
CHAPTER 3

A Boundary Value Problem of the Helmholtz Equation

This chapter is devoted to the investigation of the Dirichlet problem for the Helmholtz
equation in a bounded domain. In Section 1, we briefly explain why and how boundary
valued problems for the Helmholtz equation are solved. Using the properties ofDα, Tα, Fα

as well as the projections defined by the singular Cauchy operator the Dirichlet problem
for classical α−hyperholomophic functions are solved. This work is presented in Section 2.
An orthogonal decomposition of L2(Ω,H(C)) for a generalization of the Laplacian is con-
sidered in Section 3. Analogous works are done in Section 4 for classical α−metaharmonic
functions instead of α− hyperholomophic functions . Finally, by induction in Section 5,
the existence and the unique solution to the boundary value problem for the n− th order
Helmholtz equation are given.

1. History and Motivation

First of all, let us begin with a brief discussion of the physical background to the
propagation of sound waves with small amplitudes in a homogeneous isotropic medium
in R3 viewed as an inviscid fluid.

Let υ = υ(x, t) be the velocity field and let p = p(x, t), ρ = ρ(x, t) and S = S(x, t)
denote the pressure, density and specific entropy, respectively, of the fluid. The motion is
then governed by Euler’s equation

∂υ

∂t
+ (υgrad)υ +

1

ρ
gradp = 0,

the equation of continuity
∂ρ

∂t
+ div(ρυ) = 0,

the state equation

p = f(ρ, S),

and the adiabatic hypothesis
∂S

∂t
+ υgradS = 0,

where f is a function depending on the nature of the fluid. We assume that υ, p, ρ, and S
are small perturbations of the static state υ0 = 0, ρ0 = const, p0 = const and S = const
and linearize to obtain the linearized Euler equation

∂υ

∂t
+

1

ρ0
gradp = 0,

the linearized equation of continuity

∂ρ

∂t
+ ρ0divυ = 0,
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and the linearized state equation

∂p

∂t
=
∂f

∂ρ
(ρ0, S0)

∂ρ

∂t
.

From this we obtain the wave equation

1

c2
∂2p

∂2t
= ∆p,

where the speed of sound c is defined by

c2 =
∂f

∂ρ
(ρ0, S0).

From the linearized Euler equation, we observe that there exists a velocity potential
U = U(x, t) such that

υ =
1

ρ0
gradU

and

p = −∂U
∂t
.

Clearly, the velocity potential also satisfies the wave equation

1

c2
∂2U

∂t2
= ∆U.

For time-harmonic acoustic waves of the form

U(x, t) = Re{u(x)e−iωt}
with frequency ω > 0, we deduce that the complex valued space dependent part u satisfies
the reduced wave equation or Helmholtz equation

∆u+ α2u = 0

where the wave number α is given by the positive constant α = ω/c. This equation car-
ries the name of the physicist Hermann Ludwig Ferdinand von Helmholtz (1821-1894)
for his contributions to mathematical acoustics and electromagnetics. For a solid knowl-
edge of some basic properties of the solutions to the Helmholtz equation and its physical
background, we refer the readers to D.L. Colton’s books, for instance [28, 29].

On the orther hand, a large number of interesting physical applications, for instance
problems in elasticity theory of shells and in gas dynamics, lead to the so-called Vekua
type problems. With methods of function theory of one complex variable a complete
theory of the solutions to the equation ∂̄u + au + bū = f is described in [24, 86]. Here
let ∂̄ = ∂1 + i∂2 and a, b be constant complex numbers, u, f ∈ C(Ω,C).

In 1944, Richard von Mises [70] wrote one of the first papers for this type of equations
in higher dimensions. In quaternionic notation this problem can be rewritten in the form
Du + αu = f. Solutions of that system (see fomulas (1.9), (1.10)) are closely related as
well to time harmonic electromagnetic fields, see [61, 64, 65, 66] as to time- harmonic
spinor fields, see [62, 63]. As introduced in Chapter 1, it is known that −(D + α)(D −
α) = ∆ + α2. Dα is called the Helmholtz operator. We refer to [26, 30, 48, 64] for
detailed discussions on various examples in physical models which may be described by
the Helmholtz equation.
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It is known that in the plane the boundary value problems for the Cauchy - Riemann
∂̄−operator have deep implications to potential theory (see [39, 87]). In 1971, the Yukawa
potential was developed by R. J. Duffin [35] to investigate the equation (∆ + α2)u = 0
where α ∈ R, and u is a complex valued function. Of course, the important property
of Yukawa potentials is that they approach those of Newton potential as α approaches
zero. We also refer the readers to [67] for solving the Dirichlet problem for the Helmholtz
equation in bounded plane domains. The existence of a classical solution is proved by
potential theory. Generalizing these ideas to the Clifford algebra frameword and connect-
ing with the Helmholtz operator is undertaken by M. Mitrea in 1996, see [71]. We also
refer to [20, 44, 56] for studying classical elliptic equations in bounded and unbounded
domains which include the Helmholtz equation. Of course this development was inspired
by physicists with their interests in first and second order partial differential equations.

On the other hand, in particular for the unit disc and the unit polydisc in C, Cn,
the existence of the explicit form of the Green function as well as the higher order Green
functions corresponding to the Laplacian operator, as given in [4], is a very wonderful
event. They lead to orthogonal polyanalytic and polyharmonic decompositions of the
Hilbert space L2(D,C), see [13]. The existence of the explicit form of the Green function
with respect to the Laplacian and to the higher order Lapace operators together with
Begehr’s method becomes an excellent way to solve some boudary value problems for
analytic, polyanalytic function etc., in the unit disc and the unit polydisc, e.g., [7, 12, 15].

