
CHAPTER 1

Quaternionic Analysis

In this chapter we present some basic concepts of the algebraic structure properties of
complex quaternions. We also recall some important results on Banach spaces as well as
Sobolev spaces which arise in studying the boundary value problems for the Helmholtz
equation in the next chapters. Finally, we introduce the quaternionic Stokes formulas
and the Cauchy - Pompeiu integral representation formulas of first order which are strong
powerful tools in the strategy of this work.

1. Algebra of complex quaternions

The most natural and close generalization of complex analysis is quaternionic analysis.
It is known that many problems from different engineering areas can be formulated as
quaternion optimization problems. Thus, by using quaternions we have an elegant math-
ematical method to solve many complicated problems in different areas of engineering.
We refer to [47, 48, 59, 60] for wider applications of quaternionic analysis. On the other
hand, it is seen that an overwhelming majority of physically meaningful problems can
not be reduced to two - dimensional models. Therefore, it is necessary to develop an
analogous theory to complex analysis for higher dimensions. We begin with the definition
of the algebra of real quaternions (see [46, 47], [60, Chap. 1]).

Let {e0, e1, e2, e3} be an orthonormal basis of R4 such that x ∈ R4 is represented as

x =

3∑
k=0

xkek, xk ∈ R, 0 ≤ k ≤ 3. (1.1)

The part x0e0 =: Sc(x) is called the scalar part of x and �x =
3∑

k=1

xkek =: Vec(x) the vector

part of x.

For x, y ∈ R4, it is said x = y if and only if they have exactly the same components
i.e., x = y iff xk = yk, k = 0, 1, 2, 3. The sum x+y is defined by adding the corresponding
components

x+ y =
3∑

k=0

(xk + yk)ek.

And a product is defined in R4 which satisfies the conditions

(i) e21 = e22 = e23 = −1,
(ii) e1e2 = −e2e1 = e3; e2e3 = −e3e2 = e1; e3e1 = −e1e3 = e2.

The element e0 is regarded as the usual unit, that is, e0 = 1. For x, y ∈ R4 we define

< �x, �y > = x1y1 + x2y2 + x3y3,

9
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[�x× �y] =

∣∣∣∣∣∣
e1 e2 e3
x1 x2 x3

y1 y2 y3

∣∣∣∣∣∣ .
Then, the algebraic rules (i), (ii) yield the quaternionic product xy

xy = x0y0− < �x, �y > +x0�y + �xy0 + [�x× �y]. (1.2)

We are now prepared to give the definition of the algebra of real quaternions.

Definition 1.1. The tuple (R4, ·) is called the algebra of real quaternions. We signify
(R4, ·) by H(R).

The quaternion x̄ = x0 − �x is called the conjugate to x. The number |x| defined by

|x|2 := xx̄ (1.3)

is named the absolute value of x.

Remark 1.2.
1. xy is an R−bilinear and associative product, but it is not commutative due to

equation (1.2).
2.

x+ y = x̄+ ȳ
µx = µx̄ for all µ ∈ R

¯̄x = x
xy = ȳx̄
�x2 = −|�x|2.

If now in the definition of a quaternion (see (1.1)) we suppose that all components can
be complex (instead of real) numbers we arrive at the definition of complex quaternions
(biquaternions).

Definition 1.3. A complex quaternion (biquaternions) x is an object of the form

x =

3∑
k=0

xkek, xk ∈ C, 0 ≤ k ≤ 3

with the commutation rule for the usual complex imaginary unit i with the quaternionic
imaginary unit ek, k = 1, 2, 3, iek = eki. The algebra of complex quaternions will be
denoted by H(C).

Note that any x ∈ H(C) can be represented as x = Rex+ iImx, where Rex =
3∑

k=0

Rexkek

and Imx =
3∑

k=0

Imxkek belong to H(R). Then the conjugate to x also belong to H(C). It

can be written as x̄ = Rex+ iImx.

