
CHAPTER 2

Higher Order Teodorescu Operators in Quaternionic Analysis

In this chapter, using the fundamental solution of the Helmholtz equation, a funda-
mental solution can be constructed for powers of the factors of the Helmholtz operator.
Moreover, we are able to give the explicit forms of the kernel functions for the integral
representation formulas of solutions to the higher order Dα equations. This means that
we can obtain the representation formulas of solutions to the inhomogenuous equations
Dn

αf = g. These results will lend assistance aid to investigate some properties of higher
order Teodorescu operators.

1. Motivation

Integral representation formulars for differentiable functions are useful, for example
they help to determine properties of the functions represented such as smoothness, differ-
entiability, boundary behavious and so on.

It is known that, many chemical and physical processes can be mathematically de-
scribed via partial differential equations with some conditions which are called boundary
value problems (see [30, 64]). Integral representations are one of the main tools to solve
boundary value problems for partial differential equations. Let us see in the whole this
picture in complex analysis. The area integral appearing in the complex Cauchy- Pompeiu
representation defines a weakly singular integral operator T . Its properties were studied
by I. N. Vekua [86]. We refer to Begehr [18, 19, 89] or Bojarski [26] for solving complex
first order partial differential equations based on properties of T as well as of the strongly
singular integral operator of Ahlfors-Beurling type Π (see, e.g., [2, 86]). Higher order
Cauchy- Pompeiu representations were developed in [9, 10, 11, 14]. Then, by repeated
applications of the T - operator, second order complex equations have been investigated
by Begehr (see [8]), Dzhuraev [36, 37] and a complex fourth order equations is studied
by Wen and Kang (see [90]). With the idea to generalize the T - operator in order to
handle higher order differential equations, the operator Tm,n, (m + n) ≥ 0, as well as a
list of its properties is given by Begehr and Hile (see [16, 17]). The Tm,n-operators, in
fact, are useful in the study of some boudary value problems for generalized polyanalytic
functions of order n in the Sobolev space W 1,p(Ω) (see [73, 74]), or for complex elliptic
partial differential equations of higher order (see [3]).

While these representations are related to powers of the Cauchy-Riemann or the Dirac
and the Laplace operators here the Helmholtz operator and its factors are investigated.
Iterating the Cauchy- Pompeiu formula and constructing higher order kernel functions
lead to higher order Cauchy-Pompeiu representations. In constructing the kernel functions
via an integration process the procedure from [91], Appendix is used.

In addition, following the techniques of Begehr - Hile [16], the integral operators
Tα,n, Tr,α,n are defined (see [51]). These operators appear in representation formulas for
solutions to the inhomogeneous higher order Dα equation, see [50]. The Tα,1-operator
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22 2. HIGHER ORDER TEODORESCU OPERATORS

with a kernel given by the fundamental solution of the Helmholtz equation is known as
the Teodorescu operator which is introduced in Chapter 1, Section 3. For real α, Tα was
investigated in [41], for complex α we refer to [60], for quaternionic α we again refer to
[64, 66] where the related formulas are given.

As is shown in [46, 47] these operators are useful to study elliptic boundary value
problems, and in [60, 64, 66] to study Helmholtz equations and the Maxwell system. For
this purpose, a modified Teodorescu transform is described precisely in [6]. In the case
of complex α, by an induction argument beginning with the Cauchy - Pompeiu formula,
a higher order representation of functions f in Cn(Ω,H(C)), is developed in [49, 50].
Therefore, in this chapter we will study some properties of the integral operator Tα,n,
n ≥ 1, such as existence, mapping properties, differentiability etc.

As the operators T, Tm,n have been widely used to study various boundary valued
problems for higher order equations in complex analysis, the Tα,n should give useful tools
in investigating similar problems which can be reduced to such problems and systems to
those of Helmholtz equation in quaternionic analysis.

Now, we come to the first of our results. They represent the solution to the inho-
mogenuous equation Dn

αf = g in Ω, n ∈ N.

2. Integral representations for higher order Dα equations

The fundamental solution for the operator Dn
α with n ∈ N will be constructed by a

method as given in [49], (see also [80], [91, Chap. 4]). The advantage of our method,
using induction, is that it yields explicit kernel functions. Our main results are contained
in Theorem 2.3, Theorem 2.4 and Corollary 2.5. Before doing so, we will present Lemma
2.1. It is used in the case of quaternions to prove Cauchy- Pompeiu type representation
formulas in terms of powers of the factors of the Helmholtz operator.

Lemma 2.1. Let Kα(x) be a fundamental solution for the operator Dα, i.e, a quater-
nionic function satisfying in distributional sense DαKα(x) = δ(x), α �= 0, and Kα(x)

be infinitely often differentiable with respect to α. Then the functions K
(n)
α (x), n ∈ N,

determined by the recurrence fomulas

K(1)
α (x) = Kα(x),

K(2)
α (x) = − ∂

∂α
K(1)

α (x),

K(3)
α (x) =

−1

2

∂

∂α
K(2)

α (x),

K(k)
α (x) =

−1

k − 1

∂

∂α
K(k−1)

α (x),

for all k ∈ N∗, satisfy in distributional sense the equations

(D + α)K(n)
α (x) = K(n−1)

α (x), (2.1)

(D + α)nK(n)
α (x) = δ(x). (2.2)

Proof. It is easy to see that (2.2) holds for n = 1.
First of all, we note that the function space C∞

c (Ω,H(C)) isdefined as the vector space
consisting of functions from Ω to H(C) with compact support which have continuous
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derivatives of all orders. Applying (1.20), (1.21)∫
Ω

(Dr + α)K(n)
α (x)φ(x)dx+

∫
Ω

K(n)
α (x)(D − α)φ(x)dx =

∫
∂Ω

K(n)
α (x)�n(x)φ(x)dΓx = 0,∫

Ω

(Dr − α)K(n)
α (x)φ(x)dx+

∫
Ω

K(n)
α (x)(D + α)φ(x)dx =

∫
∂Ω

K(n)
α (x)�n(x)φ(x)dΓx = 0,

follows.
With the right H(C)-distribution < f, φ >:=

∫
Ω
f(x)φ(x)dx then

< (Dr + α)K(n)
α (x), φ(x) >= − < K(n)

α (x), (D − α)φ(x) >,

< (Dr − α)K(n)
α (x), φ(x) >= − < K(n)

α (x), (D + α)φ(x) > .

Now we can prove Lemma 2.1 for n = 2. For all φ ∈ C∞
c (Ω,H(C)) and by (1.16) together

with the definition of K
(2)
α (x) we obtain

< (Dr + α)K(2)
α (x), φ(x) > = < (D + α)(− ∂

∂α
K(1)

α (x)), φ(x) >

=<
∂

∂α
(D + α)K(1)

α (x), φ(x) > + < K(1)
α (x), φ(x) >

= − ∂

∂α
φ(0) + < K(1)

α (x), φ(x) > .

The δ-distribution, defined as usual by < δ(x), φ(x) >= φ(0), φ ∈ C∞
c (Ω,H(C)), can be

considered as well a left as a right H(C)-distribution.

