CHAPTER 5

Integral Representation of Solutions to the General
Inhomogeneous Polynomial Equation

Using a very important process for constructing the fundamental solutions from [80,
91|, we obtain integral representations of solutions to the general inhomogeneous polyno-
mial equation [[/_, (D+4a,)* f = g in Q where Q is a bounded domain in R? with a smooth
boundary 9 =: I'. In [80, 91] a fundamental solution for the operator []_,(D+a, ) in
Q) has been well constructed step by step. We start with the fundamental solution K, ()™
for the operator D, := D+ « as in formulas (1.14) and (1.15) and via an integration pro-
cess the procedure from [91] gives us the polynomial kernel funtions. We then obtain a
similar results for the general Cauchy - Pompeiu representation of polynomial order. For
such representations in complex and Clifford analysis, (see [9, 10, 11, 14, 16]), these
representations are related to powers of Dirac and Laplace operator. And the Helmholtz
operator and its factors were investigated ealier in Chapter 2 and Chapter 4.

1. A fundamental solution for a general polynomial operator

Using the fundamental solution of the Helmholtz equation a fundamental solution
can be constructed for the product of Helmholtz operators. In a similar way as in [80,
91|, starting with the fundamental solution Kél)(x) for the D, operator, a fundamental
solution for the operator [T)_,(D 4 a,)" in Q is constructed.

LEMMA 5.1. Let oy, g, ..., o5 be mutually different complex constants. Then
(i) the function Kéll’BQ (x) = ﬁ(K&?(w) - K&?(w)) is a fundamental solution for

the operator D, D,,.

iy ki k,kj 1,k —1 ki,kz2,..kj_1—1,k; ‘
(i) of K((llf P P )(x) and K((llf SN ])(x) are ]{undamkental solutions for
k1 k2 kj—1 k=1 k1 ks j—1—1 yk; '
the operators D3 D2 ... Do) Doy~ and D Dg2 ... Do~y = Dy, respectively, then
the function
1 , .
(k1,k2,..kj—1,k;) _ (k1,k2,.. k5 —1—1,k;) po(krkay kg1 k=1
o, CMQ,...,O]tjfl,glj ('r) - a1, az,..,aj—1,a; ('r) Kal,ag,...,a;,l,a; ('r)
Q1 — O
. . k1 ko kj,1 kj
is a fundamental solution for the operator D! D2 ... Dd;" Da.
(iii)
th (ke keg1seeskvsekm—1,km) (l') — K(kéyku-l ----- (ku_hU)a---ykmflakm)(x>
[

v Qe Oy e, A —1,Qimy - QP05 Qryen s —1,00m

in the distributional sense, where { <v <m,0<h, <k, k,eN1=1,...,m.

PROOF. For the way to prove (i) and (i) we refer the readers to [91]. In order to
prove (iii) we also need the following notions: Since D, K% () = DK (x) for all k € N,
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74 5. SOLUTION TO INHOMOGENEOUS POLYNOMIAL EQUATION

it is easy to see that

Dhw (kg kot senbiusenn, km,l,k;m)() D g keskestsekue. km,l,k;m)(x)

TL,0 T QU Qg 1 ey Qe s i — 1,00, T,0 " 0,01 e Oy, —1,Qimy

and for all ¢ € C°(Q, H(C)) with the right H(C) - distributions, we have

< Dhv = Reker ok oknoykm) () o(z) >

72,0 Qpy Opp1yeeey Qpyeeey Am—1,0m
— _ hy—1 (kl kl+1 7777 ky—1,..., km—lykm)
- < Dr T al,Kal QY1 yeeyQuyenes O —1,0m, (l’), D,ay(b(l') >

and using (ii) step by step then (i) is seen. O

REMARK 5.2. From (i) and (ii) in the above lemma by a straightforward computation
we obtain

These results are used to prove Cauchy-Pompeiu type representation formulas in
quaternionic analysis for the general polynomial operator []/_,(D+a, ), where o, # «,

if v £ p.

2. Representation for the general polynomial operator

In this section the representation formulas of solutions to the general inhomogeneous
polynomial equation [[/_,(D + a,)® f = g in Q is proved. This opens the door for
investigating the boundary valued problem of classical Vekua type.

THEOREM 5.3. Let Q be a bounded domain in R with a smooth boundary 0Q) =: T
and f € C?(, H(C)) N CY(Q,H(C)). Then

h/}(” ) f ()T, —»“/lﬂﬁﬁx — y)7i(y) Dy f (4)T,

/KICVQ Doy oz2yf( )dy, (5.1)

where K&ﬁ:{.?? (x) is given in Lemma 5.1 and oq, g are different complex constants.

