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1. General Introduction

1.1 Overview
Fostering innovation is crucial to sustain long-term growth and prosperity. Especially
in the advanced countries of Europe, the United States and Japan, continuous
technological innovation is of major importance as these countries determine the world
technology frontier and are therefore no longer able to grow by imitating or adapting
technologies developed elsewhere. An obvious to path to spur innovation would be to

increase research and development (R&D) investment.

As Europe experienced on average a lower annual growth rate over the last decade than
the United States (0.4 percentage points lower), the so-called Lisbon Agenda was
launched in March 2000 to bolster innovation, growth and employment in the European
Union (EU). In the Lisbon strategy, the governments of the member states established
the goal transforming the EU into “the most competitive and dynamic knowledge-based
economy in the world, capable of sustainable economic growth with more and better
jobs and greater social cohesion” by 2010 [7]. One of the central ideas in this framework
is that R&D investment in the EU is too low. As a result, the Lisbon strategy includes the
goal of raising R&D expenditures to 3% of GDP. Faced with the reality of climate change
and pollution, the initial Lisbon framework was amended at the European Council in
Gothenburg in 2001 to include environment and sustainability [8]. At the current stage,
we know that many EU countries are still far away from the spending goal of 3% even
though the primal targets were supposed to be due in 2010. Consequently, the
European Commission issued an “Agenda 2020” to sketch a vision of Europe for the

21st century, which again includes the 3% goal as a headline target [9].

Against this background, the motivation for this thesis arose from the need to gain a
deeper understanding of the innovation process itself and the drivers of ideas
generation. A question immediately crossing one’s mind when talking about the Lisbon
3% target is: are we aiming at the right target? Do we employ resources devoted to R&D
efficiently or could we increase innovation through improved performance? The first

paper of this thesis offers an efficiency assessment of R&D to address on these
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questions. Given the fact that industries differ in their respective R&D intensities, it
applies techniques developed in the field of productivity and efficiency analysis to
benchmark innovation performance at the sector level across 17 OECD countries. The
main distinction between previous literature on R&D efficiency and this paper is the
emphasis of sector-specificity of innovation to account for industrial specialization
patterns. Using patents as output and R&D expenditures and human capital as inputs
for the efficiency analysis, frontier-determining industries turn out to include electrical
and optical equipment, and machinery. We observe that only specific sectors in leading

countries form the world technology frontier.

By fostering innovation, policy makers hope to revive productivity growth. As
productivity growth is known to be the main determinant of economic growth, the
relationship between innovative activity and productivity is of major interest.
Therefore, the second paper analyzes how technological transfer affects productivity.
Efforts devoted to R&D together with existing expertise on technologies and processes
determine the productivity level. Besides own knowledge, ideas originating from other
countries or sectors might spill over as technological externalities. The paper is one of
few contributions on spillover channels at the sector level. It thereby distinguishes four
channels over which knowledge can transcend boundaries and affect productivity:
national and international, intra- and inter-sectoral respectively. Knowledge generation
is approximated by the stock of patents in a certain industry. By applying recent
estimation methods in the treatment of non-stationary panel data, we obtain results
suggesting that total factor productivity growth is mainly driven by knowledge
transfers within a certain industry, either taking place within national boundaries or

flowing in from abroad.

After analyzing aspects of productivity and efficiency of innovation in the industrial
sector, the third paper adopts a firm’s perspective to study consequences of innovation
strategies from panel data for the U.S. manufacturing sector. The empirical literature
affirms the positive valuation of R&D and patents by financial markets but relatively
little is known about the impact of the composition of the research portfolio that reflects
the future strategic alignment of research and production. The portfolio can either be

highly concentrated on certain technologies or relatively broad by providing access to



many technologies. Based on an expanded Tobin’s g approach, it shows that diversifying
into new technologies implies a discount on the market value unless the new

technologies are highly related to the ones already covered in a firm’s portfolio.

Finally in the fourth paper, this thesis contributes to the “green growth” debate by
identifying determinants of innovative activity in renewable energy technologies.
Recently, the debate on the growth implications of climate change has gained
considerable interest among policy makers and scientists [1], [2]. Even though
innovation in green technologies is needed to adapt current and develop new
technologies to master the challenges of climate change, actual performance is
perceived to be insufficient [3]. The paper focuses on solar and wind technologies, two
prominent and intensively studied technologies within the field of renewable energy
generation. Each can be considered an emerging technology compared to more mature
technologies (e.g. hydropower). The thorough analysis of innovation in wind and solar
technology, traced by patent data, reveals that mainly spillovers and public R&D
support spur the generation of new ideas. So far, the importance of knowledge transfers
via different channels had been neglected in the empirical literature on green

innovation.

A recurring theme of this thesis is the usage of patent data to measure and track
innovative activity. Therefore, the following subsection provides a brief introduction to

patenting procedure and statistics.

1.2 Usage of Patent Data
A crucial aspect in tracking innovative activity is its measurement, an issue that is
discussed extensively in the literature on innovation. Even though a perfect indicator
does not exist, three alternatives are frequently chosen in empirical research: R&D
expenditures and the number of patents., The third alternative, scientific publications,

is less commonly used because of poor data availability.

While R&D data are issued annually for the OECD using a harmonized measurement

methodology [13], we suggest that the use of patents offers far more flexibility to



researchers due to their comprehensive information content. Patents are a powerful
economic indicator, since, by definition, they involve truly new ideas. Patents share a
common legal framework in that a group of intellectual property rights grants an owner
a temporary monopoly over an invention. Exclusivity rights bar third parties from
usage, production, sales or imports for a specified time, thereby generating a

competitive advantage for the owner of the patent.

The owner of an invention has three options when applying for a patent: national,
regional and international. National routes begin at a national patent office; usually the
first filing takes place in the applicant’s home country. Filing with a regional patent
office such as the European Patent Office (EPO) obtains protection in the desired
member states. The Patent Cooperation Treaty (PCT) allows a choice of convention
countries should an owner wish to protect a new technology in more than one country.
Upon receiving the filing, the respective patent office undertakes a rigorous
examination. Is the suggested invention an inventive step and industrially applicable?
When such criteria are satisfied, the patenting authority grants a patent.! An application
is usually published 18 months after the initial filing.2 Protection of a granted patent

usually expires 20 years after filing, if the owner pays the annual maintenance fees.

Patent applications provide rich data such as:

e List of claims
By listing the claims, the application summarizes the underlying invention and
the intended patent coverage.

e Technical classification
Patent applications are classified technically. A widely used classification scheme
is the International Patent Classification System (IPC), a hierarchical system
which codifies the subject of a patent. The information on technical classification
can be exploited to assign patent applications to industries or certain

technological fields, e.g. renewable energies.

1 There is no clear rule on how long the examination takes; it largely depends on the underlying invention
and the office in charge.



e Priority date
The term “priority date” refers to the date when the underlying invention is
protected by a patent for the first time, regardless of whether this first
application was made at a national or an international authority. The first filing
for an invention usually occurs at the national level and therefore the majority of
patent applications at the EPO are second filings [5]. The priority date in a
considerable number of cases precedes the EPO application date. Accordingly,
patent applications are frequently dated using the priority date instead of the
application date because it is closest to the date of invention and the decision to
apply for a patent [14]. From an economic view, this is the only information of
importance [6].

e (ited patents
Cited patents are references to prior art, thereby helping to justify the novelty
and the inventive contribution of the patent application. Furthermore, they are

an indication of previous knowledge used in the inventive process.