Thus, (Dr + α)K
(2)
α (x) = K

(1)
α (x). By (1.16) and the definitions of K

(k)
α we have

Dr,αK
(k)
α (x) = DαK

(k)
α (x) for all k ∈ N

∗.

Hence, DαK
(2)
α (x) = (D + α)K

(2)
α (x) = K

(1)
α (x).

Moreover,

< (Dr + α)2K(2)
α (x), φ(x) > = − < (D + α)K(2)

α (x), (D − α)φ(x) >

= − < K(1)
α (x), (D − α)φ(x) >

= < (D + α)K(1)
α (x), φ(x) >

= < δ(x), φ(x) > .

Hence, (D + α)2K
(2)
α (x) = δ(x).

Suppose that for n ∈ N the function K
(n)
α satisfies

(D + α)K(n)
α (x) = K(n−1)

α (x),

(D + α)nK(n)
α (x) = δ(x)

in distributional sense for all φ ∈ C∞
c (Ω,H(C)). Then

< (D + α)K(n+1)
α (x), φ(x) > = < (Dr + α)[

−1

n

∂

∂α
K(n)

α (x)], φ(x) >

=
−1

n
<

∂

∂α
(D + α)K(n)

α (x) −K(n)
α (x), φ(x) >

=
−1

n

∂

∂α
< K(n−1)

α (x), φ(x) > +
1

n
< K(n)

α (x), φ(x) >

=
n− 1

n
<

−1

n− 1

∂

∂α
K(n−1)

α (x), φ(x) >

+
1

n
< K(n)

α (x), φ(x) >
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=
n− 1

n
< K(n)

α (x), φ(x) > +
1

n
< K(n)

α (x), φ(x) >

= < K(n)
α (x), φ(x) > .

Thus, (D + α)K
(n+1)
α (x) = K

(n)
α (x). In addition

< (D + α)n+1K(n+1)
α (x), φ(x) >

= (−1)n < (Dr + α)K(n+1)
α (x), (D − α)nφ(x) >

= (−1)n < K(n)
α (x), (D − α)nφ(x) >

= < (D + α)nK(n)
α (x), φ(x) >

= < δ(x), φ(x) > .

Then (D + α)n+1K
(n+1)
α (x) = δ(x) in distributional sense. �

Looking at the kernel function K
(1)
α (x) we decompose it in the following way:

K(1)
α (x) = (α− iα

x

|x|)(−
eiα|x|

4π|x|) +
x

|x|2 (− eiα|x|

4π|x|),

K(n)
α (x) : =

(−1)

n− 1

∂

∂α
K(n−1)

α (x).

A straightforward calculation by the above lemma and using induction, the following
corollary is proved.

Corollary 2.2. Let α be a complex constant with α �= 0. Then the function

K(n)
α (x) =

(−1)n−1

(n− 1)!
[(n− 1) − (n− 2)

ix

|x| + iα|x| + αx](i|x|)n−2(− eiα|x|

4π|x|) (2.3)

is a fundamental solution of the operator Dn
α.

Theorem 2.3. Let Ω be a bounded domain in R3 with a smooth boundary ∂Ω =: Γ
and f ∈ C2(Ω,H(C)) ∩ C1(Ω̄,H(C)). Then

f(x) = −
∫

Γ

K(1)
α (x− y)�n(y)f(y)dΓy −

∫
Γ

K(2)
α (x− y)�n(y)Dα,yf(y)dΓy

+

∫
Ω

K(2)
α (x− y)D2

α,yf(y)dy. (2.4)

Proof. From the equality (1.22)

Dα,yf(y) = −
∫

Γ

K(1)
α (y − ỹ)�n(ỹ)Dα,ỹf(ỹ)dΓỹ +

∫
Ω

K(1)
α (y − ỹ)D2

α,ỹf(ỹ)dỹ

it follows

f(x) = −
∫

Γ

K(1)
α (x− y)�n(y)f(y)dΓy −

∫
Γ

ψ(x, ỹ)�n(ỹ)Dα,ỹf(ỹ)dΓỹ +

∫
Ω

ψ(x, ỹ)D2
α,ỹf(ỹ)dỹ,

where ψ(x, ỹ) =
∫
Ω
K

(1)
α (x− y)K

(1)
α (y − ỹ)dy.

For x, ỹ ∈ Ω with x �= ỹ, the quaternionic Cauchy-Pompeiu formula (1.22) and using
(2.1) lead to

K(2)
α (x− ỹ) = ψ̃(x, ỹ) + ψ(x, ỹ)



2. REPRESENTATIONS FOR HIGHER ORDER Dα 25

where ψ̃(x, ỹ) = − ∫
Γ
K

(1)
α (x− y)�n(y)K

(2)
α (y − ỹ)dΓy. Then

f(x) = −
∫

Γ

K(1)
α (x− y)�n(y)f(y)dΓy −

∫
Γ

K(2)
α (x− y)�n(y)Dα,yf(y)dΓy

+

∫
Ω

K(2)
α (x− y)D2

α,yf(y)dy +

∫
Γ

ψ̃(x, ỹ)�n(ỹ)Dα,ỹf(ỹ)dΓỹ

−
∫

Ω

ψ̃(x, ỹ)D2
α,ỹf(ỹ)dỹ. (2.5)

Namely, K
(1)
α (x − y) and K

(2)
α (y − ỹ) are for fixed arbitrary x and ỹ, respectively C1-

functions in the whole domain Ω except for the two points x and ỹ. Therefore∫
Γ

K(1)
α (x− y)�n(y)K(1)

α (y − ỹ)dΓy =

∫
∂Ωε

K(1)
α (x− y)�n(y)K(1)

α (y − ỹ)dΓy+

+

∫
|y−x|=ε

K(1)
α (x− y)�n(y)K(1)

α (y − ỹ)dΓy +

∫
|y−ỹ|=ε

K(1)
α (x− y)�n(y)K(1)

α (y − ỹ)dΓy,

where Ωε = Ω − {y ∈ Ω, |y − x| < ε or |y − ỹ| < ε}, 0 < ε small enough.