We now consider the complex quaternion x = 1 + ie1 and its conjugate x̄ = 1 − ie1.
Their product is

xx̄ = (1 + ie1)(1 − ie1) = 1 − 1 = 0 (1.4)
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This means that the algebra of complex quaternions contains zero divisors. For more
information on the characterizations of the set of all zerodivisors as well as its structure
we refer the readers to [60, Lemma 1],(see also [47, 64]).

As we can observe already, the modulus introduced by the equality (1.3) in the case of
the complex quaternions in general does not give information about the absolute values
of their components (see (1.4)). This is why another kind of modulus is used frequently.
The norm ||x||H(C), where x ∈ H(C), is defined by

||x||H(C) :=
√

|x0|2 + |x1|2 + |x2|2 + |x3|2, (1.5)

where xk ∈ C, |xk|2 = xkx̄k, x̄k stands for the usual complex conjugation. It is easily
seen that (1.5) represents a natural Euclidean metric in R8 and can be expressed as
||x||2

H(C) = |Rex|2 + |Imx|2.
Looking at the following example x = y = 1 + ie1. Then

||xy||H(C) = 2||1 + ie1||H(C) = 2
√

2,

but ||x||H(C)||y||H(C) = 2. It means that, in general, ||xy||H(C) �= ||x||H(C)||y||H(C) and even
||xy||H(C) can be greater than the product ||x||H(C)||y||H(C).

Lemma 1.4. Let x and y be complex quaternions. Then ||xy||H(C) ≤ √
2||x||H(C)||y||H(C),

see [60, Chap. 1, Lemma 2].

We now introduce the isomorphic embedding in H(C). An arbitrary element x =

(x0, x1, x2, x3) ∈ R4 corresponds to the quaternion x =
3∑

k=0

xkek. In this way R and R3 are

embedded in H(R) so that we can say they are embedded in H(C) . The corresponding
embedding mappings are defined by

· : R → H(C)
x0 �→ x0e0

and

· : R
3 → H(C)

(x1, x2, x3) �→
3∑

k=1

xkek

respectively.

2. The Moisil - Teodorescu differential operator

Our purpose is treating the boundary value problems of the Helmholtz equation. To
that purpose throughout this thesis Ω assume is to be an open bounded domain in R3

with a sufficiently smooth Liapunov surface.
We recall that a closed bounded surface Γ is called a Liapunov surface if in each point

x ∈ Γ there exists a normal �n(x) satisfying a Hölder condition on Γ, i.e., there exists
numbers C > 0 and 0 < ε < 1 such that

|�n(x) − �n(y)| ≤ C|x− y|ε for arbitrary x, y ∈ Γ.

We refer the readers to [88] for more information on Liapunov surfaces.
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2.1. Spaces of complex quaternions valued functions. By the isomorphic em-

bedding we can identify (x1, x2, x3) = �x ∈ R3 with x =
3∑

k=1

xkek ∈ H(R) ⊂ H(C).

Now we consider functions f defined in Ω with values in H(C). Those functions may be
written as

f(x) =
3∑

k=0

fk(x)ek, fk(x) ∈ C, x ∈ Ω. (1.6)

Properties such as continuity, differentiability, integralbility, and so on, which are
described to f have to be possessed by all components fk(x) which are complex-valued
functions defined on Ω.

Let B(Ω) be a function space of complex functions defined on Ω. For example, B may
be Ck, C(k,ε), Lp, W

k
p and so on. We then define a function space

B(Ω,H(C)) := {f : Ω → H(C) : all the component of f belong to B(Ω)}.
If B(Ω) is normed with norm || · ||B then we can define a norm on B(Ω,H(C)) by

||f ||B =
( 3∑

k=0

||fk||2B
) 1

2 for f ∈ B(Ω,H(C)).

If B(Ω) is a Banach space then the space B(Ω,H(C)) defined in this manner is also
a complex Banach space. In this way the usual Banach spaces of these functions are
denoted by Ck(Ω,H(C)), C(k,ε)(Ω,H(C)), Lp(Ω,H(C)),W k

p (Ω,H(C)) and so on.