When attributing patents to countries, researchers can classify them by:

e Applicant’s country of residence
or

e [nventor’s country of residence.

The choice will depend on the underlying research question. While the inventor’s
residence is more appropriate to study inventiveness of regions or innovation
performance, applicant’s residence is closely linked to the question of ownership and

thereby economic appropriation.

Information gleaned from patent applications can be combined and exploited to track
innovative activity by means of patent counts.3 Due to the various aggregation
opportunities, these counts can characterize inventiveness of countries, regions, firms

or even individuals. Of special interest for new or emerging technologies is the

Z Some exceptions exist at the United States Patent and Trademark Office (USPTO).
3 Dernis et al. [6] discuss various dimensions of patent counts as measures of technology output.
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description of globalization patterns. Patent data can also capture innovation dynamics

by identifying research cooperation or patterns of diffusion.

The principal focus of this thesis is applications to EPO patents, since an application to a
non-national authority can be taken as a signal that the patentee believes the invention
is of sufficiently high value to justify the additional expense of a regional application.
Furthermore, research concentration on a single authority ensures comparability with
respect to timing, procedures and the legal framework. A potential problem with this
focus is “home bias” which can emerge for non-European countries. Inventors in the
United States or Asia may tend to seek initial patent protection in their home market
and international protection at a later date. However, inventions that are valuable from
an economic point of view and for which the market is thought to be international will

usually be protected in the international domain.

Researchers should note three drawbacks to using patents as a proxy for innovative
output [10]. First, the distribution of the value of patents is highly skewed to the right
since only a few inventions are of remarkable economic value [11]. Second, the
propensity to patent varies across countries and industries due to different legal and
political environments [12]. Third, since an invention must be fully disclosed to obtain
patent protection, some firms may prefer the strategic option of secrecy to prevent

imitation [4].



References

[1] D. Acemoglu, P. Aghion, L. Bursztyn and D. Hemous, The environment and
directed technical change, NBER Working Paper 15451 (2009).

[2] P. Aghion, D. Hemous and R. Veugelers, No green growth without innovation,
Bruegel Policy Brief7/2009, 1-8 (2009).

[3] P. Aghion, R. Veugelers and C. Serre, Cold start for the green innovation machine,
Bruegel Policy Brief12/2009, 1-12 (2009).

[4] A. Arundel, The relative effectiveness of patents and secrecy for appropriation,
Research Policy 30,611-624 (2001).

[5] G. De Rassenfosse and B. Van Pottelsberghe de la Potterie, Per un pugno di
dollari: A first look at the price elasticity of patents, Oxford Review of Economic Policy 23,
588-604 (2007).

[6] H. Dernis, D. Guellec and B. Van Pottelsberghe de la Potterie, Using patent counts
for cross-country comparisons of technology output, STI Review 27, 129-146 (2001).

[7] European Council, Presidency conclusions - Lisbon European Council, 23 and 24
March 2000 (2000).

[8] European Council, Presidency conclusions - Géteburg European Council, 15 and
16 June 2001 (2001).

[9] European Commission, Europe 2020 - A European strategy for smart,
sustainable and inclusive growth, Brussels: Belgium (2010),

[10] Z. Griliches, Patent statistics as economic indicators: A survey, Journal of
Economic Literature 28, 1661-1707 (1990).

[11] D. Harhoff, F.M. Scherer and K. Vopel, Citations, family size, opposition and the
value of patent rights, Research Policy 32, 1343-1363 (2003).

[12] S. Kortum and ]. Lerner, What is behind the recent surge in patenting? Research
Policy 28, 1-22 (1999).

[13] OECD, Frascati Manual, Paris: France (2002).

[14] OECD, Patent Statistics Manual, Paris: France (2009).

7



2. R&D Efficiency in Manufacturing:
A Non-Parametric DEA Approach

Abstract

This paper discusses the measurement of R&D efficiency and identifies the best-
performing countries. The principal industries determining the technology frontier are
electrical and optical equipment, machinery, and chemical and mineral products. An
analysis of 17 OECD countries between 2000 and 2004 shows that Germany, the United
States, and Denmark have the highest R&D efficiency on average in total manufacturing.
Sector-specific efficiency scores reveal substantial variation. We suggest that the return
to R&D in terms of innovation growth can be enhanced by strategically increasing R&D

investment in industries in which a country optimally performs.

Keywords: R&D Efficiency, Data Envelopment Analysis, Manufacturing, Patents

JEL Classification: C14, L60, 031, 057



1 Introduction

The Lisbon Agenda for competitiveness included two targets for R&D: 1) R&D
expenditures relative to GDP were expected to increase to 3% by 2010; and 2) the
business sector would be responsible for about two-thirds of the expenditures. Despite
the R&D target for 2010, only Finland, Sweden, Japan and South Korea achieved R&D
above 3% (Figure 1); the worst performers were Italy, Spain and Poland. In 2008
Sweden had ranked first at 3.7%. My own analysis of 17 OECD countries raises
questions about benchmarking all countries against the Lisbon Agenda’s single common
target. For instance, could another type of performance measure and assessment of

R&D target a country’s limited financial resources to achieve the highest possible levels

of innovation?
Figure 1
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Notes: Total R&D (business and public) as percentage of Gross Domestic product (GDP).

Source: OECD Main Science and Technology Indicators.

Our goals are to identify the best-performing countries and industries for benchmarking
and to gain insights about the strengths and weaknesses of innovation strategies that

improve R&D efficiency. Although the extant literature generally focuses only on the



country level, we suggest that the industry level is more useful. In fact, neglecting the
importance of industrial specialization can skew performance rankings [41]. A country
like Finland, which has specialized in information and communication technologies, will
reveal a relatively high R&D intensity since this particular industry requires high R&D
expenditures. On the contrary, specialization in low R&D industries like food, wood or
paper will inevitably generate a low R&D to GDP ratio at the country level Consequently,
R&D efficiency will be affected as a rise in inputs necessitates growth in output to
become or remain efficient. In other words, benchmarking at the industry level allows a
finer-grained examination of countries’ domains of specialization relative to the
industries that occupy the technology frontier. In addition, a thorough analysis of R&D
efficiency provides the opportunity to critically evaluate the creation of a European
Research Area by increasing investment in R&D activities to 3% of GDP, since both the

size and the efficient use of invested resources matter when planning future investment.

Furthermore, we suggest that countries with less-efficient industries could employ our
findings to improve their own processes and performance. For example, the obtained
efficiency scores could be used as an alternative measure for determining a country’s
distance to frontier in empirical applications. Until recently, research has focused on
differences in labor productivity to capture frontier distance where the United States
usually serves as the benchmark, implying that it marks the frontier [1], [2]. The
advantage of efficiency scores is that they help us endogenously define the frontier

without assuming a specific production function, lead country or industry.

In short, this paper identifies the country-industry combinations that define the world
technology frontier in the manufacturing sector. It explores which countries reveal the
most efficient industry-specific innovation processes. First, we derive efficiency
estimates for the entire manufacturing sector at the country level. Second, we proceed
to the industry level and identify those county-industry combinations that define the
world technology frontier. Third, we focus on selected industries — those mainly
defining the technology frontier — and conduct separate efficiency analyses to account

for industry-specific production technologies.
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We build on the empirical literature concerning the importance of level and dynamics of
R&D expenditures for economic growth [16] which shows that countries utilizing their
R&D resources inefficiently will be penalized with a growth discount. Based on the
theoretical concept of an ideas/knowledge production function framework stemming
from the endogenous growth literature, our efficiency assessment relies on the existing
literature applying a patent production function framework [19] and adapts it to

evaluate the efficiency of the ideas generation process over countries and industries.

