ANHANG

- Anhang A: log-lineare Regressionen
- Anhang B: Unsicherheit der Wassergehaltsbestimmung
- Anhang C: Abbildungen zum Kapitel 4.3
- Anhang D: Stamm- und Bezugslösungen, Zwischenverdünnungen von PCP+HCB
- Anhang E: Unsicherheit des Gehalts in den dotierten Bodenproben

ANHANG A: LOG-LINEARE REGRESSIONEN

Log-lineare Regression für Arsen

Abbildung A 1: Vergleichsstandardabweichung s_R aus Ringversuchen über die Bodengehalte c der Ringversuchsproben für **Arsen** (s_R , *c* in Massefraktion 1 mg/kg = 10⁻⁶).

Analysis of Variance Table – Arsen

Response: y								
	Df	Sum Sq	1	Mean	Sq	F value		Pr(>F)
х	1	1.75498	3	1.7549	3	207.20		1.326e-13 ***
Residuals	25	0.21175	5	0.0084	7			
Signif. codes: (0 '***' 0.0	001 '**' 0	.01 '*' 0	.05 '.' 0. ⁻	1''1			
Call: > lm(formula =	y ~ x)							
Residuals: Min -0.1478	323	1Q -0.0572	65	Median 0.0013	17	3Q 0.05968	38	Max 0.212473
Coefficients:								
	Estimat	e	Std. Er	ror	t value		Pr(> t)	
(Intercept)	-2.3833	2	0.2295	0	-10.38		1.49e-1	0 ***
x	0.69073	3	0.0479	9	14.39		1.33e-1	3 ***
Signif. codes: (0 '***' 0.0	001 '**' 0	.01 '*' 0	.05 '.' 0. ⁻	1''1			
Residual standa Multiple R-Squa F-statistic: 207.	ard error ared: 0.8 2 on 1 a	:: 0.0920 923, / nd 25 Di	3 on 25 Adjustec F, p-va	degree d R-squa lue: 1.32	s of free ared: 0.8 26e-13	dom 888		

Pearson's product-moment correlation

data: x and y t = 14.3944, df = 25, p-value = 1.326e-13 alternative hypothesis: true correlation is not equal to 0 95 percent confidence interval: 0.8808064 0.9747410 sample estimates: cor 0.9446338

Log-lineare Regression für Cadmium

Abbildung A 2: Vergleichsstandardabweichung s_R aus Ringversuchen über die Bodengehalte c der Ringversuchsproben für **Cadmium** (s_R , c in Massefraktion 1 mg/kg = 10⁻⁶).

Analysis of Variance Table - Cadmium

Response: y								
	Df	Sum S	q	Mean S	Sq	F value		Pr(>F)
х	1	23.403	4	23.403	4	1229.1		< 2.2e-16 ***
Residuals	63	1.1996		0.0190				
Signif. codes:	0 '***' 0.0	001 '**' ().01 '*' 0	.05 '.' 0. ⁻	1''1			
Call: > lm(formula =	y ~ x)							
Residuals:								
Min	1Q		Median	1	3Q			Max
-0.43820	-0.0710)1	-0.0185	57	0.0718	2		0.31587
Coefficients:								
	Estima	te	Std. Er	ror	t value		Pr(> t)	
(Intercept)	-2.2680)6	0.1275	8	-17.78		<2e-16	***
X	0.7594	13	0.0216	6	35.06		<2e-16	***
Signif. codes:	0 '***' 0.0	001 '**' ().01 '*' 0	.05 '.' 0.	1''1			

Residual standard error: 0.138 on 63 degrees of freedom Multiple R-Squared: 0.9512, Adjusted R-squared: 0.9505 F-statistic: 1229 on 1 and 63 DF, p-value: < 2.2e-16

Pearson's product-moment correlation

t = 35.0583, df = 63, p-value < 2.2e-16 alternative hypothesis: true correlation is not equal to 0 95 percent confidence interval: 0.959712 0.984923 sample estimates: cor 0.9753161

Log-lineare Regression für Chrom

Abbildung A 3: Vergleichsstandardabweichung s_R aus Ringversuchen über die Bodengehalte c der Ringversuchsproben für **Chrom** (s_R , c in Massefraktion 1 mg/kg = 10⁻⁶).

Analysis of Variance Table – Chrom

Df	Sum Sq	Mea	n Sq	F value		Pr(>F)
1	16.4128	16.4	128	2263.7		< 2.2e-16 ***
58	0.4205	0.00	73			
0 '***' 0	.001 '**' 0.01 '*	' 0.05 '.'	0.1''1			
~ x)						
	4.0					
402	1Q -0.058764	Med -0.00	ian)7714	3Q 0.06569	94	Max 0.179086
Estima	ate Std.	Error	t value		Pr(> t)	
-1.569	0.08	005	-19.61		<2e-16	***
0.8673	35 0.01	823	47.58		<2e-16	***
0 '***' 0	.001 '**' 0.01 '*	' 0.05 '.'	0.1''1			
ard erro	or: 0.08515 on 975 Adjust	58 degr	ees of free	edom 9746		
	Df 1 58 0 '***' 0 ~ x) 402 Estima -1.569 0.867; 0 '***' 0 ard erro ared: 0.	Df Sum Sq 1 16.4128 58 0.4205 0 '***' 0.001 '**' 0.01 '* ~ x) 1Q 402 -0.058764 Estimate Std. -1.56970 0.081 0.86735 0.017 0 '***' 0.001 '**' 0.01 '* ard error: 0.08515 on ared: 0.975, Adjust	Df Sum Sq Mea 1 16.4128 16.4 58 0.4205 0.00 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' ~ x) 1Q Med 402 -0.058764 -0.00 Estimate Std. Error -1.56970 0.08005 0.86735 0.01823 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' ard error: 0.08515 on 58 degr ared: 0.975. Adjusted R-sc	Df Sum Sq Mean Sq 1 16.4128 16.4128 58 0.4205 0.0073 0 "***" 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '' 1 ~ x) 1Q Median 402 -0.058764 -0.007714 Estimate Std. Error t value -1.56970 0.08005 -19.61 0.86735 0.01823 47.58 0 "***" 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '' 1 ard error: 0.08515 on 58 degrees of free ared: 0.975. Adjusted R-squared: 0.9	Df Sum Sq Mean Sq F value 1 16.4128 16.4128 2263.7 58 0.4205 0.0073 2263.7 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '' 1 x $\sim x$) 1Q Median 3Q 402 -0.058764 -0.007714 0.06568 Estimate Std. Error t value -1.56970 0.08005 -19.61 0.86735 0.01823 47.58 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '' 1 ard error: 0.08515 on 58 degrees of freedom ared: 0.975 , Adjusted R-squared: 0.9746	Df Sum Sq Mean Sq F value 1 16.4128 16.4128 2263.7 58 0.4205 0.0073 2263.7 0 "***" 0.001 "*" 0.01 "*" 0.05 '.' 0.1 '' 1 $-x$ x) 1Q Median 3Q 402 -0.058764 -0.007714 0.065694 Estimate Std. Error t value $Pr(> t)$ -1.56970 0.08005 -19.61 $<2e-16$ 0.86735 0.01823 47.58 $<2e-16$ 0 "***" 0.001 "**" 0.01 '*' 0.05 '.' 0.1 '' 1 ard error: 0.08515 on 58 degrees of freedom ared: $ared$: 0.975 . Adjusted R-squared: 0.9746 0.9746

F-statistic: 2264 on 1 and 58 DF, p-value: < 2.2e-16

Pearson's product-moment correlation

data: x and y t = 47.5782, df = 58, p-value < 2.2e-16 alternative hypothesis: true correlation is not equal to 0 95 percent confidence interval: 0.9789638 0.9925019 sample estimates: cor 0.98743

Log-lineare Regression für Kupfer

Abbildung A 4: Vergleichsstandardabweichung s_R aus Ringversuchen über die Bodengehalte c der Ringversuchsproben für **Kupfer** (s_R , c in Massefraktion 1 mg/kg = 10⁻⁶).