Proor. Notice that
DaseDoyz = Doy 2Daye and Dy oy KV (2 —y) = =D, 0 . KM (2 — y). (5.2)
Applying the quaternionic Cauchy- Pompeiu formula (1.22) for D,, ,f(y) we obtain

Doy f () / )7(5) Do 3£ (5)dT; / ) Dy 3 Do 3 (0)d5

This leads to
/ WAGFGAT, = [ U0 0, 9 Dy f (),

[ 0 Dar Dl (D)5, (53)
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where 1/1 (a2 (2, 9) = ({K&? (x — y)KSQ) (y — 9)dy. On the other hand, we have in the
distributional sense that

Do, K (2) = 6(x),  Da, K (2) = 0(2), (5-4)
so that for any ¢ € C2°(2, H(C))
1

Qg — O

(D + a) KL, (2), 6(2)) = (D + an)[K) (2) — K (@)], o))
1

= {{(D + )KL (), ¢(x)) — (D + a2 — as + ar) K (x), 6(2))}

Qy —

= (KL (2), ¢(2)).

Therefore, DalKé};,Bg (x) = K(%)(:p) in the sense of distributions.
For x,y €  with x # y the quaternionic Cauchy-Pompeiu formula yields

1,1 ~\ (1) ( ) (1)7 (171) -
thq 022( —9) = w(al) (a )(:L' ) — w(al),(alm)(%y),

where
T ) = [ K (e = ) KG9,
Inserting this equality into equality (5.3), we obtain
- / K~ )i / KL, (2~ 9)7i(y) Das o f ()T
D, @11 o~
/ K2, = ) Doy Das (5)y / T L2 0 B)E) Do ()T
r

1,1)
/\w(al Cl(l a2 ) al,y CV2 yf( )
Applying Stokes’ formula (1.20) again gives

/w(al) (a1, 042) .I' g) (~> [e%1 yf dF - /w(al 041 042 ( y) a2,y 041 yf( )
/ Dy angt S0 (5, 5) Day £ (5)d5

Using the definition of K§yY, (x) and the equalities (5.2) and (5.4) with note that I' >
y#x e, I'>y#yeQ we obtain

Dy ) (e ( / K8 (x = y)ii(y) K (y — )Ty,

Since f K (x — y)ﬁ(y)Kéll)(y — g)dl'y, = 0, see the proof of Theorem 2.3 in Chapter 2,

we have D, _a, yw(al alloléi)( ,9) = 0. This leads to (5.1). O
REMARK 5.4. If oy = —a; we have the representation formula in terms of the

Helmholtz operator as in Chapter 4, Theorem 4.1.



76 5. SOLUTION TO INHOMOGENEOUS POLYNOMIAL EQUATION

In oder to obtain the generalization of the above theorem, we need the following
lemma.

LEMMA 5.5. Let aq, 042, .,y be mutually different complex constants. Then
ZH ) =0, forall2<mné€N.
=1 v=1
v#£i
_ 1 1 . .
PrROOF. For n = 2, we have 1231 }_[1 r=a) = i T e 0. By direct caculation
v#£i

we also get Z H ey = 0. In the case n > 3, we suppose that this lemma holds for

i=1v=1

. n+1 n+1
some n. We now consider the function f(x) = 2:1 (x — ;) Hl Tiaz) Note that
i= v
v#i
nt1 nt1
flamin) =) (ansr — ) H Z (o — ) 0
= Z;ﬁz = 1/7511 Z

by inductive hypothesis. Similarly, f(a;) = 0 for all 1 < j < n. Therefore, f(z) has
(n 4+ 1) zeroes o, 1 < j < n+ 1. However, it is a polynomical of degree one. Thus,

n+1n+1

f(z) = 0. Then, we have f'(x) = 0. In other words, f'(z) = > [] (a” 5 =0, ie., the
=1 v=1
v#£i

lemma holds. O

THEOREM 5.6. Let f € C™(Q, H(C)) N C™(Q,H(C)). Then

r
n j—1
= 3 [ REE o= i) [] e @
j=2 T k=1
+ / Kbt an@ =) [ [ P (0)dy, (5.5)
5 k=1
where K(g,ll’b;;f,l,jé)kfhak(:p) 15 given in Remark 5.2 and aq, aq, . . ., o, are mutually different

complex constants.

