
CHAPTER 4

Integral Representations in Terms of Powers of the Helmholtz

Operator

In this chapter, inspired by Chapter 2 together with their applications on boundary
value problem presented in Chapter 3, we wish to develop these results for the n − th
power of the Helmholtz operator for n ≥ 1.

As in Section 2 of Chapter 2, we again iterate both formulas (1.22) and (1.23) to obtain
the representation of solutions to inhomogeneous power Helmholtz equation. Moreover,
we also prove that the subspaces ker(∆+α2)∩L2(Ω,H(C)) and (∆+α2)(W 2

2 (Ω,H(C)))∩
ker trΓ∩kertrΓDα are orthogonal subspaces. By an inductive method, the space L2(Ω,H(C))
is decomposed as well into the orthogonal sum of the subspace of poly-left (right) α−hyper-
holomorphic functions of arbitrary order k ≥ 1 and its orthogonal complement as into the
orthogonal sum of the subspace of polymetaharmonic functions of arbitrary order k ≥ 1
and its orthogonal complement. In addition, the projections onto the subspace of meta-
harmonic functions are defined. Next, the general integral representation formulas for the
n − th power of the Helmholtz operator for n ≥ 2 are proved. Finally, with the aid of
these results, the close connection of these projections with boundary value problem for
bimetaharmonic functions are outlined.

1. Integral representations for metaharmonic functions

As introduced in Chapter 1, all left (right) α−hyperholomorphic functions are meta-
harmonic functions in all their coordinates. Therefore, it seems to be necessary to consider
the links between left (right) α−hyperholomorphic functions and metaharmonic functions.
We begin with an integral representation formula for arbitrary C2− functions. This for-
mula can be obtained by iterating both formulas (1.22) and (1.23).

Theorem 4.1. Let f ∈ C2(Ω,H(C)) ∩ C1(Ω,H(C)). Then

f(x) = −
∫

Γ

K(1)
α (x− y)�n(y)f(y)dΓy +

∫
Γ

ϑ(x− y)�n(y)Dα,yf(y)dΓy

−
∫

Ω

ϑ(x− y)D−α,yDα,yf(y)dy. (4.1)

Proof. Applying the quaternionic Cauchy-Pompeiu formula (1.23) for Dα,yf(y) we
obtain

Dα,yf(y) = −
∫

Γ

K
(1)
−α(y − ỹ)�n(ỹ)Dα,ỹf(ỹ)dΓỹ +

∫
Ω

K
(1)
−α(y − ỹ)D−α,ỹDα,ỹf(ỹ)dỹ.

This leads to
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f(x) = −
∫

Γ

K(1)
α (x− y)�n(y)f(y)dΓy −

∫
Γ

ψ(x, ỹ)�n(ỹ)Dα,ỹf(ỹ)dΓy

+

∫
Ω

ψ(x, ỹ)D−α,ỹDα,ỹf(ỹ)dỹ,

where ψ(x, ỹ) =
∫
Γ
K

(1)
α (x− y)K

(1)
−α(y − ỹ)dy.

For x, ỹ ∈ Ω with x �= ỹ formula (1.22) yields −ϑ(x− ỹ) = ψ(x, ỹ) + ψ̃(x, ỹ) where

ψ̃(x, ỹ) =

∫
Γ

K(1)
α (x− y)�n(y)ϑ(y − ỹ)dΓy

Since
∫
Γ
K

(1)
α (x− y)�n(y)K

(1)
α (y− ỹ)dΓy = 0, we have (Dr,ỹ +α)ψ̃(x, ỹ) = 0 and for x �= ỹ,

the equalities (1.20, 1.21) now yields∫
Γ

ψ̃(x, ỹ)�n(ỹ)Dα,ỹf(ỹ)dΓy −
∫

Ω

ψ̃(x, ỹ)D−α,ỹDα,ỹf(ỹ)dỹ = 0.

This leads to

f(x) = −
∫

Γ

K(1)
α (x− y)�n(y)f(y)dΓy +

∫
Γ

ϑ(x− y)�n(y)Dα,yf(y)dy

−
∫

Ω

ϑ(x− y)D−α,yDα,yf(y)dy

�
From this desired expression we get immediately the following results.

Corollary 4.2. Let f ∈ C2(Ω,H(C)) ∩ C1(Ω,H(C)) be a metaharmonic function.
Then

f(x) = −
∫

Γ

K(1)
α (x− y)�n(y)f(y)dΓy +

∫
Γ

ϑ(x− y)�n(y)Dα,yf(y)dΓy.

This corollary shows that a metaharmonic function allows a simple integral represen-
tation on the basis of its boundary values f |Γ and Dαf |Γ.

Corollary 4.3. If f ∈ C2(Ω,H(C)) ∩ C1(Ω,H(C)) is α− hyperholomorphic, then

f(x) = −
∫

Γ

K(1)
α (x− y)�n(y)f(y)dΓy.