Ck(Ω,H(C)) is the space of k times continuously differentiable function in Ω.

C(k,ε)(Ω,H(C)) is the space of k times continuously differentiable function, whose k−th
derivative is Hölder continuous with the exponent ε.

C∞
c (Ω,H(C)) is defined as the vector space consisting of functions from Ω to H(C)

with compact support which have continuous derivatives of all orders.

Lp(Ω,H(C)) is the space of all functions, whose p− th power is Lebesgue intergrable
in Ω. Notice that Lp(Ω,H(C)) is an H(C)-bimodul. Moreover, it can be proved to be
a Banach bimodul. We refer to [72, 77, 91] for more informations about right (left)-
H(C)−module as well as bi - H(C)−module of H(C)−valued continuous (differentiable,
integrable) functions.

Let us consider L2(Ω,H(C)) as a right module. Then, it can be easilyverified that the
formula

(f, g) :=

∫
Ω

f(x)g(x)dx,

defines a scalar product turning L2(Ω,H(C)) into a right Hilbert H(C)-module.

The following spaces are just the H(C)-valued analogue to Sobolev spaces. Let k be a
non - negative integer. Then W k

p (Ω,H(C)) is the space of k−times differentiable functions
in Sobolev’s sense, whose k − th order derivatives belong to Lp(Ω,H(C)).

0

W k
p (Ω,H(C)) is the space of k−times differentiable functions in Sobolev’s sense, whose

k − th order derivatives belong to Lp(Ω,H(C)) and vanish on the boundary Γ.
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W k,loc
p (Ω,H(C)) := {f, f ∈ W k

p (Ω,H(C)) for every compact K ⊂ Ω}. One can find
comprehensive information on Banach spaces for instance in ([1], [38, Section II]).

Next, we will introduce some basic notations of the Sobolev spaces (see [1], [76, Section
VI]) used in our discussions in Chapter 2.

Definition 1.5. Let X, Y be normed vector spaces.

(i) A linear mapping L : X −→ Y is called bounded if there is a constant M such
that ||Lx|| ≤ M ||x||, for every x ∈ X.

(ii) We say that an operator L : X −→ Y is continuous at an x ∈ X if, whenever
xn is a sequence such that xn −→ x, we have L(xn) −→ L(x).

Remark 1.6. Let L : X −→ Y be a linear mapping. L is continuous if and only if
it is bounded.

Moreover, let L(X, Y ) denote the set of all bounded linear mappings from X to Y .
We denote by Cb(Ω̄) the set of all bounded continuous functions on Ω̄ with the norm
||u|| = sup

x∈Ω̄

||u(x)||H(C). Obviously, Cb(Ω̄) is a Banach space.

Definition 1.7. Let L̃p(Ω,H(C)) be the set of all continuous functions f : Ω −→
H(C) for which

||f ||Lp : =


∫

Ω

|f(x)|p
H(C)dx




1
p

is finite with p ∈ (1,+∞).

Theorem 1.8. (Hölder’s inequality)

Let f ∈ L̃p(Ω,H(C)), g ∈ L̃q(Ω,H(C)), where 1 < p, q < +∞ with 1
p

+ 1
q

= 1. Then

fg ∈ L̃1(Ω,H(C)) and ||fg||L1 ≤ ||f ||Lp||g||Lq.

Remark 1.9. Let k be a non - negative integer and let 1 ≤ p ≤ +∞. Since
Sobolev’s imbedding theorem (see [1, 84], [76, Chap. 6, 6.4]), more general imbedding
theorems for W k

p spaces can be established. It is shown that

W k
p (Ω,H(C)) ⊂ L 3p

3−kp
(Ω,H(C)), for kp < 3, (1.7)

W k
p (Ω,H(C)) ⊂ Cb(Ω,H(C)), for kp > 3. (1.8)

2.2. The Moisil - Teodorescu differential operator.

Definition 1.10. Let f ∈ C1(Ω,H(C)). The Moisil-Teodorescu differential operator
is given by

Df :=

3∑
k=1

ek∂kf where ∂k :=
∂

∂xk
.

