132.01, 132.83, 133.55, 134.07, 137.63, 139.56, 140.41, 142.27, 155.91, 166.91, 168.30. (2 signals missing) MS (EI, $210{ }^{\circ} \mathrm{C}, 80 \mathrm{eV}$): m/z = 641 (7.3) [M $\left.{ }^{+}\right]$, 585 (5.7) [$\left.\mathrm{M}^{+}-\mathrm{C}_{4} \mathrm{H}_{8}\right], 568$ (100) [$\mathrm{M}^{+}-$ $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{O}$], 215 (25.6) [pyrene- $\mathrm{CH}_{2}{ }^{+}$].
EA C ${ }_{41} \mathrm{H}_{39} \mathrm{NO}_{6}$ (641.75) calcd: C 76.73 H 6.13 N 2.18 , found: C 76.67 H 6.24 N 1.95 .

4,4,5,5-Tetramethyl-2-(4-pyrene-1-ylmethyl-phenyl)-[1,3,2]dioxaborolane (104)

Pyrene-methylene-phenyl bromide 102 ($1.0 \mathrm{~g}, 2.69 \mathrm{mmol}$) was suspended in 100 ml abs. diethylether and the colorless suspension was cooled down to $-78{ }^{\circ} \mathrm{C}$. A solution of $\mathrm{n}-\mathrm{BuLi}(4.53 \mathrm{ml}, 7.20 \mathrm{mmol}, \mathrm{c}=1.6 \mathrm{M})$ was added dropwise. The mixture was allowed to come to $0^{\circ} \mathrm{C}$ in 5 h , the color changed to red, then cooled down to $78{ }^{\circ} \mathrm{C}$ again, and triisopropyl boric acid ester ($2.0 \mathrm{ml}, 1.63 \mathrm{~g}, 8.67 \mathrm{mmol}$) was added. The mixture came to room temperature during 10 h . Then water (150 ml) was added. The layers were separated and the aqueous layer was washed three times with diethyl ether (200 ml). The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$. Filtration over silica gel with first hexane:acetic acid ethyl ester 3:1 and later with acetone gave the pyrene phenyl boronic acid 103 as a brown oil. Without further purification the pyrene-methylene-phenyl boronic acid and pinacol ($1.78 \mathrm{~g}, 15.06 \mathrm{mmol}$) were dissolved in acetone (320 ml) and refluxed for 1 h . The acetone was removed through distillation. Chromatographic separation with hexane:acetic acid ethyl ester 10:1 gave the pyrene pinacol 104 ($0.74 \mathrm{~g}, 1.77$, mmol, 66%) as a colorless solid. R_{f} $=0.24$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.37\left(\mathrm{~s}, 12 \mathrm{H}, \mathrm{CH}_{3}\right), 4.75\left(\mathrm{~s}, 2 \mathrm{H} \mathrm{CH}_{2}\right), 7.28(\mathrm{~d}, 2 \mathrm{H}$, $\mathrm{H}_{\text {aromatic }}$), 7.80 (d, $2 \mathrm{H}, \mathrm{H}_{\text {aromatic }}$), 7.87 (d, $1 \mathrm{H}, \mathrm{H}_{\text {pyrene }}$), $7.95-8.09\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}_{\text {pyrene }}\right)$, 8.10-8.28 (m, $4 \mathrm{H}, \mathrm{H}_{\text {pyrene }}$).
${ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}): $\delta=24.77,39.48,83.61,123.61,124.75,124.80$, 124.84, 124.95, 125.04, 125.80, 126.81, 127.41, 127.45, 128.14, 128.18, 128.61, 130.13, 130.74, 131.25, 134.06, 135.01, 144.50.

MS (EI, $160{ }^{\circ} \mathrm{C}, 80 \mathrm{eV}$): m/z = 418 (100) [$\left.\mathrm{M}^{+}\right], 360(1.0)\left[\mathrm{M}^{+}-\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}\right]$, 318 (17.8) [$\mathrm{M}^{+}-$ $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}$], 291 (8.6) [$\mathrm{M}^{+}-\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{BO}_{2}$], 215 (34.3) [$\mathrm{M}^{+}-\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{BO}_{2}$], 202 (26.4) [pyrene ${ }^{+}$]. HRMS ${ }^{12} \mathrm{C}_{29}{ }^{1} \mathrm{H}_{27}{ }^{11} \mathrm{~B}_{1}{ }^{16} \mathrm{O}_{2}$ calcd 418.21041 found 418.21432 .

4-Bromo-4'-pyrene-1-ylmethyl-biphenyl-2,5-dicarboxylic acid dimethyl ester (105)

For preparation see general procedure for SCC 1:

Pinacol 104 ($0.30 \mathrm{~g}, 0.717 \mathrm{mmol}$), diester $95(0.38 \mathrm{~g}, 1.080 \mathrm{mmol})$, toluene (25 ml), $\mathrm{Na}_{2} \mathrm{CO}_{3}(25 \mathrm{ml}, \mathrm{c}=1 \mathrm{~mol} / \mathrm{l}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(16.6 \mathrm{mg}, 0.014 \mathrm{mmol}), 3 \mathrm{~d}$;
Chromatographic separation with silica gel and hexane: ethyl acetate $10: 1 \mathrm{R}_{\mathrm{f}}$ (Hex:EE 3:1) $=0.28$ yielded in 105: ($0.18 \mathrm{~g}, 0.323 \mathrm{mmol}, 45 \%$) as a colorless solid.
${ }^{1} \mathrm{H}$ NMR (270 MHz, CDCl_{3}): $\delta=3.64\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.90\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.75(\mathrm{~s}, 2 \mathrm{H}$, CH_{2}), 7.17 (d, $2 \mathrm{H}, \mathrm{H}_{\text {aromatic }}$), 7.26 (d, $2 \mathrm{H}, \mathrm{H}_{\text {aromatic }}$), 7.75 (s, $1 \mathrm{H}, \mathrm{H}_{\text {aromatic }}$), 7.90 (d, 1 H , $\left.\mathrm{H}_{\text {pyrene }}\right), 7.94-8.32\left(\mathrm{~m}, 9 \mathrm{H}, \mathrm{H}_{\text {pyrene }}+\right.$ aromatic $)$.
${ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=38.88,52.21,52.49,119.83,123.49$, 124.49, 124.77, 125.06, 125.77, 126.82, 127.33, 127.39, 128.06, 128.21, 128.50, 129.02, 130.18, 130.69, 131.25, 133.20, 133.96, 134.15, 135.15, 136.76, 140.99, 141.07, 165.60, 166.75. (3 signals missing)

MS (EI, $300{ }^{\circ} \mathrm{C}, 80 \mathrm{eV}$): m/z = 562 (95.8) [M $\left.{ }^{+}\right]$, 531 (4.1) $\left[\mathrm{M}^{+}-\mathrm{CH}_{3} \mathrm{O}\right], 444$ (4.7) $\left[\mathrm{M}^{+}-\right.$ $\left.\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{4}\right], 365$ (6.6) $\left[\mathrm{M}^{+}-\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{4} \mathrm{Br}\right], 215$ (37.7) [pyrene- $\left.\mathrm{CH}_{2}{ }^{+}\right]$.
$\mathrm{EA} \mathrm{C}_{33} \mathrm{H}_{23} \mathrm{BrO}_{4}(563.44)$ calcd C 70.35 H 4.11 , found C 70.26 H 4.14 .

2-(3-Amino-propyl)-5-pyrene-1-yl-terephthalic acid dimethyl ester Trifluoroacetate (106)

Boc protected diester $97(1.0 \mathrm{~g}, 1.81 \mathrm{mmol})$ was dissolved in chloroform (25 ml), trifluoracetic acid was added (2 ml). The solution was stirred for 3 h at room temperature. The solvents were removed through distillation. Freeze drying of the residue gave the product 106 ($0.92 \mathrm{~g}, 1.63 \mathrm{mmol}, 90 \%$) as a brown solid.
${ }^{1} \mathrm{H}$ NMR ($270 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.34\left(\mathrm{~m} 2 \mathrm{H}, \mathrm{CH}_{2}\right.$), $3.09-3.38\left(\mathrm{~m}, 7 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{N}, \mathrm{CH}_{2}\right.$ benzylic, CH_{3}), $3.83\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 7.69\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{\text {pyrene }}\right)$, 7.81 ($\mathrm{d}, 1 \mathrm{H}, \mathrm{H}_{\text {pyrene }}$), 7.84-8.26 (m, $9 \mathrm{H}, \mathrm{H}_{\text {pyrene, }} \mathrm{H}_{\text {aromatic }}$).
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=29.18,30.39,39.44,52.04,52.50,124.21,124.33$, 124.38, 124.55, 124.92, 125.11, 125.86, 126.61, 127.30, 127.35, 127.67, 128.57, 130.62, 130.65, 131.20, 131.74, 132.64, 134.69, 134.70, 135.29, 139.71, 141.56, 167.07, 167.10

MS (EI, $220^{\circ} \mathrm{C}, 80 \mathrm{eV}$): m/z = $452(100)\left[\mathrm{M}^{+}+\mathrm{H}\right]$.