Analysis of Variance Table - Kupfer

Response: y								
	Df	Sum S	q	Mean S	Sq	F value		Pr(>F)
х	1	56.803		56.803		3554.9		< 2.2e-16 ***
Residuals	59	0.943		0.016				
 Ciavait and an	0 1***! 0	001 1**1 0		05110				
Signif. codes:	0 0.	001	0.01 0	.05 . 0.	1 1			
Call:								
lm(formula = y	~ x)							
Residuals:								
Min		1Q		Median	l	3Q		Max
-0.235	79	-0.0849	90	-0.0423	32	0.09498	3	0.34393
Coefficients:								
Coomolonito.	Estima	ite	Std Fr	ror	t value		Pr(>ltl)	
(Intercept)	-1 408	54	0 0727	7	-19.36		<2e-16	***
X	0.9290	5	0.0155	, 8	59.62		<2e-16	***
		•		-				
Signif. codes:	0 '***' 0.	001 '**' ().01 '*' 0	.05 '.' 0.	1''1			
Residual stand	lard erro	r [.] 0 1264	4 on 59 d	dearees	of freed	om		
Multiple B-Sou	ared: 0	9837	Adjuste	d R-sau	ared: 0.9	834		
F-statistic: 35	55 on 1 a	and 59 D)F. p-va	lue: < 2	2e-16			
			., թ.ա					

Pearson's product-moment correlation

data: x and y t = 59.6231, df = 59, p-value < 2.2e-16 alternative hypothesis: true correlation is not equal to 0 95 percent confidence interval: 0.9863237 0.9950931 sample estimates: cor 0.9918035

Log-lineare Regression für Nickel

Abbildung A 5: Vergleichsstandardabweichung s_R aus Ringversuchen über die Bodengehalte c der Ringversuchsproben für **Nickel** (s_R , c in Massefraktion 1 mg/kg = 10⁻⁶).

Analysis of Variance Table - Nickel

Response: y							
	Df	Sum Sq	Me	an Sq	F valu	ie	Pr(>F)
х	1	7.2637	7.2	2637	386.6	9	< 2.2e-16 ***
Residuals	62	1.1646	0.0	188			
Signif. codes:	0 '***' 0	.001 '**' 0.(01 '*' 0.05	'.' 0.1 ' ' 1			
Call: Im(formula = y	r ∼ x)						
Residuals: Min -0.202	87	1Q -0.06813	Ме 8 -0.	dian 02734	3Q 0.057	44	Max 0.56242
Coefficients:							
(Intercept) x	Estima -1.850 0.814	ate 5 95 (1 (Std. Error).1924).0414	t val -9.6 19.6	ue 16 64	Pr(> t) 6.63e-1 < 2e-16	14 *** 5 ***
Signif. codes:	0 '***' 0	.001 '**' 0.(01 '*' 0.05	'.' 0.1 ' ' 1			
Residual stand Multiple R-Squ	dard erro uared: 0	or: 0.1371 (.8618. A	on 62 deg diusted R-	rees of fre -souared:	eedom 0.8596		

F-statistic: 386.7 on 1 and 62 DF, p-value: < 2.2e-16

Pearson's product-moment correlation

data: x and y t = 19.6645, df = 62, p-value < 2.2e-16 alternative hypothesis: true correlation is not equal to 0 95 percent confidence interval: 0.8843343 0.9559978 sample estimates: cor 0.9283427

Log-lineare Regression für Blei

Abbildung A 6: Vergleichsstandardabweichung s_R aus Ringversuchen über die Bodengehalte c der Ringversuchsproben für **Blei** (s_R , c in Massefraktion 1 mg/kg = 10⁻⁶).

Analysis of Variance Table - Blei

Response: y								
	Df	Sum So	7	Mean S	Sq	F value		Pr(>F)
Х	1	17.1042	2	17.1042	2	1364.7		< 2.2e-16 ***
Residuals	62	0.7771		0.0125				
Signif. codes: (0 '***' 0.0	001 '**' 0	.01 '*' 0	.05 '.' 0.	1''1			
0-11								
lm(formula = y	~ x)							
Residuals:								
Min -0.2596	635	1Q -0.0705	81	Median -0.0066	605	3Q 0.0745	45	Max 0.246283
Coefficients:								
	Estimat	te	Std. Er	ror	t value		Pr(> t)	
(Intercept)	-1.6662	21	0.09543	3	-17.46		<2e-16	***
X	0.8527	6	0.0230	8	36.94		<2e-16	***
Signif. codes: (0 '***' 0.0	01 '**' 0	.01 '*' 0	.05 '.' 0. ⁻	1''1			
Residual standa Multiple R-Squa	ard error ared: 0.9	r: 0.112 (9565,	on 62 de Adjustee	egrees o d R-squa	of freedo ared: 0.9	m 9558		
F-statistic: 136	s on Ta	na 62 D	⊢, p-va	iue: < 2 .	26-16			

Pearson's product-moment correlation

data: x and y t = 36.9416, df = 62, p-value < 2.2e-16 alternative hypothesis: true correlation is not equal to 0 95 percent confidence interval: 0.9639668 0.9866418 sample estimates: cor 0.97803

Abbildung A 7: Vergleichsstandardabweichung s_R aus Ringversuchen über die Bodengehalte c der Ringversuchsproben für **Quecksilber** (s_R , c in Massefraktion 1 mg/kg = 10⁻⁶).

Analysis of Variance Table - Quecksilber

Response: y								
	Df	Sum So	q	Mean S	Sq	F value		Pr(>F)
Х	1	40.343		40.343	•	1812.2		< 2.2e-16 ***
Residuals	58	1.291		0.022				
Signif. codes:	0 '***' 0.0	001 '**' 0).01 '*' 0	.05 '.' 0.	1''1			
Call: Im(formula = y	~ x)							
Residuals: Min -0.340	51	1Q -0.0794	17	Median -0.0220	ı)8	3Q 0.0664 ⁻	7	Max 0.45428
Coefficients:								
	Estimat	te	Std. Er	ror	t value		Pr(> t)	
(Intercept)	-1.5414	8	0.1297	9	-11.88		<2e-16	***
x	0.8774	0	0.0206	1	42.57		<2e-16	***
 Signif. codes:	0 '***' 0.0	001 '**' 0).01 '*' 0	.05 '.' 0.	1''1			
Residual stand Multiple R-Squ F-statistic: 181	ard erroi ared: 0.9 12 on 1 a	r: 0.1492 969, A Ind 58 D	2 on 58 d Adjustec F, p-va	degrees l R-squa lue: < 2.	of freed red: 0.9 2e-16	om 685		

Pearson's product-moment correlation

data: x and y t = 42.5695, df = 58, p-value < 2.2e-16 alternative hypothesis: true correlation is not equal to 0 95 percent confidence interval: 0.9738717 0.9906714 sample estimates: cor 0.9843712

Log-lineare Regression für Zink

Abbildung A 8: Vergleichsstandardabweichung s_R aus Ringversuchen über die Bodengehalte c der Ringversuchsproben für **Zink** (s_R , *c* in Massefraktion 1 mg/kg = 10^{-6}).