If we write f = f0 + �f then we get by a straightforward calculation

Df = −div�f + gradf0 + rot�f. (1.9)
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The equation Df = 0 is equivalent to the Moisil-Teodoresco system{
div�f = 0,

grad f0 + rot�f = 0.
(1.10)

For detailed considerations of this system we refer the readers to [25, 36, 46, 64, 75].

Let us note that the Moisil-Teodorescu operator was introduced as acting from the left-
hand side. The correponding operator acting from the right-hand side will be denoted by
Dr

Drf =

3∑
k=1

∂kfek

and in vertor form the application of Dr can be represented as

Drf = −div�f + gradf0 − rot�f. (1.11)

In [40, 91] a function f is called left(right)-monogenic in Ω if it fulfills Df = 0, (Drf = 0)

in Ω. Note that D2 = D2
r = −∑3

k=1 ∂
2
k = −∆. This property guarantees that each

left (right)-monogenic is a harmonic function. An important example for left (right)-
monogenic function is the so-called generalized Cauchy kernel given in [23]. For the
detailed discussion on monogenic as well as harmonic functions we refer to [5, 23, 40, 91].

In complex analysis it is well-known that the product of two holomorphic functions is
again a holomorphic function. However, this is not true in the quaternionic case. We can
see this by the following example.

Example 1.11. Let be f = x1e2+x2e1 then Df = e1e2+e2e1 = 0, and g = x1e1−x2e2
then Dg = e21 − e22 = 0. However

fg = (x1e2 + x2e1)(x1e1 − x2e2) = −(x2
1 + x2

2)e3

and

D(fg) = −2(x1e1e3 + x2e2e3) = 2(x1e2 − x2e1).

The above equalities can be verified by using the following generalization of Leibniz’s
rule.

Theorem 1.12. (Generalization of Leibniz’s rule) Let f, g ∈ C1(Ω,H(C)). Then

D(fg) = (Df)g + f̄(Dg) −
3∑

k=1

fk∂kg.

Its proof can be done by direct calculation (see [46, 60]).

Remark 1.13. If V ec(f) = 0 then D[f0g] = D[f0]g + f0D[g].

To conclude this section, we briefly recall the definition of fractional order Sobolev
spaces which can be found in [1, Chap. VII], [76, Section. VI]. First of all, we introduce
weighted L2- spaces.

Let Ω be a bounded smooth domain in R3 and s ∈ R+,

Ls
2(Ω,H(C)) :=

{
f |(1 + |x|2) s

2 f ∈ L2(Ω,H(C))
}
.
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These spaces are Hilbert spaces with the scalar product

< f, g >Ls
2
=

∫
Ω

(1 + |x|2)sf(x)g(x)dx,

and the norm

||f ||Ls
2

=

∫
Ω

(1 + |x|2)sf(x)f(x)dx.

If s = 0 we have ||f ||Ls
2

= ||f ||L2.

Further, in the next chapters we will use the weighted Sobolev spaces W s
2 (Ω,H(C))

which are defined as

W s
2 (Ω,H(C)) =

{
f |(1 + |x|2) s

2f ∈ L2(Ω,H(C)), (1 + |x|2) s+k
2 Dkf ∈ L2(Ω,H(C))

}
,

where k < [s] with [s] denoting the largest integer less than or equal s and Dkf is defined
as its k − th order derivatives in the distributional sense.

Analogously to the above definition about W s
2 (Ω,H(C)) we have well-defined spaces

W s
p (Ω,H(C)) for arbitrary values of s and 1 < p <∞ whose norm is written as

||f ||W s
p

=


||f ||

W
[s]
p

+
∑

|α|=[s]

∫
Ω

∫
Ω

||Dαf(x) −Dαf(y)||p
||x− y||3+p(s−[s])

dxdy




1
p

.

We now address the question if and in which sense functions in Sobolev spaces can be
restricted to the boundary of the domain. Its answer is called trace theorem.