This means that, we get from our integral representation directly the Cauchy formula
for α−hyperholomorphic functions.

We define an analogue of the Newtonian potential

T∆+α2f(x) =

∫
Ω

ϑ(x− y)f(y)dy

where ϑ(x− y) = −eiα|x−y|
4π|x−y| , f ∈ L1(Ω,H(C)), x ∈ Ω.

Analogously, the acoustic single layer potential is defined by

Vαf(x) =

∫
Γ

ϑ(x− y)�n(y)f(y)dΓy.
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By the same method as in [29, Chap. 8] we can prove that Vα is a bounded operator
from L2(Ω,H(C)) to W 2

2 (Ω,H(C)). Since Chapter 2, we also have T∆+α2 is defined from
C(Ω,H(C)) to C(Ω,H(C)).

Noting that Dαϑ(x) = −K−α(x), D−αϑ(x) = −Kα(x) and ϑ(x) has a singularity of
order 1, using the methods as Theorem 2.20 as well as the formula (1.9), by a straight-
forward calculation

DαT∆+α2f(x) = −T−α,1f(x), D−αT∆+α2f(x) = −Tα,1f(x),
DαVαf(x) = −F−αf(x), D−αVαf(x) = −Fαf(x), (4.2)

follow. Moreover, applying the Stokes formula (1.20) we get∫
Ω

[Dr,−α,yϑ(x− y)f(y) + ϑ(x− y)Dα,yf(y)] dy =

∫
Γ

ϑ(x− y)�n(y)f(y)dΓy.

This means that

Vαf(x) = T−α,1f(x) + T∆+α2Dαf(x). (4.3)

It is easily seen that

Vαf(x) = Tα,1f(x) + T∆+α2D−αf(x). (4.4)

if we apply the Stokes formula (1.21). The equations (4.2), (4.3) and (4.4) are valid in
Cε(Ω,H(C)) and in Sobolev spaces W k

p (Ω,H(C)). The equation (4.3) and (4.4) connect
operators from the classical potential theory with operators arising in complex quater-
nionic analysis.

Remark 4.4. Let us introduce the boundary operator

F∆+α2f(x) = Fαf(x) + VαDαf(x).

Then the Cauchy-Pompeiu formula (4.1) for the term of the Helmholtz equation can be
rewritten as

f(x) = F∆+α2TrΓf(x) + T∆+α2(∆ + α2)f(x)

where

TrΓf(x) =

(
trΓf

trΓDαf

)
.

2. Orthogonal decomposition of L2(Ω,H(C))

As presented in Chapter 3, L2(Ω,H(C)) is decomposed into the orthogonal sum of the
subspace of left α−hyperholomorphic functions of the first order and its proof is based
on properties of the boundary projections Pα and Qα. We refer the readers to [13] for
another proof of decompositions of Sobolev spaces in Clifford analysis. In this paper,
the orthogonal complement of the subspace of poly-left monogenic functions of arbitrary
order k ≥ 1 and of the subspace of polyharmonic functions of arbitrary order k ≥ 1 are
determined. The proofs are based on proper higher-order Cauchy-Pompeiu formulas and
Green functions for powers of the Laplacian.

Recently, there has been an increasing interest in the orthogonal decomposition in
complex quaternion-valued Hilbert spaces (see, e.g., [46, 52]) with respect to classical left
α−hyperholomorphic functions. Besides decompositions with respect to left α−hyperholo-
morphic functions, decompositions are related to poly-left α−hyperholomorphic func-
tions as well as polymetaharmonic functions are available. As introduced in Chap. 1,
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Mk
p(Ω,H(C)) is the set of all poly-left α−hyperholomorphic functions of order k ≥ 1. The

subspace of polymetaharmonic functions of order k in L2(Ω,H(C)) is denoted by

Hk,2 =
{
f, f ∈ L2(Ω,H(C)), (∆ + α2)kf = 0 in Ω

}
.

Our method to prove these decompositions is based on the Stokes’ formulas and the
existence of an inner product in L2(Ω,H(C)). We start with a decomposition of the space
L2(Ω,H(C)) with respect to metaharmonic functions.

Theorem 4.5. The space L2(Ω,H(C)) allows the orthogonal decomposition

L2(Ω,H(C)) = ker(∆ + α2) ∩ L2(Ω,H(C))⊕[
(∆ + α2){W 2

2 (Ω,H(C))} ∩ ker trΓ ∩ ker trΓDα

]
. (4.5)

Proof. Notice that for u, υ ∈ L2(Ω,H(C)) we have

(Dαu, υ) =

∫
Ω

Dαu(x)υ(x)dx = −
∫
Ω

Dr,−αu(x)υ(x)dx.