Analysis of Variance Table - Zink

Response: y								
	Df	Sum So	1	Mean S	Sq	F value		Pr(>F)
х	1	83.618	-	83.618	-	3039.4		< 2.2e-16 ***
Residuals	58	1.596		0.028				
Signif. codes:	0 '***' 0	.001 '**' 0	.01 '*' 0	.05 '.' 0.	1''1			
Call: Im(formula = y	′ ∼ x)							
Residuals: Min -0.960	78	1Q -0.0456	5	Mediar 0.0174	า 3	3Q 0.07764	1	Max 0.26560
Coefficients:								
	Estima	ate	Std. Er	ror	t value		Pr(> t)	
(Intercept) x	-1.283 0.967	29 59	0.0745 0.0175	6 5	-17.21 55.13		<2e-16 <2e-16	***
 Signif. codes:	0 '***' 0	.001 '**' 0	.01 '*' 0	.05 '.' 0.	1''1			
Residual stand	dard erro	or: 0.1659 9813	on 58 Adjuste	degrees d R-sau	of freed	om 981		

F-statistic: 3039 on 1 and 58 DF, p-value: < 2.2e-16

Pearson's product-moment correlation

data: x and y t = 55.1306, df = 58, p-value < 2.2e-16 alternative hypothesis: true correlation is not equal to 0 95 percent confidence interval: 0.9842402 0.9943922 sample estimates: cor 0.990593

Log-lineare Regression für Naphthalin

Naphthalin

Abbildung A 9: Vergleichsstandardabweichung s_R aus Ringversuchen über die Bodengehalte c der Ringversuchsproben für **Naphthalin** (s_R , c in Massefraktion 1 mg/kg = 10⁻⁶).

Analysis of Variance Table - Naphthalin

Response: y								
	Df	Sum S	Sq	Mean S	Sq	F value		Pr(>F)
Х	1	10.23	04	10.230	4	1685.3		< 2.2e-16 ***
Residuals	30	0.182	1	0.0061				
 Signif codes:	0 '***' 0	001 '**'	0 01 '*' (05''0	1''1			
olgrin. coues.	0 0	.001	0.01 (.05 . 0.				
Call								
lm(formula = y	′ ∼ x)							
Residuals:								
Min		1Q		Mediar	า	3Q		Max
-0.152	204	-0.052	2072	-0.0074	404	0.05839	94	0.169875
Coefficients:								
	Estim	ate	Std. Er	rror	t value		Pr(> t)	
(Intercept)	-0.642	240	0.1460)9	-4.397		0.00012	27 ***
x	0.942	55	0.0229	96	41.053		< 2e-16	***
Signif. codes:	0 '***' 0	.001 '**'	0.01 '*' 0).05 '.' 0.	1''1			
Residual stand	dard err	or: 0.077	791 on 30) degree	s of free	dom		
Multiple R-Squ	uared: 0	.9825,	Adjuste	d R-squ	ared: 0.9	9819		
F-statistic: 16	85 on 1	and 30	DF, p-va	alue: < 2.	2e-16			

Pearson's product-moment correlation

data: x and y t = 41.0529, df = 30, p-value < 2.2e-16 alternative hypothesis: true correlation is not equal to 0 95 percent confidence interval: 0.9818973 0.9957488 sample estimates: cor 0.9912168

Log-lineare Regression für Acenaphthylen

Acenaphthylen

Abbildung A 10: Vergleichsstandardabweichung s_R aus Ringversuchen über die Bodengehalte c der Ringversuchsproben für **Acenaphthylen** (s_R , c in Massefraktion, 1 mg/kg = 10⁻⁶).

Analysis of Variance Table - Acenaphthylen

Response: y								
	Df	Sum So	q	Mean S	Sq	F value		Pr(>F)
х	1	9.3648		9.3648	•	613.48		< 2.2e-16 ***
Residuals	29	0.4427		0.0153				
Signif. codes:	0 '***' 0.0	001 '**' C).01 '*' 0	.05 '.' 0.	1''1			
Call: lm(formula = y	~ x)							
Residuals:								
Min -0.348	61	1Q -0.0430)2	Median 0.0409	7	3Q 0.0756	C	Max 0.24167
Coefficients:								
	Estima	te	Std. Er	ror	t value		Pr(> t)	
(Intercept)	-0.1376	68	0.2651	0	-0.519		0.607	
x	1.0064	1	0.0406	3	24.768		<2e-16	***
Signif. codes:	0 '***' 0.0	JO1 '**' C	0.01 '*' 0	.05 '.' 0.'	1''1			
Residual stand	lard erro	r: 0.1236	6 on 29 o	degrees	of freed	om		
F-statistic: 613	.5 on 1 a	ind 29 D	F, p-va	lue: < 2.	2e-16			

Pearson's product-moment correlation

data: x and y t = 24.7685, df = 29, p-value < 2.2e-16 alternative hypothesis: true correlation is not equal to 0 95 percent confidence interval: 0.9527053 0.9890510 sample estimates: cor 0.9771705

Log-lineare Regression für Acenaphthen

Acenaphthen

Abbildung A 11: Vergleichsstandardabweichung s_R aus Ringversuchen über die Bodengehalte c der Ringversuchsproben für **Acenaphthen** (s_R , c in Massefraktion, 1 mg/kg = 10⁻⁶).

Analysis of Variance Table - Acenaphthen

Response: y								
	Df	Sum So	9	Mean S	5q	F value		Pr(>F)
Х	1	7.7906		7.7906	-	411.31		< 2.2e-16 ***
Residuals	29	0.5493		0.0189				
Signif. codes:	0 '***' 0.0	001 '**' C	0.01 '*' 0.	.05 '.' 0.	1''1			
Call								
lm/formula – v	~ Y)							
ini(ioinidia – y	λ)							
Residuals:								
Min		1Q		Median		3Q		Max
-0.220	1636	-0.1171	999	-0.0007	'695	0.1036	787	0.2847099
o (11 · · ·								
Coefficients:			o					
<i>/</i> / · · · · ·	Estima	te	Std. Eri	ror	t value		Pr(> t)	~ ~ * * *
(Intercept)	-1.108	99	0.2823	3	-3.927		0.00048	38 ^ ^ ^
х	0.8874	1	0.04376	0	20.281		< 2e-16) ***
 Cianif and an	0 I***I 0 I	<u></u>	01 I*I 0	05110				
Signii. codes:	0 0.0	JUI (0.01 0	.05 . 0.	1 1			
Residual stand	ard erro	r: 0 1376	3 on 29 d	tearees	of freed	om		
Multiple R-Sou	ared: 0.9	9341.	Adjusted	d R-sau	ared: 0.9	319		
F-statistic: 411	.3 on 1 a	ind 29 D	F. p-val	lue: < 2.	2e-16			
			1		_			

Pearson's product-moment correlation

data: x and y t = 20.2807, df = 29, p-value < 2.2e-16 alternative hypothesis: true correlation is not equal to 0 95 percent confidence interval: 0.9310139 0.9838918 sample estimates: cor 0.9665075

Log-lineare Regression für Fluoren

Abbildung A 12: Vergleichsstandardabweichung s_R aus Ringversuchen über die Bodengehalte c der Ringversuchsproben Fluoren (s_R , c in Massefraktion, 1 mg/kg = 10⁻⁶).

Analysis of Variance Table - Fluoren

Response: y								
	Df	Sum So	q	Mean S	Sq	F value		Pr(>F)
Х	1	11.808	9	11.808	9	1349.3		< 2.2e-16 ***
Residuals	30	0.2626		0.0088				
Signif. codes:	0 '***' 0.0	001 '**' C	0.01 '*' 0	.05 '.' 0.	1''1			
Call:								
Im(formula = y)	~ x)							
Residuals:								
Min		1Q		Median		3Q		Max
-0.2280	087	-0.0580)69	-0.0021	24	0.0696	30	0.217633
Coefficients:								
	Estima	te	Std. Er	ror	t value		Pr(>ltl)	
(Intercept)	-1.1832	24	0.1540	3	-7.682		1.44e-0	8 ***
X	0.8881	9	0.0241	8	36.733		< 2e-16	***
Signif. codes:	0 '***' 0.0	001 '**' C	0.01 '*' 0	.05 '.' 0.	1''1			
						el e vee		
Residual stand	ard errol	r: 0.0935		degree	s of free			
F atatiation 10	areo: 0.9	1100, md 20 D	Adjuste	u H-squa	areo: 0.5	1/15		
r-statistic: 134	19 011 1 9	uiu 30 D	г, p-va	iue. < 2.	26-10			

Pearson's product-moment correlation

data: x and y t = 36.7332, df = 30, p-value < 2.2e-16 alternative hypothesis: true correlation is not equal to 0 95 percent confidence interval: 0.9774888 0.9947045 sample estimates: cor 0.9890653

Log-lineare Regression für Phenanthren

Phenanthren

Abbildung A 13: Vergleichsstandardabweichung s_R aus Ringversuchen über die Bodengehalte c der Ringversuchsproben für **Phenanthren** (s_R , c in Massefraktion, 1 mg/kg = 10⁻⁶).