PROOF. For n = 1 formula (5.5) coincides with the Cauchy- Pompeiu representation.
For the case n = 2, we have already shown (5.5) in Theorem 5.3. In order to prove this
formula for any n > 2 assume it holds for n — 1. By inductive hypothesis we have

f(x) = —‘/Kﬁw—ym@vwmm
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Applying the Cauchy-Pompeiu formula (1.22) to [];_ 1 D, f(y) gives

n—1
H Dak,yf(y) = - /[((1 y H D, yf
k=1

I
T /Kﬁﬂy—@IID%@ﬂ@ﬁi
Q k=1

It follows

fa)= = [ KW@ =)o,
j—1
- Z/Kiég ) —y)ﬁ(y)HDak,yf(y)dF
1,1,..,1,1 )
T /w((a1,a2 ..... Ln 1) HDak yf
1,1,..,1,1), 1 - g
+ /@Z)EQLQQ ,,,,, ()ln_l), (én))(xay)HDak,,ﬂf(y)dya
k=1

where w (L1110, () (z,7) f K& o Yo (z— y)Ké )(y 7)dy. By inductive hypoth-

(a1,02,..,a0 1), (an)\77 ) 77 ) 2201,02,, n

esis, applying it for Kal a21i)n Lan( — 7) as well as using the assertion (iii) of Theorem

5.1 step by step, we obtain

bttt O (@) = KLt =)+ Y gt e (@),

(al a2,..., an 1) (

----- O‘k):(ak:ak-‘rlv-"v

Y (Lol - 11,1 11,1 -
where iﬁ (a1,a2 ( : an)(x’ §) = f Kg&l,w,---,)ak (x —y)ii (y>K(§¢k ak+l):---704n (y — g)dL,.
T

Hence,
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[n—1 7 n—1
1L1,..,1), (1,1,...1) N .
= [ it ate)| ) [] Doyt )Ty
2 Lk=1 i j=1
n—1 T n
(11,1, (L,1,...1) - g
+ / Z w(ahag ..... o), (ks Q15 50n) (33', y) H Dajvgf(y)dy‘ (56)
o Lk=1 1j=1

Applying the quaternionic Stokes’ formula (1.20) yields

n—1
1,1, 1, 1,1,...,1 N .
/ Zwéal ) 0 |70 T ey )T
r j=1

1,1,..,1), 1,1,..,1 - -
Z w((al Q... ap (Clk Ctk+)1 ..... Cl{n) (x’ y> H Dajvgf(y)dy

~(1,1,...,1),  (L,1,..,1)
Z D_an y¢(a1 02,0k )5 (O s O 1505 an) H DOM Z/f

Q/
Q/
Using the assertion (iii) of Lemma 5.1 and Remark 5.2 we get

(1,1,...,1) -
Z D—an yw (a1,02,..y (ak Qg1 3eees an)(x7 y)

= =3 [ K = KL, (- 9T,
k;:lr
n—1 k kK 1 n—1n—1 1
= - ( — ) ——) [ K@ (z —y)ii(y) KL (y — §)dT,
2| =@ a= )
0 v#L nF#j

by Lemma 5.5. Inserting this into equality (5.6) we obtain equality (5.5), i.e Theorem 5.6
is proved. 0

In order to obtain the generalized representation of solution for Hizl(D +a) f =g,
we now as an example construct the representation of solutions for the inhomogeneous
equation such that D3 D,, f(z) = g(z) in a bounded domain €, where a; # a. The
integral representation formulas for higher order D, equations in Chapter 2, Theorem 5.6
and Lemma 5.1 are used.

THEOREM 5.7. Let f € CHQ,H(C)) N C3(Q,H(C)), and o # g, ay, a9 € C. Then

fa)= = S [ KO @ - y)i(y)DE L f(y)dr, / KB (z — y)iiy) DS, , f(y)dT,

k=1 T T

T / KO (2~ )D2, Doy oy (1)dy
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PROOF. Applying the quaternionic Cauchy - Pompeiu formula for D3, f(y) we get
ya1 / )Dily dr /[((1 y yDQQQDalyf( )
It follows

/ Yii(y) DL F ()T,

k=1 T

/ VO o DVTDDE, o F(G)T / VO 0. D) Dass D2, 5 F5), (51

where w

(a1 (a1 a9

)( x,y) = fKéi (x — y)KéQ) (y — 9)dy, and it is easy to see
)

1
KD _ W
00 = —— (K@) - K@),
KED@) = e (K @)~ K0, (0))
1
Kl (1) = ——— (KS;)( )=~ K&, ().
Qo — 1 ’
v 3—v,1
D Kéél 022 (l‘) - K(()q (6] )( )’

in the sense of distribution for v = 1,2, 3, because of Lemma 2.1 and Lemma 5.1.