Applying formula (1.20) for Ωε to
∫

∂Ωε
K

(1)
α (x− y)�n(y)K

(1)
α (y− ỹ)dΓy, and using that

(Dr,y + α)K
(1)
α (y − ỹ) = δ(y − ỹ) and (Dr,y − α)K

(1)
α (x− y) = −δ(x− y), together with

lim
ε→0

∫
|y−x|=ε

K(1)
α (x− y)�n(y)K(1)

α (y − ỹ)dΓy = −K(1)
α (x− ỹ)

lim
ε→0

∫
|y−ỹ|=ε

K(1)
α (x− y)�n(y)K(1)

α (y − ỹ)dΓy = K(1)
α (x− ỹ)

we obtain (Dr,ỹ −α)ψ̃(x, ỹ) = 0. Then
∫
Ω
ψ̃(x, ỹ)D2

α,ỹf(ỹ)dỹ =
∫
Γ
ψ̃(x, ỹ)�n(ỹ)Dα,ỹf(ỹ)dΓỹ

by applying (1.20). Inserting this equality into (2.5) we get (2.4). �

Theorem 2.4. Let f ∈ Cn(Ω,H(C)) ∩ Cn−1(Ω̄,H(C)). Then

f(x) = −
n∑

k=1

∫
Γ

K(k)
α (x− y)�n(y)Dk−1

α,y f(y)dΓy

+

∫
Ω

K(n)
α (x− y)Dn

α,yf(y)dy. (2.6)

Proof. For n = 1 fomula (2.6) coincides with the Cauchy-Pompeiu formula(1.22).
We have already shown (2.6) for n = 2 in Theorem 2.3. In order to prove this formula for
any n > 2 assume it holds for n− 1. Applying this formula for Dα,yf(y) leads to

Dα,yf(y) = −
n−1∑
k=1

∫
Γ

K(k)
α (y − ỹ)�n(ỹ)Dk

α,ỹf(ỹ)dΓỹ

+

∫
Ω

K(n−1)
α (y − ỹ)Dn

α,ỹf(ỹ)dỹ.

Inserting this equality into (1.22) gives
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f(x) = −
∫

Γ

K(1)
α (x− y)�n(y)f(y)dΓy −

n−1∑
k=1

∫
Γ

ψk(x, ỹ)�n(ỹ)Dk
α,ỹf(ỹ)dΓỹ

+

∫
Ω

ψn−1(x, ỹ)D
n
α,ỹf(ỹ)dỹ,

where ψk(x, ỹ) =
∫
Ω
K

(1)
α (x− y)K

(k)
α (y − ỹ)dy for all k = 1, 2, · · · , (n− 1).

Applying (1.22) with x �= ỹ and using (2.1) we have

K(k+1)
α (x− ỹ) = −ψ̃k+1(x, ỹ) + ψk(x, ỹ) for all k = 1, 2, · · · , n− 1,

where ψ̃k+1(x, ỹ) =
∫
Γ
K

(1)
α (x− y)�n(y)K

(k+1)
α (y − ỹ))dΓy for all k = 1, 2, · · · , n− 1.

Then

f(x) = −
∫

Γ

Kα(x− y)�n(y)f(y)dΓy −
n∑

k=2

∫
Γ

K(k)
α (x− y)�n(y)Dk−1

α,y f(y)dΓy

+

∫
Ω

K(n)
α (x− y)Dn

α,yf(y)dy

−
n−1∑
k=1

∫
Γ

ψ̃k+1(x, ỹ)�n(ỹ)Dk
α,ỹf(ỹ)dΓỹ

+

∫
Ω

ψ̃n(x, ỹ)Dn
α,ỹf(ỹ)dỹ.

Note that from (2.1) we have

(Dr,ỹ − α)ψ̃k+1(x, ỹ) = −ψ̃k(x, ỹ)

and applying Stokes’ formula (1.20) again as well as

−(Dr,ỹ − α)ψ̃1(x, ỹ) = ψ̃1(x, ỹ) = 0,

where ψ̃1(x, ỹ) =
∫
Γ
K

(1)
α (x − y)�n(y)K

(1)
α (y − ỹ)dΓy, (see the proof of Theorem 2.3), this

proves that

n−1∑
k=1

∫
Γ

ψ̃k+1(x, ỹ)�n(ỹ)Dk
α,ỹf(ỹ)dΓỹ +

∫
Ω

ψ̃n−1(x, ỹ)D
n
α,ỹf(ỹ)dỹ

= −
n−1∑
k=1

∫
Ω

ψ̃k(x, ỹ)D
k
α,ỹf(ỹ)dỹ +

n−1∑
k=1

∫
Ω

ψ̃k+1(x, ỹ)D
k+1
α,ỹ f(ỹ)dỹ

+

∫
Ω

ψ̃n(x, ỹ)Dn
α,ỹf(ỹ)dỹ =

∫
Ω

ψ̃1(x, ỹ)Dα,ỹf(ỹ)dỹ = 0.

This leads to

f(x) = −
n∑

k=1

∫
Γ

K(k)
α (x− y)�n(y)Dk−1

α,y f(y)dΓy

+

∫
Ω

K(n)
α (x− y)Dn

α,yf(y)dy.

�
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Because of fomula (2.3) together with the above theorem, the representation of so-
lutions to the inhomogeneous equation Dn

αf = g in Ω can be written in the following
form.

Corollary 2.5.

f(x) =

n∑
k=1

(−1)k+1

k!

∫
Γ

[(k − 1) − (k − 2)
i(x− y)

|x− y| + iα|x− y| + α(x− y)]

×(i|x− y|)k−2(− eiα|x−y|

4π|x− y|)�n(y)Dk−1
α,y f(y)dΓy

+
(−1)n

(n− 1)!

∫
Ω

[(n− 1) − (n− 2)
i(x− y)

|x− y| + iα|x− y| + α(x− y)]

×(i|x− y|)n−2(− eiα|x−y|

4π|x− y|)D
n
α,yf(y)dy.

Now the higher order Teodorescu operators are given. Their properties will be studied

in the next sections. The kernel functions K
(n)
α are defined by formula (2.3).

Definition 2.6. For a bounded domain Ω in R3 with piecewise sufficiently smooth
boundary Γ, we formally define operators Tα,n, Tr,α,n, where α ∈ C acting on H(C) -
valued functions f defined in Ω, according to

(Tα,nf)(x) :=

∫
Ω

K(n)
α (x− y)f(y)dy,

(Tr,α,nf)(x) :=

∫
Ω

f(y)K(n)
α (x− y)dy.

Tα,n, Tr,α,n are called a the higher order Teodorescu operators.

Remark 2.7. If we decompose K
(1)
α as

K(1)
α (x) = K

(1)
α,1(x) +K

(1)
α,2(x) (2.7)

where

K
(1)
α,1(x) = (

x

|x|2 ) (− eiα|x|

4π|x|),

K
(1)
α,2(x) = (α− iα

x

|x|)(−
eiα|x|

4π|x|),

then K
(1)
α,1(x) coincides up to the factor (−eiα|x|) with the kernel function of the operator

T0,1. This operator was studied in [47, 81]. We recall that T0,1f(x) =
∫
Ω

(x−y)
4π|x−y|3f(y)dy

is the Teodorescu transform and corresponds to the known T− operator from the one

variable complex analysis (see [7, 86]). It may be expected that K
(1)
α,1(x) causes analogous

properties of Tα,1 as known for T0,1.

Now we begin with the investigations of mapping properties of Tα,n.
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3. Existence and continuity of integrals

In this section, we will prove the existence and continuity of Tα,n. The operators Tr,α,n

have analogous properties with respect to this operator acting on the right of the function.
We also refer the readers to [41, 46] for more details in the discussion of some properties
of the integral Tα,1, with α a real number. Tα,1 acts on real quaternion - valued functions.
The use of complex quaternions as well as α a complex number does not cause changes of

the mapping properties of Tα,1, as was shown in [45]. Moreover, the kernel K
(n)
α (x) of the

operator Tα,n has a singularity of order 2 at most and thus it will not affect essentially

the properties, induced by K
(1)
α (x). Nevertheless, the following properties will be proved

more explicitly again for Tα,n, n ≥ 1.