Analysis of Variance Table - Phenanthren

Response: y								
	Df	Sum S	Sq	Mear	ı Sq	F value)	Pr(>F)
х	1	10.40	08	10.40	800	904.67		< 2.2e-16 ***
Residuals	30	0.3449	9	0.011	5			
Signif. codes:	0 '***' (0.001 '**'	0.01 '*'	0.05 '.' (0.1''1			
Call:								
lm(formula = y	y ~ x)							
Residuals:								
Min		10		Media	an	30		Max
-0.219	9253	-0.051	908	-0.00	4009	0.0623	84	0.198656
Coefficients:								
	Estim	ate	Std. E	Error	t value		Pr(> t)	
(Intercept)	-1.15	509	0.162	227	-7.118		6.44e-0	8 ***
Х	0.905	577	0.030)11	30.078		< 2e-16) ***
Signif codes:	<u>م '***' (</u>	י**י 1001	0 01 '*'	0.05.11	01''1			
olymin. coues.	0 (0.01	0.05 . 0	0.1 1			

Residual standard error: 0.1072 on 30 degrees of freedom Multiple R-Squared: 0.9679, Adjusted R-squared: 0.9668 F-statistic: 904.7 on 1 and 30 DF, p-value: < 2.2e-16

Pearson's product-moment correlation

data: x and y t = 30.0777, df = 30, p-value < 2.2e-16 alternative hypothesis: true correlation is not equal to 0 95 percent confidence interval: 0.9667842 0.9921539 sample estimates: cor 0.9838206

Log-lineare Regression für Anthracen

Anthracen

Abbildung A 14: Vergleichsstandardabweichung s_R aus Ringversuchen über die Bodengehalte c der Ringversuchsproben für **Anthracen** (s_R , c in Massefraktion, 1 mg/kg = 10⁻⁶).

Analysis of Variance Table - Anthracen

Response: y								
	Df	Sum S	q	Mean S	Sq	F value		Pr(>F)
Х	1	9.9965		9.9965		681		2.2e-16 ***
Residuals	30	0.4404		0.0147				
Signif. codes:	0 '***' 0.0	001 '**' (0.01 '*' 0	.05 '.' 0.	1''1			
Call:								
lm(formula = y)	~ x)							
,	,							
Residuals:								
Min		1Q		Median	1	3Q		Max
-0.177	43	-0.0797	75	-0.0362	27	0.08738	3	0.22949
Coefficients:								
Obemcients.	Ectimo	to	Std Er	ror	t valuo		Dr(> t)	
(Intercent)	0.045	1 0 70		5	1 200		1 (2 1)	20 ***
(intercept)	-0.9407	12	0.2190	0 1	-4.300		0.00010)) * ***
X	0.9188	4	0.0352	1	26.096		< 20-10)
Signif codes:	<u>م '***' م</u>	001 '**' (ח י*י ח ר	05''0	1'' 1			
Signin. coues.	0 0.	001 (5.01 0	.05 . 0.				
Residual stand	lard erro	r: 0.1212	2 on 30 d	dearees	of freed	om		
Multiple R-Sau	ared: 0.9	9578.	Adjuste	d R-sau	ared: 0.9	9564		
F-statistic: 68	1 on 1 a	nd 30 D	F. p-val	ue: < 2.2	2e-16	-		
			· ·					

Pearson's product-moment correlation

data: x and y t = 26.0961, df = 30, p-value < 2.2e-16 alternative hypothesis: true correlation is not equal to 0 95 percent confidence interval: 0.9563412 0.9896451 sample estimates: cor 0.9786758

Log-lineare Regression für Fluoranthen

Fluoranthen

Abbildung A 15: Vergleichsstandardabweichung s_R aus Ringversuchen über die Bodengehalte c der Ringversuchsproben für **Fluoranthen** (s_R , c in Massefraktion, 1 mg/kg = 10⁻⁶).

Analysis of Variance Table - Fluoranthen

Response: y								
	Df	Sum So	q	Mean S	Sq	F value		Pr(>F)
Х	1	7.5790		7.5790	•	341.72		< 2.2e-16 ***
Residuals	30	0.6654		0.0222				
Signif. codes:	0 '***' 0.	001 '**' 0).01 '*' 0	.05 '.' 0.	1''1			
Call: Im(formula = y	~ x)							
Residuals: Min -0.200	37	1Q -0.0625	50	Median -0.0325	59	3Q 0.0437	5	Max 0.59637
Coefficients:								
	Estima	te	Std. Er	ror	t value		Pr(> t)	
(Intercept)	-1.2552	23	0.2543	7	-4.935		2.8e-05	***
x	0.8896	4	0.0481	3	18.486		< 2e-16	***
Signif. codes:	0 '***' 0.	001 '**' 0).01 '*' 0	.05 '.' 0.	1''1			
Residual stanc Multiple R-Squ F-statistic: 341	lard erro ared: 0.9 .7 on 1 a	r: 0.1489 9193, and 30 D) on 30 (Adjuste F, p-va	degrees d R-squa lue: < 2.	of freed ared: 0.9 2e-16	om 9166		

Pearson's product-moment correlation - Fluoranthen

data: x and y t = 18.4857, df = 30, p-value < 2.2e-16 alternative hypothesis: true correlation is not equal to 0 95 percent confidence interval: 0.9165230 0.9798888 sample estimates: cor 0.9587984

Log-lineare Regression für Pyren

Abbildung A 16: Vergleichsstandardabweichung s_R aus Ringversuchen über die Bodengehalte c der Ringversuchsproben für **Pyren** (s_R , *c* in Massefraktion, 1 mg/kg = 10⁻⁶).

Analysis of Variance Table - Pyren

Response: y							
	Df	Sum So	I I	Mean Sq	F va	lue	Pr(>F)
х	1	7.6614		7.6614	596.	74	< 2.2e-16 ***
Residuals	30	0.3852	(0.0128			
Signif. codes:	0 '***' 0	0.001 '**' 0	.01 '*' 0.0)5 '.' 0.1 ' ' 1			
Call: Im(formula = y	′ ∼ x)						
Residuals: Min		1Q	I	Median	3Q		Max
-0.220	36	-0.0557	8 -	-0.01391	0.05	059	0.30861
Coefficients:							
	Estim	ate	Std. Erro	or tva	lue	Pr(> t)
(Intercept)	-1.163	36	0.1981	-5.8	574	1.98e	06 ***
x	0.904	0	0.0370	24.4	428	< 2e-1	6 ***
Signif. codes:	0 '***' 0	0.001 '**' 0	.01 '*' 0.0)5 '.' 0.1 ' ' 1			
Residual stand	dard err	or: 0.1133	on 30 de	egrees of fr	eedom		
Multiple R-Sau	Jared: 0	.9521.	Adiusted	R-squared:	0.9505		

F-statistic: 596.7 on 1 and 30 DF, p-value: < 2.2e-16

Pearson's product-moment correlation

data: x and y t = 24.4283, df = 30, p-value < 2.2e-16 alternative hypothesis: true correlation is not equal to 0 95 percent confidence interval: 0.9504746 0.9882267 sample estimates: cor 0.9757732

Log-lineare Regression für Benzo(a)anthracen

Benzo(a)anthracen

Abbildung A 17:Vergleichsstandardabweichung s_R aus Ringversuchen über die Bodengehalte c der Ringversuchsproben für **Benzo(a)anthracen** (s_R , c in Massefraktion, 1 mg/kg = 10⁻⁶).