Applying the representaion for higher order powers of D, in Theorem 2.4 for Kg’& (x—7)
gives
3
(3)7(071) -~ 3,1 ~ ~(V)7(47V71) ~
Vo oman) (2 9) = K (0 = 9) + D () oty (2:.9),
v=1

where w (4 »:L) (x,7) = ngI (z — y)ﬁ(y)K&l as )(y g)dr,.

(a1),(a1,02)

Substituting it into (5.7), then applying the Stokes’ formula again with x # y, shows that

f(2) / K® (e~ y)ii(y) DA Ay / KB (2 — y)ii(y) D2, , f(y)dT,

k=11

. / K2, (0 = 9)D, Dol ()

\/\ZD_OCQ y¢(a1 4a1/c112 ( )Dfal y ag,gf(g)dg

Namely, for arbitrary fixed x and ¢, the functions K((llf)(x —Y), K(gf) (y—19),k=1,2, are
C'! - functions in the whole domain € except for the two points z and .
Therefore, for Q,. = Q —{y € Qly —z| < e}, Qe = Q—{y € Q |y —y| < ¢},
Q. =Q—-{yeQy—=z| <ecand |y — g| <e} with 0 < € small enough,

/K“ )i(y) K& (y — §)dr, = /Ké?(w—y)ﬁ(y)ff(g)(y g)dr,
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+ / K (z — y)ii(y) K (y — §)dr,,

ly—z|=¢
/ KD (@ — y)ii(y) KOy — §)dT, = / KD (x — y)ii(y) KD (y — §)dT,
T 0.«

/ K& (z —y)i(y) K& (y — §)dT, = / K@ (x — y)ii(y) K2 (y — )T,
T 00
+ / K@ (z —y)i(y) K@ (y — §)dT,
ly—z|=e
- / K@ (z - y)ii(y) K& (y — §)dT,.
ly—i|=¢

Aplying Stokes’ formula for €2, . and 2. respectively gives

lim [ K (@ = y)ii(y) K$ (y = §)dTy == K& (x = §) + lim [K) (v — y) K5 (y — §)dy,

E—)

0
. 3 =
lim [KQ (= y)ii(y) K5 (y = g)dl, = K — lim /K o Wy = 9)dy.
0.
Now, applying Stokes’ formula for ). and observing
Dy o yK(Q)( ) = —Da,, J:K(Q)( y) = K&ll)(x - y)

shows

[ K@ - a2 - pir, =~ [ KO- 9K - 5y

On the orther hand

/ K (x—y)KP(y — §)dy = /Kc(i’(x —y)KP(y — §)dy
+ / Kz —y)KP(y — §)dy,
ly—gl<e
/ KP(z—y) K (y — §)dy = / KD (y — §)dy

- / Kz —y) KU (y — §)dy.

ly—z|<e
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Using the Cauchy-Pompeiu representation formulas (1.22) and (1.23) for D”, with n =
1,2, for Kﬁ) (x — 7) as well as

lim [ KQ (= )iy KS(y - gdr, = 0,
ly—gl=e
lim [ K@(x —y)ii(y) K5 (y - §)dly, = 0,
ly—z|=e
lim [ KE(x - y)ii(y) Ky - g)dr, = 0,
ly—gl=e
lim [ K (@ =iy K (y - g)dt, = —KJ (@~ §),
ly—x|=¢
lim [ KO (@ =)y Ky —5)dh, = KJ(@-3),
ly—gl|=¢
we obtain
lim [ KD (@ —y) Ky~ 9)dy =0, lim [ KS(z —y)K (y —§)dy = 0.
ly—7|<e ly—z|<e
This leads to
3
3" Dsco B ) == 30 [ K8 e =i~ yr, =0
v=1 T
Hence Theorem 5.7 is proved. U

In a similar way as in the proof of Theorem 5.7 and using the representation formulas
for higher order D,, operators in [49, Theorem 3.2] as well as Theorem 5.6, by induction
we can also prove the next result.

_ J
THEOREM 5.8. Let f € C"(Q,H(C)) N C"Y(Q,H(C)) and >_ k, =n. Then
v=1

k1

fo= - % / KW(x — y)ii(y) D~ f (y)dT
v1=1 T
ko
-y / KR 29 (o — g)ii(y) D DA ()T,
vo=1 T
kj
kika, .., ki1 v—1
- Z /Kt(nl,a;,---,aj—l, a; )(:E Dak Y H Dau Yy
1/]:1 T
K1k, . kj_1.k)
+ /Kf(nl,a;,---,oz] 1, O HDauy dy’

where oy, ag, ..., a1, a; are mutually different complex constants.