4-(3-Amino-propyl)-4'-pyrene-1-ylmethyl-biphenyl-2,5-dicarboxylic dimethyl ester (107)

 acid

Boc protected ester 98 ($0.29 \mathrm{~g}, 0.452 \mathrm{mmol}$) was dissolved in chloroform (5 ml), trifluoroacetic acid was added (2 ml), and the color turned from pale yellow to orange. The solution was stirred for 1 h at room temperature. an aqueous solution of KOH was added until $\mathrm{pH}=9$. $\mathrm{The}_{\mathrm{CHCl}}^{3}$ phase was separated and the aqueous one was etracted two times with $\mathrm{CHCl}_{3}(20 \mathrm{ml})$. The combines organic phases were dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent removed. Freeze drying of the residue in dioxane gave the product 107 ($0.23 \mathrm{~g}, 0.0 .425 \mathrm{mmol}, 94 \%$) as a brown solid.
${ }^{1} \mathrm{H}$ MNR ($500 \mathrm{MHz}, \mathrm{DMSO}$) $\delta=1.89\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.87\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.98(\mathrm{~m}, 2 \mathrm{H}$, CH_{2}), $3.60\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.83\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.73\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.19\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{H}_{\text {aromatic }}\right)$, 7.29 (d, $2 \mathrm{H}, \mathrm{H}_{\text {aromatic }}$), 7.70 (s, 1H, $\mathrm{H}_{\text {aromatic }}$), 7.75 (s, 1H, $\mathrm{H}_{\text {aromatic }}$), $7.86-8.30(\mathrm{~m}, 8 \mathrm{H}$, $\mathrm{H}_{\text {pyrene }}$), 8.34 (d, 1H, $\mathrm{H}_{\text {pyrene }}$).
${ }^{13} \mathrm{C}$ NMR (126 Mhz, DMSO): $\delta=28.89,29.84,38.01,38.67,52.20,52.41,123.84$, 124.11, 124.45, 125.00, 125.08, 125.17, 126.24, 126.83, 127.47, 128.21, 128.42, 128.52, 128.60, 129.75, 130.40, 130.92, 131.63, 131.83, 132.10, 133.78, 134.88, 136.87, 138.87, 140.90, 141.09, 166.55, 167.87. (1 signal missing).

MS (+FAB, MNBA, $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): m 7 z(\%)=542(81.7)\left[\mathrm{M}^{+}+\mathrm{H}\right], 215(100)\left[p y r e n e+\mathrm{CH}_{2}{ }^{+}\right]$.

2-(3-tert-Butoxycarbonylamino-propyl)-5-pyrene-1-yl-terephthalic acid (108)

The ester 97 ($0.2 \mathrm{~g}, 0.36 \mathrm{mmol}$) was suspended in methanol (15 ml). $\mathrm{KOH}(15 \mathrm{ml}, 3$ M) and THF (15 ml) were added. The mixture was refluxed for 1 d . The solvents were removed by distillation and the residue was dissolved in water (20 ml). Acetic acid was added until at $\mathrm{pH}=4$ the product 108 precipitated as a pale yellow solid, which was washed with water. The solid was dissolved in acetone (40 ml), dried (MgSO_{4}) and the acetone removed. The reaction gave product 108 ($0.15 \mathrm{~g}, 0.29 \mathrm{mmol}, 80 \%$) as a yellow solid.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}$): $\delta=1.38\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3}\right)$, 1.82, ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2}$); 2.88-3.21 (m, $4 \mathrm{H}, \mathrm{CH}_{2}$), $6.90\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}\right.$), 7.71 (d, $\left.1 \mathrm{H}, \mathrm{H}_{\text {pyrene }}\right) 7.75$ (s, 1H, $\mathrm{H}_{\text {aromatic }}$), 7.81-8.40 (m, $9 \mathrm{H}, \mathrm{H}_{\text {pyrene }}+$ aromatic $)$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, DMSO): $\delta=28.34,30.58,31.51,40.01,77.48,123.82,124.05$, $124.47,124.83,124.95,125.26,126.30,127.22,127.42,128.24,129.98,130.42$, 130.93, 131.72, 133.23, 135.41, 136.88, 137.54, 141.47, 155.73, 168.52, 169.50. MS (-FAB, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, DMSO, MNBA): m/z (\%) = 522 (100) [$\left.\mathrm{M}^{-}-\mathrm{H}\right]$
HRMS ${ }^{12} \mathrm{C}_{27}{ }^{1} \mathrm{H}_{18}{ }^{14} \mathrm{~N}_{1}{ }^{16} \mathrm{O}_{3}\left[\mathrm{M}^{+}-\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{O}_{2} / \mathrm{H}_{2} \mathrm{O}\right]$ calcd 404.12867 found 404.12756.

4-(3-tert-Butoxycarbonylamino-propyl)-4'-pyren-1-ylmethyl-biphenyl-2,5dicarboxylic acid (109)

The G1 ester 98 ($0.44 \mathrm{~g}, 0.686 \mathrm{mmol}$) was dissolved in THF (15 ml), methanol (15 ml) and an aqueous solution of $\mathrm{KOH}(15 \mathrm{ml}, \mathrm{c}=2.5 \mathrm{~mol} / \mathrm{l})$ were added. The mixture was refluxed for 2 d . The solvents were removed by distillation and the residue was dissolved in $\mathrm{H}_{2} \mathrm{O}(40 \mathrm{ml})$. Acetic acid was added until $\mathrm{pH}=4$. The product started to
precipitate immediately. The solid was sucked off, washed with water (40 ml) and was dissolved in acetone and dried $\left(\mathrm{MgSO}_{4}\right)$. Removing the acetone gave the di-acid 109 as a pale yellow solid ($0.28 \mathrm{~g}, 0.460 \mathrm{mmol}, 67$
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}$): $\delta=1.38\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{H}_{\text {Bос }}\right), 1.70(\mathrm{~m}, 2 \mathrm{H}, \beta), 2.84-3.09(\mathrm{~m}$, $4 \mathrm{H}, \alpha, \gamma), 4.73\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 6.81(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 7.15-7.38\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}_{\text {aromatic }}\right), 7.57(\mathrm{~s}$, $1 \mathrm{H}, \mathrm{H}_{\text {aromatic }}$), 7.68 (s, 1H, $\mathrm{H}_{\text {aromatic }}$), $7.95-8.31$ ($\mathrm{m}, 8 \mathrm{H}, \mathrm{H}_{\text {pyrene }}$), 8.40 (d, 1H, $\mathrm{H}_{\text {pyrene }}$).
${ }^{13} \mathrm{C}$ NMR (126 MHz, DMSO): $\delta=28.29,30.36,31.42,37.92,38.37,77.45,123.85$, 124.09, 124.39, 124.96, 125.09, 125.14, 126.23, 126.80, 127.46, 127.51, 128.36, 128.41, 128.50, 129.68, 130.39, 130.90, 131.03, 131.80, 134.95, 137.69, 140.33, 141.41, 155.65, 168.60, 169.58. (4 signals missing)

MS (-FAB, MNBA, $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}, 3 \mathrm{KV}\right): \mathrm{m} / \mathrm{z}(\%)=612(84.1)\left[\mathrm{M}^{-} \mathrm{H}\right]$.
HRMS ${ }^{12} \mathrm{C}_{35}{ }^{1} \mathrm{H}_{27}{ }^{14} \mathrm{~N}_{1}{ }^{16} \mathrm{O}_{5}\left(\mathrm{M}-\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}\right)$ calcd: 541.18892 , found: 541.18756.

N1, N4-Dipropyl-2-(3-tert-butoxycarbonylamino-propyl)-5-pyrene-1-ylterephthalamide (110)

For preparation see general procedure for amide coupling.

Di acid 108 (200.0 mg, 0.382 mmol), HOBT ($128.2 \mathrm{mg}, 0.840 \mathrm{mmol}$), dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (10 ml), propylamine ($200.0 \mathrm{mg}, 0.800 \mathrm{mmol}$), DIPEA ($210.7 \mathrm{mg}, 1.630 \mathrm{mmol}$), EDC ($161.1 \mathrm{mg}, 0.840 \mathrm{mmol}$), 15 h , chromatographic separation with silica gel and Hex:EE 1:3 $\mathrm{R}_{\mathrm{f}}=0.15$ gave a colorless solid ($109.4 \mathrm{mg}, 0.181 \mathrm{mmol}, 47 \%$).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-0.03\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.45\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 0.87(\mathrm{t}, 3 \mathrm{H}$, CH_{3}), $1.42\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{Boc}\right), 1.54\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.90\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.65(\mathrm{~m}, 2 \mathrm{H}$, CH_{2}), $2.87\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.16\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.31\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 5.17(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH})$, 5.29 (s, 1H, NH), 6.40 (s, 1H, NH), 7.42 (s, $1 \mathrm{H}, \mathrm{H}_{\text {aromatic }}$); 7.73-7.89 (m, 3H, Haromatic + pyrene), 7.92-8.25 ($\mathrm{m}, 7 \mathrm{H}, \mathrm{H}_{\text {pyrene }}$).
${ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}): $\delta=10.36,11.35,21.54,22.66,28.34,29.12,29.58$, 29.85, 31.14, 39.67, 41.04, 41.57, 78.80, 124.21, 124.38, 124.60, 125.29, 125.47, 126.22, 127.06, 127.11, 127.88, 128.37, 128.89, 130.11, 130.67, 130.80, 131.06, 131.18, 134.14, 135.83, 137.58, 138.32, 139.62, 156.10, 167.50, 169.29.