Using the Stokes formula (1.20) we have∫
Γ

u(x)�n(x)υ(x)dΓx =

∫
Ω

Dr,−αu(x)υ(x)dx+

∫
Ω

u(x)Dαυ(x)dx.

This means that

(Dαu, υ)− (u,Dαυ) = −
∫
Γ

u(x)�n(x)υ(x)dΓx.

If we use the Stokes formula (1.21) we also get

(D−αu, υ)− (u,D−αυ) = −
∫
Γ

u(x)�n(x)υ(x)dΓx.

Now we look at

((∆ + α2)u, υ) = −(Dα{D−αu}, υ) =

∫
Γ

D−αu(x)�n(x)υ(x)dΓx − (D−αu,Dαυ)

=

∫
Γ

D−αu(x)�n(x)υ(x)dΓx +

∫
Γ

u(x)�n(x)Dαυ(x)dΓx − (u,D−αDαυ)

=

∫
Γ

D−αu(x)�n(x)υ(x)dΓx +

∫
Γ

u(x)�n(x)Dαυ(x)dΓx + (u, (∆ + α2)υ).

Therefore, we obtain

((∆ + α2)u, υ) =

∫
Γ

Dαu(x)�n(x)υ(x)dΓx +

∫
Γ

u(x)�n(x)D−αυ(x)dΓx + (u, (∆ + α2)υ).

The above formula shows that the subspaces ker(∆ + α2) ∩ L2(Ω,H(C)) and
[(∆ + α2){W 2

2 (Ω,H(C))} ∩ ker trΓ ∩ ker trΓDα] are orthogonal subspaces. �
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Notice that, if we define

0

W
2

2,∆+α2(Ω,H(C)) :=
{
f : f ∈W 2

2 (Ω,H(C)), trΓf = 0, trΓDαf = 0
}
,

then the formula (4.5) can be rewritten as

L2(Ω,H(C)) = ker(∆ + α2) ∩ L2(Ω,H(C)) ⊕ (∆ + α2)(
0

W
2

2,∆+α2(Ω,H(C))).

Now, we can denote the corresponding orthoprojections by

P∆+α2 : L2(Ω,H(C)) −→ ker(∆ + α2) ∩ L2(Ω,H(C))

Q∆+α2 : L2(Ω,H(C)) −→ (∆ + α2)(
0

W
2

2,∆+α2(Ω,H(C))).

The following theorem can be considered as an extension of the results known in [13]
for classical polymetaharmonic functions.

Theorem 4.6. The space L2(Ω,H(C)) allows the orthogonal decomposition

(i)

L2(Ω,H(C)) = Mk
2(Ω,H(C)) ⊕Dk

α(
0

W
k

2,α(Ω,H(C))),

where
0

W
k

2,α(Ω,H(C)) := {f, f ∈ L2(Ω,H(C), Dν
αf = 0 on Γ for 0 ≤ ν ≤ k − 1} ,

(ii)

L2(Ω,H(C)) = H
k
2(Ω,H(C)) ⊕ (∆ + α2)k(

0

W
k

2,∆+α2(Ω,H(C)),

where

0

W
k

2,∆+α2(Ω,H(C)) := {f : f ∈ L2(Ω,H(C)), (∆ + α2)νf = 0,

Dα(∆ + α2)νf = 0 on Γ for 0 ≤ ν ≤ k − 1}.
Proof. (i) For u, υ ∈ L2(Ω,H(C)) and using the Stokes’ formula (1.20) we have

(Dk
αu, υ) = −

∫
Γ

Dk−1
α u(x)�n(x)υ(x)dΓx + (Dk−1

α u,Dαυ)

= −
∫
Γ

Dk−1
α u(x)�n(x)υ(x)dΓx −

∫
Γ

Dk−2
α u(x)�n(x)Dαυ(x)dΓx + (Dk−2

α u,Dαυ)

= . . .

= −
∫
Γ

Dk−1
α u(x)�n(x)υ(x)dΓx −

∫
Γ

Dk−2
α u(x)�n(x)Dαυ(x)dΓx

− · · · −
∫
Γ

Dαu(x)�n(x)Dk−2
α υ(x)dΓx −

∫
Γ

u(x)�n(x)Dk−1
α υ(x)dΓx + (u,Dk

αυ).

The above equality shows that the inner product of each element υ ∈
0

W
k

2,α(Ω,H(C)) and

any u ∈ L2(Ω,H(C)) equals zero if and only if u ∈ Mk
2(Ω,H(C)). This means that the

subspaces Mk
2(Ω,H(C)) and Dk

α

0

W
k

2,α(Ω,H(C)) are orthogonal subspaces.
(ii)By the same method as in the above proofs of the assertion (i) and Theorem 4.5,

the assertion (ii) of the theorem follows. �
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Here, the more general decompositions of the complex quaternion-valued bimodul-
Hilbert space open the door for the consideration of further classes of boundary value
problems of partial differential equations.