We assemble a unique industry dataset compiled from EU KLEMS and PATSTAT. We
match EPO patent applications to the EU KLEMS industry-level data by using the
concordance developed by Schmoch et al. [30]. We conduct our analysis using
nonparametric efficiency measurement methods and identify the differences in the
efficiencies on the country and industry levels using a traditional nonparametric
frontier approach, i.e. data envelopment analysis (DEA). This method requires no
specification of the functional form of the ideas generation process, or any a priori
information concerning the importance of inputs and outputs. Since DEA is a
deterministic approach, extreme observations can have a strong influence on the
calculated efficiencies. We circumvent this problem by using the super-efficiency
approach of Banker and Chang [5] to detect and then remove extreme observations
from the sample to achieve a consistent and robust technology frontier. The unique
dataset allows us to compare industries of varying economic size in our model. Since it
is both statistically and economically important to determine whether the underlying
technology exhibits increasing, constant, or decreasing returns to scale, we test the
hypotheses of constant returns to scale using the bootstrap procedure proposed by

Simar and Wilson [36].

Our paper is organized as follows: Section 2 introduces the analytical framework and
briefly summarizes the literature in this field. In Section 3, the methodology of DEA is
introduced. Section 4 describes the model specification and data. The empirical results
for total manufacturing and by industry are presented in Section 5. Section 6

summarizes the findings and concludes.
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2 Measurement of R&D Efficiency

A knowledge production function is central to many endogenous economic growth
models in which innovation plays a crucial role in sustaining long-term growth.
Innovation becomes even more important to productivity growth when a particular
national industry approaches the world technology frontier, because at that point,
imitation, as opposed to true innovation, is less feasible. The resources available for the
generation of new knowledge are often limited and thus must be used as efficiently as
possible to sustain and promote long-term growth. We particularly focus on the
economic process generating new knowledge which becomes manifest in inventions
that can lead to cost reductions in the form of process innovations or to the
development of new products or technologies. More specifically, we analyze whether
there are substantial performance differences in ideas creation between countries and

industries.

Our model follows the knowledge production function framework first articulated by
Griliches [15] and implemented by Pakes and Griliches [27], Jaffe [20] and Hall and
Ziedonis [19], among others. Innovative output is the product of knowledge-generating
inputs, similar to the production of physical goods. Some observable measures of inputs,
such as R&D expenditure, existing knowledge and high-skilled labor, are invested in
knowledge production. These “inputs” are directed toward producing economically
valuable ideas. The production process is viewed as leading from R&D and human
capital (the inputs) to some observable output measure of innovative activity:

I,=f(R&D,,HS,),

where [, is innovative output, R& D, denotes the R&D capital stock as a proxy for
efforts and accumulated knowledge, and HS_ is the number of high-skilled workers

employed. The unit of observation is the country (c) industry (i) level. Innovative output

is approximated by patent applications.!

1 Some authors (e.g. [28], [29]) suggest including publications as an additional output; we do not, for
three reasons: 1) recent studies reveal a number of measurement problems inherent in publication
counts, such as double-counting in the case of co-authoring [32]; 2) since detailed publication data are not
available at the industry level, assigning publications to industries is problematic and would involve the

12



Based on the knowledge production function framework, the empirical literature
confirms the importance of R&D capital to the knowledge creation process (e.g. [26], for
an overview see [17]); however, far less attention has been paid to the importance of

the efficient use of scare resources in this process.

Rousseau and Rousseau [28] were the first to use a DEA approach. Using a sample of 18
developed countries, they applied an input-oriented, constant returns to scale model
with two outputs — the number of scientific publications and the number of granted
patents — and used GDP, along with population and R&D investment, as input factors.
They concluded that in 1993, Switzerland was the most efficient country in Europe,
followed closely by the Netherlands. Using the same framework, Rousseau and
Rousseau [29] extended their work by including the non-European countries,
specifically the United States, Canada, Australia, and Japan. The authors reaffirmed that
Switzerland, followed by the Netherlands, had the highest R&D efficiency.

Lee and Park [21] measured R&D efficiency in 27 countries with a special emphasis on
Asia. They expanded Rousseau and Rousseau’s basic framework by using the
technology balance of receipts as an additional output of the innovation process. In their
basic model, Austria, Finland, Germany, Hungary, and Great Britain were found to

occupy the technology frontier.

Wang and Huang [43] proposed a three-stage approach to evaluating the relative
technical efficiency of R&D across 30 OECD member and nonmember countries that
controlled for cross-country variation in external factors, such as the enrollment rate in
tertiary education, PC density, and English proficiency. A first stage applied an input-
oriented DEA analysis with variable returns to scale where patents and publications
served as outputs and R&D expenditure and researchers as inputs. They found that
about half the countries in their sample were efficient in R&D activity. A second stage
investigated the influence of external effects caused by environmental factors outside

the efficiency evaluation. Using the results, they conducted an additional DEA which

difficult and probably not entirely objective task of matching journals to sectors; 3) publication counts
have the potential to introduce a language bias in favor of English-speaking countries.
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indicated a decrease in the number of efficient countries due to the external factors.

Recently, Sharma and Thomas [32] measured the efficiency of the R&D process across
18 countries using a DEA approach that applied both constant and variable returns to
scale production technologies. Their approach deviated from previous work in two
ways: they considered a time lag between R&D expenditure and patents, and they
included developing countries in their analysis. Their main findings indicated that when
using the constant returns to scale approach, Japan, South Korea, and China occupied
the efficiency frontier, whereas within the variable returns to scale framework, Japan,

South Korea, China, India, Slovenia, and Hungary were efficient.

Cullmann et al. [10] updated the measurement of R&D efficiency in the OECD using a
DEA approach with variable returns to scale, including outlier detection by means of
super-efficiency analysis. Efficiency scores were calculated using intertemporal frontier
estimation for the period 1995 to 2004. They found that Sweden, Germany and the
United States were located on or close to the technology frontier. The authors further
analyzed the impact of the regulatory environment using a bootstrap procedure
recently suggested by Simar and Wilson [37]. The results showed that barriers to entry,
aimed at reducing competition, actually reduced R&D efficiency by attenuating the

incentive to innovate and to allocate resources efficiently.

This paper makes three important contributions. While previous studies focus on the
aggregate country level, our point of departure is the manufacturing sector, which we
then separate by industry in order to identify those having highly efficient research
processes. In addition, we allow for industry-specific frontiers to investigate whether
the countries defining the frontier at the country level also show excellent performance
in selected industries. Methodologically, we test for the form of returns to scale by

means of bootstrap [36] and include outlier detection [5].
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3 Methodology

As mentioned above, we employ DEA, a nonparametric approach? that measures the
efficiency of a decision-making unit (DMU). This approach requires no assumption
about the functional form of a production function or any a priori information on the
importance of inputs and outputs. Central to DEA is the production frontier, defined as
the geometrical locus of optimal production plans [38]. Using linear programming
techniques, we construct a piecewise linear surface, or frontier, that envelops the data
as a reference point. The individual efficiencies of each DMU relative to the production
frontier are then calculated by means of distance functions. The distance to the frontier
is thus a measure of inefficiency. There are basically two types of DEA models: those
that maximize outputs, leaving the input vector fixed (output-oriented), and those that
minimize inputs, keeping the output vector constant (input-oriented). We use the
output-oriented approach, because when resources devoted to R&D are usually scarce,
it is reasonable to assume that countries will seek to maximize their innovative output

to foster long-term growth.