Lemma 2.8. Under the same assumptions as in Definition 2.6, for f ∈ L1(Ω,H(C)),
the integral

F (x) =

∫
Ω

1

|x− y|3−γ
f(y)dy is in L1(Ω,H(C)) for all 0 < γ ∈ R.

Proof. Notice that here we consider a bounded domain Ω and γ > 0. Firstly,

looking at the integral
∫
Ω

(∫
Ω

1
|x−y|3−γ dx

)
|f(y)|H(C)dy, L. Hedberg has shown that there

exists a constant C such that
∫
Ω

1
|x−y|3−γ dy ≤ C(diamB)γ holds for 0 < γ and Ω a bounded

domain, where B is the smallest cube containing Ω, (see [53]).
Hence,∫

Ω


∫

Ω

1

|x− y|3−γ
dx


 |f(y)|H(C)dy ≤ M(Ω,γ)

∫
Ω

|f(y)|H(C)dy = M(Ω,γ)||f ||L1,

where M(Ω,γ) is a constant depending on Ω and on γ. Using Fubini’s Theorem∫
Ω


∫

Ω

1

|x− y|3−γ
dx


 |f(y)|H(C)dy =

∫
Ω


∫

Ω

1

|x− y|3−γ
|f(y)|H(C)dy


dx =

∫
Ω

F (x)dx,

follows where the involved integrals are finite and hence F (x) is in L1(Ω,H(C)). �
Remark 2.9. For x ∈ Ω− := R − Ω̄ we have∣∣∣∣∣∣

∫
Ω

1

|x− y|3−γ
f(y)dy

∣∣∣∣∣∣ ≤M(Ω,γ,x)||f ||L1.

We now come to our first main result ensuring the existence of the integral Tα,n on
L1(Ω,H(C)).

Theorem 2.10. For α ∈ C and f ∈ L1(Ω,H(C)), the integral Tα,nf(x) exists for
almost all x ∈ Ω.

Proof. For n = 1, with f ∈ L1(Ω,H(C)), and viewing the formula for K
(1)
α (x − y)

we observe that∣∣K(1)
α (x− y)f(y)

∣∣
H(C)

≤
√

2

4π
|K(1)

α (x− y)|H(C)|f(y)|H(C)
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≤
√

2

4π
e−Imα diamΩ|f(y)|H(C)

(
2|α| 1

|x− y| +
1

|x− y|2
)
.

Using Lemma 2.8 leads to the existence of (Tα,1f)(x) for almost all x ∈ Ω̄.
In the case of n = 2, let us consider the estimate∣∣K(2)

α (x− y)f(y)
∣∣
H(C)

≤
√

2|K(2)
α (x− y)|H(C)|f(y)|H(C)

≤
√

2

4π
e−Imα diamΩ|f(y)|H(C)

(
2|α| + 1

|x− y|
)
.

Using Lemma 2.8 again in the case γ ≥ 2, the existence of (Tα,2f)(x) for almost all x ∈ Ω̄
is proved.

If n ≥ 3 is fixed, we have∣∣K(n)
α (x− y)f(y)

∣∣
H(C)

≤
√

2|K(n)
α (x− y)|H(C)|f(y)|H(C)

≤
√

2

4π
e−Imα diamΩ|f(y)|H(C)

(
2|α||x− y|n−2 + |x− y|n−3

)
.

Looking at the right - hand side of this inequality, we can easily see that Tα,nf(x) for n ≥ 3
has no singularity. Hence, the existence of the integrals Tα,nf follows. �

Remark 2.11. If x ∈ Ω− then K
(n)
α (x− y) are bounded continuous functions of y for

n = 1, 2. This means that Tα,nf(x), n = 1, 2, exist for almost all x ∈ R3.
For x ∈ Ω− fixed then the integrals Tα,nf(x) exist and they tend to infinity for |x| → ∞

for all n ≥ 3.

Theorem 2.12. Let the assumptions of Definition 2.6 be satisfied. In addition, let
f be a complex - valued function in L1(Ω,H(C)). Then the integral Tα,nf(x) converges
absolutely for all x in Ω. Moreover, if

(i) 1 ≤ q < 3
2

when n = 1,
(ii) 1 ≤ q < 3 when n = 2,
(iii) 1 ≤ q ≤ +∞ when n ≥ 3,

then Tα,nf ∈ Lq(Ω,H(C)) with ||Tα,nf ||Lq ≤ M(Ω,α,n)||f ||L1.

Proof. Firstly, we will define Wγ(x) on Ω̄ according to

Wγ(x) :=

∫
Ω

|ω(y)|
|x− y|γ dy,

and let ω be an arbitrary function in Lp(Ω,H(C)) where 1
p

+ 1
q

= 1.

Again using the estimate of |K(n)
α (x−y)| in Theorem 2.10 shows that the integral Tα,nf(x)

converges absolutely.
Now, using Hölder’s inequality we obtain

Wγ(x) :=

∫
Ω

|ω(y)|
|x− y|γ dy ≤


∫

Ω

( 1

|x− y|γ
)q
dy




1
q

||ω||Lp ≤ (∫
Ω

1

|x− y|γ dy
)||ω||Lp,

where 1
p

+ 1
q

= 1. By Lemma 2.8, hence the middle integral of this inequality exists for

qγ < 3. Therefore, in the case of n = 1 the condition 1 ≤ q < 3
2

is sufficient for both
values γ = 1 or γ = 2 (see the estimates in Theorem 2.10). For n = 2, by the estimate
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of K
(2)
α (x− y), we have to consider γ = 1. Thus the condition is 1 ≤ q < 3. It is easily

seen that 1 ≤ q ≤ +∞ is possible for all n ≥ 3.
Under the assumtions for q together withWγ(x) ≤ (∫

Ω

1
|x−y|γ dy

)||ω||Lp, yieldsWγ(x) ≤
M(Ω,γ)||ω||Lp, here M(Ω,γ) is a constant depending on Ω and on γ but not on x, ( see the
proof of Lemma 2.8). Hence, Wγ(x) converges uniformly i.e Wγ is continuous on Ω̄ and
for all ω ∈ Lp(Ω,H(C)) then Wγ(x) ∈ Lq(Ω,R) for 1

p
+ 1

q
= 1.

Again, by Fubini’s theorem we have∫
Ω

(∫
Ω

|ω(y)|
|x− y|γ dy

)|v(x)|H(C)dx =

∫
Ω

(∫
Ω

|v(x)|
|x− y|γ dx

)|ω(y)|H(C)dy

where ω ∈ Lp(Ω,H(C), v ∈ L1(Ω,H(C). This due to the fact that the latter integral

represents a linear functional on Lp(Ω,R) gives
(∫
Ω

v(x)
|x−y|γ dx

) ∈ Lq(Ω,R). Therefore, by

the estimates in the above theorem this leads to Tα,nf ∈ Lq(Ω,H(C)) for every f ∈
L1(Ω,H(C).