However, in quaternionic analysis we can only prove the existence of the Green function
for the Helmholtz equation. The proof can be given following the idea in [72, Chap.
8]. The explicit form of the Green function for the Helmholtz equation, even for some
particular domains remains still unknown in quaternionic analysis.

Therefore, our method uses the fundamental solution of the Helmholtz equation in
order to build a systematical theory for the metaharmonic functions introduced and de-
veloped in Chapter 1 and Chapter 2 to study the Dirichlet problem for the Helmholtz
equation. We will investigate the problem{

∆u+ α2u = f in Ω,

u = g on Γ,
(3.1)

where g is a function defined on the boundary, by the help of a self-contained theory.
Questions of existence, uniqueness, and regularity are included in this theory and as an
important advantage also convenient representations of the solutions. To do this, we have
to divide this work into several steps. Now, we come to study the Dirichlet problem for
the classical left α−hyperholomophic functions. The right α−hyperholomophic functions
are treated in the same way.

2. The Dirichlet problem for the operator Dα

In this section we investigate the problem{
Dαu = f in Ω,

u = g on Γ.
(3.2)

To this purpose, we start with the quaternionic Plemelj-Sokhotski formulas. This theorem
is taken from [60, Chap. 2, Theorem 8].
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Theorem 3.1. (Quaternionic Plemelj-Sokhotski formulas)
Let Γ be a closed Liapunov surface, f ∈ C0,ε(Γ,H(C)), 0 < ε ≤ 1. Then everywhere on Γ
the following limits exist satisfying

lim
Ω+�x→τ∈Γ

Fαf(x) = Pαf(τ),

lim
Ω−�x→τ∈Γ

Fαf(x) = −Qαf(τ),

where Ω+ = Ω, Ω− := R3 − Ω.

In the book [25, p. 177], (see also [46, Theorem 2.5.10], [47, Theorem 3.64]), the
authors have proven the theorem in the case α = 0. For the case α �= 0 the proof can be
found in [60, Theorem 8].

If we denote trΓ as the operator of restriction onto the boundary Γ, and using the

trace theorem for g ∈ W
k−1/p
p (Γ,H(C)) then there exists an H(C)−valued function u ∈

W k
p (Γ,H(C)) such that trΓu = g. Using the Cauchy-Pompeiu formula and Remark 2.21

u− Tα,1Dαu ∈W k
p (Γ,H(C))

follows. This means that the following Proposition holds.

Proposition 3.2. With Fα as defined in Chapter1, we have

Fα : W k−1/p
p (Γ,H(C)) −→ W k

p (Γ,H(C)) ∩ kerDα.

Some of the following properties of the operators Pα, Qα and Sα are immediate con-
sequences of Theorem 3.1 and the Cauchy-Pompeiu formula.

Theorem 3.3. Let f ∈ C0,ε(Γ,H(C)), 0 < ε ≤ 1. Then the equations

(i) (S2
αu)(τ) = u(τ),

(ii) (FαPαu)(τ) = (Fαu)(τ),
(iii) (P 2

αu)(τ) = (Pαu)(τ),
(iv) (Q2

αu)(τ) = (Qαu)(τ),

are valid for any τ ∈ Γ

We refer to [60, Chap. 2, Theorem 9] and [46, Corollary 4.2.7] for its proofs. The
operator Sα is an involution on the space C0,ε(Γ,H(C)), 0 < ε ≤ 1, hence, Pα, Qα are
mutually complementary projection operators on the same space.

Remark 3.4. From complex analysis it is well-known that if a function is the boundary
value of a holomorphic function then the product of this function with a constant is also
the boundary value of a holomorphic function. We will see throught the following example
that this is not true for α−hyperholomorphic functions where α ∈ C in the quaternionic
case with the vector quaternion constant.

Example 3.5. For the sake of simplicity, we look at the case α = 0. If u fullfills
S0u = u on R

2, using definition (1.24) we get u ∈ imP0 then S0(e3u) = −e3u on R
2. This

is easily seen from

S0(e3u)(x) = −2
1

4π

∫
R2

K0(x− y)�n(y)u(y)dΓy
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= − 1

2π

∫
R2

(x1 − y1)e1 + (x2 − y2)e2
|x− y|3 e3e3u(y)dy

= −e3

− 1

2π

∫
R2

(x1 − y1)e1 + (x2 − y2)e2
|x− y|3 e3u(y)dy




= −e3S0(u)(x) = −e3u(x) ∈ imQ0.

From these above theorems together with definitions (1.24) we can easily see that
any f ∈ C0,ε(Γ,H(C)), 0 < ε ≤ 1, can be represented in a unique way as the sum
f = Pαf + Qαf. What then are these ”parts” of f, Pαf and Qαf?. The following
statement will answer this question.

Theorem 3.6. Under the assumptions from Theorem 3.1 where Γ is the boundary of
a finite domain Ω+ and an infinite domain Ω− the following assertions hold.