MS (+FAB, DMSO, $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{MNBA}, 3 \mathrm{KV}\right): \mathrm{m} / \mathrm{z}(\%)=606$ (19.9)[$\left.{ }^{+}+\mathrm{H}\right], 550$ (2.9) $\left[\mathrm{M}^{+} .-\mathrm{C}_{4} \mathrm{H}_{8}\right], 507$ (54.5) [$\left.\mathrm{M}^{+}{ }^{-} \mathrm{C}_{7} \mathrm{H}_{15}\right]$.
$\mathrm{EA} \mathrm{C}_{38} \mathrm{H}_{43} \mathrm{~N}_{3} \mathrm{O}_{4}(605.77)$ calcd C 75.34 H 7.15 N 6.94 found C 75.06 H 7.23 N 6.92 .

N1, N4- Dibenzyl-2-(3- tert- butoxycarbonylamino- propyl)- 5- pyrene- 1- ylterephthalamide (111)

For preparation see general procedure for amide coupling.

Di acid 108 ($50.0 \mathrm{mg}, 0.096 \mathrm{mmol}$), HOBT ($32.2 \mathrm{mg}, 0.210 \mathrm{mmol}$), dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (10 ml), benzyl amine ($20.5 \mathrm{mg}, 20.9 \mu \mathrm{l}, 0.191 \mathrm{mmol}$), DIPEA ($73.2 \mu \mathrm{l}, 0.420 \mathrm{mmol}$), EDC $(40.3 \mathrm{mg}, 0.210 \mathrm{mmol})$, 1d, chromatographic separation with silica gel and $\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH} 2 \% \mathrm{R}_{\mathrm{f}}=0.19$ gave 111 as a colorless solid ($38.0 \mathrm{mg}, 0.054 \mathrm{mmol}, 56$ $\%$).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.33\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{Boc}\right), 1.81\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{\beta}\right), 2.81(\mathrm{~m}, 2$ $\mathrm{H}, \mathrm{H}_{\alpha}$), 3.06, m, $2 \mathrm{H}, \mathrm{H}_{\gamma}$), 3.71 (d, $1 \mathrm{H}, \mathrm{A}_{2}$), $3.85\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{A}_{2}^{\prime}\right), 4.45\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{B}_{2}\right), 4.95$ (s, $1 \mathrm{H}, \mathrm{H}_{\delta}$), 5.28 , ($\mathrm{s}, 1 \mathrm{H}, \mathrm{A}_{1}$), $5.89\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{A}_{\mathrm{o}}\right), 6.19\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{A}_{\mathrm{m}}\right), 6.36\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{B}_{1}\right)$, $6.46\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{A}_{\mathrm{p}}\right), 7.03-7.25\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{B}_{\mathrm{p}}, \mathrm{B}_{\mathrm{m}}, \mathrm{B}_{\mathrm{o}}\right), 7.32\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{1}\right), 7.60\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{21}\right)$, $7.68\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{10}\right), 7.77\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{4}\right), 7.82\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{20}\right), 7.86-8.07\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{H}_{12,13,14,17,}\right.$ 18), 8.12 (d, $1 \mathrm{H}, \mathrm{H}_{16}$).
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=28.41\left(\mathrm{CH}_{3}-\mathrm{Boc}\right)$, $29.98(\alpha), 31.30(\beta)$, $39.78(\gamma)$, $43.79\left(\mathrm{~A}_{2}\right), 43.98\left(\mathrm{~B}_{2}\right), 78.94$ (C-Boc), 124.00 (21), 124.48 (23), 124.56 (24), 124.71 (11), 125.42 (18), 125.53 (16), 126.29 (17), $126.56\left(A_{p}\right), 126.70\left(\mathrm{~A}_{\circ}\right), 126.88$ (10), $127.19(13), 127.53\left(A_{m}\right), 127.61\left(B_{p}\right), 127.94\left(B_{0}+14\right), 128.60(20), 128.72\left(B_{m}\right)$,
128.93 (22), 130.05 (1), 130.72 (19), 131.14 (4 + 12), 131.30 (15), 133.78 (9), 136.01 (6), $136.14\left(\mathrm{~A}_{\mathrm{i}}\right), 137.39(5), 137.70\left(\mathrm{~B}_{\mathrm{i}}\right), 137.97$ (2), 140.07 (3), 156.12 ($\mathrm{C}=\mathrm{O}$ Boc), 167.18 (8), 169.00 (7).

MS (EI, 250-300 ${ }^{\circ} \mathrm{C}, 80 \mathrm{eV}$): m/z (\%) = 701 (0.6) [M $\left.{ }^{+}\right], 627(0.9)\left[\mathrm{M}^{+}-\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}\right], 571$ (0.2) $\left[\mathrm{M}^{+}-\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{2} \mathrm{~N}\right], 494$ (0.2) $\left[\mathrm{M}^{+}-\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{NO}_{2}\right]$.

HRMS ${ }^{12} \mathrm{C}_{46}{ }^{1} \mathrm{H}_{43}{ }^{14} \mathrm{~N}_{3}{ }^{16} \mathrm{O}_{4}$ calcd 701.32536 found 701.32733 .

N1, N4- Bis- (3- [-4'- pyrene- 1- ylmethyl- biphenyl- 4-yl- 2,5- bis-methoxycarbonyl]propyl)-2-(3-tert-butoxycarbonylamino-propyl)-5-pyrene-1-ylterephthalamide (112)

For preparation see general procedure for amide coupling.

Di acid 108 ($92.1 \mathrm{mg}, 0.176 \mathrm{mmol}$), HOBT ($59.7 \mathrm{mg}, 0.370 \mathrm{mmol}$), dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5 ml), dummy-amine 107 ($200.0 \mathrm{mg}, 0.370 \mathrm{mmol}$), DIPEA ($98.2 \mathrm{mg}, 0.76 \mathrm{mmol}$), EDC (74.8 $\mathrm{mg}, 0.390 \mathrm{mmol}), 15 \mathrm{~h}$, chromatographic separation with silica gel and Hex:EE 1:2 R_{f} $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: 2 \% \mathrm{MeOH}\right)=0.15$ gave 112 as a yellow oil ($78.0 \mathrm{mg}, 0.050 \mathrm{mmol}, 28 \%$).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.60-0.90\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.45\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3}\right.$ вос $), 1.75-$ $1.96\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 2.01\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.72-2.95\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.00\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right)$, 3.20 (s, $3 \mathrm{H}, \mathrm{CH}_{3}$), $3.23\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$), $3.47\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.60\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.64$ (s, $3 \mathrm{H}, \mathrm{CH}_{3}$), $3.65\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.70\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.78\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 5.22(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}-$ Boc), 5.65 (s, 1H, NH), 6.88 (s, 1H, NH), 7.00 (s, 1H, Haromatic), 7.10 (d, 2H, Haromatic), 7.18 (d, $4 \mathrm{H}, \mathrm{H}_{\text {aromatic }}$), 7.25 (d, $2 \mathrm{H}, \mathrm{H}_{\text {aromatic }}$), 7.60 (s, $1 \mathrm{H}, \mathrm{H}_{\text {aromatic }}$), 7.64 (s, 1 H , $H_{\text {aromatic }}$), 7.67 (s, 1H, $\mathrm{H}_{\text {aromatic }}$), 7.70 (s, 1H, $\mathrm{H}_{\text {aromatic }}$), $7.82-8.22$ (m, $27 \mathrm{H}, \mathrm{H}_{\text {pyrene }}+$ aromatic), 8.25 ($\mathrm{d}, 1 \mathrm{H}, \mathrm{H}_{\text {pyrene }}$).
${ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}): $\delta=28.40,29.77,29.85,29.98,30.85,30.96,31.36$, $38.82,38.95,38.99,39.25,39.77,51.76,51.98,52.08,52.13,78.82,123.63,123.68$,
124.24, 124.47, 124.54, 124.75, 124.81, 124.85, 125.01, 125.03, 125.06, 125.11, 125.37, 125.86, 126.10, 126.86, 127.29, 127.40, 127.42, 127.45, 127.74, 128.18, 128.25, 128.30, 128.41, 128.45, 128.84, 129.06, 129.10, 130.17, 130.20, 130.36, 130.59, 130.72, 130.74, 130.92, 130.97, 130.99, 131.26, 131.28, 131.34, 132.10, 132.66, 132.94, 133.31, 133.81, 134.13, 134.19, 134.40, 135.88, 137.55, 137.72, 137.91, 138.29, 139.22, 139.72, 140.29, 140.50, 140.52, 141.70, 142.30, 156.14, 166.36, 166.81, 168.02, 168.22, 168.26, 169.35. (13 signals missing)

MS(+FAB, DMSO/MNBA, 2 KV): $\mathrm{m} / \mathrm{z}=1570$ (18.02) $\left[\mathrm{M}^{+}\right], 1470$ (100) $\left[\mathrm{M}^{+}-\mathrm{C}_{5} \mathrm{H}_{8} \mathrm{O}_{2}\right]$.
EA $\mathrm{C}_{104} \mathrm{H}_{87} \mathrm{~N}_{3} \mathrm{O}_{12}$ (1570.82) calcd. C 79.52 H 5.58 N 2.68 , found C $78.53 \mathrm{H} 5 . .34 \mathrm{~N}$ 2.36.