3. Integral representations in terms of powers of the Helmholtz operator

The main purpose of this section is to prove the formulas for integral representations
in terms of powers of the Helmholtz operator. They represent the solutions to the higher
order inhomogenous Helmholtz equation (∆ + α2)nf = g, n ≥ 2. Since the Helmholtz
operator is the product of Dα and D−α,a representation fomula in terms of the Helmholtz
operator can be obtained by interacting both formulas (1.22) and (1.23). To do so we
need the following lemma which constructs the fundamental solution for higher order
Helmholtz equations.

Lemma 4.7. Let ϑ(x) be a fundamental solution for the Helmholtz operator, i.e, a
quaternionic function satisfying in distributional sense (∆ + α2)ϑ(x) = δ(x), α �= 0 and
ϑ(x) be infinitely often differentiable with respect to α. Then the functions ϑ(k)(x), k ∈ N,
determined by the following recurrence formulas

ϑ(1)(x) = ϑ(x),

ϑ(2)(x) =
1

2α

∂

∂α
ϑ(1)(x),

ϑ(k+1)(x) =
1

2kα

∂

∂α
ϑ(k)(x)

satisfy in distributional sense the equation

(D2 − α2)ϑ(n+1)(x) = ϑ(n)(x) for all 2 ≤ n ∈ N. (4.6)

Proof. Since Drϑ
(1)(x) = Dϑ(1)(x) we have Drϑ

(k)(x) = Dϑ(k)(x). First of all, we
prove this lemma for n = 2. For all φ ∈ C∞

c (Ω,H(C)) we have

< −D−αDαϑ
(1)(x), φ(x) >=< δ(x), φ(x) >= φ(0),

⇔ ∂

∂α
< −D−αDαϑ

(1)(x), φ(x) >=
∂

∂α
φ(0),

⇔ < (D2 − α2)
∂

∂α
ϑ(1)(x) − 2αϑ(1)(x), φ(x) >= 0,

⇔ ϑ(1)(x) = (D2 − α2)
1

2α

∂

∂α
ϑ(1)(x),

⇔ ϑ(1)(x) = (D2 − α2)ϑ(2)(x),

in distributional sense.
For n = 2 since ϑ(1)(x) = (D2 − α2)ϑ(2)(x) we have

∂

∂α
ϑ(1)(x) =

∂

∂α
(D2 − α2)ϑ(2)(x),

⇔ 1

2α

∂

∂α
ϑ(1)(x) =

1

2α
(D2 − α2)

∂

∂α
ϑ(2)(x) − 2α

2α
ϑ(2)(x),

⇔ ϑ(2)(x) = (D2 − α2)[
1

4α
ϑ(1)(x)],

⇔ ϑ(2)(x) = (D2 − α2)ϑ(3)(x).
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From (D2 − α2)ϑ(n−1)(x) = ϑ(n−2)(x) we obtain

⇔ 1

2(n− 1)α

∂

∂α
ϑ(n−2)(x) =

1

2(n− 1)α
(D2 − α2)

∂

∂α
ϑ(n−1)(x) − 2α

2(n− 1)α
ϑ(n−1)(x),

⇔ ϑ(n−1)(x) = (D2 − α2)
1

2nα

∂

∂α
ϑ(n−1)(x),

⇔ ϑ(n−1)(x) = (D2 − α2)ϑ(n)(x).

This is the formula (4.6) for n rather than for n− 1. �
Now we can come to our main result of this section. These following representation

formulas express the function through a combination of boundary values of proper lower-
order derivatives and an area integral of the n− th order derivative.

Theorem 4.8. Let f ∈ C2n(Ω,H(C)) ∩ C2n−1(Ω̄,H(C)). Then

f(x) =

n∑
k=1

[− ∫
Γ

Dα,yϑ
(k)(x− y)�n(y)(D−α,yDα,y)

k−1f(y)dΓy

+

∫
Γ

ϑ(k)(x− y)�n(y)Dα,y(D−α,yDα,y)
k−1f(y)dΓy

]
−
∫

Ω

ϑ(n)(x− y)(D−α,yDα,y)
nf(y)dy. (4.7)

Proof. For n = 1, the fomula (4.7) follows from Theorem 4.1 and the equality
Dα,yϑ(x− y) = Kα(x− y).

For n = 2 applying (4.1) to D−α,yDα,yf(y) we have

D−α,yDα,yf(y) = −
∫

Γ

K(1)
α (y − ỹ)�n(ỹ)(D−α,ỹDα,ỹ)f(ỹ)dΓỹ

+

∫
Γ

ϑ(1)(y − ỹ)�n(ỹ)Dα,ỹ(D−α,ỹDα,ỹ)f(ỹ)dΓỹ

−
∫

Ω

ϑ(1)(y − ỹ)(D−α,ỹDα,ỹ)
2f(ỹ)dỹ.