Finally, using the same ideas gives explicit estimates of ||Tα,n||L1→Lq .
Indeed, firstly notice that as well the function

T̃α,nf(x) =

∫
Ω

∣∣K(n)
α (x− y)

∣∣
H(C)

|f(y)|H(C)dy,

is defined already where f ∈ L1(Ω,H(C)), as

∫
Ω

(∫
Ω

|K(n)
α (x− y)|H(C)|f(y)|H(C)dy

)|v(x)|H(C)dx

=

∫
Ω

(∫
Ω

|K(n)
α (x− y)|H(C)|v(x)|H(C)dx

)|f(y)|H(C)dy,

where v ∈ Lp(Ω,H(C)).

In the next step we consider
(∫
Ω

|K(n)
α (x − y)|H(C)|v(x)|H(C)dx

)
. In the cases listed under

conditions (i)-(iii), when q = +∞ we have p = 1. We then may apply Lemma 2.8 to a
bounded domain large enough to contain Ω̄, and deduce that∫

Ω

|K(n)
α (x− y)|H(C)|v(x)|H(C)dx ≤ M(α,Ω,n)||v||Lp.

In the cases 1 ≤ q < +∞ and 1 < p ≤ +∞, with the list of conditions (i)- (iii) by

Lemma 2.8 together with the estimates of K
(n)
α (x− y) in Theorem 2.10 we get

∫
Ω

|K(n)
α (x− y)|H(C)|v(x)|H(C)dx ≤ sup

x∈ Ω̄


∫

Ω

|K(n)
α (x− y)|qdx




1
q

||v||Lp.

This leads to
∫
Ω

(∫
Ω

|K(n)
α (x− y)|H(C)|f(y)|H(C)dy

)|v(x)|H(C)dx ≤ M(Ω,α,n)||f ||L1||v||Lp. This

inequality completes the proof of the theorem. �
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4. Differentiability of integrals

If we look for applications of the Tα,n− operators then we need their mapping prop-
erties within Sobolev spaces. For this purpose, in this section we will investigate differ-
entiability of the higher Teodorescu transforms. We refer to S. G. Mikhlin, S. Prössdorf
[69] for an excellent book about singular integral operators but all of whose kernels are
related the volume potentials. These are the operators of Calderon-Zygmund type, hence,
the Teodorescu transform in the case α = 0 do not cause much problems (see [16, 42],
[47, Chap. 4] and references therein). However, in the cases α �= 0, the situation becomes
more complicated. We can not immediately apply the theory of Calderon and Zygmund.
This means that we have to give the estimate of the kernels of the higher Teodorescu op-
erators in order to be able to use these theories. We start with exchanging differentiation
and integration of higher order Teodorescu transforms.

Lemma 2.13. Let f ∈ C1
c (Ω,H(C)) then

(i) for k = 1, 2, 3,

∂k(Tα,1f)(x) =

∫
Ω

[∂k,xK
(1)
α (x− y)]f(y)dy + ēk

f(x)

3
,

∂k(Tr,α,1f)(x) =

∫
Ω

f(y)[∂k,xK
(1)
α (x− y)]dy +

f(x)

3
ēk,

∂r,k(Tr,α,1f)(x) =

∫
Ω

f(y)[∂r,k,xK
(1)
α (x− y)]dy +

f(x)

3
ēk,

∂r,k(Tα,1f)(x) =

∫
Ω

[∂r,k,xK
(1)
α (x− y)]f(y)dy + ēk

f(x)

3
,

(ii) with k = 1, 2, 3,

∂k(Tα,nf)(x) =

∫
Ω

[∂k,xK
(n)
α (x− y)]f(y)dy,

∂k(Tr,α,nf)(x) =

∫
Ω

f(y)[∂k,xK
(n)
α (x− y)]dy,

∂r,k(Tr,α,nf)(x) =

∫
Ω

f(y)[∂r,k,xK
(n)
α (x− y)]dy,

∂r,k(Tα,nf)(x) =

∫
Ω

[∂r,k,xK
(n)
α (x− y)]f(y)dy,

for all n ≥ 2.
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Proof. (i) In order to prove (i), we need to prove the first formula, the other formulas
are shown in the same way. Let us consider the decomposition in (2.7). Firstly, notice

that K
(1)
α,1(x− y) can be written as

K
(1)
α,1(x− y) = − 1

4π

(
x− y

|x− y|3 +
eiα|x−y| − 1

|x− y|
x− y

|x− y|2
)

which has singularities of order less than or equal to two only. Therefore, we have

∂k(Tα,1f)(x) = ∂k

∫
Ω

(− 1

4π
)
x− y

|x− y|3f(y)dy

+∂k

∫
Ω

(− 1

4π
)
[eiα|x−y| − 1

|x− y|
x− y

|x− y|2 +
(eiα|x−y| − 1

|x− y| +
1

|x− y|
)(
α− iα

x− y

|x− y|
)]
f(y)dy.

For the latter integral, it is allowed to exchange differentiation and integration because
the kernel has a singularity of order 1.

On the orther hand, the first integral has a singularity of order 2, this integral is
exactly ∂k(T0,1f)(x) and is investigated very carefully in [69, chapter IX, §7], (see also
[46, 69]). For the reader’s convennience, we will present this proof.

Under the assumption f ∈ C1
c (Ω,H(C)), i.e., it has compact support, then the function

T0,1f can be written as

(T0,1f)(x) = − 1

4π

∫
Ω

x− y

|x− y|3f(y)dy =
1

4π

∫
R3

y

|y|3f(x− y)dy

Notice that its kernel is weakly singular. Using the Stokes’ formula we obtain

∂k(T0,1f)(x) =
1

4π
∂k,x

∫
R3

y

|y|3f(x− y)dy =
1

4π
lim
ε→0

∫
R3−B(0,ε)

y

|y|3∂k,xf(x− y)dy

= − 1

4π
lim
ε→0

∫
R3−B(0,ε)

[
∂k,y

(
y

|y|3f(x− y)

)
− ∂k,y

y

|y|3f(x− y)

]
dy

= − 1

4π
lim
ε→0

∫
|y|=ε

y

|y|3
yk

|y|f(x− y)dSε +
1

4π
lim
ε→0

∫
R3−B(0,ε)

∂k,y
y

|y|3f(x− y)dy

=
1

4π
lim
ε→0

∫
|y−x|=ε

x− y

|x− y|3
yk − xk

|x− y| f(y)dSε

− 1

4π
lim
ε→0

∫
R3−B(x,ε)

∂k,x
x− y

|x− y|3f(y)dy

=
1

4π
lim
ε→0

∫
∂B(x,ε)

1

ε2

3∑
i=1

(xi − yi)ei

|x− y| cos(r, yk)f(y)dSε

− 1

4π
lim
ε→0

∫
Ωε

∂k,x
x− y

|x− y|3f(y)dy
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=
1

4π
lim
ε→0

∫
∂B(x,1)

3∑
i=1

(xi − yi)ei cos(r, yk)f(x+ εω)dS1

− 1

4π
lim
ε→0

∫
Ωε

∂k,x
x− y

|x− y|3f(y)dy

where ω = y−x
|y−x| and nk = cos(r, yk) = yk−xk

|y−x| , hence �n = (n1, n2, n3) is the outward

pointing normal vector on ∂B(x, ε) at the point y. If ε → 0 then the first integral converges

uniformly to
∫

∂B(x,1)

3∑
i=1

(xi − yi)ei cos(r, yk)dS1f(x).