4-(3-tert-Butoxycarbonylamino-propyl)-4'-pyrene-1-ylmethyl-biphenyl-2,5dicarboxylic acid bis-\{[3-(2,5-bis-methoxycarbonyl-4-pyrene-1-yl)-propyl]amide\} (113)

For preparation see general procedure for amide reaction.

Dummy-di-acid 109 ($114.0 \mathrm{mg}, 0.186 \mathrm{mmol}$), HOBT ($62.6 \mathrm{mg}, 0.409 \mathrm{mmol}$), dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (15 ml), Amine 106 ($176.1 \mathrm{mg}, 0.390 \mathrm{mmol}$) DIPEA ($100.8 \mathrm{mg}, 0.780 \mathrm{mmol}$), EDC ($74.8 \mathrm{mg}, 0.390 \mathrm{mmol}$), 14 h , chromatographic separation with silica gel and hexane:ethyl acetate 1:2 gave the product 113 ($130.0 \mathrm{mg}, 0.088 \mathrm{mmol}, 47 \%$) as a pale yellow oil, freeze drying with benzene gave a colorless solid.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.45\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3}\right), 1.73\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.96(\mathrm{~m}, 2 \mathrm{H}$, CH_{2}), $2.07\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.61\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.95\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.20\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right)$, $3.24-3.38\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{CH}_{3}, \mathrm{CH}_{3}, \mathrm{CH}_{2}\right), 3.43\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.58\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.78(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{CH}_{3}$), 4.67 (s, 2H, CH2), 5.28 (s, 1H, NH), 6.09 (s, 1H, NH), 6.94 (s, 1H, NH),
7.28 (d, $2 \mathrm{H}, \mathrm{H}_{\text {aromatic }}$), 7.42 (d, $2 \mathrm{H}, \mathrm{H}_{\text {aromatic }}$), 7.54 (s, $1 \mathrm{H}, \mathrm{H}_{\text {aromatic }}$), 7.62 (s, 1 H , $\mathrm{H}_{\text {aromatic }}$), $7.68-8.28\left(\mathrm{~m}, 31 \mathrm{H}, \mathrm{H}_{\text {aromatic }+ \text { pyrene }}\right)$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}): $\delta=28.36,29.76,30.41,30.49,31.05,31.17,31.25$, $38.81,39.09,39.39,39.66,52.05,52.30,78.74,123.33,124.26,124.37,124.42$, 124.57, 124.62, 124.65, 124.75, 124.96, 125.18, 125.23, 125.75, 125.92, 125.97, 126.69, 126.81, 127.27, 127.36, 127.38, 127.45, 127.68, 127.97, 128.60, 128.65, 128.74, 128.86, 130.09, 130.37, 130.51, 130.66, 130.68, 130.73, 131.09, 131.26, 131.30, 131.37, 131.75, 132.38, 132.62, 133.92, 134.41, 134.50, 134.60, 134.64, $135.45,136.88,137.16,137.23,137.80,139.21,139.35,139.48,140.93,142.70$, 143.01, 156.08, 166.81, 166.90, 167.08, 167.14, 169.47, 169.15. (17 signals missing) MS (+FAB, $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MNBA}, 2 \mathrm{KV}$): m/z (\%) = 1480 (36.4) [M $\left.{ }^{+}\right], 1379$ (73.6) [M ${ }^{+}-$ $\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{O}_{2}$].
EA $\mathrm{C}_{97} \mathrm{H}_{81} \mathrm{~N}_{3} \mathrm{O}_{12}$ (1480.69) calcd C 78.68 H 5.51 N 2.84 found C 77.92 H 5.51 N 2.76.

4-(3-amino-propyl)-4'-pyrene-1-ylmethyl-biphenyl-2,5-dicarboxylic acid bis-\{[3-(2,5-bis-methoxycarbonyl-4-pyrene-1-yl)-propyl]-amide\} trifluoroacetate (114)

Boc protected G2-dendron 113 ($367 \mathrm{mg}, 0.248 \mathrm{mmol}$) was dissolved in chloroform $(10 \mathrm{ml})$, trifluoroacetic acid was added (3 ml). The solution was stirred for 2.5 h at room temperature. The solvents were removed through distillation. Freeze drying of the residue gave the product 114 ($426 \mathrm{mg}, 0.248 \mathrm{mmol}, 100 \%$) as a brown solid. The product contained some trifluoroacetic acid. The yield was calculated with three molecules of trifluoroacetic acid for every dendron.
${ }^{1} \mathrm{H}$ NMR ($270 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.64\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.95\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.05(\mathrm{~m}, 2 \mathrm{H}$, CH_{2}), $2.26\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 2.58\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.78\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.96\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, 3.16 (m, 2H, CH ${ }_{2}$), 3.21 - $3.38\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{CH}_{3}, \mathrm{CH}_{3}, \mathrm{CH}_{2}\right.$), $3.50\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.56(\mathrm{~m}$,
$2 \mathrm{H}, \mathrm{CH}_{2}$), $3.75\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.66\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 6.04(\mathrm{t}, 1 \mathrm{H}, \mathrm{NH}), 7.26\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{H}_{\text {aromatic }}\right)$, 7.41 (d, 2H, $\mathrm{H}_{\text {aromatic }}$), $7.52-7.73\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}_{\text {aromatic }}+\mathrm{NH}\right), 7.73-8.28(\mathrm{~m}, 30 \mathrm{H}$, $\mathrm{H}_{\text {aromatic }}+$ pyrene $)$.
${ }^{13} \mathrm{C}$ NMR ($67.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=27.36,27.79,29.86,30.07,30.29,31.01,38.93$, 39.95, 40.33, 52.20, 52.50, 64.47, 115.00 (q, J = $284 \mathrm{~Hz}, \mathrm{CF}_{3}$), 123.28, 124.21, 124.32, 124.43, 124.60, 124.71, 124.75, 124.89, 125.15, 125.43, 125.51, 125.91, 126.16, 126.18, 126.81, 127.00, 127.36, 127.42, 127.64, 127.71, 127.99, 128.74, 128.79, 128.89, 128.93, 129.20, 129.75, 130.34, 130.63, 130.81, 130.87, 130.97, $131.00,131.24,131.33,131.43,131.47,131.87,132.42,132.70,133.82,134.68$, 134.89, 134.96, 135.04, 135.09, 135.90, 136.12, 136.96, 137.69, 138.65, 139.62, 139.77, 142.11, 142.31, 142.81, 159.82 (q, J = $41 \mathrm{~Hz}, \mathrm{C}=\mathrm{O}$), 167.51, 167.60, 168.31, 168.39, 171.12, 171.63. (16 signals missing)

MS (+FAB, $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{DMSO} / \mathrm{MNBA}, 2 \mathrm{KV}\right): \mathrm{m} / \mathrm{z}(\%)=1381(100)[\mathrm{M}+\mathrm{H}]^{+}$.
EA $\mathrm{C}_{98} \mathrm{H}_{76} \mathrm{~N}_{3} \mathrm{O}_{16} \mathrm{~F}_{9}(1722.64)\left[\mathrm{M}+3 \times \mathrm{CF}_{3} \mathrm{COOH}\right]$ calcd C 68.33 H 4.45 N 2.44 found C 68.15 H 4.46 N 2.33.

Benzene-1,3,5-(3-\{2,5-bis-[3-(2,5-bis-methoxycarbonyl-4-pyrene-1-yl-phenyl)propylcarbamoyl]-4'-pyrene-1-ylmethyl-biphenyl-4-yl\}-propylcarbamoyl) (116) and 4-[3-(2,2,2-Trifluoro-acetylamino)-propyl]-4'-pyrene-1-ylmethyl-biphenyl-2,5-dicarboxylic acid bis-\{[3-(2,5-bis-methoxycarbonyl)-4-pyrene-1-yl)-propyl]-amide\} (117)

For preparation see general procedure for amide coupling.