Inserting this equality into (4.1) gives

f(x) = −
∫

Γ

K(1)
α (x− y)�n(y)f(y)dΓy +

∫
Γ

ϑ(1)(x− y)�n(y)Dα,yf(y)dΓy

+

∫
Γ

ψ(x, ỹ)�n(ỹ)(D−α,ỹDα,ỹ)f(ỹ)dΓỹ

−
∫

Γ

ϕ(x, ỹ)�n(ỹ)Dα,ỹ(D−α,ỹDα,ỹ)f(ỹ)dΓỹ

+

∫
Ω

ϕ(x, ỹ)(D−α,ỹDα,ỹ)
2f(ỹ)dỹ,

where

ψ(x, ỹ) =

∫
Ω

ϑ(1)(x− y)K(1)
α (y − ỹ)dy,

ϕ(x, ỹ) =

∫
Ω

ϑ(1)(x− y)ϑ(1)(y − ỹ)dy.

Applying (4.1) for ϑ(2)(x− ỹ) and (Dỹ + α)ϑ(2)(x− ỹ) respectively, we have

ϑ(2)(x− ỹ) = −ψ̃1(x, ỹ) + ϕ̃1(x, ỹ) − φ(x, ỹ),
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(Dỹ + α)ϑ(2)(x− ỹ) = −ψ̃2(x, ỹ) + ϕ̃2(x, ỹ) − ψ(x, ỹ),

where

ψ̃1(x, ỹ) =

∫
Γ

K(1)
α (x− y)�n(y)ϑ(2)(y − ỹ)dΓy,

ψ̃2(x, ỹ) =

∫
Γ

K(1)
α (x− y)�n(y)Dα,ỹϑ

(2)(y − ỹ)dΓy,

ϕ̃1(x, ỹ) =

∫
Γ

ϑ(1)(x− y)�n(y)Dα,yϑ
(2)(y − ỹ)dΓy,

ϕ̃2(x, ỹ) =

∫
Γ

ϑ(1)(x− y)�n(y)Dα,yDα,ỹϑ
(2)(y − ỹ)dΓy,

= −
∫

Γ

ϑ(1)(x− y)�n(y)ϑ(1)(y − ỹ)dΓy.

It is straightforward to see that

(Dr,ỹ + α)ψ̃1(x, ỹ) = ψ̃2(x, ỹ),
(Dr,ỹ + α)ϕ̃1(x, ỹ) = ϕ̃2(x, ỹ),

(Dr,ỹ − α)ψ̃2(x, ỹ) =

∫
Γ

K(1)
α (x− y)�n(y)ϑ(1)(y − ỹ)dΓy,

(Dr,ỹ − α)ϕ̃2(x, ỹ) = −
∫

Γ

ϑ(1)(x− y)�n(y)K
(1)
−α(y − ỹ)dΓy.

Now we prove that

(Dr,ỹ − α)ψ̃2(x, ỹ) − (Dr,ỹ − α)ϕ̃2(x, ỹ) = 0. (4.8)

We recall that with x �= ỹ, Ωε = Ω−{y ∈ Ω, |y−x| ≤ ε or |y− ỹ| ≤ ε}, 0 < 2ε < |x− ỹ|,∫
Γ

K(1)
α (x− y)�n(y)ϑ(1)(y − ỹ)dΓy =

∫
Γε

K(1)
α (x− y)�n(y)ϑ(1)(y − ỹ)dΓy

+

∫
|y−x|=ε∪|y−ỹ|=ε

K(1)
α (x− y)�n(y)ϑ(1)(y − ỹ)dΓy,

∫
Γ

ϑ(1)(x− y)�n(y)K
(1)
−α(y − ỹ)dΓy =

∫
Γε

ϑ(1)(x− y)�n(y)K
(1)
−α(y − ỹ)dΓy,

+

∫
|y−x|=ε∪|y−ỹ|=ε

ϑ(1)(x− y)�n(y)K
(1)
−α(y − ỹ)dΓy.

By formula (1.20), (1.21) we obtain∫
Γε

K(1)
α (x− y)�n(y)ϑ(1)(y − ỹ)dΓy = −ϑ(1)(x− ỹ) −

∫
Ωε

K(1)
α (x− y)K

(1)
−α(y − ỹ)dy,∫

Γε

ϑ(1)(x− y)�n(y)K
(1)
−α(y − ỹ)dΓy = ϑ(1)(x− ỹ) +

∫
Ωε

K(1)
α (x− y)K

(1)
−α(y − ỹ)dy,

and

lim
ε→0

∫
|y−x|=ε∪|y−ỹ|=ε

K(1)
α (x− y)�n(y)ϑ(1)(y − ỹ)dΓy = −ϑ(1)(x− ỹ),
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lim
ε→0

∫
|y−x|=ε∪|y−ỹ|=ε

ϑ(1)(x− y)�n(y)K
(1)
−α(y − ỹ)dΓy = ϑ(1)(x− ỹ).