(i) f is the boundary value of a function F from kerDα(Ω+,H(C)) if and only if

f ∈ imPα. (3.3)

(ii) Let f satisfy the condition (1 + ix
|x|)f(x) = 0( 1

|x|). In order that f is the boundary

value of a function F from kerDα(Ω−,H(C)), the following condition is necessary
and sufficient

f ∈ imQα. (3.4)

The readers can find its proof in [60, Theorem 10]. Because of Theorem 3.6 the
subspace imPα ∩ L2(Ω,H(C)) is seen to be the set of all H(C) − α−regular functions
extended into the domain Ω+, imQα ∩ L2(Ω,H(C))is the set of all H(C) − α−regular
functions extended into the domain Ω− and satistifying the condition (1+ ix

|x|)f(x) = 0( 1
|x|).

It is easily seen that, in particular, any f ∈ C0,ε(Γ,H(C)), 0 < ε ≤ 1, itself is H(C) −
α−regular extendable in this sense into Ω+, or Ω− if and only if Qαf = 0 or Pαf = 0 on
Γ.

Remark 3.7. From the definition of Pα and Qα, (see (1.24)), the condition (3.3) can
be rewritten as

f(τ) = Sαf(τ) for all τ ∈ Γ (3.5)

From Theorem 3.6, we can see immediately that the solution of the problem{
Dαu = 0 in Ω,

u = g on Γ,
(3.6)

where g ∈ C0,ε(Γ,H(C)) does not alway exist because not all functions g are α−extendable
into Ω+, i.e., Qαg �≡ 0 on Γ. In the case of solvability, according to the Cauchy integral
formula, the solution is given by

u = Fαg. (3.7)

We now come to our first application of the Cauchy-Pompeiu type integral representa-
tion of first order as well to solve problem (3.2) as also to give the necessary and sufficient
condition for (3.2) to have a solution. These results are contained in Theorem 3.8 and
Theorem 3.9.
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Theorem 3.8. Let f ∈W k
2 (Ω,H(C)). The boundary value problem{

Dαu = f in Ω,

u = o on Γ,
(3.8)

has a solution if and only if trΓQαTα,1f = trΓTα,1f .
In the case of solvability the solution is given by u = Tα,1f ∈W k+1

2 (Ω,H(C)).

Proof. We begin with considering a new function ω := u− Tα,1f.
If u is a solution to the problem (3.8) then ω is a solution to the problem{

Dαω = 0 in Ω,

ω = −trΓTα,1f on Γ.
(3.9)

By Remark 3.7, the solution of this problem exists if and only if the function ω satisfies
the condition

−trΓTα,1f = Sα(−trΓTα,1f) on Γ. (3.10)

If this condition is fulfilled then the solution of the problem (3.9) is

ω = Fα(−trΓTα,1f). (3.11)

Furthermore, using the Cauchy-Pompeiu integral formula for Tα,1f and assertion (i) in
Theorem 2.20, we obtain

Fα(−trΓTα,1f) = −[Tα,1f − Tα,1(DαTα,1f)] = 0. (3.12)

It implies that

0 = lim
Ω+�x→τ∈Γ

Fα(−trΓTα,1f)(x) = Pα(−trΓTα,1f)(τ).

By the definition in (1.24) we have 1
2
(I + Sα)(−trΓTα,1f) = 0.

In other words, −trΓTα,1f = −Sα(−trΓTα,1f). Thus, from equality (3.10) we get

trΓTα,1f = 0. (3.13)

Since the equalities (3.11), (3.12) and (3.13) we get ω = 0 is the solution to the problem
(3.9). This means that u = Tα,1f is the solution to the problem (3.8).

Now we are looking at the condition (3.10), using the definition of Qα in (1.24) then
trΓQαTα,1f = trΓTα,1f. The theorem is completely proved. �

The following theorem solves the boundary value problem (3.2).

Theorem 3.9. Let f ∈W k
2 (Ω,H(C)), and g ∈W

k+1/2
2 (Γ,H(C)). The boundary value

problem (3.2) has a unique solution u ∈W k+1
2 (Ω,H(C)) if and only if trΓQαg = trΓTα,1f .

In the case of solvability the solution is given by u = Fαg + Tα,1f ∈ W k+1
2 (Ω,H(C)).

Proof. We use the same idea as in the proof of the above theorem. We also consider
the new function ω := u− Tα,1f. Then with the aid of Theorem 2.20, if u is a solution to
the problem (3.2) then ω is a solution to the problem{

Dαω = 0 in Ω,

ω = g − trΓTα,1f on Γ.
(3.14)
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By equality (3.5), the solution of the problem (3.14) exists if and only if trΓω = trΓSαω.
It means that

u− Tα,1f = Sαu− SαTα,1f on Γ. (3.15)

If the condition (3.15) is fulfilled, using Remark 3.7 with the equality (3.7), (see also
in [60, p. 38]), then the solution of problem (3.14) is ω = Fα(g − trΓTα,1f). Using the
Cauchy-Pompeiu formula (1.22) for the function Tα,1f we get

ω = Fαg − FαTα,1f = Fαg − (Id− Tα,1Dα)Tα,1f = Fαg.

As in the above theorem we obtain FαTα,1f = 0, hence, PαTα,1f = 0 on Γ, that is

Tα,1f = −SαTα,1f on Γ.

Thus, the condition (3.15) can be rewritten as

u− Tα,1f = Sαu+ Tα,1f on Γ,

hence,
u− Sαu = 2Tα,1f on Γ ,i.e., Qαg = trΓTα,1f.