Acid-core 115 ($9.3 \mathrm{mg}, 0.044 \mathrm{mmol}$), HOBt ($19.8 \mathrm{mg}, 0.147 \mathrm{mmol}$), dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5 ml), DIPEA, ($69 \mu \mathrm{l}, 0.400 \mathrm{mmol}$), G2-amine $114(420.0 \mathrm{mg}, 0.229 \mathrm{mmol})$, EDC (28.1 mg , 0.147 mmol), 12 h , chromatographic separation with $\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH} 5: 1$ gave the byproduct 117 ($44.0 \mathrm{mg}, 0.030 \mathrm{mmol}, 13 \%$) and the G2 Dendrimer 116 (101.0 mg , $0.024 \mathrm{mmol}, 53 \%$) as yellow oils. Freeze drying with benzene gave pale yellow solids. For $\mathrm{X}: \mathrm{R}_{\mathrm{f}}=0.31$, for $X \mathrm{R}_{\mathrm{f}}=0.15$.

For Trifluoroamide 117:
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.71\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.06\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 2.65(\mathrm{~m}, 2 \mathrm{H}$, CH_{2}), $2.90\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.17\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.27\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.30\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right)$, $3.37\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.40\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.57\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.77\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.67(\mathrm{~s}$, $2 \mathrm{H}, \mathrm{CH}_{2}$), $5.85(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=5.4 \mathrm{~Hz}, \mathrm{NH}), 6.89(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=5.4 \mathrm{~Hz}, \mathrm{NH}), 7.28(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=$ $8.2 \mathrm{~Hz}, \mathrm{H}_{\text {aromatic }}$), 7.38 (d, $2 \mathrm{H}, \mathrm{J}=8.2 \mathrm{~Hz}, \mathrm{H}_{\text {aromatic }}$), 7.51 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}_{\text {aromatic }}$), 7.63 (s, 1H, $\mathrm{H}_{\text {aromatic }}$), $7.64-8.24\left(\mathrm{~m}, 31 \mathrm{H}, \mathrm{H}_{\text {pyrene }}+\right.$ aromatic $), 8.65(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=5.4 \mathrm{~Hz}, \mathrm{NH})$.
${ }^{13} \mathrm{C}$ NMR ($63 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=29.21,29.67,30.04,30.56,31.03,31.18,38.46$, 38.91, 39.30, 39.60, 52.07, 52.25, 116.66 (q, J = 288 Hz), 123.38, 124.31, 124.49, 124.54, 124.73, 124.78, 124.85, 125.06, 125.08, 125.27, 125.33, 125.87, 126.01, 126.07, 126.79, 126.95, 127.35, 127.45, 127.50, 127.57, 127.75, 128.05, 128.78, 128.93, 129.02, 130.27, 130.61, 130.64, 130.83, 131.25, 131.40, 131.44, 131.85, 132.41, 132.63, 133.93, 134.53, 134.71, 134.94, 135.51, 137.11, 137.34, 137.45, $137.75,139.36,139.42,139.53,139.36,139.42,139.53,141.30,142.72,142.94$, 158.22 ($q, J=36 \mathrm{~Hz}$) 166.92, 167.07, 167.15, 167.25, 168.92, 170.01. (19 signals missing)
MS (+FAB, 2KV, MNBA/DMSO): m/z (\%) = 1477 (23.5) [M $\left.{ }^{+}+\mathrm{H}\right]$.
MALDI-TOF MS: $\mathrm{m} / \mathrm{z}=1476.64\left[\mathrm{M}^{+}\right]$.
EA $\mathrm{C}_{94} \mathrm{H}_{72} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{11}$ (1476.59) calcd C 76.46 H 4.91 N 2.85 ; found C 76.15 H 4.73 N 2.64

For dendrimer 116:
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.68\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{2}\right), 1.97\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{2}\right), 2.04(\mathrm{~m}, 6 \mathrm{H}$, CH_{2}), $2.71\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{2}\right), 2.95\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{2}\right), 3.03-3.34\left(\mathrm{~m}, 30 \mathrm{H}, \mathrm{CH}_{3}, \mathrm{CH}_{2}\right), 3.40(\mathrm{~s}$, $9 \mathrm{H}, \mathrm{CH}_{3}$), $3.46\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{2}\right), 3.54\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{2}\right), 3.73\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3}\right), 4.59\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{2}\right)$, $6.10(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NH}), 6.92(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NH}), 7.05-7.50\left(\mathrm{~m}, 15 \mathrm{H}, \mathrm{NH}+\mathrm{H}_{\text {aromatic }}\right), 7.50-8.34(\mathrm{~m}$, $99 \mathrm{H}, \mathrm{H}_{\text {pyrene+aromatic }}$), 8.42 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{H}_{\text {core }}$).
${ }^{13} \mathrm{C}$ NMR ($63 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=30.04,30.13,30.54,30.74,31.20,31.33,38.84$, $39.31,39.41,39.66,52.01,52.24,123.42,124.28,124.51,124.69,124.74,124.81$, $125.00,125.22,125.80,125.96,126.81,127.35,127.43,127.69,128.02,128.52$,
$128.73,128.83,128.95,130.15,130.47,130.63,130.75,130.80,130.83,131.20$, $131.40,131.96,132.36,132.63,134.10,134.44,134.60,134.79,135.17,135.57$, 136.96, 137.15, 137.38, 137.44, 139.23, 139.32, 139.60, 140.84, 142.79, 143.17, 166.14, 166.95, 167.15, 167.25, 169.23, 169.85. (29 signals missing) $\mathrm{C}_{285} \mathrm{H}_{219} \mathrm{~N}_{9} \mathrm{O}_{33}(4297.83)$ MALDI-TOF MS m/z $=4299.01\left[\mathrm{M}^{+}+\mathrm{H}\right]$

7.7 Synthesis of compounds from chapter 4.7

2-(3-Benzyloxy-propyl)-5-pyrene-1-yl-terephthalic acid dimethyl ester (119)

For preparation see general procedure for SCC 2.

Protected allyl 118 ($1.44 \mathrm{~g}, 9.72 \mathrm{mmol}$), 9-BBN ($1.49 \mathrm{~g}, 12.10 \mathrm{mmol}$), dry toluene (20 $\mathrm{ml}), 12 \mathrm{~h}$, bromo - compound $96(2.3 \mathrm{~g}, 4.86 \mathrm{mmol})$, toluene (100 ml), aqueous solution of $\mathrm{KOH}(50 \mathrm{ml}, 1 \mathrm{M}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.14 \mathrm{~g}, 0.120 \mathrm{mmol}), 3 \mathrm{~d}$ at $50{ }^{\circ} \mathrm{C}$. Chromatographic separation with silica gel and hexane:ethyl acetate gave product 119 ($2.19 \mathrm{~g}, 4.04 \mathrm{mmol}, 83$ \%) as a yellow oil. (If necessary it could be recrystallized in MeOH , a yellow solid precipitated).
${ }^{1} \mathrm{H}$ NMR (270 MHz, CDCl_{3}): $\delta=2.17\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}-\beta\right), 3.30\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}-\alpha\right)$, 3.38 (s , $3 \mathrm{H}, \mathrm{CH}_{3}$), 3.68 (t, 2H, CH2- CH_{2}, 3.89 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$), 4.63 (s, 2H, CH2), 7.29 - 7.56 (m, $5 \mathrm{H}, \mathrm{H}_{\text {aromatic }}$), 7.81 (d, 1H, $\mathrm{H}_{\text {pyrene }}$), 7.92 (d, 1H, $\mathrm{H}_{\text {pyrene }}$), $7.96-8.36$ (m, $9 \mathrm{H}, \mathrm{H}_{\text {pyrene }}+$ aromatic).
${ }^{13} \mathrm{C}$ NMR $\left(68 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=30.68(\beta), 31.32(\alpha), 51.89\left(\mathrm{CH}_{3}\right), 52.09\left(\mathrm{CH}_{3}\right), 69.70$ $(\gamma), 72.85\left(\mathrm{CH}_{2}\right), 124.24,124.49,124.60,124.72,124.91,125.13,125.90,126.79$, 127.38, 127.39, 127.59, 128.29, 128.75, 130.67, 130.81, 131.34, 132.28, 132.61, 134.34, 135.72, 138.57, 139.14, 143.07, 167.15, 167.24. (3 signals missing)

MS (EI, $230{ }^{\circ} \mathrm{C}, 80 \mathrm{eV}$): m/z (\%) = 542 (100) [M $\left.{ }^{+}\right], 421$ (11.0) [$\left.\mathrm{M}^{+}-\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{O}\right], 361$ (9.6)
[$\mathrm{M}^{+}-\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{O}_{3}$], 201 (5.0) [pyrene $\left.{ }^{+}-\mathrm{H}\right]$.
HRMS ${ }^{12} \mathrm{C}_{36}{ }^{1} \mathrm{H}_{30}{ }^{16} \mathrm{O}_{5}$ calcd 542.20932 found 542.20758 .

EA $\mathrm{C}_{36} \mathrm{H}_{30} \mathrm{O}_{5}(542.62)$ caldc C 79.68 H 5.57 , found C 79.37 H 5.44 .

4-(3-Benzyloxy-propyl)-4'-pyrene-1-ylmethyl-biphenyl-2,5-dicarboxylic
 acid dimethyl ester (120)

For preparation see general procedure for SCC 2.