Different assumptions can be made regarding the underlying technology that defines
the frontier. In this paper, we distinguish between the two types of technology, constant
returns to scale (CRS [7]), and variable returns to scale (VRS [6]). CRS assumes that all
DMUs produce at their optimal scale, and VRS accounts for existing scale inefficiencies.
Using the CRS specification when VRS is appropriate leads to technical efficiency scores
being confounded by scale efficiencies. Hence, if we assume, a priori, a CRS technology
without investigating the possibility that it is non-constant, we run the risk that our
efficiency estimates will be inconsistent. On the other hand, if we assume VRS when, in
fact, the technology exhibits global constant returns to scale, there may be a loss of

statistical efficiency [36]. Formally, the only difference between the CRS and the VRS

specifications is the presence of an additional convexity constraintZk =1.

Formally, the efficiency score of the i-th industry in a sample of N industries and K

countries in the VRS model is determined by the following optimization problem [8]:

2 Another common nonparametric envelopment approach is free disposal hull (FDH [11]). In contrast to
DEA, FDH relaxes the assumption of a convex production set and only presumes free disposability.
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maxM(b
s.t. )
-0y, + YA >0
X, —XA2>0
1'r=1
A>0

where A is an (NxK)xl vector of constants and X and Y represent input and output

vectors respectively. A further reflects the respective weights for inputs and outputs

assigned to each firm. ¢ measures the radial distance between the observation (xi,yi)

and the efficiency frontier, hence 1<¢ <o (Farell-type efficiency scores [13]). In the
empirical application, we give efficiency scores defined by TE:(?):1 which vary

between 0 and 1. A value of 1 indicates that an industry is fully efficient and thus located
on the efficiency frontier, whereas DMUs with efficiency scores below 1 are assumed to

be inefficient.

Simar and Wilson [36] have proposed a bootstrap procedure to overcome the problem
of DEA techniques being deterministic.3 Thus, we apply their method and test the null
hypothesis (Ho) of a global CRS production frontier against the alternative hypothesis
(H1) that the production frontier exhibits VRS. Then, the test statistic is the estimated

ratio between the usual CRS and the VRS efficiency scores

0% (x,y)

éVRS

(’;):
NxK (X’Y)

Next, we project the observations (xi,yi) onto the respective frontiers and the distance

between the two estimates forms the test statistic. The distribution of the test statistic
® under Ho is unknown and therefore bootstrapping — as suggested by Efron [12] — is

applied to generate pseudo samples. This procedure provides us with an empirical

distribution of (Cob - 60) which we use to determine the corresponding p-values.*

3 Statistical inference is drawn based on the bootstrap methodology for estimating confidence intervals
for efficiency scores [34].

4 The empirical distribution resembles the unknown distribution of((?); - 6)) .
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Note that our DEA estimator is a deterministic frontier approach, assuming that all
observations are technically attainable.> The main drawback of such models is their
high sensitivity to outliers and extreme values in the data [35], [38]. Outliers are the
extreme observations that are often caused by errors in measuring inputs or outputs. It
is therefore important to assess ex ante whether the data contain outliers that drive the
location of the efficiency boundary, inappropriately influencing the performance
estimations of the other DMUs in the sample. We use the super-efficiency method
proposed by Andersen and Petersen [4] and Banker and Chang [5] to identify and
remove extreme values ex ante. The concept is based on the idea of re-estimating the
production frontier with different sets of observations from the sample. At every step,
one of the efficient DMUs is excluded from the reference set to make it possible to
obtain efficiency scores that exceed 1. If an efficient observation is an outlier, it is more
likely to have an output level greater than other observations with similar input levels;
such outliers are more likely to have a super-efficiency score greater than 1. Banker and
Chang [5] suggest that DMUs with efficiency scores larger than 1.2 should be considered

outliers and removed from the sample before conducting the final DEA calculation.

4 Model Specification and Data

We assemble a sample of 13 EU-countries® and Australia (AU), Japan (JP), South Korea
(KR), and the United States (US) during 2000 and 2004.7 Our unique dataset on input
and output for the efficiency analysis derives from EU KLEMS® and PATSTAT® and

covers 13 industries.

We estimate a cross-industry cross-country pooled frontier, where each observation is a

5 We are aware that applied linear programming might not reveal all efficiency slacks. However, we
follow Coelli et al. [8] who claim that “the importance of slacks can be overstated” when accepting the
argument of Ferrier and Lovell [14] that slacks may essentially be viewed as allocative inefficiencies and
that an analysis of technical efficiency can therefore reasonably concentrate on the radial efficiency
scores.

6 Belgium (BE), Czech Republic (CZ), Denmark (DK), Finland (FI), France (FR), Germany (DE), Ireland (IE),
[taly (IT), Netherlands (NL), Poland (PL), Spain (ES), Sweden (SE), United Kingdom (GB).

"The truncation point is determined by the availability of patent applications, which are published 18
months after application. We further impose one restriction on the industry-specific country patent
aggregates, namely, that at least 15 patents are applied for within a certain year, to ensure that sufficient
patent activity is present in each sector of the countries covered. A relaxation of this restriction to 5
produced largely the same results, but introduced more noise in the estimation of averages.

8 A detailed description of the dataset is provided in [39], [40].

9 European Patent Office Worldwide Statistical Database: PATSTAT version 1/2008.
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single industry-country combination in time without considering the panel structure of
the data. We are aware that a pooled intertemporal frontier is unable to capture
technological change and dynamic efficiency changes. However, we believe it is
reasonable to assume that the process of knowledge generation is not subject to short-
term technology changes. Process improvements — as caused by environmental factors
like deregulation or education — will lead to improvements only in the medium term.10
Another reason for assuming a constant intertemporal frontier is the limited sample
size at the industry level. In the empirical application, we provide efficiency estimates
for selected industries to relax the assumption of a common frontier encompassing all
industries. At this level, we are confronted with only 17 observations per year, and as
Simar and Wilson [38] recently showed via Monte Carlo simulations, this would bias our
results due to the curse of dimensionality problem. We therefore decide against
estimating yearly frontiers and presume the knowledge production technology to be

constant during 2000 and 2004.

R&D investment and manpower serve as inputs and patent applications approximate
innovative output. Our information on patent applications is taken from the European
Patent Office’s database, because an application to an international authority, in
contrast to one made to a national authority, can be viewed as a signal that the patentee
believes the invention to be valuable enough to justify the expense associated with an
international application. Central to our exercise is constructing patent aggregates by
country, industry, and year, and we build the variable using all patent applications filed
with the EPO with a priority date between 2000 and 2004. We assign the patent
applications to the inventor’s country, because it is more indicative of the invention’s
location. In line with the prior literature, we consider only the first inventor’s country of

residence (e.g. [42], [44]).

Patents are assigned to industries based on the concordance developed by Schmoch et
al. [30], who used expert assessments and micro-data evidence on the patent activity of

firms in the manufacturing industry to link technologies to industry sectors.!! The

10 We also experimented with 3-year samples and found comparable results. However, this forced us to
further reduce our sample coverage.
11The authors argue that patents are most widely used in the manufacturing sector to protect intellectual

property.
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international patent classification (IPC) classes provided in the patent applications are
grouped into 44 technological fields and then assigned to industries based on the
NACE®2 code. Because patent applications usually contain more than one technology
class and none can be interpreted as its main class, a weighting scheme is needed to
avoid double-counting patents. Thus, we weight every class mentioned in an application

by the reciprocal of the total number of classes.