Theorem 1.14. Let k ∈ N, k �= 0. Then there exists a continuous linear map

trΓT : W k
p (Ω,H(C)) −→ W k−1/p

p (Γ,H(C)),

called the trace operator.

A natural question is now which elements of W
k−1/p
p (Γ,H(C)) can be obtained as

restrictions, or ”traces” of functions in W k
p (Ω,H(C)). The answer is that all elements of

W
k−1/p
p (Γ,H(C)) are obtained in this way. This means that there exists a linear mapping

T : W k−1/p
p (Γ,H(C)) −→ W k

p (Ω,H(C))

such that TtrΓT is the identity. We also refer to [68, Chap. 1, Section 11, 12] (see also
[69, 84]) for complete information about W s

p (Ω) with its norm and the trace theorem.

3. The Cauchy-Pompeiu integral representation

In the theory of complex variables formular the Cauchy-Pompeiu integral representa-
tion can be written as

w(z) =
1

2πi

∫
∂Ω

w(ζ)

ζ − z
dζ − 1

π

∫
Ω

f(ξ + iη)

ξ + iη − z
dξdη

where z = x + iy, ζ = ξ + iη. It represents the solution to the inhomogeneous Cauchy-
Riemann equation, ∂z̄w = f where ∂z̄w = 1

2
( ∂

∂x
+ i ∂

∂y
). The area integral operator and

the singular integral appearing leads to the generalized functions of a complex variable
(see [86]). The results of this theory of functions of one complex variable are providing a
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wider and deeper impression on the investigation of some classes of differential equations,
embracing many important equations of mathematical physics.

Moreover, the theory of the holomorphic functions of one complex variable is closely
connected with the theory of harmonic functions which are the solution of the two-
dimensional Laplace equation. This means that so any essential progress in each of these
theories results in progress in the other. However, there is no such connection for n−
dimentional complex analysis with n > 1. The paradoxical differences existing between
the cases n = 1 and n > 1 can be explained. These paradoxies disappear if we consider
quaternionic analysis (see [77, 78, 79]), more general Clifford analysis see [75].

On the other hand, the Helmholtz operator (∆ + α2) can be considered as the most
simple and sufficiently natural generalization of the Laplace operator. The operator (∆+
α2), α ∈ C, plays an important role and it offen arises in applications of physics. That
is why it seems quite natural to build an analogous theory to the theory of harmonic
functions which is called theory of metaharmonic functions.

The theory of metaharmonic functions was investigated in [41, 46] for α ∈ R+. Some
of them were developed for Clifford-valued function, which can be found in [91, 92,
93]. Corresponding results have been done for α ∈ R− in [54, 55, 75]. A class of
hyperholomophic quaternion-valued functions with metaharmonic functions and theorems
about the connection between them are introduced in [60, 65] for complex α. All of these
results can be obtained also for complex quaternionic parameter α, see [60, 61, 65, 66]. In
this section we only briefly recall the results about the analogue of the Cauchy- Pompeiu
formula in the case of complex α which represents the solution to the inhomogeneous
equation (D + α)f = g in Ω. We also introduce the quaternionic Stokes formulas which
is one of the main tools in latter discussions. To do this, we begin with the definition of
the Dα− operator.

3.1. Factorization of the Helmholtz operator and fundamental solutions.
As the Laplacial also the Helmholtz operator can be factorized in quaternionic analysis
as

∆ + α2 = −(D + α)(D − α). (1.12)

Definition 1.15. Let the operator Dα = D + αI be given where α is an arbitrary
complex constant and I is the identity operator.

Hence, the equality (1.12) can be rewritten as

∆ + α2 = −DαD−α = −D−αDα.

This means that any function satisfying the equation Dαf = 0 or D−αf = 0 also satisfies
the Helmholtz equation (∆ + α2)f = 0.