Analysis of Variance Table – Benzo(a)anthracen

Response: y	Df	Cum C	` ~	Maan	2~	Evolue		
x Residuals	1 30	6.5225 0.2566	5 5 6	6.5225 7 0.0086		762.44	;	< 2.2e-16 ***
Signif. codes:	0 '***' 0	.001 '**'	0.01 '*' ().05 '.' 0.	1''1			
Call: Im(formula = y	~ x)							
Residuals: Min -0.186	5980	1Q -0.061	0504	Mediar 0.0005	ו 947	3Q 0.0546	086	Max 0.2411961
Coefficients:	:		0.1 5					
(Intercept) x	-1.220 0.8948	ate 177 35	0.1850 0.0324	rror)8 11	t value -6.596 27.612		Pr(> t) 2.67e-0 < 2e-16)7 *** S ***
Signif. codes:	0 '***' 0	.001 '**'	0.01 '*' 0	0.05 '.' 0.	1''1			
Residual stand (1 observatio Multiple R-Squ F-statistic: 762	dard erro n delete Jared: 0 2.4 on 1	or: 0.092 d due to .9621, and 30 [249 on 30 missing Adjuste DF, p-va	0 degree gness) ed R-squ alue: < 2	es of free ared: 0.9 .2e-16	edom 9609		
Pearson's prod	duct-mo	ment co	rrelation					

data: x and y t = 27.6123, df = 30, p-value < 2.2e-16 alternative hypothesis: true correlation is not equal to 0 95 percent confidence interval: 0.9608255 0.9907249 sample estimates: cor 0.9808884

Log-lineare Regression für Chrysen

Abbildung A 18:Vergleichsstandardabweichung s_R aus Ringversuchen über die Bodengehalte c der Ringversuchsproben für **Chrysen** (s_R , c in Massefraktion, 1 mg/kg = 10⁻⁶).

Analysis of Variance Table - Chrysen

Response: y							
	Df	Sum Sq	Mean	n Sq	F value	!	Pr(>F)
х	1	6.8221	6.822	21	837.58		< 2.2e-16 ***
Residuals	30	0.2444	0.008	81			
Signif. codes:	0 '***' 0	.001 '**' 0.01	'*' 0.05 '.' (0.1''1			
Call: Im(formula = v	r ~ x)						
Jan (Lonnand J	,,,						
Residuals: Min		10	Media	an	30		Max
-0.2128	8	-0.05273	-0.01	726	0.0412	4	0.14945
Coefficients:							
	Estima	ate Sto	d. Error	t value		Pr(> t)	
(Intercept)	-0.864	22 0.1	8636	-4.637		6.47e-0)5 ***
X	0.9537	71 0.0	3295	28.941		< 2e-16	S ***
Signif. codes:	0 '***' 0	.001 '**' 0.01	'*' 0.05 '.' (0.1''1			
Residual stand	dard erro	or: 0.09025 o	n 30 degre	es of free	edom		

Multiple R-Squared: 0.9654, Adjusted R-squared: 0.9643 F-statistic: 837.6 on 1 and 30 DF, p-value: < 2.2e-16

Pearson's product-moment correlation

data: x and y t = 28.9411, df = 30, p-value < 2.2e-16 alternative hypothesis: true correlation is not equal to 0 95 percent confidence interval: 0.9642171 0.9915391 sample estimates: cor 0.9825585

Log-lineare Regression für Benzo(b)fluoranthen

Benzo(b)fluoranthen

Abbildung A 19: Vergleichsstandardabweichung s_R aus Ringversuchen über die Bodengehalte c der Ringversuchsproben für **Benzo(b)fluoranthen** (s_R , c in Massefraktion, 1 mg/kg =10⁻⁶).

Analysis of Variance Table – Benzo(b)fluoranthen

Response: y								
	Df	Sum So	7	Mean S	Sq	F value		Pr(>F)
х	1	6.8849	•	6.8849	•	965		< 2.2e-16 ***
Residuals	28	0.1998		0.0071				
 Signif codes:	0 '***' 0 (01 '**' N	01 '*' 0	05''0	1''1			
olgrin: codes.	0 0.0	001 0	.01 0	.00 . 0.				
Call:								
Im(formula = y)	~ x)							
Residuals:								
Min		1Q		Median		3Q		Max
-0.131	108	-0.0574	73	-0.0097	'29	0.0371	54	0.230434
Coefficients:								
	Estimat	te	Std. Er	ror	t value		Pr(> t)	
(Intercept)	-0.6442	2	0.1804		-3.571		0.0013	1 **
х	0.9818		0.0316		31.064		< 2e-16	***
 Signif oodoo:	0 '***' 0 (101 '**' 0	01 '*' 0	05 ' ' 0 '				
Signin: coues.	0 0.0	001 0	.01 0	.05 . 0.	1 1			
Residual stand	ard erro	r: 0.0844	7 on 28	degree	s of free	dom		

Multiple R-Squared: 0.9718, Adjusted R-squared: 0.9708 F-statistic: 965 on 1 and 28 DF, p-value: < 2.2e-16

Pearson's product-moment correlation

data: x and y t = 31.0645, df = 28, p-value < 2.2e-16 alternative hypothesis: true correlation is not equal to 0 95 percent confidence interval: 0.9700469 0.9932968 sample estimates: cor 0.9858005

Log-lineare Regression für Benzo(k)fluoranthen

Benzo(k)fluoranthen

Abbildung A 20: Vergleichsstandardabweichung s_R aus Ringversuchen über die Bodengehalte c der Ringversuchsproben **Benzo(k)fluoranthen** (s_R , c in Massefraktion, 1 mg/kg = 10⁻⁶).

Analysis of Variance Table – Benzo(k)fluoranthen

Respo	nse: y								
-	Df	Sum So	q	Mean S	Sq	F value		Pr(>F)	
х	1	7.9266	•	7.9266	•	876.17		< 2.2e-	16 ***
Residu	als	28 0.25	33	0.0090					
Signif.	codes: () '***' 0.(001 '**' 0).01 '*' 0	.05 '.' 0. ⁻	1''1			
Call: Im(forn	nula = v [,]	~ X)							
	nulu – y	λ)							
Residu	als:		10						
	-0.2579	76	-0.0715	593	0.00712	24	3Q 0.08658	38	Max 0.126241
Coeffic	eints:								
		Estimat	te	Std. Er	ror	t value		Pr(> t)	
(Interce	ept)	-0.5376	63	0.2022	4	-2.658		0.0128	*
х		0.9994	8	0.0337	7	29.600		<2e-16	***
 Signif.	codes: () '***' 0.0	001 '**' 0).01 '*' 0	.05 '.' 0. ⁻	1''1			
Residu	al standa	ard erro	r: 0.0951	l 1 on 28	degree	s of free	dom		

Multiple R-Squared: 0.969, Adjusted R-squared: 0.9679 F-statistic: 876.2 on 1 and 28 DF, p-value: < 2.2e-16

Pearson's product-moment correlation

data: x and y t = 29.6002, df = 28, p-value < 2.2e-16 alternative hypothesis: true correlation is not equal to 0 95 percent confidence interval: 0.9671068 0.9926303 sample estimates: cor 0.9843945

Log-lineare Regression für Benzo(a)pyren

Benzo(a)pyren

Abbildung A 21: Vergleichsstandardabweichung s_R aus Ringversuchen über die Bodengehalte c der Ringversuchsproben für **Benzo(a)pyren** (s_R , c in Massefraktion, 1 mg/kg = 10⁻⁶).