Hence equality (4.8) holds. For x �= ỹ, from the equalities (1.20), (1.21) and (4.8) we have∫
Γ

(ψ̃1(x, ỹ) − ϕ̃1(x, ỹ))�n(ỹ)Dα,ỹ(D−α,ỹDα,ỹf(ỹ))dΓỹ

−
∫

Γ

(ψ̃2(x, ỹ) − ϕ̃2(x, ỹ))�n(ỹ)D−α,ỹDα,ỹf(ỹ)dΓỹ

−
∫

Ω

(ψ̃1(x, ỹ) − ϕ̃1(x, ỹ))(D−α,ỹDα,ỹ)
2f(ỹ))dỹ = 0.

Therefore equality (4.7) holds for n = 2.
Let the equality (4.7) hold for n− 1. We now prove it for n. By inductive hypothesis

we have

D−α,yDα,yf(y) =

n−1∑
k=1

[− ∫
Γ

Dα,ỹϑ
(k)(y − ỹ)�n(ỹ)(D−α,yDα,ỹ)

kf(ỹ)dΓỹ

+

∫
Γ

ϑ(k)(y − ỹ)�n(ỹ)Dα,ỹ(D−α,ỹDα,ỹ)
kf(ỹ)dΓỹ

]
−
∫

Ω

ϑ(n−1)(y − ỹ)(D−α,ỹDα,ỹ)
nf(ỹ)dỹ.

This leads to

f(x) = −
∫

Γ

Dα,yϑ
(1)(x− y)�n(y)f(y)dΓy +

∫
Γ

ϑ(1)(x− y)�n(y)Dα,yf(y)dΓy

+
n−1∑
k=1

[ ∫
Γ

ψk(x, ỹ)�n(ỹ)(D−α,yDα,ỹ)
kf(ỹ)dΓỹ

−
∫

Γ

ϕk(x, ỹ)�n(ỹ)Dα,ỹ(D−α,ỹDα,ỹ)
kf(ỹ)dΓỹ

]
−
∫

Ω

ϕn−1(x, ỹ)(D−α,ỹDα,ỹ)
nf(ỹ)dỹ,

where

ϕk(x, ỹ) =

∫
Ω

ϑ(1)(x− y)ϑ(k)(y − ỹ)dy,

ψk(x, ỹ) =

∫
Ω

ϑ(1)(x− y)Dα,ỹϑ
(k)(y − ỹ)dy,

for k = 1, .., n−1. Applying the formula (4.1) and using(4.6) for the functions ϑ(k+1)(x−ỹ)
and −D−α,xϑ

(k+1)(x− ỹ) for k = 1, 2, .., n− 2 shows

ϕk(x, ỹ) = −ϑ(k+1)(x− ỹ) − ψ̃1,k(x, ỹ) + ϕ̃1,k(x, ỹ),

ψk(x, ỹ) = −Dα,ỹϑ
(k+1)(x− ỹ) − ψ̃2,k(x, ỹ) + ϕ̃2,k(x, ỹ),

where

ψ̃1,k(x, ỹ) =

∫
Γ

Dα,yϑ
(1)(x− y)�n(y)ϑ(k+1)(y − ỹ)dΓy,
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ψ̃2,k(x, ỹ) =

∫
Γ

Dα,yϑ
(1)(x− y)�n(y)Dα,ỹϑ

(k+1)(y − ỹ)dΓy,

ϕ̃1,k(x, ỹ) =

∫
Γ

ϑ(1)(x− y)�n(y)Dα,yϑ
(k+1)(y − ỹ)dΓy,

ϕ̃2,k(x, ỹ) =

∫
Γ

ϑ(1)(x− y)�n(y)Dα,yDα,ỹϑ
(k+1)(y − ỹ)dΓy.

It is easy to see that

(Dr,ỹ + α)ψ̃1,k(x, ỹ) = ψ̃2,k(x, ỹ),
(Dr,ỹ + α)ϕ̃1,k(x, ỹ) = ϕ̃2,k(x, ỹ),

(Dr,ỹ − α)ψ̃1,k+1(x, ỹ) = ψ̃1,k(x, ỹ),
(Dr,ỹ − α)ϕ̃2,k+1(x, ỹ) = ϕ̃1,k(x, ỹ).