However, further aggregation of NACE classes is needed to match the patent data to the
input data sources.!3 Human capital and R&D effort serve as the inputs in our model.
R&D stocks provided by the EU KLEMS database approximate the R&D resources used
in the innovative process at the sector level. From a theoretical point of view, R&D
stocks are preferable to annual R&D expenditures, because they capture the amount of
knowledge available in an economy although, in practice, assumptions must be made
when calculating the initial stock. We build the R&D stocks in the EU KLEMS database

according to the perpetual inventory method.14

Manpower invested in R&D is usually captured by the number of researchers per
country published by the OECD in the Main Science and Technology Indicators [24].
However, these data are not available at the sector level and so we approximate human
capital input by the share of skilled workers, since it is plausible that researchers and
support staff are mainly recruited from this group. The exact distinction between high-
skilled and medium-skilled workers is somewhat vague due to differences in national
educational systems [40]. In the case of high-skilled labor, we assume comparability
only for bachelor degrees. Therefore, we include both high- and medium-skilled labor as
inputs to control for heterogeneity across countries’ educational systems, and our
findings suggest that the main results are robust with respect to the use of skilled or
only high-skilled labor. Data on high- and medium-skilled labor at the sector level are
available from the EU KLEMS database.

Table 1 consolidates the sample statistics of the input and output variables in our

12 Nomenclature générale des activités économiques dans les Communautés européennes.

13 A detailed description of the concordance appears in Appendix A.1.

14 The depreciation rate equals 12%. The calculation of R&D stocks is explained in detail in [25]. Stocks
are deflated using implicit PPPs at constant 2000 prices taken from the OECD [24].
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analysis. On average, across countries, industries, and years, 886 patents have been
applied for at the EPO, although there is much heterogeneity within this average,
ranging from a minimum of 16 patents to a maximum of 17664. A similar pattern is
observed in the R&D stocks. In line with expectations, the share of high-skilled workers

is substantially smaller (one-quarter) than the share of medium-skilled workers.

Table 1
Summary statistics: (2000-2004)

Variable Description Mean S.D. Min Max
Output Variable
Patents Patent applications at  885.71 16 17664

the EPO, unit of
observation: country-

industry
Input Variables
R&D Stock of R&D 12479.4 40855.95 1.13 370589.2
expenditures,
expenditures are
deflated using PPPs

of 2000, unit of
observation: country-
industry
High-skilled Number of high- 107.4 232.21 0.11 2008.9
skilled workers,
country-level data
Medium-skilled Number of medium- 428.76 583.66 0.74 3355.31
skilled workers,
country-level data

The aggregated manufacturing-level data (Appendix Table A.2) show that the United
States has the highest average number of patent applications at the EPO which is of
interest considering the “home” bias of the European countries in our sample. Japan is
third in patenting activity. In Europe, Germany is the most frequent patent applicant
with an average R&D stock almost twice that of France. A remarkably low amount of
patents originates from Spain, even though the average Spanish R&D stock is
substantially higher than Finland, Denmark and Australia. There is considerable
variation of high-skilled and medium-skilled workers across countries, e.g. the number

of high-skilled workers in South Korea is more than four times that of Germany.

We calculate the industry-specific means of our input-output variables by averaging
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over years (Appendix Table A.3). The industries in our sample exhibiting the highest
patent intensity are chemicals and chemical products, electrical and optical equipment,
and machinery. Fewer inventions are patented in the wood and coke and petroleum
sectors. Comparing these observations to the average R&D stocks reveals that the
patenting-intensive industries are also R&D-intensive with the exception of the
transport equipment sector which exhibits huge R&D stocks, but a relatively low
patent-to-R&D ratio. Consistent with recent literature on R&D efficiency (e.g. [32], [43]),
we impose a two-lag structure for inputs to account for the fact that R&D efforts do not

immediately result in innovative output [18].

5 Results

There are three steps in our empirical analysis:

1. Derive efficiency estimates for the manufacturing sector at the country level to
deliver a first research performance assessment which can be compared to
previous studies in this field.

2. Identify the efficient industries with respect to R&D efforts by proceeding to
industry- and country-specific data, thereby accounting for patterns of industrial
specialization and “allowing” countries to occupy the frontier only in certain
industries.

3. Conduct separate efficiency analyses of the industries that define the frontier in

step 2.

5.1 Cross-country comparison
A first impression of R&D efficiency in manufacturing results from comparing the
average efficiencies at the country level. We derive the averages by aggregating over
sector-level data and then conducting a variable returns to scalel> DEA analysis using
these country-level aggregates. We implicitly assume a time-invariant technology

frontier and focus on the distance of countries from the estimated frontier.1¢ Figure 1

15 As shown by Sharma and Thomas [32], most countries reveal increasing returns to scale, hence, a
constant returns to scale technology is inappropriate.

16 An alternative method would be to compare the technology frontiers of different years by means of
Malmquist indices [8]. This approach is impossible in the case of unbalanced panels and therefore not
applicable to our dataset since we do not observe sufficient patenting activity across all years, countries,
and sectors.
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displays averages of the corresponding values for the period from 2000 to 2004. It
shows that Germany, Denmark, the United States, the Netherlands, and Belgium are the
most efficient with respect to innovative output in manufacturing. The high average
efficiency of the United States, indicative of its strong position in the international
context, is especially noteworthy due to our use of European patent data to

approximate innovative output.’
Figure 2
Average R&D efficiency in total manufacturing

Average ressarch sfficlency across couniries

Avarags ralativs sfficiancy
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Notes: Output-oriented DEA with variable returns to scale.

Our results for total manufacturing can be summarized by grouping the sample

countries according to their average R&D efficiency in manufacturing:

o high efficiency: Germany, Denmark, the United States, the Netherlands, Belgium,

Ireland, Finland

17 The use of European patent data will tend to underestimate the output and thus the performance of
non-European countries such as the United States, Japan, Australia, and South Korea. Inventors in these
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. medium efficiency: Italy, Sweden, Japan, Australia, France
o low efficiency: South Korea, the United Kingdom, Spain, Poland, the Czech
Republic.

Regarding the Lisbon Agenda, we observe that countries already reaching the 3%
threshold — Finland, Sweden, South Korea and Japan — do not belong to the group
revealing high efficiency with the exception of Finland. However, the United States and
Denmark with R&D intensities of about 2.7% show excellent research performance in
manufacturing. These findings suggest that high R&D intensities do not automatically
imply high efficiency scores, since intensities they are mainly driven by a country’s
industrial structure. To undertake a thorough performance assessment we must
compare individual positions of countries across industries at the industry level.
Nevertheless, our results at this stage indicate that Finland, Denmark and the United

States generally outperform at relatively high R&D- to-GDP ratios.

The small European economies, i.e. Denmark, Belgium, the Netherlands, Ireland, and
Finland, show a significantly high level of R&D efficiency, whereas the United Kingdom,
France, and Spain, lag behind. A possible explanation is that it is easier for smaller
countries to link research conducted at universities to private business R&D activities
due to the smaller number of large companies. We suggest that increasing R&D in such

countries is an avenue for fostering innovation and growth.