Analysis of Variance Table – Benzo(a)pyren

Response: y								
	Df	Sum S	g	Mean S	Sq	F value		Pr(>F)
х	1	8.2018	3	8.2018	•	744.32		< 2.2e-16 ***
Residuals	34	0.3747	7	0.0110				
 Cignif and an	0 I***I 0	001 !**!	0 01 1*1 0					
Signii. codes:	0 0	.001	0.01 0	.05 . 0.	1 1			
Call:	``							
Im(formula = y	′∼x)							
Residuals:								
Min		1Q		Mediar	Ì	3Q		Max
-0.204	82	-0.059	68	0.0100	2	0.06812	2	0.21397
Coefficients:								
	Estima	ate	Std. Er	ror	t value		Pr(> t)	
(Intercept)	-1.028	96	0.1955	6	-5.262		7.86e-0	6 ***
x	0.9268	36	0.0339	7	27.282		< 2e-16) ***
	0 1+++1 0	0.04 1**1	0 04 1+1 0	05110				
Signif. codes:	0 0	.001 ***	0.01 ~ 0	.05 . 0.	11			

Residual standard error: 0.105 on 34 degrees of freedom Multiple R-Squared: 0.9563, Adjusted R-squared: 0.955 F-statistic: 744.3 on 1 and 34 DF, p-value: < 2.2e-16

Pearson's product-moment correlation

data: x and y t = 27.2823, df = 34, p-value < 2.2e-16 alternative hypothesis: true correlation is not equal to 0 95 percent confidence interval: 0.9567691 0.9887762 sample estimates: cor 0.9779143

Log-lineare Regression für Indeno(1,2,3-cd)pyren

Indeno(1,2,3-cd)pyren

Abbildung A 22: Vergleichsstandardabweichung s_R aus Ringversuchen über die Bodengehalte c der Ringversuchsproben für **Indeno(1,2,3-cd)pyren** (s_R c in Massefraktion 1 mg/kg=10⁻⁶).

Analysis of Variance Table – Indeno(1,2,3-cd)pyren

Response: y								
	Df	Sum Sc	2	Mean S	Sq	F value		Pr(>F)
х	1	7.8614		7.8614	•	1037.4		< 2.2e-16 ***
Residuals	30	0 2273		0.0076				
	00	0.2270		0.0070				
Signif. codes:	0 '***' 0.0	0 '**' 0	.01 '*' 0	.05 '.' 0.1	1''1			
Call:								
lm(formula = y	~ x)							
Residuals:								
Min		10		Median		30		Max
-0 1813	244	-0.0376	49	0 00198	29	0 0509	25	0 180317
0.1012	_ 7 7	0.0070		0.00100		0.00007	_0	0.100017
Coefficients:								
	Estimat	te	Std. Eri	ror	t value		Pr(> t)	
(Intercept)	-0.9214	ŀ	0.1706		-5.401		7.5e-06	***
x	0.9339		0.0290		32.209		< 2e-16	***
Signif. codes:	0 '***' 0.0	0 '**' 0	.01 '*' 0	.05 '.' 0.1	''1			
Residual stand	ard erro	0 0870	5 on 30	dearee	s of free	dom		
Multiple R-Sou	ared 0 0	1719	Adjuster	d R-sauz	ared 0 9	71		
F-statistic: 103	87 on 1 a	ind 30 D	F n-val	lue - 2 - 2 -	2e-16			
1 514115110. 100			· , p va					

Pearson's product-moment correlation

data: x and y t = 32.2091, df = 30, p-value < 2.2e-16 alternative hypothesis: true correlation is not equal to 0 95 percent confidence interval: 0.9709138 0.9931404 sample estimates: cor 0.9858474

Log-lineare Regression für Dibenzo(a,h)anthracen

Dibenzo(a,h)anthracen

Abbildung A 23: Vergleichsstandardabweichung s_R aus Ringversuchen über die Bodengehalte c der Ringversuchsproben für **Dibenzo(a,h)anthracen** (s_R , c in Massefraktion, 1 mg/kg = 10⁻⁶).

Analysis of Variance Table – Dibenzo(a,h)anthracen

Response: y		0 0						
v	Df 1	Sum So	q	Mean 3	q	F value		Pr(>F)
^ Residuals	30	0.4700		0.4780		100.55		< 2.26-10
	00	0.2000		0.0000				
Signif. codes:	0 '***' 0	.001 '**' 0	0.01 '*' 0	.05 '.' 0.	1''1			
Call								
lm(formula = y)	/ ~ x)							
,	,							
Deciduala								
Min		10		Mediar	1	30		Max
-0.180)547	-0.0596	658	0.0065	03	0.07406	68	0.172355
Coefficients:	F ation	- 4 -			A			
(Intercept)	ESTIM		510. Er	ror			Pr(> t)	*
(intercept) X	0.968	8	0.2200		27.683		<2e-16	***
		-						
Signif. codes:	0 '***' 0	.001 '**' 0	0.01 '*' 0	.05 '.' 0.	1''1			
Desidual stan	dard arr	or: 0 0010		dograa	a of frag	dom		
Multiple R-Sou	uaro en Jared: 0	9623	Adjuste	d R-sau	s of free ared: 0 9	0011 9611		
F-statistic: 766	5.3 on 1	and 30 D	F, p-va	lue: < 2.	2e-16			

Pearson's product-moment correlation

data: x and y t = 27.6827, df = 30, p-value < 2.2e-16 alternative hypothesis: true correlation is not equal to 0 95 percent confidence interval: 0.961017 0.990771 sample estimates: cor 0.9809828

Log-lineare Regression für Benzo(g,h,i)perylen

Benzo(g,h,i)perylen

Abbildung A 24: Vergleichsstandardabweichung s_R aus Ringversuchen über die Bodengehalte c der Ringversuchsproben für **Benzo(g,h,i)perylen** (s_R , c in Massefraktion, 1 mg/kg = 10⁻⁶).

Analysis of Variance Table – Benzo(g,h,i)perylen

Response: y								
	Df	Sum S	a	Mean S	Sa	F value		Pr(>F)
x	1	7.6077	, '	7.6077	•	960.77		< 2.2e-16 ***
Residuals	30	0 2376	:	0.0079		000111		12.20
103100213	00	0.2070	,	0.0075				
Cignif and an	0 I***I 0	001 1**1			4 1 1 4			
Signii. codes:	0 0.	.001 0	0.01 0	.05 . 0.	1 1			
.								
Call:								
lm(formula = y	~ x)							
Residuals:								
Min		1Q		Mediar	l	3Q		Max
-0.168	82	-0.055	66	0.0142	6	0.0541	1	0.18944
Coefficients:								
	Fstime	ato	Std Er	ror	t value		Pr(\ltl)	
(Intorcont)	0 880	65	0 1792	101	1 001		2 200 0	5 ***
(intercept)	-0.009	00	0.1702	4	20.006		2.090-0	· ***
X	0.9403	59	0.0303	4	30.990		< 20-10)
	0 14 4 4 1 0	004 1441						
Signif. codes:	0 0.	.001 **** (0.01 *** 0	.05 . 0.	11			
Residual stand	dard errc	or: 0.088	99 on 30) degree	s of free	dom		
Multiple R-Squ	ared: 0.	9697,	Adjuste	d R-squ	ared: 0.9	9687		
F-statistic: 960).8 on 1 a	and 30 E	DF, p-va	lue: < 2.	2e-16			

Pearson's product-moment correlation

data: x and y t = 30.9963, df = 30, p-value < 2.2e-16 alternative hypothesis: true correlation is not equal to 0 95 percent confidence interval: 0.9686642 0.9926034 sample estimates: cor 0.9847439

Log-lineare Regression für die Summe der 16 PAK

PAK 16

Abbildung A 25: Vergleichsstandardabweichung s_R aus Ringversuchen über die Bodengehalte c der Ringversuchsproben für die **Summe der 16 polycyclischen aromatischen Kohlenwasserstoffe (PAK) nach EPA** (s_R , c in Massefraktion, 1 mg/kg = 10⁻⁶).