Since ∫
∂B(x,1)

3∑
i=1

(xi − yi)ei cos(r, yk)dS1 =
3∑

i=1

ei

∫
B(x,1)

∂(xi − yi)

∂yk
dy

= ēk

∫
∂B(x,1)


 1∫

0

r2dr


 dS1 = 4π

ēk

3
,

this leads to 1
4π

∫
∂B(x,1)

3∑
i=1

(xi − yi)ei cos(r, yk)dS1f(x) = ēk

3
f(x).

Note that as cos(r, yj) =
yj−xj

|y−x| , we can write

−∂k,x
x− y

|x− y|3 = ∂k,x

3∑
i=1

(xi − yi)ēi

|x− y|3

=

3∑
k �=j=1

−3
(xk − yk)(xj − yj)ēi

|x− y|5 − 3(xk − yk)
2ēk

|x− y|5 +
ēk

|x− y|3

=
1

|x− y|3
(
−3

3∑
i=1

(xk − yk)(xi − yi)

|x− y|2 ēi +

3∑
j=1

(xj − yj)
2

|x− y|2 ēk

)
,

and because of

∫
∂B(x,1)

(
−3

3∑
i=1

(xk − yk)(xi − yi)

|x− y|2 ēi +

3∑
j=1

(xj − yj)
2

|x− y|2 ēk

)
dS1

=

∫
∂B(x,1)

(
−3

3∑
i=1

(xi − yi)

|x− y| ēi cos(r, yk) +
3∑

j=1

(xj − yj)

|x− y| ēk cos(r, yj)

)
dS1

=

(
−3

4π

3
ēk +

3∑
j=1

4π

3
ēk

)
= 0,

the integral
∫
Ωε

∂k,x
x−y

|x−y|3f(y)dy converges uniformly in x to the singular integral∫
Ω

∂k,x
x−y

|x−y|3f(y)dy, for ε → 0. Summing up we have (i).
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(ii) In the case n = 2, we have

Tα,2f(x) =

∫
Ω

(1 + iα|x− y| + α(x− y))
( eiα|x−y|

4π|x− y|
)
f(y)dy.

The kernel of this integral has a singularity of order 1, hence it can be allowed to exchange
the differentiation and the integration. Therefore, (ii) holds for n = 2.
For n ≥ 3, the kernels of these integrals have no singularities, thus (ii) is easily seen. �

Now we will study the properties of ∂kTα,n. To do this, firstly we need the following
lemma to hold for 0 ≤ γ ≤ 2. This lemma can be proved by using the same idea as in
[47, Chap. 3] for γ = 0. However, we will present this proof for the reader’s convenience.

Lemma 2.14. Let Ω be a bounded domain in R3, ω ∈ Lp(Ω,H(C)). We define the
operator

W2−γω(x) =

∫
Ω

1

|x− y|2−γ
ω(y)dy, 0 ≤ γ ≤ 2,

being well-define in Lp(R
3,H(C)) and

||W2−γω||Lp ≤M(Ω,γ)||ω||Lp, for 1 < p < +∞.

Proof. Firstly, we will estimate the integral for x ∈ Ω∫
Ω

(
1

|x− y|2−γ
)αdy =

∫
Ω

1

|x− y|(2−γ)α
dy ≤

∫
|y|<(diamΩ)

1

|y|(2−γ)α
dy

≤ 4π
(diamΩ)3−(2−γ)α

3 − (2 − γ)α
(2.8)

with the condition (2 − γ)α < 3.
By using Hölder’s inequality for 1 < p < +∞ and x ∈ Ω then applying inequality

(2.8) in the case α = 1 we have the following estimate∣∣∣∣∣∣
∫
Ω

1

|x− y|2−γ
ω(y)dy

∣∣∣∣∣∣ ≤
∫
Ω

1

|x− y|2−γ
|ω(y)|dy =

=

∫
Ω

(
1

|x− y|2−γ

)1− 1
p
(

1

|x− y|2−γ

) 1
p

|ω(y)|dy

≤
∫
Ω

[(( 1

|x− y|2−γ

) 1
q

)q

dy

] 1
q


∫

Ω

[
(

1

|x− y|2−γ
)

1
p |ω(y)|

]p

dy




1
p

≤
∫
Ω

(
1

|x− y|2−γ
dy

)1
q
∫
Ω

(
1

|x− y|2−γ
|ω(y)|pdy

) 1
p

≤
(

4π

1 + γ
(diamΩ)1+γ

) 1
q
∫
Ω

(
1

|x− y|2−γ
|ω(y)|pdy

) 1
p

,

where 1
p

+ 1
q

= 1. Thus,
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∫
Ω

∣∣∣∣∣∣
∫
Ω

1

|x− y|2−γ
ω(y)dy

∣∣∣∣∣∣
p

dx

≤
∫
Ω


( 4π

1 + γ
(diamΩ)1+γ

) 1
q
∫
Ω

(
1

|x− y|2−γ
|ω(y)|pdy

) 1
p




p

dx

≤ (
4π

1 + γ
)

p
q (diamΩ)(1+γ)p

q

∫
Ω


∫

Ω

1

|x− y|2−γ
|ω(y)|pdy


dx

≤ (
4π

1 + γ
)

p
q (diamΩ)(1+γ)p

q

∫
Ω


∫

Ω

1

|x− y|2−γ
dx


 |ω(y)|pdy

≤ (
4π

1 + γ
)

p
q
+1(diamΩ)(1+γ)(p

q
+1)

∫
Ω

|ω(y)|pdy,

i.e

(∫
Ω

|W2−γ(x)|pdx
) 1

p

≤ M(Ω,γ)||ω||Lp, where MΩ,γ = 4π
1+γ

(diamΩ)1+γ .

W2−γ is a linear bounded operator, hence it is a continuous operator from Lp(Ω,H(C)) to
Lp(Ω,H(C)). The lemma is proved. �

We note that in the case α = 0 the following theorem is taken from [47, Chap. 3]. Its
proof is essentially due to K. Gürlebeck and W. Sprössig by using a theorem of Calderon
- Zygmund ([69, § 3, Chap. 11], for Ω = R3.

Theorem 2.15. The operator

∂kT0,1 : Lp(R
3,H(C)) −→ Lp(R

3,H(C)), 1 < p < +∞,

is well-defined, continuous and

||∂kT0,1||L(Lp(R3,H(C))) ≤ C(4π)
−1
p +

1

3
, 1 < p < +∞.

Analogously to the above theorem for a bounded domain we have the following same
result for Tα,n. We refer to [45] for proving this property in the case n = 1. For sake of
completeness, here we also give its proof.