Some of our findings should be treated with caution, e.g. the efficiency values for South
Korea and Poland, because of the unavailability of data. Additionally, our patent data
only extend to 2004. Since patenting is usually a result of R&D efforts, our efficiency
assessment may simply be too “early” for South Korea, since very recent data show a
drastic increase in Korean patent activity locally and at the international level [23].
Poland has the lowest R&D intensity in our sample, an indication that it has not yet
caught up. Another country with a low innovative capacity is the Czech Republic, which
is only now entering the international patenting arena. The country has increased its

R&D efforts to about 1.5% of GDP, making it an interesting candidate — as South Korea

countries tend to first seek patent protection in their home markets and expand protection globally only
for valuable inventions.
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— for performance assessment in future studies when the data on innovative output for

2005 to 2009 become available to researchers.

Comparing our results to Cullmann et al. [10] reveals considerable overlap: they also
found that Germany, the United States, the Netherlands and Finland belong to the best-
performing countries, while the Czech Republic and Poland lag behind. Overall, their

R&D efficiency ranking confirms our findings.

5.2 Accounting for Industrial Specialization
The next step is to measure R&D efficiency across countries and industries by
conducting DEA using a pooled sample of industry-country observations.1® We identify
industries that define the frontier and account for industrial specialization patterns of
countries by considering sectors separately. As this is the first attempt to measure R&D
efficiency at the industry level, we need to test whether the underlying technology
exhibits constant or variable returns to scale, because previous evidence is not
available. A p-value of 7.7 percent for the Simar and Wilson [36] test statistic suggests
rejecting the hypothesis of constant returns to scale. Hence, we allow for variable
returns to scale in frontier estimation. The assumption of a constant technology frontier
enveloping all industries will be relaxed in the next section when we conduct specific
efficiency analyses for selected industries. To ensure the estimation of a consistent and
robust technology frontier across countries and industries, we apply ex ante outlier

detection by means of super-efficiency analysis [5].

Table 2 compares the average scores across industries. We observe that the estimation
exhibits average technical efficiencies of between 0.11 and 0.64, which are relatively
low compared to other empirical work. The low mean efficiencies are caused by the
large within-sample variation in R&D efficiency across countries, which may also result
from the different specialization profiles of countries. On average, the electrical and
optical equipment sector obtains the highest efficiency scores followed by machinery,
and chemicals and chemical products. Weak R&D performance appears in food and

beverages, pulp and paper, and transport equipment.

18 Poland and the Czech Republic are omitted due to insufficient data at the sector level.
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The huge variation in average efficiencies emphasizes the need to conduct R&D
performance assessments at the industry level. Otherwise, as mentioned earlier,
efficiency rankings will be skewed since a country specializing in machinery will most
likely appear to outperform a country specializing in the food sector in this respective

industry, but not necessarily at the aggregate level.

Table 2
Average R&D efficiency at the industry level (2000-2004)

Industry description R&D efficiency score
Food products, beverages, and tobacco 0.114
Textiles, textile products, leather, and footwear 0.232
Wood, products of wood and cork 0.250
Pulp, paper, paper products, printing, and publishing 0.175
Coke, refined petroleum products, and nuclear fuel 0.219
Chemicals and chemical products 0.531
Rubber and plastics products 0.542
Other nonmetallic mineral products 0.505
Basic metals and fabricated metal products 0.299
Machinery 0.591
Electrical and optical equipment 0.638
Transport equipment 0.216
Manufacturing NEC, recycling 0.454

Notes: Output-oriented DEA with variable returns to scale. Averages are calculated
across countries.

Chemicals, pharmaceuticals, information and communication technology and
machinery are among the most patent-intensive industries [33], a phenomenon
possibly resulting from the different strategic motives for patenting in these industries
[22], [31]. We could argue that it is not surprising to find a higher average R&D
efficiency in electrical and optical equipment, chemicals (including pharmaceuticals),
plastics products, and machinery simply because these industries tend to seek patent
protection more frequently. . However, these industries also exhibit greater R&D
intensities and thereby larger R&D stocks compared to others, as shown in our

descriptive statistics in Section 4. Our results therefore suggest that the observable
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ideas generation process is simply more efficient in these industries and thus drives the

technology frontier.

To gain further insights about the relationship of R&D performance assessment and
industrial specialization, we are interested in the efficient country-industry
combinations that suggest excellent research performance (Table 3). The electrical and
optical equipment industry is efficient in the Netherlands, Germany, the United States,
and Finland. Due to the underlying panel structure of our data, we usually observe
industries in countries for five consecutive years. However, a certain country-industry
combination does not necessarily have to be efficient every year to stay at the
technology frontier, and that is exactly what we observe: country-industry
combinations occupy the frontier for one or two years and lag slightly behind for the
rest of the estimation period. An example is the German electrical and optical
equipment industry, which is fully efficient only once but reaches an average efficiency
of 0.93. This is the second-highest value in the cross-country comparison; only the
United States outperforms Germany, with an average of 0.96 in the electrical and optical
equipment industry. Hence, the high R&D efficiency in this industry is one of the driving

forces behind the high overall U.S. efficiency score.

Other industries at the technology frontier include machinery, rubber and plastics, and
mineral and chemicall® products. Germany’s chemical industry reaches the frontier in
three out of five years. Germany also has large average efficiency scores of 0.93 and 0.89
for machinery and rubber and plastics, respectively. Our results further confirm that the
small European countries, Finland, the Netherlands and Denmark, are some of the best-
performing countries in terms of R&D efficiency, with special strength in specific
industries. For example, Finland shows an excellent performance in rubber and plastics,
mineral products and electrical and optical equipment, while Denmark plays a leading
role in transport equipment. The Netherlands actually reaches the frontier in four
industries: coke, rubber and plastics products, machinery, and electrical and optical
equipment. Overall, we find electrical and optical equipment to be the most important

industry when determining the technology frontier, followed by machinery, and mineral
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products.

Table 3
R&D-efficient country-industry combinations (2000-2004)

Industry description R&D-efficient countries

Food products, beverages, and tobacco -

Textiles, textile products, leather, and -

footwear

Wood, products of wood and cork Italy (1)

Pulp, paper, paper products, printing, and -

publishing

Coke, refined petroleum products, and Netherlands (1)

nuclear fuel

Chemicals and chemical products Germany (3)
Rubber and plastics products Finland (1), Netherlands (1)
Other nonmetallic mineral products Denmark (3), Finland (2), Italy (1)

Basic metals and fabricated metal products

Machinery Italy (3), Germany (1), Netherlands (1)

Electrical and optical equipment Netherlands (2), Denmark, Finland,
Germany, United States

Transport equipment Denmark (1)

Manufacturing NEC, recycling Germany, Italy, Sweden

Notes: The number in parenthesis is the number of years a country has been on the
technology frontier in the particular industry.

Compared to the R&D efficiency analysis in total manufacturing, we observe countries
occupying the frontier in certain industries that do not belong to the generally highly
efficient group. An example is Italy, which reaches the frontier mainly in machinery but
also in mineral products and wood. Wood is known to be a low R&D intensity industry,
which weakens the I[talian position in terms of the Lisbon Agenda’s target, even though

this specific industry seems to have a relatively good research performance. This

19 Chemical products encompass the pharmaceutical industry, where patent protection has very strong
effects because the process of research and development is so costly and time-consuming that firms need
to ensure protection of their intellectual property via a temporary monopoly [9].
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finding indicates that it might be useful to amend the evaluation of the Lisbon R&D goal
with some type of performance assessment. Naturally, the economic relevance of the

corresponding sectors must also be considered.

In summary, the return to R&D in terms of innovation growth could be enhanced by
strategically increasing R&D investment in those industries in which a country exhibits
excellent performance. The performance assessment should be conducted within the
industry, relative to other countries, since R&D intensity and patenting activity vary
substantially across industries. Note that excellent R&D performance according to our
definition by no means necessitates high R&D intensities, but provides references for

future public investment strategies.