Now, we return to problem (3.2). We obtain its solution in the form

u = ω + Tα,1f = Fαg + Tα,1f

under the necessary and sufficient condition

Qαg = trΓTα,1f. (3.16)

If a function satisfies Dαu = f and the condition (3.16), due to the Plemelj- Sokhotski
formulas we obtain on the boundary the required equality

trΓu = Pαg + trΓTα,1g = Pαg +Qαg = g.

by the aid of the Cauchy- Pompeiu formula (1.22) �
We also refer the readers to [21, 22, 78, 79, 93] for other applications of Cauchy-

Pompeiu type representations in investigating the classical Riemann problem for the equa-
tion Dαu = f.

3. Orthogonal decomposition of the space L2(Ω,H(C))

One of the most interesting facts of complex and hypercomplex function theory is the
orthogonal decomposition of the space L2(Ω),

L2(Ω) = kerD ∩ L2(Ω) ⊕D(
0

W 1
2 (Ω)) (3.17)

where kerD(Ω) denotes the set of all holomorphic i.e of classical monogenic functions in Ω.
This decomposition has a lot of applications, especially to the theory of partial differential
equation, for example in [31, 33], to the Stokes system in [32, 34]. We also refer to [57]
for extending the orthogonal decomposition (3.17) to the spaces Lp(Ω), 1 < p <∞.

In this section we investigate a decomposition of the space L2(Ω,H(C)) with respect to
α−hyperholomorphic functions. The proof of this decomposition is based on the existence
of an inner product in L2(Ω,H(C)) and the properties of the boundary projections Pα

and Qα. It can be given in using the same idea as in [46, Theorem 3.1] (see also [47, 82]).
However, we change some notations and trivial techniques in accordance with the study
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of boundary value problems for the Helmholtz equation in the next section. This proof
will be presented for sake of preciseness and convenience.

Theorem 3.10. Let Ω be a symmetric domain relative to the origin. Then the Hilbert
space L2(Ω,H(C)) permits the orthogonal decomposition

L2(Ω,H(C)) = kerDα ∩ L2(Ω,H(C)) ⊕Dα(
0

W 1
2 (Ω,H(C)). (3.18)

Proof. We consider the right-linear subspacX = L2(Ω,H(C))
(kerDα∩L2(Ω,H(C)).
1) First of all, we prove that

Dα(
0

W 1
2 (Ω,H(C))) ⊂ X. (3.19)

Indeed, for all ϕ ∈ kerDα, i.e.Dαϕ = 0, and any ω ∈
0

W 1
2 (Ω,H(C)), which means that

ω = 0 on Γ, and ω ∈W 1
2 (Ω,H(C),

not satisfying ω ∈ kerDα the inner product

< Dαω, ϕ > =

∫
Ω

Dαω(x)ϕ(x)dx

= −
∫
Ω

Dr,−αω(x)ϕ(x)dx

Dαϕ=0
= −

∫
Ω

(
Dr,−αω(x)ϕ(x) + ω(x)Dαϕ(x)

)
dx

Stokes
= −

∫
Γ

ω(x)�n(x)ϕ(x)dΓx

ω|Γ=0
= 0.

Thus, Dαω(x) ∈ X, i.e., inclusion (3.19) holds.
2) In the second step we will prove that

X ⊂ D−α(
0

W 1
2 (Ω,H(C)). (3.20)

Actually, let u ∈ X then we can take for instance υ = Tα,1u. By assertion (i) of Theorem
2.20 together with Theorem 2.17 we have

Dαυ(x) = u(x), x ∈ Ω and υ ∈W 1
2 (Ω,H(C)).

For any ϕ ∈ kerDα ∩ L2(Ω,H(C)), because u ∈ X then we obtain

0 =< u, ϕ > =

∫
Ω

u(x)ϕ(x)dx =

∫
Ω

Dαυ(x)ϕ(x)dx

= −
∫
Ω

Dr,−αυ(x)ϕ(x)dx

Dαϕ=0
= −

∫
Ω

(
Dr,−αυ(x)ϕ(x) + υ(x)Dαϕ(x)

)
dx
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Stokes
= −

∫
Γ

υ(x)�n(x)ϕ(x)dΓx

=

∫
Γ

ϕ(x)�n(x)υ(x)dΓx

This for the sake of convenience we can rewrite∫
Γ

ϕ(y)�n(y)υ(y)dΓy = 0. (3.21)

In R3 − Ω we choose an arbitrary x. We get

ϕ(y) = K(1)
α (x− y) then ϕ(y) = K(1)

α (−x− (−y)),
and �n(−y) = −�n(y), υ1 ∈ W 1

2 (Ω,H(C)) with υ1(−y) = υ(y), y ∈ Ω by using the
assumtion that Ω is a domain symmetric with respect to the origin. Therefore, without
loss of generality equality (3.21) can be written as∫

Γ

K(1)
α (−x+ y)�n(−y)υ(−y)dΓy = 0.

If we put υ̃(x) = υ(−x) and observe �n(−y) = −�n(y), then we obtain Fαυ̃(x) = 0, x is an
arbitrary point outside Ω. Hence, Fαυ̃ ≡ 0 in Ω−. Using Plemelj- Sokhotski formulas we
can easily see that trΓυ̃ = Pα[trΓυ̃]. Thus, trΓυ̃ ∈ im Pα. Together with Proposition 3.2
we get

trΓυ̃ ∈ im Pα ∩W 1/2
2 (Ω,H(C)).

We can see that due to Theorem 3.6, trΓυ̃ is the boundary value of a function h from
kerDα(Ω+,H(C)). It means that{

Dαh = 0 in Ω,

trΓh = trΓυ̃ onΓ.