From the equalities (1.20), (1.21) and (4.8) we have

n−1∑
k=1

∫
Γ

[
ψ̃1,k(x, ỹ) − ϕ̃1,k(x, ỹ)

]
�n(ỹ)Dα,ỹ(D−α,ỹDα,ỹ)

kf(ỹ))dΓỹ

−
n−1∑
k=1

∫
Γ

[
ψ̃2,k(x, ỹ) − ϕ̃2,k(x, ỹ)

]
�n(ỹ)(D−α,ỹDα,ỹ)

kf(ỹ))dΓỹ

+

∫
Ω

[
ψ̃1,n−2(x, ỹ) − ϕ̃1,n−2(x, ỹ)

]
(D−α,ỹDα,ỹ)

nf(ỹ)dỹ = 0.

Therefore the equality (4.7) holds for n. �

Remark 4.9. Since −D−αDαf(x) = (∆ + α2)f(x), x ∈ Ω, the formula

f(x) =
n∑

k=1

(−1)k
[− ∫

Γ

Dα,yϑ
(k)(x− y)�n(y)(∆ + α2)k−1f(y)dΓy

+

∫
Γ

ϑ(k)(x− y)�n(y)Dα,y(∆ + α2)k−1f(y)dΓy

]
(−1)n+1

∫
Ω

ϑ(n)(x− y)g(y)dy.

represents a solution to the problem (∆+α2)nf(x) = g(x). If the solvability of the boudary
values problems to these equations are guaranteed then these representation formulas may
be used for representing the solutions by some method, for instant as shown in Chapter
3.

4. Dirichlet problem for bimetaharmonic function

As in Chapter 3, we study the bimetaharmonic problem by the help of the self-
contained theory given in the preceding sections. Questions of existence of the solutions is
answered in this section as well as an important convenient representation of the solutions.
We hope these integral representation formulas are adapted to the necessary numerical
evaluation of the solutions which can be connected with mathematical models. To that
purpose, we first assert the origin of the projection onto metaharmonic functions.
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Looking at the formula (4.7), each bimetaharmonic function, i.e., satistyfing the equa-
tion (∆ + α2)2f(x) = 0, has the integral representation

f(x) = −
∫

Γ

Dα,yϑ
(1)(x− y)�n(y)f(y)dΓy +

∫
Γ

ϑ(1)(x− y)�n(y)Dα,yf(y)dΓy

+

∫
Γ

Dα,yϑ
(2)(x− y)�n(y)(∆ + α2)f(y)dΓy

+

∫
Γ

ϑ(2)(x− y)�n(y)Dα,y(∆ + α2)f(y)dΓy

= Fαf(x) + VαDαf(x) +

∫
Γ

Dα,yϑ
(2)(x− y)�n(y)(∆ + α2)f(y)dΓy

−
∫

Γ

ϑ(2)(x− y)�n(y)Dα,y(∆ + α2)f(y)dΓy.

Applying formula (4.7) for Dαf gives

Dαf(x) = F−α(Dαf(x))−Vα(∆+α2)f(x)+

∫
Γ

D−α,yϑ
(2)(x−y)�n(y)Dα,y(∆+α2)f(y)dΓy.

If we take the traces of f andDαf then we obtain the following boundary integral equation,
x0 ∈ Γ,

f(x0) =
1

2
(f(x0) + Sαf(x0)) + VαDαf(x0)

+

∫
Γ

Dα,yϑ
(2)(x0 − y)�n(y)(∆ + α2)f(y)dΓy

−
∫

Γ

ϑ(2)(x0 − y)�n(y)Dα,y(∆ + α2)f(y)dΓy.

Dαf(x0) =
1

2
(Dαf(x0) + S−αDαf(x0)) − Vα(∆ + α2)f(x0)

+

∫
Γ

D−α,yϑ
(2)(x0 − y)�n(y)Dα,y(∆ + α2)f(y)dΓy.

If we now are looking for all bimetaharmonic functions f, which are also metaharmonic
then we get the following conditions

f(x0) =
1

2
(f(x0) + Sαf(x0)) + VαDαf(x0),

Dαf(x0) =
1

2
(Dαf(x0) + S−αDαf(x0)) ,

or with orther words (
f

Dαf

)
=

(
Pα Vα

0 P−α

)(
f

Dαf

)
.

From this we can derive the projections

P∆+α2 =

(
Pα Vα

0 P−α

)
, Q∆+α2 =

(
Qα −Vα

0 Q−α

)
.

These operators as well as the orthogonal decomposition of L2(Ω,H(C)) given in the
preceding section will open the door for the consideration of further classes of boundary
value problems for bimetaharmonic functions.
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We now come to rewrite the form of the Dirichlet problem for the bimetaharmonic
equation for sake of convenience. With the notation

TrΓf(x) =

(
trΓf

trΓDαf

)
,

then the Dirichlet problem for the inhomogeneous bimetaharmonic equation can be writ-
ten as {

(∆ + α2)2u = f in Ω,

T rΓu = g on Γ,
(4.9)

In connection with Theorem 3.9 and Theorem 4 in [43] (see also [47, Theorem 4.57]) we
are able to state the following result.