Allyl 118 ($0.12 \mathrm{~g}, 0.816 \mathrm{mmol}), 9-\mathrm{BBN}(0.13 \mathrm{~g}, 1.020 \mathrm{mmol})$, dry toluene (20 ml), 12 h, bromo-di-ester 105 ($0.23 \mathrm{~g}, 0.408 \mathrm{mmol}$), aqueous solution of $\mathrm{KOH}(15 \mathrm{ml}, 1 \mathrm{M}$), 3 d at $50^{\circ} \mathrm{C}$. Chromatographic separation with silica gel and hexane:ethyl acetate $10: 1$ gave the product $120(0.04 \mathrm{~g}, 0.070 \mathrm{mmol}, 17 \%)$ as a yellow oil. R_{f} (hexane:ethyl acetate $3: 1$) $=0.08$. Educt 105 could be regained ($132 \mathrm{mg}, 58 \%$).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.98\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.10\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.54(\mathrm{t}, 2 \mathrm{H}$, CH_{2}), $3.63\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.84\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.53\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.77\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.18$ - 7.33 ($\mathrm{m}, 4 \mathrm{H}, \mathrm{H}_{\text {aromatic }}$), $7.70\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{\text {aromatic }}\right.$), 7.85 (s, $1 \mathrm{H}, \mathrm{H}_{\text {aromatic }}$), 7.90 (d, 1 H , $\mathrm{H}_{\text {pyrene }}$), $7.95-8.23$ (m, $7 \mathrm{H}, \mathrm{H}_{\text {pyrene }}$), 8.27 ($\mathrm{d}, 1 \mathrm{H}, \mathrm{H}_{\text {pyrene }}$).
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=30.51,31.25,39.01,52.07,52.09,69,65,72.82$, 123.69, 124.85, 125.02, 125.15, 125.86, 126.87, 127.45, 127.60, 128.23, 128.30, 128.42, 128.45, 129.15, 130.23, 130.80, 131.33, 131.87, 132.20, 132.82, 133.48, 134.26, 137.87, 138.55, 139.58, 140.46, 142.50, 167.16, 168.45. (4 signals missing) MS (El, $\left.100{ }^{\circ} \mathrm{C}, 80 \mathrm{eV}\right): \mathrm{m} / \mathrm{z}(\%)=632$ (100) [M $\left.{ }^{+}\right]$, 215 (56.6) [pyrene $\left.+\mathrm{CH}_{2}{ }^{+}\right], 91$ (42.4) $\left[\mathrm{C}_{7} \mathrm{H}_{7}^{+}\right]$.

HRMS ${ }^{12} \mathrm{C}_{43}{ }^{1} \mathrm{H}_{36}{ }^{16} \mathrm{O}_{5}$ calcd C 632.25628, found 632.25836 .

2-(3-Hydroxy-propyl)-5-(4,5,9,10-tetrahydro-pyrene-1-yl)-terephthalic dimethyl ester (121)

Benzyl protected probe 119 ($1.74 \mathrm{~g}, 3.21 \mathrm{mmol}$) was emulgated in $\mathrm{MeOH}(70 \mathrm{ml})$ and Pd catalyst ($0.46 \mathrm{~g}, 10 \%$) was added. The mixture was handled in a hydrogenation apparatus at $40^{\circ} \mathrm{C}$ and 3 bar H_{2} for 2 d . The solution was filtrated over celite and the residue was washed with $\mathrm{CHCl}_{3}(200 \mathrm{ml})$. The organic phases were combined and the solvents removed. Chromatographic separation with silica gel and hexane:ethyl acetate $3: 1$ gave the product 121 as a colorless oil ($0.97 \mathrm{~g}, 2.13 \mathrm{mmol}, 66 \%$). R_{f} (hexane:ethyl acetate 1:1) $=0.21$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.00(\mathrm{~m}, 2 \mathrm{H}, \beta), 2.58(\mathrm{~m}, 2 \mathrm{H}, 19), 2.77(\mathrm{~m}, 2 \mathrm{H}, 18)$, 2.94 ($\mathrm{m}, 4 \mathrm{H}, 11,12$), 3.15 (m, 2H, α), 3.65 ($\mathrm{s}, 3 \mathrm{H}, 26$), 3.71 (m, 2H, γ), 3.90 (s, 3 H , 25), 6.99 (d, 1H, 8), 7.06 (d, 1H, 14), 7.08 - 7.20 (m, 3H, 9,15,16), 7.83 (s, 1H, 1), 7.87 (s, 1H, 4).
${ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}): $\delta=25.58$ (19), 28.02 (18), $28.27+28.38$ (11 + 12), $29.57(\alpha), 34.25(\beta), 52.12(26), 52.27(25), 61.57(\gamma), 125.21(9), 125.68(16), 125.84$ (14), 127.05 (15), 127.58 (8), 130.33 (22), 130.68 (21), 131.90 (2), 132.18 (4), 132.94 (20), 133.30 (1), 133.73 (5), 134.80 (10), 135.26 (17), 135.59 (13), 137.11 (7), 139.71 (6), 142.56 (3), 167.27 (24), 167.47 (23).

MS (El, $170{ }^{\circ} \mathrm{C}, 80 \mathrm{eV}$): m/z (\%) = 456 (100) [M $\left.{ }^{+}\right], 407$ (19.5) $\left[\mathrm{M}^{+}-\mathrm{CH}_{5} \mathrm{O}_{2}\right], 365$ (18.8) $\left[\mathrm{M}^{+}-\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{O}_{3}\right], 205$ (6.9) [tetrahydropyrene ${ }^{+}$].
EA $\mathrm{C}_{29} \mathrm{H}_{28} \mathrm{O}_{5}(456.53)$ calcd C 76.30 H 6.18 , found C 76.17 H 6.14

2-(3-Hydroxy-propyl)-5-pyrene-1-yl-terephthalic acid dimethyl ester (122)

Probe-benzylether 119 ($384 \mathrm{mg}, 0.708 \mathrm{mmol}$) was suspended in dry MeOH (15 ml), 1,4 cyclohexadien ($1.34 \mathrm{ml}, 14.2 \mathrm{mmol}$) and Pd / C catalyst ($144 \mathrm{mg}, 10 \% \mathrm{Pd} / \mathrm{C}$) were added. The mixture was refluxed for 2 d . The solution was filtrated with celite, and the filtrate-residue was washed with $\mathrm{CHCl}_{3}(100 \mathrm{ml})$. The organic solvents were combined and evaporated. The crude-product of 122 was dried and gave a yellow oil ($307 \mathrm{mg}, 0.678 \mathrm{mmol}, 96 \%$).
${ }^{1} \mathrm{H}$ NMR $\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=2.08(\mathrm{~m}, 2 \mathrm{H}, \beta), 2.66(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 3.23(\mathrm{~m}, 2 \mathrm{H}, \alpha)$, $3.34\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.75(\mathrm{t}, 2 \mathrm{H}, \gamma), 3.86\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 7.75\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{\text {pyrene }}\right), 7.86(\mathrm{~d}, 1 \mathrm{H}$, $\left.\mathrm{H}_{\text {pyrene }}\right), 7.92-8.30\left(\mathrm{~m}, 9 \mathrm{H}, \mathrm{H}_{\text {pyrene }}+\right.$ aromatic $)$.
${ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=29.72(\beta), 34.35(\alpha), 51.98\left(\mathrm{CH}_{3}\right), 52.32\left(\mathrm{CH}_{3}\right), 61.67$ $(\gamma), 124.25,124.47,124.53,124.69,124.94,125.17,125.92,126.76,127.38,127.64$, $128.23,128.73,130.69,130.79,131.33,132.13,132.62,134.35,134.58,135.58$, 139.14, 143.16, 167.45, 167.29.

MS (+FAB, MNBA/CH $\left.\mathrm{Cl}_{2}, 3 \mathrm{KV}\right): \mathrm{m} / \mathrm{z}(\%)=453(90.0)\left[\mathrm{M}^{+}+\mathrm{H}\right], 422(25.4)\left[\left(\mathrm{M}^{+}+\mathrm{H}\right)-\right.$ $\left.\mathrm{CH}_{3} \mathrm{O}\right], 276(13.8)\left[\left(\mathrm{M}^{+}+\mathrm{H}\right)-\mathrm{C}_{7} \mathrm{H}_{13} \mathrm{O}_{5}\right]$.
HRMS ${ }^{12} \mathrm{C}_{29}{ }^{1} \mathrm{H}_{24}{ }^{16} \mathrm{O}_{5}$ calcd 452.16237, found 452.16687.