Taking the function ω = υ̃− h then ω ∈
0

W 1
2 (Ω,H(C)) and Dαω = Dαυ̃. Moreover, under

the assumtion that Ω is a symmetric domain relative to the origin we obtain

D−α(−υ̃(x)) = Dα(−υ̃(−x)) = Dα(−υ(x)) = −u(x).

It concludes u ∈ D−α(
0

W 1
2 (Ω,H(C))). This yields (3.20).

3)Combining (3.19) and (3.20) and we obtain

Dα(
0

W 1
2 (Ω,H(C))) ⊂ D−α(

0

W 1
2 (Ω,H(C))).

If we replace α instead of −α we get

D−α(
0

W 1
2 (Ω,H(C))) ⊂ Dα(

0

W 1
2 (Ω,H(C))).

Now we can conclude that

D−α(
0

W 1
2 (Ω,H(C))) = Dα(

0

W 1
2 (Ω,H(C))).

Together with (3.19), (3.20), we get (3.18). �
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Remark 3.11. (i) Due to the validity of this theorem we instantly have the existence
of the orthoprojections Pα and Qα with

Pα : L2(Ω,H(C))) −→ kerDα ∩ L2(Ω,H(C)),

Qα : L2(Ω,H(C))) −→ D−α(
0

W 1
2 (Ω,H(C)) ∩ L2(Ω,H(C)).

(ii) Since imPα ⊂ kerDα ⊂ C∞(Ω,H(C)), we have DαQαu = Dα(u − Pαu) = Dαu. This
means that, for any u ∈W 1

2 (Ω,H(C)) then the differentiation rule

DαQαu = Dαu (3.22)

holds.

4. Applications to boundary value problems of the Helmholtz equation

The result of decompositions of the complex quaternion valued Hilbert space in the
formerly section is useful. It opens the door for the consideration of boundary value
problems of partial differential equations.

This section is concerned about the existence and regularity of the solution to the
Dirichlet problem for the Helmholtz equation. This means that the close connection of
the decomposition (3.18) with the boundary value problem (3.1) is outlined. Further
more, the operator trΓT−αFα is investigated. These results are used later to construct
more explicitly the representation formulas of the orthoprojections Pα and Qα. Finally,
by the help of these representations we can get representations for the solution to the
boundary valued problem which make use only of the boundary data and of the right-
hand side of the differential equation without unknown extension functions.

In the whole section we use the result on the extensions of vector functions defined on
the boundary of a bounded domain. We suppose that Ω is a domain with a sufficiently

smooth boundary. For each function g ∈ W
k+3/2
2 (Γ,H(C)) there exists an extension

h ∈ W k+2
2 (Ω,H(C)) with trΓh = g. This is an existence theorem about the existence

of the function h defined in Ω with the prescribed regularity and the property that the
restriction to the boundary values reproduces again the given function g. However, in
general it is not constructive and also says nothing about the extension function being
the solution of some differential equation. Of course, the extension is not unique. We
refer the readers to [68] for more information. We use in this section only an existence
result about the extensions. Its proof shows the fact that the regularity of extensions and
the smoothness of the boundary are connected.

Now we are looking for the solution of the problem{
∆u+ α2u = f in Ω,

u = 0 on Γ.
(3.23)

Theorem 3.12. Let f ∈W k
2 (Ω,H(C)). The Dirichlet’s problem (3.23) has a solution

u ∈W k+2,loc
2 (Ω,H(C)) which may be represented by the formula u = −T−α,1QαTα,1f.

Proof. For f ∈W k
2 (Ω,H(C)), by Remark 2.21 we have Tα,1f ∈W k+1

2 (Ω,H(C)). The
validity of Theorem 3.10 as well as its proof and Remark 3.11 shows that there exists an

H(C)−valued function u ∈
0

W
k+1

2 (Ω,H(C) with −D−αu = Qα(Tα,1f).
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On the orther hand, with the aid of the Cauchy-Pompeiu formula (1.23) as well as Theorem
3.8 and noticing that u vanishes on Γ, we get

u = T−α,1D−αu = −T−α,1(Qα(Tα,1f)) and u ∈W k+2,loc
2 (Ω,H(C)).

Hence,

(∆ + α2)u = Dα(−D−αu) = Dα{−D−α[−T−α,1(Qα(Tα,1f))]}. (3.24)

Using assertion (i) in Theorem 2.20 we have D−αT−α,1 = Id. Therefore, by Remark 3.11
imPα ⊂ kerDα and the definitions of Pα, Qα in (1.24), the equality (3.24) can be rewritten
as

(∆ + α2)u = Dα[Qα(Tα,1f)] = Dα[Tα,1f − Pα(Tα,1f)]
= DαTα,1f = f.

The theorem is completely proved. �

Theorem 3.13. Let g ∈W
k+3/2
2 (Γ,H(C)), k ≥ 0. The first boundary value problem{
∆u+ α2u = 0 in Ω,

u = g on Γ,
(3.25)

has a solution u ∈W k+2,loc
2 (Ω,H(C)) of the form

u = F−αg + T−α,1PαD−αh,

where h is a W k+2
2 (Ω,H(C))−extension of g.

Proof. For g ∈W
k+3/2
2 (Γ,H(C)) there exists aW k+2

2 (Ω,H(C))−extension with trΓh =
g. With u = υ + h the boundary value problem (3.25) will be transformed into{

(∆ + α2)υ = −(∆ + α2)h in Ω,

υ = 0 on Γ.