We define the set of poly-left(right) α−hyperholomorphic functions as

Mk
p(Ω,H(C)) := {f | f ∈ Lk

p(Ω,H(C)), Dk
αf = 0},

Mk
r,p(Ω,H(C)) := {f | f ∈ Lk

p(Ω,H(C)), Dk
r,αf = 0}.

In the case p = 2, k = 1 we write kerDα = M1
2(Ω,H(C)). Each element f belongs to

kerDα is called left α−hyperholomorphic function. Obviously, kerDr,α is the set of right
α−hyperholomorphic functions.
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By the definiton of the operators Dα and Dr,α as well as Remark 1.2 we have

Dαf(x) = (
3∑

k=1

ek
∂

∂xk
+ α)(

3∑
j=0

fj(x)ej)

=

3∑
k=1

ek
∂

∂xk
(

3∑
j=0

fj(x)ej) + α(

3∑
j=0

fj(x)ej)

=
3∑

k=1

∂

∂xk

(
3∑

j=0

fj(x)ej)ek + αf(x)

= −
3∑

k=1

∂

∂xk

f(x)ek + αf(x)

= −Drf(x) + αf(x).

It means that

Dαf(x) = −Dr,−αf(x), for any α ∈ C. (1.13)

Now, using the equality (1.12) and the fundamental solution of the Helmholtz equa-
tion, a fundamental solution can be constructed for the factors of the Helmholtz oper-
ator. Indeed, if we assume ϑ is a fundamental solution of the Helmholtz operator i.e
a function satisfying (∆ + α2)ϑ(x) = δ(x), where δ(x) is Dirac delta distribution, then
Kα(x) = −(D − α)ϑ(x) is a fundamental solution of Dα and K−α(x) = −(D + α)ϑ(x) is
a fundamental solution of D−α, i.e., DαKα(x) = δ(x), and D−αK−α(x) = δ(x).
As discussed in [60, p. 27] a unique fundamental solution to the Helmholtz operator
related to its physical meaning is

ϑ(x) = − eiα|x|

4π|x| .

Since ϑ(x) is a scalar function and using formulas (1.9), (1.11) we haveDαϑ(x) = Dr,αϑ(x).

From formula (1.9) by a straightforward computation we get

Kα(x) = −gradϑ(x) + αϑ(x) = (α +
x

|x|2 − iα
x

|x|) (− eiα|x|

4π|x|) (1.14)

K−α(x) = −gradϑ(x) − αϑ(x) = (−α +
x

|x|2 − iα
x

|x|) (− eiα|x|

4π|x|) (1.15)

These functions play a crucial role in many biological, chemical and physical systems, see
[60, 61, 64]. Note that besides the equation DαKα(x) = δ(x), Kα(x) fulfils the radiation
condition at infinity uniformly in all directions

(1 +
ix

|x|)Kα(x) = 0(
1

|x|)

when |x| → ∞ which is in agreement with the Silver- Müller radiation conditions in [58].
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By direct caculation using formulas (1.9), (1.11) and Remark 1.13 again we obtain the
following properties of Kα(x), and K−α(x){

DαKα(x) = Dr,αKα(x),

DαK−α(x) = Dr,αK−α(x).
(1.16)

3.2. The quaternionic Cauchy-Pompeiu formulas. In classical real analysis in-
tegral representation formulas are deduced from the Gauss theorem. In complex analysis,
a special case of the Cauchy-Pompeiu formula is the Cauchy representation of analytic
functions which is also a consequence of the Gauss theorem. Analogously to this, we
introduce here the Stokes formula and the Cauchy-Pompeiu integral representation in
quaternionic analysis which is related to the factors of the Helmholtz operator.

Theorem 1.16. (Quaternionic Stokes formula)
Let f and g belong to C1(Ω,H(C)) ∩ C(Ω̄,H(C)) then∫

Ω

[(Drf(y))g(y) + f(y)Dg(y)]dy =

∫
Γ

f(y)�n(y)g(y)dΓy, (1.17)

where �n :=
3∑

k=1

nkek denotes the outward unitary normal vector on Γ.