Theorem 4.10. Suppose that Ω is a domain with sufficiently smooth boundary Γ.

For each pair of functions ω1 ∈ W
k+3/2
2 (Γ,H(C)), ω2 ∈ W

k+1/2
2 (Γ,H(C)) there exists an

extension h ∈W k+2
2 (Ω,H(C)) with h|Γ = ω1, and (D+α)h|Γ = ω2, where α is a complex

constant.

Proof. By [43, Theorem 4], there exists a W k+2
2 (Ω,H(C))−extension h such that

h|Γ = ω1, and Dh|Γ = ω2 − αω1. This yields Theorem 4.10. �

We now can look for solutions of the problem (4.9). To do this, we start with the
following problem {

(∆ + α2)2u = 0 in Ω,

T rΓu = g on Γ.
(4.10)

Theorem 4.11. If k ∈ N, g ∈W
k+3/2
2 (Γ,H(C)) ×W

k+1/2
2 (Γ,H(C)) then the problem

(4.10) has the solution u ∈W k+2
2 (Ω,H(C)), which may be written as

u = F∆+α2g + T∆+α2P∆+α2(∆ + α2)h

where h is the W k+2
2 (Ω,H(C))−extension of g appearing in Theorem 4.10.

Proof. Using Theorem 4.10, if g ∈ W
k+3/2
2 (Γ,H(C)) ×W

k+1/2
2 (Γ,H(C)) then there

exists a h ∈ W k+2
2 (Ω,H(C)) such that TrΓh = g. Let u = υ + h then our boundary value

problem (4.10) has the form{
(∆ + α2)2υ = −(∆ + α2)2h in Ω,

T rΓυ = 0 on Γ,
(4.11)

We now are looking for solutions of problem (4.11). Noting that ϑ(1) has a singularity
of order 1 and using Theorem 2.20 we get (∆ + α2)T∆+α2 = Id where Id is the identity
operator and

T∆+α2 : W k
2 (Γ,H(C)) −→ W k+2

2 (Γ,H(C)).

Moreover, the validity of Theorem 4.5 and the corresponding orthoprojections Q∆+α2

show that there exists an H(C)−valued function υ ∈
0

W
2

2,∆+α2(Ω,H(C)) such that

(∆ + α2)υ = −Q∆+α2T∆+α2(∆ + α2)2h.
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Using the Cauchy-Pompeiu formula for the term of the Helmholtz equation in Remark
4.4, by the same methods as in Theorem 3.8 for υ ∈W 2

2,∆+α2(Ω,H(C)) and TrΓυ = 0 we
obtain

υ = −T∆+α2Q∆+α2T∆+α2(∆ + α2)2h.

Therefore,

(∆ + α2)2υ = −(∆ + α2)2T∆+α2Q∆+α2T∆+α2(∆ + α2)2h
= −(∆ + α2)Q∆+α2T∆+α2(∆ + α2)2h
= −(∆ + α2)(I − P∆+α2)T∆+α2(∆ + α2)2h
= −(∆ + α2)2h,

because of the definition of the orthoprojections P∆+α2 , imP∆+α2 ⊂ ker(∆ + α2).
Hence, using again the Cauchy-Pompeiu type formula for the Helmholtz equation we get

υ = −T∆+α2Q∆+α2

[
(∆ + α2)h− F∆+α2(∆ + α2)h

]
= −T∆+α2Q∆+α2(∆ + α2)h + T∆+α2Q∆+α2F∆+α2(∆ + α2)h.

On the other hand, by the orthoprojections imP∆+α2 = kerQ∆+α2 , and because F∆+α2

maps onto imP∆+α2 then we get Q∆+α2F∆+α2(∆ + α2)h = 0.
Thus,

υ = −T∆+α2Q∆+α2(∆ + α2)h
= −T∆+α2(∆ + α2)h+ T∆+α2P∆+α2(∆ + α2)h.

Meanwhile, the Cauchy-Pompeiu representation for the of Helmholtz equation shows that

T∆+α2(∆ + α2)h = h− F∆+α2h.

This leads to
υ = −h + F∆+α2h+ T∆+α2P∆+α2(∆ + α2)h.

Consequently, it may be observed that

υ + h = F∆+α2h+ T∆+α2P∆+α2(∆ + α2)h.

Hence, u = F∆+α2h+ T∆+α2P∆+α2(∆ + α2)h. �
Combining the problem (4.10) with (4.11) we obtain immediately the following propo-

sition.

Proposition 4.12. Under the assumption of the above theorem, the problem (4.9)
has a solution of the form

u = F∆+α2g + T∆+α2P∆+α2(∆ + α2)h + T∆+α2Q∆+α2T∆+α2f

where h denotes a W k+2
2 (Ω,H(C))−extension of g.