5.3 Results for Selected Industries
Recognizing that our assumption of a commonly technology frontier across industries
can be challenged, we now relax the assumption and conduct separate industry-specific
frontier estimations to identify leading countries, as well as those lagging behind, for
our selected industries: electrical and optical equipment, machinery, and chemical

products.

Table 4 presents each industry’s share of a country’s gross output in total
manufacturing. On average, these industries account for 32% of gross output. The
distribution across countries provides insights about the respective specialization
patterns. Again using Italy as an example, we observe a share of 12.3% of machinery in
2004, which is the second-highest in our sample. Recall that we also find Italy to be
highly efficient in this respective sector, even though it ranges only in the midfield in

total manufacturing R&D efficiency.
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Table 4

Share in gross output of total manufacturing (in %) in 2004

Country Chemicals and Machinery Electrical and >

chemical optical

products equipment
Australia 7.61 5.48 3.25 16.34
Belgium 16.74 4.78 5.13 26.64
Denmark 10.90 12.52 11.51 34.93
Finland 6.39 11.63 19.51 37.54
France 11.64 6.92 9.54 28.09
Germany 9.51 12.58 12.74 34.83
Ireland 26.83 1.64 28.69 57.16
Italy 8.24 12.30 8.21 28.75
Japan 9.22 8.92 16.92 35.05
Netherlands 18.41 7.67 8.31 34.39
South Korea 10.76 7.04 22.34 40.14
Spain 8.46 5.51 5.78 19.76
Sweden 8.51 11.24 12.55 32.30
United Kingdom 11.29 7.50 10.08 28.87
United States 11.03 7.12 13.45 31.60

Source: EU KLEMS database, own calculations.

Conducting separate DEA analysis for the frontier industries generally corroborates our
earlier findings as shown in Table 5. Germany and Denmark occupy the research
frontier along with the United States and the Netherlands. In the case of the United
States however, the machinery sector reveals a comparably low innovative capacity,
given its R&D efficiency profile. Generally, we also observe a relatively weak
performance on the part of South Korea, the United Kingdom, and Spain, indicating that

these countries have the potential to raise output, given their levels of R&D efforts.

For electrical and optical equipment, Japan, Finland and Belgium join the group of
leading countries, whereas Italy and Spain show the weakest performances. Returning
to the subject of countries’ specialization profiles, Finland is notable. Section 5.2 points

out that Finland has already reached the frontier in this industry, which is confirmed in
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our sector-specific analysis. The share of gross output in total manufacturing of nearly
20% emphasizes the importance of this sector for the Finnish economy; hence, a high
R&D intensity coincides with an excellent research performance and economic

relevance.

Table 5
R&D efficiency scores for selected industries (2000-2004)

Country Chemicals and Machinery Electrical and optical
chemical products equipment
Australia 0.95 0.53 0.72
Belgium 0.77 0.94 0.81
Denmark 0.97 0.91 0.92
Finland 0.86 0.59 0.82
France 0.87 0.62 0.70
Germany 0.99 0.93 0.94
Ireland 0.72 0.96 0.56
Italy 0.77 0.99 0.40
Japan 0.52 0.36 0.83
Netherlands 1.00 0.94 0.81
South Korea 0.47 0.53 0.50
Spain 0.52 0.34 0.28
Sweden 0.54 0.52 0.56
United Kingdom 0.35 0.34 0.55
United States 0.99 0.44 0.96

Notes: 1. Output-oriented DEA with variable returns to scale.
2. Industry-specific frontiers are determined.

Regarding the machinery industry, our earlier results show this sector as highly
efficient in Italy, Germany, and the Netherlands. Italy’s proficiency in this sector is again
confirmed by the present estimation results. The group of highly efficient countries in
machinery also includes Belgium and Ireland. Surprisingly, all other countries exhibit a
sharp decline in R&D efficiency, with Japan, Spain, the United Kingdom, and the United
States occupying surprisingly weak positions. Compared to other industries, the

efficiency gap in machinery production most obviously separates our study countries
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into high and low performers.

In the chemicals and chemical products industry, the Netherlands, Germany, the United
States and Denmark are again the dominant players. The industry-specific analysis
confirms the already identified leading groups of countries, with Australia close behind.
At the end of the distribution are South Korea, Spain, and Japan with a low average

efficiency of about 0.5 and the United Kingdom with the lowest score of 0.35.

Conclusion

This paper analyzes R&D efficiency at the industry level in manufacturing for 13
European member and 4 nonmember countries between 2000 and 2004. We consider
three inputs: knowledge stocks approximated by R&D expenditures and high- and

medium-skilled labor to capture human capital.

Grouping the countries according to their average R&D efficiency score summarizes the

results for total manufacturing:

° high efficiency: Germany, Denmark, the United States, the Netherlands, Belgium,
Ireland, Finland

o medium efficiency: Italy, Sweden, Japan, Australia, France

° low efficiency: South Korea, the United Kingdom, Spain, Poland, and the Czech
Republic

As R&D investment and efficiency depend on national industrial structures, the
reasonable and useful level for performance assessments is the industry domain. We
observe countries occupying the frontier in certain industries that do not belong to the
generally highly efficient group, e.g. Italy in machinery, and mineral products, and
countries determining the frontier for the aggregate being superior only in certain
sectors, e.g. Finland in electrical and optical equipment and mineral products. Generally,
we find electrical and optical equipment is the dominant industry when determining the

technology frontier, followed by machinery, and mineral products.

31



Conducting separate DEA analyses for selected industries corroborates the results from
the pooled estimation and provides further insights about the relative position of
countries in economically-important industries. Again, we find support for the
usefulness of industry-specific analyses as we observe country-specific R&D efficiency
profiles with substantial variation across sectors, e.g. a relatively low score of the United
States in machinery. Estimating distinct industry frontiers gives a clearer picture of
national strengths and weaknesses. More specifically, it reveals the size of the gap
between the efficient and less-efficient countries, since it no longer assumes that a

common frontier envelops all industries.

We believe that our work can provide guidance to policymakers interested in improving
innovative performance and ensuring long-term economic growth. When resources are
limited, priority should be given to the industries that promise the largest output for the
available amount of investment. Instead of generally increasing the R&D-to-GDP ratio,
policymakers might target future R&D efforts to those industries that are economically
important and reveal excellent performance. We caution that our findings should not be
inappropriately over-generalized, particularly since our work is a first attempt to
evaluate R&D performance at the industrial sector. A finer-grained sector classification
and the use of efficiency measurements within industries to benchmark against

international competitors could provide additional insights.
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Appendix A
Table A.1

Concordance assigning IPC classes to European NACE20

NACE (Rev. 1)

Industry description

IPC Classes

15t16 Food products,
beverages, and tobacco

17t19 Textiles, textile
products, leather, and
footwear

20 Wood, products of
wood and cork

21t22 Pulp, paper, paper
products, printing, and
publishing

23 Coke, refined petroleum
products, and nuclear
fuel

24 Chemicals and chemical
products

25 Rubber and plastics
products

26 Other nonmetallic
mineral products

27t28 Basic metals and

fabricated metal
products

20 Based on Schoch et al. [30].
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AO1H, A21D, A23B, A23C, A23D,
A23F, A23G, A23], A23K, A23L, A23P,
C12C, C12F, C12G, C12H, C12], C13F,
C13]J, C13K, A24B, A24D, A24F