Analysis of Variance Table - Summe der 16 polycyclischen aromatischen Kohlenwasserstoffe (PAK) nach EPA

Response: y								
	Df	Sum Sc	7	Mean S	5q	F value		Pr(>F)
Х	1	8.4173	-	8.4173		884.9		< 2.2e-16 ***
Residuals	38	0.3615		0.0095				
Signif. codes: (0.0 '***' 0.0	001 '**' 0	.01 '*' 0.	.05 '.' 0. ⁻	1''1			
Call: Im(formula = y	~ x)							
Residuals: Min -0.1896	67	1Q -0.0622	2	Median -0.0104	-6	3Q 0.06783	3	Max 0.23714
Coefficients:								
	Estimat	e	Std. Err	ror	t value		Pr(> t)	
(Intercept)	-1.1155	54	0.1350	7	-8.259		5.23e-1	0 ***
x 	0.91006	6	0.03059	9	29.747		< 2e-16	***
Signif. codes: (0.0 '***'	01 '**' 0	.01 '*' 0	.05 '.' 0.	1''1			
Residual standa Multiple R-Squa F-statistic: 884.	ard error ared: 0.9 9 on 1 a	:: 0.0975 588, 1 nd 38 D	53 on 38 Adjusted F, p-val	degree: d R-squa lue: < 2.	s of free ared: 0.9 2e-16	dom 1577		

Pearson's product-moment correlation - Summe 16 PAK

data: x and y t = 29.7473, df = 38, p-value < 2.2e-16 alternative hypothesis: true correlation is not equal to 0 95 percent confidence interval: 0.9607407 0.9890247 sample estimates: cor 0.9791964

ANHANG B: UNSICHERHEIT DER WASSERGEHALTSBESTIMMUNG

Boden	Wassergehalt (%)	Mittelwert (%)	s (%)	relative s (%) = u	
	0,61				
IME-01A	0,59	0,60	0,01	1,96	
	0,60				
	1,60				
IME-02A	1,62	1,64	0,05	3,26	
	1,70				
	2,61				
IME-03G	2,61	2,62	0,01	0,40	
	2,63				
	1,43				
IME-04A	1,40	1,42	0,02	1,21	
	1,43				
	3,03				
IME-05G	2,94	2,98	0,04	1,49	
	2,96				
	10,56				
IME-06A	10,76	10,67	0,10	0,94	
	10,70				
Mittelwert		3,32	0,04	1,54	

Tabelle A 1: Wassergehalte der Referenzböden

Boden	Sand [%]	Schluff [%]	Ton [%]	Bodenart
IME-01-A-1	71,54	23,45	5,01	SI2
IME-01-A-2	71,31	23,63	5,06	SI2
IME-01-A-3	70,34	24,23	5,43	SI2
IME-02-A-1	1,56	83,24	15,19	Ut3
IME-02-A-2	1,59	83,57	14,84	Ut3
IME-02-A-3	0,48	83,25	16,27	Ut3
IME-03-G-1	19,50	51,99	28,51	Lu
IME-03-G-2	17,95	52,76	29,29	Lu
IME-03-G-3	15,09	55,19	29,72	Lu
IME-04-A-1	85,71	10,29	4,00	Su2
IME-04-A-2	84,66	10,73	4,61	Su2
IME-04-A-3	85,62	9,66	4,72	Ss
IME-05-G-1	21,12	68,13	10,76	Ut2
IME-05-G-2	20,95	64,54	14,51	Uls
IME-05-G-3	21,31	62,89	15,80	Uls
IME-06-A-1	13,38	53,79	32,83	Tu3
IME-06-A-2	12,02	52,68	35,30	Tu3
IME-06-A-3	12,86	51,65	35,48	Tu3

Tabelle A 2: Bodenarten der Referenzböden

ANHANG C: ABBILDUNGEN ZUM KAPITEL 4.3

BRG: Grünland, BUR: Rieselfeld, Berlin, Vejel: Boden, Dänemark; 02-G: Referenzboden Abbildung A 26: Kombinierte Messunsicherheit u_c des Gehaltes von Acenaphten in Böden aus den Standardunsicherheiten der laborinternen Präzision $u(s_{Rw})$, der systematischen Messabweichung u(bias), ohne sowie mit Standardunsicherheit der Bodenproben u_{Pr} als auch als gepoolte Standardunsicherheit der vier Bodenmatrices u_{Mar} .

BRG: Grünland, BUR: Rieselfeld, Berlin, Vejel: Boden, Dänemark; 02-G: Referenzboden Abbildung A 28:Kombinierte Messunsicherheit *u_c* des Gehaltes von Phenantren in Böden aus den Standardunsicherheiten der laborinternen Präzision *u*(*s_{Rw}*), der systematischen Messabweichung *u*(*bias*), ohne sowie mit Standardunsicherheit der Bodenproben *u_{Pr}* als auch als gepoolte Standardunsicherheit der vier Bodenmatrices *u_{Mat}*.

Phenantren

BRG: Grünland, BUR: Rieselfeld, Berlin, Vejel: Boden, Dänemark; 02-G: Referenzboden Abbildung A 30: Kombinierte Messunsicherheit u_c des Gehaltes von Fluoranthen in Böden aus den Standardunsicherheiten der laborinternen Präzision $u(s_{Rw})$, der systematischen Messabweichung u(bias), ohne sowie mit Standardunsicherheit der Bodenproben u_{Pr} als auch als gepoolte Standardunsicherheit der vier Bodenmatrices u_{Mat} .

BRG: Grünland, BUR: Rieselfeld, Berlin, Vejel: Boden, Dänemark; 02-G: Referenzboden Abbildung A 32: Kombinierte Messunsicherheit *u_c* des Gehaltes von Benzo(a)anthracen in Böden aus den Standardunsicherheiten der laborinternen Präzision *u*(*s_{Rw}*), der systematischen Messabweichung *u*(*bias*), ohne sowie mit Standardunsicherheit der Bodenproben *u_{Pr}* als auch als gepoolte Standardunsicherheit der vier Bodenmatrices *u_{Mat}*.

Benzo(a)anthracen

BRG: Grünland, BUR: Rieselfeld, Berlin, Vejel: Boden, Dänemark; 02-G: Referenzboden Abbildung A 34: Kombinierte Messunsicherheit u_c des Gehaltes von Benzo(b)fluoranthen in Böden aus den Standardunsicherheiten der laborinternen Präzision $u(s_{Rw})$, der systematischen Messabweichung u(bias), ohne sowie mit Standardunsicherheit der Bodenproben u_{Pr} als auch als gepoolte Standardunsicherheit der vier Bodenmatrices u_{Mat} .

Benzo(b)fluoranthen

Benzo(k)fluoranthen

Dibenzo(a,h)anthracen

BRG: Grünland, BUR: Rieselfeld, Berlin, Vejel: Boden, Dänemark; 02-G: Referenzboden Abbildung A 36: Kombinierte Messunsicherheit u_c des Gehaltes von Dibenzo(a,h)anthracen in Böden aus den Standardunsicherheiten der laborinternen Präzision $u(s_{Rw})$, der systematischen Messabweichung u(bias), ohne sowie mit Standardunsicherheit der Bodenproben u_{Pr} als auch als gepoolte Standardunsicherheit der vier Bodenmatrices u_{Mat} .

BRG: Grünland, BUR: Rieselfeld, Berlin, Vejel: Boden, Dänemark; 02-G: Referenzboden Abbildung A 37: Kombinierte Messunsicherheit u_c des Gehaltes von Benzo(g,h,i)perylen in Böden aus den Standardunsicherheiten der laborinternen Präzision $u(s_{Rw})$, der systematischen Messabweichung u(bias), ohne sowie mit Standardunsicherheit der Bodenproben u_{Pr} als auch als gepoolte Standardunsicherheit der vier Bodenmatrices u_{Mat} .

BRG: Grünland, BUR: Rieselfeld, Berlin, Vejel: Boden, Dänemark; 02-G: Referenzboden Abbildung A 38: Kombinierte Messunsicherheit u_c des Gehaltes von Indeno(1,2,3-cd)pyren in Böden aus den Standardunsicherheiten der laborinternen Präzision $u(s_{Rw})$, der systematischen Messabweichung u(bias), ohne sowie mit Standardunsicherheit der Bodenproben u_{Pr} als auch als gepoolte Standardunsicherheit der vier Bodenmatrices u_{Mar} .