2-(3-Benzyloxy-propyl)-5-pyrene-1-yl-terephthalic acid (123)

Di ester 119 ($0.53 \mathrm{~g}, 0.975 \mathrm{mmol}$), was dissolved in a mixture of THF (20 ml), MeOH $(20 \mathrm{ml})$ and $\mathrm{KOH}(20 \mathrm{ml}, 1 \mathrm{M})$. Solid $\mathrm{KOH}(1.78 \mathrm{~g}, 31.786 \mathrm{mmol})$ was added and the mixture was refluxed for 36 h . The solvents were removed and water (40 ml) was added to give a clear solution. An aqueous solution of $\mathrm{HCl}(25 \%)$ was dropped in until the di-acid precipitated. The product was sucked off immediately and was washed with water. It was dissolved in acetone and dried. Evaporation of the acetone gave the product 123 as a yellow solid ($0.48 \mathrm{~g}, 0.933 \mathrm{mmol}, 96 \%$).
${ }^{1} \mathrm{H}$ NMR (250 MHz, DMSO): $\delta=2.00(\mathrm{~m}, 2 \mathrm{H}, \beta), 3.16(\mathrm{~m}, 2 \mathrm{H}, \alpha), 3.54(\mathrm{~m}, 2 \mathrm{H}, \gamma)$, $4.48\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.12-7.54\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{H}_{\text {aromatic }}\right), 7.74\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{\text {pyrene }}\right), 7.80-8.50(\mathrm{~m}$, $10 \mathrm{H}, \mathrm{H}_{\text {pyrene }}+$ aromatic).
${ }^{13} \mathrm{C}$ NMR ($63 \mathrm{MHz}, \mathrm{DMSO}$): $\delta=30.03,31.02,69.25,71.84,123.81,124.01,124.48$, $124.63,124.99,125.29,126.28,127.32,127.49,128.23,130.09,130.39,130.90$, 132.01, 133.44, 133.94, 135.30, 136.41, 137.84, 138.69, 141.94, 168.07, 168.59. (5 signals missing)
MS (EI, $200{ }^{\circ} \mathrm{C}, 80 \mathrm{eV}$): m/z (\%) = 514 (100) $\left[\mathrm{M}^{+}\right], 422$ (4.1) $\left[\mathrm{M}^{+}-\mathrm{C}_{7} \mathrm{H}_{8}\right], 406$ (14.0) [$\left.\mathrm{M}^{+}-\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{O}\right], 289$ (11.2) $\left[\mathrm{M}^{+}-\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{O}_{5}\right]$.
HRMS ${ }^{12} \mathrm{C}_{34}{ }^{1} \mathrm{H}_{26}{ }^{16} \mathrm{O}_{5}$ calcd 514.17802 found 514.17572 .

2-(3-Benzyloxy-propyl)-5-pyrene-1-yl-terephthaloyl dichloride (124)

Di-acid 123 ($205 \mathrm{mg}, 0.398 \mathrm{mmol}$), was suspended in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (10 ml), SOCl_{2} (3 ml) was added. The mixture was refluxed and became a clear orange solution after 10 min. The solution was refluxed for 1.5 h , then the solvents were removed by distillation and the residue was dried. The product 124 was an orange amorph oil (219 mg, $0.397 \mathrm{mmol}, 99.8 \%$).
${ }^{1} \mathrm{H}$ NMR ($270 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=2.08(\mathrm{~m}, 2 \mathrm{H}, \beta), 3.19(\mathrm{~m}, 2 \mathrm{H}, \alpha), 3.64(\mathrm{t}, 2 \mathrm{H}, \gamma), 4.56$ (s, $2 \mathrm{H}, \mathrm{CH}_{2}$), $7.19-7.54\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{H}_{\text {aromatic }}\right), 7.75\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{\text {pyrene }}\right), 7.90\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{\text {pyrene }}\right)$, $7.98-8.43\left(\mathrm{~m}, 9 \mathrm{H}, \mathrm{H}_{\text {pyrene }}+\right.$ aromatic $)$.
${ }^{13} \mathrm{C}$ NMR ($68 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=31.05,31.28,69.64,73.26,124.19,124.86,124.96$, 125.81, 126.12, 126.73, 127.47, 127.65, 127.88, 127.99, 128.46, 128.69, 128.83,
129.23, 131.12, 131.72, 131.86, 133.22, 133.98, 136.75, 137.04, 139.08, 139.49, 139.60, 144.19, 167.46, 167.63. (1 signal missing)
$\mathrm{MS}\left(+\mathrm{FAB}, \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MNBA}, 3 \mathrm{KV}\right): \mathrm{m} / \mathrm{z}(\%)=552(0.3)\left[\mathrm{M}^{+}+\mathrm{H}\right]$.

2-(3-Benzyloxy-propyl)-5-pyrene-1-yl-terephthalic acid bis-\{3-[2,5-bis-methoxycarbonyl-4-(4,5,9,10-tetrahydro-pyrene-1-yl)-phenyl]-propyl\} ester (125)

Di acid chloride 124 ($194.7 \mathrm{mg}, 0.353 \mathrm{mmol}$) was dissolved in dry THF (10 ml), the orange solution was cooled to $-5^{\circ} \mathrm{C}$, then DMAP ($16.0 \mathrm{mg}, 0.131 \mathrm{mmol}$), dry NEt_{3} $(214.0 \mathrm{mg}, 2.120 \mathrm{mmol})$ and the alcohol $121(580 \mathrm{mg}, 1.27 \mathrm{mmol})$ were added. The color changed to yellow and a solid precipitated. The mixture was stirred for 6 h , then was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{ml})$. Water (30 ml) was added and the organic phase was separated and dried $\left(\mathrm{MgSO}_{4}\right)$. Chromatographic separation with hexane:ethyl acetate $3: 1$ gave the G2 dendron $125(164.0 \mathrm{mg}, 0.118 \mathrm{mmol}, 33 \%)$ as a colorless oil. $R_{f}=0.22$.
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.96-1.22\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 1.94-2.17\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{2}\right)$, $2.39\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 2.58\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.65\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.70-2.86\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{CH}_{2}\right)$, $3.00\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.20\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.40\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.43\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.50(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{CH}_{3}$), $3.57\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.66-3.70\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.31\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.47(\mathrm{~s}, 2 \mathrm{H}$, CH_{2}), 6.78 ($\mathrm{d}, 1 \mathrm{H}, \mathrm{H}_{\text {aromatic }}$), $6.82-7.04\left(\mathrm{~m}, 9 \mathrm{H}, \mathrm{H}_{\text {aromatic }}\right), 7.08-7.33(\mathrm{~m}, 6 \mathrm{H}$, $\mathrm{H}_{\text {aromatic }}$), 7.57 ($\mathrm{d}, 1 \mathrm{H}, \mathrm{H}_{\text {pyrene }}$), $7.61-8.17$ ($\mathrm{m}, 13 \mathrm{H}, \mathrm{H}_{\text {pyrene }}+$ aromatic $)$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}): $\delta=24.68,25.53,27.97,28.03,28.24,28.37,28.97$, $29.60,30.24,30.51,30.72,31.38,51.67,51.81,51.84,52.01,64.68,64.91,69.72$, 72.81, 124.28, 124.42, 124.52, 124.64, 124.84, 125.06, 125.18, 125.21, 125.65, 125.66, 125.81, 126.87, 127.02, 127.11, 127.27, 127.38, 127.52, 127.56, 127.70, 128.24, 128.92, 130.28, 130.64, 130.68, 131.16, 131.27, 131.31, 131.43, 131.70, 131.99, 132.52, 132.55, 132.77, 132.86, 133.18, 133.30, 133.47, 133.59, 134.22, 134.69, 134.72, 135.21, 135.52, 135.56, 136.04, 137.05, 137.15, 138.52, 138.85,
139.50, 139.56, 139.95, 141.46, 141.77, 143.12, 166.50, 166.53, 166.64, 166.78, 166.98, 167.18. (9 signals missing)

MS (+FAB, $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MNBA}, 2 \mathrm{KV}\right): \mathrm{m} / \mathrm{z}(\%)=1393$ (100) $\left[\mathrm{M}^{+}+\mathrm{H}\right]$.
HRMS ${ }^{12} \mathrm{C}_{91}{ }^{13} \mathrm{C}_{1}{ }^{1} \mathrm{H}_{78}{ }^{16} \mathrm{O}_{13}$ calcd 1391.54760, found 1391.54340.
EA $\mathrm{C}_{92} \mathrm{H}_{78} \mathrm{O}_{13}$ (1391.60) calcd C 79.40 H 5.65 , found C 78.79 H 5.58 .

2-(3-Hydroxy-propyl)-5-pyrene-1-yl-terephthalic acid bis-\{3-[2,5-bis-methoxycarbonyl-4-(4,5,9,10-tetrahydro-pyrene-1-yl)-phenyl]-propyl\} ester (126)

Procedure was analogous to the one described for G1-Alkohol.