The above theorem is taken from [60, Theorem 2], whose proof can be found in [47,
Proposition 3.22], (see also [64, Chap. 4]).

Corollary 1.17. Let g ∈ C1(Ω,H(C)) ∩ C(Ω̄,H(C)). Then∫
Ω

Dg(y)dy =

∫
Γ

�n(y)g(y)dΓy. (1.18)

Corollary 1.18. Let g ∈ C1(Ω,H(C))∩C(Ω̄,H(C)) and g be α−left-hyperholomophic
function. Then ∫

Γ

�n(y)g(y)dΓy = −α
∫
Ω

g(y)dy. (1.19)

Remark 1.19. From (1.17) with α ∈ C we have∫
Ω

[(Dr,−αf(y))g(y) + f(y)(Dαg(y))]dy =

∫
Γ

f(y)�n(y)g(y)dΓy, (1.20)

∫
Ω

[(Dr,αf(y))g(y) + f(y)(D−αg(y))]dy =

∫
Γ

f(y)�n(y)g(y)dΓy. (1.21)

Theorem 1.20. (Quaternionic Cauchy-Pompeiu formulas)
Let f ∈ C1(Ω,H(C)) ∩ C(Ω̄,H(C)). Then

f(x) = −
∫

Γ

Kα(x− y)�n(y)f(y)dΓy +

∫
Ω

Kα(x− y)Dαf(y)dy. (1.22)

The integral formula (1.22) can be rewritten as

f(x) = −
∫

Γ

Kα(x− y)�n(y)f(y)dΓy +

∫
Ω

Kα(x− y)g(y)dy
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It represents the solution to the equation Dαf = g. The proof of this theorem can be
found in [60, Theorem 4].
It is straighforward to see

f(x) = −
∫

Γ

K−α(x− y)�n(y)f(y)dΓy +

∫
Ω

K−α(x− y)D−αf(y)dy. (1.23)

The formulas (1.22), (1.23) are the quaternionic Cauchy-Pompeiu formulas for the opera-
tors Dα, D−α. They express the any differentiable function through its boundary values
and its first-order derivaties.
The quaternionic Cauchy-Pompeiu formulas immediately imply the following analogue of
the Cauchy integral formula.

Theorem 1.21. (Quaternionic Cauchy integral formula)
Let f ∈ C1(Ω,H(C)) ∩ C(Ω̄,H(C)) and f be a left (right) α-hyperholomophic function.
Then

f(x) = −
∫

Γ

Kα(x− y)�n(y)f(y)dΓy,

for all x ∈ Ω.

Let us now introduce the main integral operators whose properties are similar to their
famous complex prototypes. The Cauchy’s integral operator, the first order Teodorescu
transform operator and the operator of singular integration, guarantee an efficient solution
of different kinds of boundary value problems.

Fαf(x) = −
∫

Γ

Kα(x− y)�n(y)f(y)dΓy, x ∈ R
3 − Γ,

Tα,1f(x) =

∫
Ω

Kα(x− y)f(y)dy, x ∈ R
3,

Sαf(x) = −2

∫
Γ

Kα(x− y)�n(y)f(y)dΓy, x ∈ Γ.

Note that the integral in the definition of the operator Sα is taken in the sense of Cauchy’s
principal value. In the other words, it can be called a singular Cauchy operator.

As usual, the singular Cauchy operator generates two important operators Pα and Qα.
Which are defined by {

Pα = 1
2
(I + Sα),

Qα = 1
2
(I − Sα).

(1.24)

The operator Pα denotes the projection onto the spaces of all H(C)−valued functions
which may be left α−hyperholomophic functions extended into interior of the domain Ω.
Qα denotes the projection onto the spaces of all H(C)−valued functions which may be
left α−hyperholomophic functions extended into exterior of the domain Ω. We refer to
[60, Chap. 2] for more details.

We remark that the operators Fα, Sα, Pα, and Qα allow an extension to L2(Γ,H(C)).
Their further properties will be introduced in Chapter 3 where some boudary value prob-
lems for the Helmholtz equation are investigated