Applying Theorem 3.12 to the above boundary value problem we see that its solution can
be represented as

υ = −T−α,1QαTα,1[−(∆ + α2)h] (3.26)

Noticing that (∆+α2) = −DαD−α, using the Cauchy-Pompeiu formula for (−D−αh), we
have

−D−αh = Fα(−D−αh) + Tα,1Dα(−D−αh).

Inserting this equality into (3.26) yields

υ = T−α,1QαFαD−αh− T−α,1QαD−αh = −T−α,1QαD−αh,

as Qα[FαD−αh] = 0 because of the properties of orthoprojections QαPα = 0 , i.e., imPα ⊂
kerQα and Fα maps into imPα.
Using the definition (1.24), Qα = Id− Pα and the Cauchy-Pompeiu (1.23) for D−αh i.e.,
h = F−αh+ T−α,1D−αh we have

υ = −T−α,1QαD−αh = −T−α,1D−αh+ T−α,1PαD−αh
= −h+ F−αh+ T−α,1PαD−αh.

Puting u = υ + h and noticing that trΓh = g then

u = F−αg + T−α,1PαD−αh ∈W k+2,loc
2 (Ω,H(C)).
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�

Now we can conclude the existence and uniqueness of the solution to problem (3.1)
by the following theorem.

Theorem 3.14. Let f ∈ W k
2 (Ω,H(C)), g ∈ W

k+3/2
2 (Γ,H(C)), and suppose α2 is not

an eigenvalue of {−δ, tr}. Then the Dirichlet problem (3.1) has the unique solution

u = F−αg + T−α,1PαD−αh− T−α,1QαTα,1f

belonging to W k+2,loc
2 (Ω,H(C)) where h denotes a W k+2

2 (Ω,H(C))−extension of g.

Proof. 1) The existence of the solutions.
By Theorem 3.12 and 3.13 the sum of the solutions of the boundary value problems

(3.23) and (3.25) solves problem (3.1). Its solution can be represented as

u = F−αg + T−α,1PαD−αh− T−α,1QαTα,1f ∈W k+2,loc
2 (Ω,H(C)).

2) The uniqueness of the solution.
To show this, we only have to prove the uniqueness of the solution to the problem{

(∆ + α2)u = 0 in Ω,

u = 0 on Γ.

Indeed, if u is a solution to the above problem then using Theorem 3.8 we see that its
solution can be represented as u = T−α,1D−αu.
By Remark 3.11 and trΓu = 0 then D−αu ∈ imQα. It means that there exits a function
ω such that Qαω = D−αu. From the properties of Qα in Theorem 3.3 we have

Qα(D−αu) = Q2
αω = Qαω = D−αu, i.e., D−αu = Qα(D−αu).

This together with trΓu = 0, and then using Theorem 3.8 again we can easily see that
u = T−α,1Qα(D−αu). Hence, u = T−α,1D−αu = T−α,1Qα(D−αu).
On the orther hand, D−αu ∈ kerDα, which means that D−αu ∈ imPα. Repeating the
above process again for Pα instead of Qα with using assertion (iii) of Theorem 3.3 we also
get

D−αu = Pα(D−αu) and u = T−α,1Pα(D−αu).

Now, we can conclude

u = T−α,1D−αu = T−α,1Qα(D−αu) = T−α,1Pα(D−αu).

This equality, together with Pα + Qα = Id leads to T−α,1D−αu = 0. Using the Cauchy-
Pompeiu formula (1.22) and noticing that trΓu = 0 we get u = 0. Thus, the uniqueness
of the solution follows. �

We now intend to investigate some properties of trΓT−α,1Fα. There exist spaces where
it becomes an isomorphism. These results will lend assistance aid to construct more
explicitly the representation formulas of the orthoprojections Pα and Qα. For this purpose,
let us now analyze in more detail the subspace imQα.

Proposition 3.15. We have trΓT−α,1u = 0 if and only if u ∈ imQα.
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Proof. 1) Let u ∈ imQα then there exists a function ω ∈ L2(Ω,H(C)) such that
Qαω = u, u ∈ W 1

2 (Ω,H(C)). Since assertion (iv) of Theorem 3.3 we get Qαu = Q2
αω =

Qαω = u. Hence, trΓT−α,1u = trΓT−α,1Qαu.

On the orther hand, u ∈ imQα ⊂ D−α(
0

W 1
2 (Ω,H(C))). Therefore there exists a function υ

in W 1
2 (Ω,H(C)) such that {

D−αυ = Qαu in Ω,

υ = 0 on Γ.

By Theorem 3.8 we get its solution υ = T−α,1Qαu satistifying trΓυ = trΓT−α,1Qαu.
Therefore, trΓT−α,1u = 0.

2) Suppose that trΓT−α,1u = 0. By the definitions of Pα and Qα as well as imPα ⊂
kerDα then the function u can be decomposed into the sum u = u1+u2, where u1 ∈ kerDα

and u2 ∈ imQα. Under the assumtion we get

trΓT−α,1u1 + trΓT−α,1u2 = 0.

It is clear that the first term T−α,1u1 belongs to ker(∆ + α2) and the second term, by
using the above discussions with u2 ∈ imQα then trΓT−α,1Qαu2 = trΓT−α,1u2 = 0.
Thus, we have trΓT−α,1u1 = 0. Therefore, T−α,1u1 is a solution of the boundary value
problem {

(∆ + α2)T−α,1u1 = 0 in Ω,

T−α,1u1 = 0 on Γ.