Benzyl protected G2 dendron 125 ($144.0 \mathrm{mg}, 0.104 \mathrm{mmol}$), dry MeOH (10 ml), 1,4 cyclohexadiene (2 ml), Pd 10\%/C (109 mg), 5 d , chromatographic separation with silica gel and hexane:ethyl acetate $1: 1$ gave the G2 alkohol 126 ($89.0 \mathrm{mg}, 0.068$ $\mathrm{mmol}, 66 \%$) as a colorless oil, freeze drying in benzene gave a colorless solid. $\mathrm{R}_{\mathrm{f}}=$ 0.19
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.03-1.30(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{l}), 2.06-2.27$ (m, 7H, 2, 2', 3", OH), 2.46 (m, 4H, 24', 24"), 2.69 (m, 2H, 23"), 2.75 (m, 2H, 23'), 2.83-2.98 (m, 8H, 16', 16", 17', 17"), 3.02-3.20 (m, 2H, 3'), 3.20-3.25 (m, 2H, 3), 3.49-3.58 (m, 6H, 10', 11'), 3.63 (m, 3H, 11'), 3.70 (m, 3H, 10"), 3.74-3.91 (m, 4H, 1, 1"), 4.43 (t, 2H, 1'), 6.89 (m, 1H, 13'), 6.93-6.99 (m, 1H, 13"), 7.00-7.16 (m, 12H, 14', 14", 19, 19', 19", 20, 20', 20", 21, 21', 21", 24), 7.21 (m, 1H, 5"), 7.66 (m, 1H, 8"), 7.70-7.84 (m, 3H, 5', 8', 17), 7.90-8.03 (m, 3H, 13, 16, 23), 8.05-8.15 (m, 2H, 5, 8), 8.21 (m, 1H, 14).
${ }^{13} \mathrm{C}$ NMR ($63 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=25.61$ (24', 24"), 28.06 (23'), 28.12 (23 "), 28.35 (16^{\prime}, 16"), 28.47 (17', 17"), 29.09 (2"), 29.77 (3, 3"); 30.28 (2'); 30.58 (3'), 34.51 (2), 51.95 (10', 10"), 52.15 (11', 11'), 61.74 (1), 64.80 (1"), 65.24 (1'), 124.38 (14), 124.53 (22), 124.64 (18), 124.68 (17), 124.97 (24), 125.19 (20), 125.25 (14', 14"); 125.75 (21', 21"), 124.93 (20', 20"); 126.93 (13), 127.12 (19', 19"); 127.22 (16), 127.34 (19), 127.61 (13', 13"), 127.82 (23), 129.01 (26), 130.39 (26', 26"), 130.75 (27', 27"), 130.79 (15), 131.29 (25), 131.42 ($5^{\prime \prime}$), 131.77 ($\left.9^{\prime}, 99^{\prime \prime}\right), 132.06$ (5^{\prime}), 132.60 (9), 132.89 (5), 132.96 (25', 25"), 133.30 ($\left.8^{\prime \prime}\right), 133.42$ (6"), 133.57 ($\left.8^{\prime}\right), 133.70$ (6'), 134.29 (8), 134.87 (15', 15"), 134.94 (6), 135.34 (22', 22"), 135.67 (18', 18"); 135.99 (12), 137.12 (12'), 137.29 (12"), 139.02 (7), 139.60 (7"), 140.04 (7'), 141.55 (4"), 141.81 (4'), 143.13 (4), 166.70 (28"), 166.83 (28'), 167.22 (11, 29', 29"), 167.27 (10). (22 signals missing, carbon 21 and 27 not found). MS (+FAB, MNBA/CH2Cl 2): m/z (\%) = 1301 (5.69) [$\left.\mathrm{M}^{+}\right]$.

High resolution mass spectroscopy for structurally specific fragments $\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}$:
a: $\left[\mathrm{M}^{+}-\mathrm{C}_{29} \mathrm{H}_{28} \mathrm{O}_{5}\right]=\mathrm{C}_{56} \mathrm{H}_{44} \mathrm{O}_{8}$ calcd 844.30362 found 844.30847
b: $\left[\mathrm{M}^{+}-\mathrm{C}_{56} \mathrm{H}_{44} \mathrm{O}_{8}\right]=\mathrm{C}_{29} \mathrm{H}_{28} \mathrm{O}_{5}$ calcd 456.19368 found 456.19632
c: $\left[\mathrm{M}^{+}-\mathrm{C}_{58} \mathrm{H}_{52} \mathrm{O}_{8}\right]=\mathrm{C}_{27} \mathrm{H}_{20} \mathrm{O}_{5}$ calcd 424.13108 found 424.13455
d: $\left[\mathrm{M}^{+}-\mathrm{C}_{58} \mathrm{H}_{53} \mathrm{O}_{10}\right]=\mathrm{C}_{27} \mathrm{H}_{19} \mathrm{O}_{3}$ calcd 391.13342 found 391.13546
$\mathrm{M}=\mathrm{C}_{85} \mathrm{H}_{72} \mathrm{O}_{13}(1301.47)$

Benzene-1,3,5-tricarboxylic acid bis-[3-(2,5-bis-\{3-[2,5-bis-methoxycarbonyl-4-(4,5,9,10-tetrahydro-pyrene-1-yl)-phenyl]-propoxycarbonyl\}-4-pyrene-1-yl-phenyl)-propyl] ester (128)

G2-alkohol 126 ($71.0 \mathrm{mg}, 0.055 \mathrm{mmol}$), DMAP ($1.8 \mathrm{mg}, 0.015 \mathrm{mmol}$) and NEt_{3} (8.5 $\mu \mathrm{l}, 6.2 \mathrm{mg}, 0.062 \mathrm{mmol})$ were dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{ml})$. Benzenetricarbonyl
chloride 127 ($4 \mathrm{mg}, 0.015 \mathrm{mmol}$) dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{ml})$ was dropped in. The yellow solution was stirred for 12 h , diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{ml})$ and extracted with water (10 ml). The organic phase was dried and the solvent removed. Chromatographic separation with silica gel and $\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH} 2 \%$ gave the disubstituted core 128 ($24.0 \mathrm{mg}, 0.009 \mathrm{mmol}, 58 \%) \mathrm{R}_{\mathrm{f}}=0.05$
G2 alcohol 126 ($39 \mathrm{mg}, 0.030 \mathrm{mmol}$) could be reisolated $R_{f}=0.17$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.00-1.28\left(\mathrm{~m}, 4 \mathrm{H}, 2^{\prime \prime}\right), 2.04(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{l}), 2.11(\mathrm{~m}, 4 \mathrm{H}$,
 2.91 (m, 16H, 16', 16", 17', 17"), 2.91-3.18 (m, 4H, 3'), 3.18-3.40 (m, 4H, 3), 3.45 (s, $6 \mathrm{H}, \mathrm{CH}_{3}$), 3.50-3.59 (4xs, 12H, CH3), 3.61 (s, 3H, CH3), $3.64\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.76(4 \mathrm{H}$, $\left.1^{\prime \prime}\right), 4.38\left(\mathrm{t}, 4 \mathrm{H}, 1^{\prime}\right), 4.53(\mathrm{~m}, 4 \mathrm{H}, 1), 6.78-7.12\left(\mathrm{~m}, 18 \mathrm{H}, \mathrm{H}_{\text {aromatic }}\right), 7.15\left(\mathrm{~s}, 2 \mathrm{H}, 5 \mathrm{C}^{\prime}\right)$, $7.53-8.24\left(\mathrm{~m}, 30 \mathrm{H}, \mathrm{H}_{\text {aromatic }}\right), 8.948 \mathrm{~s},\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}_{\text {core }}\right), 8.97$ (s, 1H, $\mathrm{H}_{\text {core }}$).
${ }^{13} \mathrm{C}$ NMR ($63 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=25.04,28.30,28.39,28.63,28.73,29.35,29.94$, $30.65,30.79,31.19 .52 .26,52.40,65.12,65.35,65.72,124.62,124.80,124.90$, 124.97, 125.23, 125.40, 125.50, 126.01, 126.17, 126.74, 127.20, 127.37, 127.48, 127.64, 127.89, 128.08, 129.26, 130.66, 131.06, 131.56, 131.62, 131.65, 131.78, 131.90, 132.35, 132.51, 132.68, 133.06, 133.22, 133.54, 133.71, 133.83, 134.04, $134.79,135.12,135.23,135.45,135.61,135.86,135.94,136.29,137.36,137.48$, 139.57, 139.84, 139.90, 140.27, 141.82, 142.27, 142.92, 165.30, 166.34, 166.76, 167.02, 167.28, 167.38, 167.61. (19 signals missing).
$\mathrm{C}_{179} \mathrm{H}_{146} \mathrm{O}_{30}(2774.99)$ MALDI-ZOF MS: $\mathrm{m} / \mathrm{z}=2776[\mathrm{M}+\mathrm{H}]^{+}$.

7.8 Absorptions- und Emissionswellenlängen der Verbindungen in Methylcyclohexan und Acetonitril

Verbindung	$\lambda_{\text {max. }}$ Absorption (nm)		$\lambda_{\text {max. }}$ Fluoreszenz (nm)	
	Methylcyclohexan	Acetonitril	Methylcyclohexan	Acetonitril
41	342	344	384	381
42	344	344	399	384
55	-	-	432	445
61	393	393	435	435
62	393	393	436	436
67	362	363	453	447
78	344	344	396	B / A
79	343	342	437	$402 / 585$
82	344	342	377	546
89	342	344	377	377
97	344	344	425	377
98	344	344	378	534
110	344	345	401	378
111	346	344	385	381
112	344	343	378	430
113	346	344	430	378
116	-	363	-	521
119	344	344	427	500
120	344	344	378	531
121	282	283	382	378
125	344	344	427	485
128	344	344	432	520
				509