Benzo(g,h,i)perylen

ANHANG D: STAMM- UND BEZUGSLÖSUNGEN, ZWISCHENVERDÜNNUNGEN VON PCP+HCB

Name	Hersteller/ Bezugsquelle	Volumen Messkolben [ml]	Einwaage [mg]	Reinheit (%)	Gehalt der Stammlösung [mg/ml]	Lösungs- mittel
Pentachlorphenol (PCP)	Aldrich	10	13,66	98	1,339	Toluol
Hexachlorbenzol (HCB)	Aldrich	10	11,38	99	1,127	Toluol
2,4,6-Tribromphenol (TBP)	Aldrich	10	12,30	99	1,218	Toluol
β-Hexachlorcyclohexan (HCH)	Ehrenstorfer	10	12,39	99,7	1,235	Toluol

Tabelle A 3: Ausgangssubstanzen und Stammlösungen

Tabelle A 4: Zwischenverdünnungen 1 für Grundkalibrierung

Name	Volumen Stammlösung [µl]	Volumen Messkolben [ml]	Verdünnungs- faktor	Gehalt [µg/ml]	Lösungs- mittel
Pentachlorphenol (PCP)	149,40	20	133,9	10	Toluol
Hexachlorbenzol (HCB)	177,52	20	112,7	10	Toluol
2,4,6-Tribromphenol (TBP)	164,24	20	121,8	10	Toluol
β-Hexachlorcyclohexan (HCH)	161,91	20	123,5	10	Toluol

Bezugslösung	Konzentrations- faktor	Volumen Zwischen- verdünnung1 Analyt [µl]	Volumen Zwischen- verdünnung1 Interner Standard [µl]	Volumen Messkolben [ml]	Gehalt Analyt [ng/ml]	Gehalt Interner Standard [ng/ml]	Lösungs- mittel
4		80	800	10	90	800	Toluol
1	1	00	000	10	00	000	101001
2	2	160	800	10	160	800	Toluol
3	3	240	800	10	240	800	Toluol
4	4	320	800	10	320	800	Toluol
5	5	400	800	10	400	800	Toluol
6	6	480	800	10	480	800	Toluol
7	7	560	800	10	560	800	Toluol
8	8	640	800	10	640	800	Toluol
9	9	720	800	10	720	800	Toluol
10	10	800	800	10	800	800	Toluol

Tabelle A 5: Herstellung der Bezugslösungen zur Grundkalibrierung

Tabelle A 6: Zwischenverdünnungen 2 für Herstellung der dotierten Bodenproben

Name	Volumen Stammlösung	Volumen Messkolben	Verdünnungs- faktor	Gehalt	Lösungs-	Bemerkung
	[µl]	[ml]		[µg/ml]	Initter	
Pentachlorphenol (PCP)	747,00	10	13,4	100	Toluol	in einem Kolben
Hexachlorbenzol (HCB)	887,61	10	11,3	100		
2,4,6-Tribromphenol (TBP)	4106,10		6,1	200		
β-Hexachlorcyclohexan (HCH)	4047,66	25	6,2	200	Toluol	in einem Kolben

Tabelle A 7: Herstellung dotierter Bodenproben

Konzentration	Konzentrations- faktor	Volumen Zwischen- verdünnung 2 Analyt	Volumen Zwischen- verdünnung 2 Interner Standard	Extraktions- Volumen Toluol	Gehalt Analyt	Gehalt Interner Standard	Lösungs- mittel
		[µl]	[µl]	[ml]	[ng/ml]	[ng/ml]	
1	1	20	100	25	80	800	Toluol
2	2,5	50	100	25	200	800	Toluol
3	4	80	100	25	320	800	Toluol
4	5,5	110	100	25	440	800	Toluol
5	7	140	100	25	560	800	Toluol
6	8,5	170	100	25	680	800	Toluol
7	10	200	100	25	800	800	Toluol

ANHANG E: UNSICHERHEIT DES GEHALTS IN DEN DOTIERTEN BODENPROBEN

Berechnungsbeispiel für Pentachlorphenol

Reinheit PCP

Reinheit des Pentachlorphenol wird mit 0,98 angegeben. Da es keine zusätzlichen Informationen über den Unsicherheitswert gibt, wird eine Rechtecksverteilung angenommen:

$$u(PCP) = \frac{0.02}{\sqrt{3}} = 0.0115$$

Masse PCP

Die Ablesegenauigkeit der Waage beträgt 0,01 mg. <u>Volumen</u> Laut Herstellerangaben ist das Volumen des Messkolbens 20 ml \pm 0,04. Hier wird die

Laut Herstellerangaben ist das Volumen des Messkolbens 20 ml \pm 0,04. Hier wird de Standardunsicherheit unter der Annahme einer Dreiecksverteilung berechnet:

$$u(m) = \frac{0.04ml}{\sqrt{6}} = 0.0163ml$$

Berechnung des Bodengehaltes in der dotierten Probe Der Bodengehalt kann nach der folgenden Gleichung berechnet werden:

$$c = \frac{m_{Stoff} \cdot P_{Stoff}}{V_{MesskolbenI}} \cdot \frac{V_{PipetteI}}{V_{MesskolbenII}} \cdot \frac{V_{Pipette}}{m_T}$$

$$m_{Stoff} \qquad Masse des eingewogenen Stoffes$$

$$P_{Stoff} \qquad Reinheit des eingewogenen Stoffes$$

$$V \qquad Volumina der verschiedenen Messkolben oder Pipetten$$

$$TM \qquad Trockenmasse des Bodens$$

<u>Systematische Unsicherheitskomponente – Pentachlorphenol</u> Die damit verbundene Messunsicherheit der einzelnen Komponenten kann wie folgt kombiniert werden:

$$u(C_{re \operatorname{cov} ery}) = \sqrt{\left(\frac{u(P)}{P}\right)^2 + \left(\frac{u(m_{Stoff}}{m_{Stoff}}\right)^2 + \sum_{i=1}^n \left(\frac{u(V_i)}{V_i}\right)^2 + \left(\frac{u(m_T)}{m_T}\right)^2} \qquad \text{Gleichung A 2}$$

Gleichung A 1

Beschreibung	X	и(х)	<i>u(x)/x</i> (%)
Reinheit P	0,98	0,0115	1,1783
Masse m	13,66	0,01 mg	0,0732
Volumen Messkolben	10	0,0163 ml	0,1633
Volumen Pipette	250 μl	0,8165 μl	0,3266
Volumen Messkolben	10 ml	0,0163 ml	0,1633
Volumen Pipette	250 μl	0,8165 μl	0,3266
Masse Boden	5	0,02 g	0,4
$u(c_{recovery})$ (%)			1,35

Tabelle A 8: Unsicherheit de	s Gehaltes der dotierten	Bodenprobe $u(c_{recovery})$) für Pentachlorphenol
------------------------------	--------------------------	------------------------------	------------------------

Tabelle A 9: Unsicherheit des	Gehaltes der dotierten	Bodenprobe $u(c_{recovery})$) für Hexachlorbenzol
-------------------------------	------------------------	------------------------------	-----------------------

Beschreibung	X	<i>u</i> (<i>x</i>)	<i>u(x)/x</i> (%)
Reinheit P	0,99	0,0058	0,5832
Masse m	11,38 mg	0,01mg	0,0879
Volumen Messkolben	10 ml	0,0163 ml	0,1633
Volumen Pipette	250 μl	0,8165 μl	0,3266
Volumen Messkolben	10 ml	0,0163 ml	0,1633
Volumen Pipette	250 μl	0,8165 μl	0,3266
Masse Boden	5 g	0,02 g	0,4
$u(c_{recovery})$ (%)			0,88