From Theorem 3.14 we can conclude that the only solution of this problem is T−α,1u1 ≡ 0,
whence u1 ≡ 0. Hence, we get u = u2 ∈ imQα. �

Next the operator T−α,1Fα will be investigated.

Proposition 3.16. The formula

ker trΓT−α,1Fα ∩ (W
1/2
2 (Γ,H(C)) ∩ imPα) = {0}

is valid.

Proof. Let be u ∈ ker trΓT−α,1Fα, i.e., trΓT−α,1Fαu = 0. Now, we have to show

that if u ∈ (W
1/2
2 (Γ,H(C)) ∩ imPα) then u ≡ 0.

Indeed, from the assumtion trΓT−α,1Fαu = 0, using Proposition 3.15 we get Fαu ∈
imQα. Since Remark 3.11, imQα ⊂ D−α(

0

W 1
2 (Ω,H(C)), leads to the existence of the func-

tions ω ∈
0

W 1
2 (Ω,H(C)) satistifying D−αω = Fαu.

Apparently, Fαu ∈ ker Dα. By Proposition 3.2, we get{
(∆ + α2)ω = DαFαu = 0 in Ω,

ω = 0 on Γ.

Using the uniqueness result of Theorem 3.14 now yields that ω = 0. Hence, we may
conclude that also D−αω = 0, whence Fαu = 0. Moreover, with trΓT−α,1Fαu = 0 and
u ∈ imPα, i.e., u ∈ kerDα then Fαu = 0, whence u = 0. The Proposition 3.16 is completely
proved. �
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Theorem 3.17. The operator

trΓT−α,1Fα : imPα ∩W k+1/2
2 (Γ,H(C)) −→ im Q−α ∩W k+3/2

2 (Γ,H(C))

is an isomorphism.

Proof. 1) trΓT−α,1Fα is injective.
By the aid of the properties of T−α,1 (see Remark 2.21) and the Proposition 3.2 together
with the trace theorem we obtain

trΓT−α,1Fα(W
k+1/2
2 (Γ,H(C)) ⊂ W

k+3/2
2 (Γ,H(C)).

Now, let ω ∈ imPα ∩W k+1/2
2 (Γ,H(C)) such that trΓT−α,1Fα(ω) = 0. By Proposition 3.16

we get ω = 0. Thus, trΓT−α,1Fα is injective.

2) trΓT−α,1Fα is a surjective mapping.

Let ω be an arbitrary element from im Q−α ∩ W
k+3/2
2 (Γ,H(C)). This function can be

written as ω = Q−αg for some function g defined on Γ, also g ∈ W
k+3/2
2 (Γ,H(C)). Now,

we are looking for some function υ ∈W k+2
2 (Γ,H(C)) satisfying υ = ω on Γ.

Using Theorem 3.9, this problem has a solution υ = F−αω + T−α,1D−αυ under the
condition Q−αω = trΓT−α,1D−αυ. By properties of Q−α we get

Q−αω = Q2
−αg = Q−αg = ω.

On the orther hand, since the Plemelj-Sokhotzkij’s formula and assertion (ii) of Theorem
3.3 we have F−αω = 0. Thus, trΓT−α,1D−αυ = 0.
Now, one can find u = D−αυ such that u ∈ kerDα, and satistifying trΓu = trΓD−αυ. Its
solution is u = Fα(trΓD−αυ) if and only if trΓD−αυ ∈ im Pα, i.e., trΓu ∈ im Pα.
This means that, the continuous function υ is always choosable in such a way that{

(∆ + α2)υ = 0 in Ω,

υ = ω on Γ,

and with u = trΓD−αυ ∈ im Pα ∩W k+1/2
2 (Γ,H(C)). �

Now, we come to clarify the structure of the orthogonal projections Pα and Qα.

Theorem 3.18. Let k ≥ 1. Then for u ∈ W k
2 (Ω,H(C)) we have Pαu, Qαu ∈

W k
2 (Ω,H(C)). Furthermore, the orthoprojections Pα and Qα allow the representations

Pα = Fα(trΓT−α,1Fα)−1trΓT−α,1

Qα = Id− Fα(trΓT−α,1Fα)−1trΓT−α,1. (3.27)

Proof. Under the assumtion u ∈ W k
2 (Ω,H(C)), Remark 2.21 immediately follows

that T−α,1u ∈W k+1
2 (Ω,H(C)). By the trace theorem we get trΓT−α,1u ∈ W

k+1/2
2 (Γ,H(C)).

Theorem 3.17 leads to

(trΓT−α,1Fα)−1trΓT−α,1u ∈W
k−1/2
2 (Γ,H(C)).

Since Proposition 3.2 we get

Fα(trΓT−α,1Fα)−1trΓT−α,1u ∈W k
2 (Ω,H(C)) ∩ kerDα.

For the sake of brevity we put

P̃α = Fα(trΓT−α,1Fα)−1trΓT−α,1, Q̃α = Id− P̃α.
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A straightforward calculation delivers P̃ 2
α = P̃α. Obviously, (Id − P̃α)2 = (Id − P̃α) and

(Id− P̃α)P̃α = P̃α(Id− P̃α) = 0. Furthermore, we consider

Q̃αu = (Id− P̃α)u = u− Fα(trΓT−α,1Fα)−1trΓT−α,1u
Theorem2.20

= D−αT−α,1u−D−αT−α,1Fα(trΓT−α,1Fα)−1trΓT−α,1u
= D−αω

with ω = T−α,1u − T−α,1Fα(trΓT−α,1Fα)−1trΓT−α,1u. Obviously, trΓω = 0, and ω ∈
W k+1

2 (Ω,H(C)).