Theorem 2.16. The operators ∂kTα,n : Lp(Ω,H(C)) −→ �Lp(Ω,H(C)) are well-defined
and continuous for all n ≥ 1 and 1 ≤ k ≤ 3.

Proof. From Lemma 2.13 we have

∂k(Tα,1f)(x) = ∂k(T0,1f)(x) +
1

4π

∫
Ω

K̃α,11(x− y)f(y)dy,

∂k(Tα,2f)(x) =
1

4π

∫
Ω

K̃α,21(x− y)f(y)dy,

where
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K̃α,11(x− y) =
xk − yk

|x− y|
x− y

|x− y|
eiα|x−y| − 1

|x− y|
(

iα

|x− y| −
3

|x− y|2
)

+
eiα|x−y| − 1

|x− y|
1

|x− y|2 ek

+

(
eiα|x−y| − 1

|x− y| +
1

|x− y|
)(

iα
ek

|x− y| − iα
xk − yk

|x− y|
x− y

|x− y|
1

|x− y|
)

− xk − yk

|x− y| (α− iα
x− y

|x− y|)
[
eiα|x−y| − 1

|x− y|
(
iα− 3

|x− y|
)

+

(
iα− 3

|x− y|
)]

,

K̃α,21(x− y) =
xk − yk

|x− y|
(
eiα|x−y| − 1

|x− y| +
1

|x− y|
)(

iα− 1

|x− y|
)

+α2xk − yk

|x− y| e
iα|x−y| + αek

(
eiα|x−y| − 1

|x− y| +
1

|x− y|
)

+α

[
x− y

|x− y|
xk − yk

|x− y|
(

(iα|x− y| − 1) − (eiα|x−y| − 1

|x− y| +
1

|x− y|
))]

.

We can use analogous estimations as in Theorem 2.10 for the kernel functions K̃α,11(x−
y), K̃α,21(x − y). These estimations together with Theorem 2.15 reduce these problems
to the real integral

W2−γω(x) =

∫
Ω

1

|x− y|2−γ
ω(y)dy, 0 ≤ γ ≤ 2.

It is well-defined in Lp(Ω,H(C)) and continuous. By Lemma 2.14 and noticing that
C∞

c (Ω,H(C)) is dense in Lp(Ω,H(C)) the theorem follows for n = 1 and n = 2.
For n = 3, we need only consider W2−γω(x) for 0 ≤ γ ≤ 1. In the case n > 3, then

∂kTα,nf(x) has no singularity. By the assumption that Ω is a bounded domain we get

||∂kTα,nf(x)||Lp ≤ M(Ω,α,n)||f ||Lp.

Hence, the assertion of the theorem holds for all 1 ≤ n ∈ N. �
We now are able to come to our main result in the following section continuing the

mapping properties of Tα,n between spaces of continuous functions.

5. Mapping properties of Tα,n

In this section we will give the most important properties of Tα,n in Theorem 2.20 and
Remark 2.21. They are one of main tools for dealing some boundary value problems for
the Helmholtz equation which are discussed in the next chapter.

Theorem 2.17. The operator Tα,n : Lp(Ω,H(C)) −→ W 1
p (Ω,H(C)) is well-defined

and continuous for all n ≥ 1.

Proof. From Theorem 2.16 we can see that ∂kTα,n : Lp(Ω,H(C)) −→ Lp(Ω,H(C))
is well-defined and continuous for all n ≥ 1. In order to show Tα,nf ∈ W 1

p (Ω,H(C))
for every f ∈ Lp(Ω,H(C)), we at first verify that the operator Tα,n acts invariantly on
Lp(Ω,H(C)).
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Indeed, for n = 1 by Theorem 2.12 if 1 ≤ q ≤ 3
2
, the linear operator Tα,1 is bounded,

i.e., Tα,1 also belongs to L(L1(Ω,H(C)), Lq(Ω,H(C))). This implies that

Tα,1 ∈ L(Lq(Ω,H(C)), Lq(Ω,H(C))) for 1 ≤ q ≤ 3

2
.

Consequently, by Theorem 2.16 we get

Tα,1 ∈ L(Lq(Ω,H(C)), W 1
q (Ω,H(C))) for 1 ≤ q ≤ 3

2
.

Sobolev’s imbedding theorems, the algebraic expression (1.7), implies that

W 1
q (Ω,H(C))) ⊂ L 3q

3−q
(Ω,H(C)) for 1 ≤ q ≤ 3

2
.

Hence,

Tα,1 ∈ L(Lq(Ω,H(C)), Lr(Ω,H(C))) for 1 ≤ q ≤ 3

2
, 1 ≤ r ≤ 3.

It is clear that Tα,1 ∈ L(Lq(Ω,H(C)), Lr(Ω,H(C))) for 1 ≤ r ≤ 3. Using Theorem 2.16
again we get Tα,1f ∈ W 1

r (Ω,H(C)) for all 1 ≤ r ≤ 3 and f ∈ Lq(Ω,H(C)).
Sobolev’s imbedding theorems, the algebraic expression (1.7), guarantees that

W 1
r (Ω,H(C))) ⊂ L 3r

3−r
(Ω,H(C)) for r < 3.

This means that

Tα,1 ∈ L(Ls(Ω,H(C)), Ls(Ω,H(C))) for 1 ≤ s ≤ +∞.

In the case n = 2, if 1 ≤ q ≤ 3 we have

Tα,2 ∈ L(L1(Ω,H(C)), W 1
q (Ω,H(C))).

Consequently, we can say that

Tα,2 ∈ L(Lq(Ω,H(C)), W 1
q (Ω,H(C))) for 1 ≤ q ≤ 3.

Using Sobolev’s imbedding theorems again leads to

Tα,2 ∈ L(Ls(Ω,H(C)), Ls(Ω,H(C))) for 1 ≤ s ≤ +∞.

The assertion of this theorem follows immediately from Theorem 2.12 for every n ≥ 3. �
Remark 2.18. In the case p > 3, by Sobolev’s imbedding theorems, the algebraic

expression (1.8),

W 1
q (Ω,H(C))) ⊂ Cb(Ω,H(C))), i.e., Tα,n ∈ L(Lp(Ω,H(C)), Cb(Ω,H(C))).

Analogously to Corollary 3.10 in [47] we have Tα,n : Lp(Ω,H(C)) −→ Lp(Ω,H(C)) is
compact for every 1 ≤ n ∈ N, p ∈ [1,+∞). This may be proved by the same discussion
as in [76, Theorem 7.83].

Theorem 2.19. When Ω is a bounded domain in R3 then

Tα,n : C(Ω̄,H(C)) −→ C(Ω̄,H(C))

is bounded and

(i) ||Tα,1||L(C(Ω̄),C(Ω̄)) ≤
√

2
4π
e−ImαdiamΩ max

x∈Ω

{∫
Ω

(
2|α| 1

|x−y| + 1
|x−y|2

)
dy

}
,

(ii) ||Tα,2||L(C(Ω̄),C(Ω̄)) ≤
√

2
4π
e−ImαdiamΩ max

x∈Ω

{∫
Ω

(
2|α| + 1

|x−y|
)
dy

}
,
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(iii) ||Tα,n||L(C(Ω̄),C(Ω̄)) ≤
√

2
4π
e−ImαdiamΩ max

x∈Ω

{∫
Ω

(
2|α||x− y|n−2 + |x− y|n−3

)
dy

}
,

for every n ≥ 3.