Hence, Q̃αu ∈ D−α(
0

W
k+1

2 (Ω,H(C))). For the uniqueness of the orthoprojections we ob-

tain P̃α = Pα, and Q̃α = Qα. �

By the special structure of Pα in formula (3.27) the following Corollary holds.

Corollary 3.19. Each solution u of the problem (3.1) belongs to W k
2 (Ω,H(C)).

The result of this Corollary can be generalized to W k
p (Ω,H(C))−spaces. Therefore, we

conclude this section by the result about the regularity of the solution of problem (3.1).

Theorem 3.20. Suppose f ∈ W k
p (Ω,H(C)), g ∈W

k+2−1/p
p (Γ,H(C)), with k ≥ 0, 1 <

p <∞, then the boundary value problem (3.1) has the unique solution

u = F−αg + T−α,1PαD−αh− T−α,1QαTα,1f

belonging to W k+2
p (Ω,H(C)) where h denotes a W k+2

2 (Ω,H(C))−extension of g.

We now come to our last result of this chapter and obtain the representation of the
unique of solution of a boundary value problem of the higher order Helmholtz equations.

5. Boundary value problem of the higher order Helmholtz equations

In this section, we investigate more general boundary value problems of the higher
order Helmholtz equations.



(∆ + α2)nu = f in Ω,

u = g0 on Γ,

(∆ + α2)u = g1 on Γ, . . . ,

. . . . . .

(∆ + α2)n−1u = gn−1 on Γ.

(3.28)

This type of equations can be to reduced to the first order Helmholtz equation. Firstly,
combining Theorem 3.14, Theorem 3.18 and Theorem 3.20 we compose them into the
following theorem.

Theorem 3.21. Under the assumtion of the Theorem 3.20, the boundary value problem
(3.1) has the unique solution

u = F−αg + T−α,1Fα(trΓT−α,1Fα)−1Q−αg − T−α,1QαTα,1f.

belonging to W k+2
p (Ω,H(C))
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Proof. The uniqueness and the existence of the solution were shown in Theorem 3.14.
Therefore, it is necessary to show that u permits the above mentioned representation. For
this reason we have only to prove that the represention of u satisfies the patial differential
equation (3.1). First of all, we now look at the following problem where h denotes a
W k+2

2 (Ω,H(C))−extension of g{
D−αh = D−αh in Ω,

h = g on Γ.

By Theorem 3.9 we get

Q−αg = trΓT−α,1D−αh.

Hence, by Therem 3.14 the solution to problem (3.1) can be rewitten as

u = F−αg + T−α,1Fα(trΓT−α,1Fα)−1Q−αg − T−α,1QαTα,1f.

On the contrary, using assertion (i) of Theorem 2.20 and Proposition 3.2 we have

D−αu = Fα(trΓT−α,1Fα)−1Q−αg −QαTα,1f.

Using Proposition 3.2 and assertion (i) of Theorem 2.20 again together with equality
(3.22) yield (∆ + α2)u = −DαD−αu = f.
For the boundary condition, as in the discussions in Theorem 3.12 and Theorem 3.13 we
compute

trΓT−α,1QαTα,1f = 0,

and

trΓF−αg + trΓT−α,1Fα(trΓT−α,1Fα)−1Q−αg = Pαg +Qαg = g.

�

We now look at the following problem


(∆ + α2)2u = f in Ω,

u = g0 on Γ,

(∆ + α2)u = g1 on Γ,

(3.29)

where f ∈ L2(Ω,H(C)), g0 ∈ W
7/2
2 (Γ,H(C)), g1 ∈W

3/2
2 (Γ,H(C)).

Firstly, υ = (∆ + α2)u as the unique solution of the problem{
(∆ + α2)υ = f in Ω,

υ = g1 on Γ,

is

υ = F−αg1 + T−α,1Fα(trΓT−α,1Fα)−1Q−αg1 − T−α,1QαTα,1f.

Next, the unique solution of the problem{
(∆ + α2)u = υ in Ω,

u = g0 on Γ,

is

u = F−αg0 + T−α,1Fα(trΓT−α,1Fα)−1Q−αg0 − T−α,1QαTα,1υ.
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Therefore, the unique solution of the problem (3.28) is represented as

u = F−αg0 + T−α,1Fα(trΓT−α,1Fα)−1Q−αg0

−T−α,1QαTα,1

(
F−αg1 + T−α,1Fα(trΓT−α,1Fα)−1Q−αg1

)
+ (T−α,1QαTα,1)

2 f.

Consequently, by induction the above theorem allows a generalization in the following
manner. However, this type of boundary value problem for higher order Laplacian as well
for generalized Vekua type problem are investigated in [47, Chap. 4], see also [82, 83].
Here, we present our similar result with respect to the higher order Helmholtz equation
for sake of completeness.

Theorem 3.22. Let f ∈ L2(Ω,H(C)), gk ∈ W
2n− 4k+1

2
2 (Γ,H(C)). Then the unique

solution of the boundary value problem (3.28) admits the reprentation

u = F−αg0 +

n∑
ν=1

(T−α,1QαTα,1)
ν−1 (F−αgν−1 + T−α,1Fα(trΓT−α,1Fα)−1Q−αgν−1

)
+(−1)n (T−α,1QαTα,1)

n f.