Proof. Let f ∈ C(Ω̄,H(C)), and we note that C(Ω̄,H(C)) is dense in L1(Ω̄,H(C)).
For p > 3, by the remarks preceding the theorem, together with Theorem 2.16 we have
f ∈ Lp(Ω̄,H(C)) and Tαf ∈ Cb(Ω̄,H(C)). With an arbitrarily fixed x ∈ Ω̄ we get the
estimates

||Tα,1f(x)||H(C) ≤
√

2

∫
Ω

|K(1)
α (x− y)||f(y)|dy

≤
√

2

4π
||f ||C(Ω̄)e

−Imα max
y

{|x−y|}


∫
Ω

(
2|α| 1

|x− y| +
1

|x− y|2
)
dy


 ,

||Tα,2f(x)||H(C) ≤
√

2

∫
Ω

|K(2)
α (x− y)||f(y)|dy

≤
√

2

4π
||f ||C(Ω̄)e

−Imα max
y

{|x−y|}


∫
Ω

(
2|α| + 1

|x− y|
)
dy


 ,

and for n ≥ 3,

||Tα,nf(x)||H(C) ≤
√

2

∫
Ω

|K(2)
α (x− y)||f(y)|dy

≤
√

2

4π
||f ||C(Ω̄)e

−Imα max
y

{|x−y|}


∫
Ω

(
2|α||x− y|n−2 + |x− y|n−3

)
dy


 .

Taking the maximum with respect to x ∈ Ω, the norm inequalities (i)-(iii) hold. �
Theorem 2.20. The following assertions hold.

(i) The operator Tα,1 is the algebraic right - inverse to the operator Dα, i.e., for any
f ∈ C1(Ω,H(C)) ∩ C(Ω̄,H(C)), we have

DαTα,1f(x) = f(x), for every x ∈ Ω,

(ii) DαTα,nf(x) = Tα,n−1f(x), for every x ∈ Ω, n ≥ 2,
(iii) Dn

αTα,nf(x) = f(x), for every x ∈ Ω, n ≥ 1.

Proof. (i)In Lemma 2.13 it has been shown that ∂Tα,1 is a strongly singular integral
which a singularity of order 3. Thus in order to prove (i) we need some steps based on
two techniques which can be found in [27, Chapter III, Theorem 3], see also [46, 93].

Firstly, we prove that (i) holds for f ∈ C1
c (Ω,H(C)). Indeed, for every f ∈ C1(Ω,H(C))

having its compact support supp f ⊂⊂ Ω, the function Tα,1f can be written as

Tα,1f(x) =

∫
Ω

K(1)
α (x− y)f(y)dy =

∫
R3

K(1)
α (x− y)f(y)dy

= −
∫
R3

K(1)
α (y)f(x− y)dy.
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Because f(x) has compact support this permits us to exchange differentiation and inte-
gration. Thus we have

DαTα,1f(x) = −Dα,x

∫
R3

K(1)
α (y)f(x− y)dy

= − lim
ε→0

∫
R3−B(0,ε)

Dα,xK
(1)
α (y)f(x− y)dy

= − lim
ε→0

∫
R3−B(0,ε)

(
3∑

k=1

ekK
(1)
α (y)

∂

∂xk
f(x− y) + αK(1)

α (y)f(x− y)

)
dy

= − lim
ε→0

∫
R3−B(0,ε)

(
−

3∑
k=1

ekK
(1)
α (y)

∂

∂yk

f(x− y) + αK(1)
α (y)f(x− y)

)
dy

= − lim
ε→0

∫
R3−B(0,ε)

(−Dy(K
(1)
α (y)f(x− y)) + (Dα,yK

(1)
α (y))f(x− y)

)
dy

where B(0, ε) = {y ∈ R3, |y| < ε}.
We note that Dα,yK

(1)
α (y) = 0 for y �= 0, and f has compact support. Using the Stokes

formula, hence, this equality can be rewritten as

DαTα,1f(x) = − lim
ε→0

∫
R3−B(0,ε)

−Dy(K
(1)
α (y)f(x− y))dy

= − lim
ε→0

∫
∂B(0,ε)

K(1)
α (y)�n(y)f(x− y))dΓy

= − lim
ε→0

∫
∂B(0,ε)

K(1)
α (y)�n(y)f(x))dΓy

+ lim
ε→0

∫
∂B(0,ε)

K(1)
α (y)�n(y)[f(x) − f(x− y))]dΓy.

By lim
ε→0

∫
∂B(0,ε)

K
(1)
α (y)�n(y)f(x))dΓy = −f(x) as well as f ∈ C1

c (Ω̄,H(C)), we obtain

DαTα,1f(x) = f(x).

We prove next that (i) holds for any f ∈ C1(Ω,H(C)). To that purpose, let x ∈ Ω be
arbitrary. Thus, we can select a neighborhood Ux of x such that Ux ⊂⊂ Ω.
Take a C1(Ω,H(C))− function ψ|Ux = 1 and suppψ ⊂⊂ Ω. Then we have f = ψf+(1−ψ)f
and

ψf ∈ C1
c (Ω,H(C)), (ψf)|Ux = f,

(1 − ψ)f ∈ C1(Ω,H(C)), ((1 − ψ)f)|Ux = 0,

From the first step we get DαTαψf = ψf = f in Ux. As (1 − ψ)f equals zero in Ux

we obtain
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DαTα,1(1 − ψ)f(x) = Dα


∫

Ω

K(1)
α (x− y)(1 − ψ)f(y)dy




= Dα


 ∫

Ω−Ux

K(1)
α (x− y)(1 − ψ)f(y)dy




=

∫
Ω−Ux

[Dα,xK
(1)
α (x− y)](1 − ψ)f(y)dy = 0.

Hence, DαTα,1f(x) = DαTα,1ψf(x) +DαTα,1(1 − ψ)f = f . Because x is taken arbitrarily
in Ω then assertion (i) of the theorem follows.

(ii) By Lemma 2.13, the operator Dα,x acting on Tα,nf(x) can be interchanged with
integration for any n ≥ 2 as in these cases the singularity at y = x of the kernels

Dα,xK
(n)
α (x − y), n ≥ 2 is not worse than O( 1

|x−y|2 ), allowing differentiation under the

integral of Tα,nf. By using Lemma 2.1, ( also in [49, Lemma 2.5]) the identify (ii) holds.
(iii) By induction, together with (i), (ii) we obtain (iii). �
Remark 2.21. For every n ≥ 1 the operator Tα,n : Lp(Ω,H(C)) −→ W n

p (Ω,H(C))
is well-defined and continuous.

Consequently, we also obtain

Tα,n : W k
p (Ω,H(C)) −→ W k+n

p (Ω,H(C)).