D04D, D04G, D04H, D06C, D06]J,
D06M, DO6N, DO6P, D06Q, A41B,
A41C, A41D, A41F, A43B, A43C, B68B,
B68C

B27D, B27H, B27M, B27N, E04G

B41M, B42D, B42F, B44F, D21C,
D21H, D21]

C10G, C10L, GO1V

B01], B09B, B09C, B29B, C01B, C01C,
C01D, €01, CO01G, CO2F, CO5B, CO5C,
C05D, CO5F, CO5G, CO7B, CO7C, CO7F,
C07G, CO8B, C08C, CO8F, C08, C08]J,
CO8K, CO8L, C09B, C09C, C09D, CO9K,
C10B, C10C, C10H, C10J, C10K, C12S,
C25B, F17C, F17D, F25], G21F, AO1N,
B27K, A61K, A61P, CO7D, CO7H, C07],
CO7K, C12N, C12P, C12Q, CO9F, C11D,
DO6L, A62D, C06B, C06C, C06D, CO8H,
C09G, CO9H, C09J, C10M, C11B, C11C,
C14C, C23F, C23G, D01C, F42B, F42D,
GO3C, DO1F

A45C, B29C, B29D, B60C, B65D,
B67D, E02B, F16L, HO2G

B24D, B28B, B28C, B32B, C03B, C03(,
C04B, E04B, E04C, E04, EO4F, G21B
B21C, B21G, B22D, C21B, C21C, C21D,
C22B, C22C, C22F, C25C, C25F, C30B,
D07B, EO3F, EO4H, F27D, HO1B, AO1L,
A44B, A47H, A47K, B21K, B21L, B22F,
B25B, B25C, B25F, B25G, B25H, B26B,
B27G, B44C, B65F, B82B, C23D, C25D,



29

30t33

Machinery

Electrical and optical
equipment
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EO01D, EO1F, E02C, EO3B, E03C, E03D,
EO5B, E05C, EO5D, EO5SF, E05G, E06B,
FO1K, F15D, F16B, F16P, F16S, F16T,
F17B, F22B, F22G, F24], G21H

B23F, FO01B, FO1C, FO1D, FO3B, FO03C,
FO3D, FO3G, F04B, F04C, F04D, F15B,
F16C, F16D, F16F, F16H, F16K, F16M,
F23R, A62C, B01D, B04C, BO5B, B61B,
B65G, B66B, B66C, B66D, B66F, C10F,
C12L, F16G, F22D, F23B, F23C, F23D,
F23G, F23H, F23], F23K, F23L, F23M,
F24F, F24H, F25B, F27B, F28B, F28(,
F28D, F28F, F28G, G01G, HO5F, A01B,
A01C, A01D, AO1F, A01G, A01J, AO1K,
AO01M, B27L, B21D, B21F, B21H, B21],
B23B, B23C, B23D, B23G, B23H,
B23K, B23P, B23Q, B24B, B24C(,
B25D, B25], B26F, B27B, B27C, B27F,
B27],B28D, B30B, E21C, A21C, A22B,
A22C, A23N, A24C, A41H, A42C,
A43D, BO1F, B02B, B02C, B0O3B, BO3(,
B03D, BO5C, BO5D, B06B, B07B, BO7C,
B08B, B21B, B22C, B26D, B31B, B31(,
B31D, B31F, B41B, B41C, B41, B41F,
B41G, B41L, B41N, B42B, B42C, B44B,
B65B, B65C, B65H, B67B, B67C, B68F,
C13C, C13D, C13G, C13H, C14B, C23C,
D01B, D01D, D01G, DO1H, DO2G,
DO02H, D02], D03C, D03D, D03], D04B,
D04C, DO5B, DO5C, D06B, D0O6G,
DO06H, D21B, D21D, D21F, D21g,
EO01C, E02D, EO2F, E21B, E21D, E21F,
FO4F, F16N, F26B, HO5H, B63G, F41A,
F41B, F41C, F41F, F41G, F41H, F41],
F42C, G21], A21B, A45D, A47G, A47],
A47L, BO1B, DO6F, E06C, F23N, F24B,
F24C, F24D, F25C, F25D, HO5B

B41], B41K, B43M, GO2F, GO3G, GO5F,
G06C, GO6D, GO6E, GO6F, GO6G, GO6],
GO6K, GO6M, GO6N, GO6T, GO7B,
G07C, GO7D, GO7F, GO7G, GO9D, GO9G,
G10L, G11B, HO3K, HO3L, HO2K,
HO2N, HO2P, HO1H, HO1R, HO2B,
HO1M, F21H, F21K, F21L, F21M,
F21S,F21V, HO1K, B60M, B61L, F21P,
F21Q, GO8B, GO8G, G10K, G21C, G21D,
HO1T, HOZH, HO2M, HO5C, B81B,
B81C, G11C, HO1C, HO1F, HO1G, HO1]J,
HO1L, GO9B, G09C, HO1P, HO1Q,



34t35

34135

Transport equipment

Transport equipment

HO1S, HO2]J, HO3B, HO3C, HO3D, HO3F,
HO03G, HO3H, HO3M, H04B, HO04]J,
HO04K, HO4L, H04M, H04Q, HO5K,
GO3H, HO3J, HO4H, HO4N, HO4R,
HO04S, A61B, A61C, A61D, A61F, A61G,
A61H, A61], A61L, A61M, A61N,
A62B, B01L, B04B, C12M, GO1T,
G21G, G21K, HO5G, F15C, GO1B, GO1C,
GO1D, GO1F, GO1H, G01], GO1M,
GO1N, GO1R, GO1S, GO1W, G12B,
GO1K, GO1L, GO5B, GO8C, G02B, G02C,
GO3B, GO3D, GO3F, GO9F, G04B, G04C,
G04D, GO4F, G04G

B60B, B60D, B60G, B60H, B60], B60,
B60L, B60N, B60P, B60Q, B60R, B60S,
B60T, B62D, EO1H

FO1L, FO1M, FO1N, FO1P, FO2B, FO2D,
FO2F, FO02G, FO2M, FO2N, FO2P, F16],
GO1P, GO5D, GO5G, B60F, B60V, B61C,
B61D, B61F, B61G, B61H, B61], B61K,
B62C, B62H, B62], B62K, B62L, B62M,
B63B, B63C, B63H, B63], B64B, B64C,
B64D, B64F, B64G, E01B, FO2C, FO2K,
FO3H

B60B, B60D, B60G, B60H, B60], B60,
B60L, B60N, B60P, B60Q, B60R, B60S,
B60T, B62D, EO1H

FO1L, FO1M, FO1N, FO1P, FO2B, FO2D,
FO2F, FO2G, FO2M, FO2N, FO2P, F16],
GO1P, GO5D, GO5G, B60F, B60V, B61C,
B61D, B61F, B61G, B61H, B61], B61K,
B62C, B62H, B62], B62K, B62L, B62M,
B63B, B63C, B63H, B63], B64B, B64C,
B64D, B64F, B64G, E01B, FO02C, FO2K,
FO3H
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Table A.2

Summary statistics: country level (2000-2004)

Country Patents R&D High-skilled Medium-skilled
Mean S.D. Min Max Mean S.D. Min Max Mean S.D. Min Max Mean S.D. Min Max

Australia 988.73 396.14 120.00 1316.00 | 11475.31 731.60 10695.31 12383.88 | 233.67 25.12 187.79 265.04| 912.41 23.81 873.58 942.25
Belgium 179146  513.58 703.00 2408.00 |21247.66 691.09 20295.03 21869.15| 100.09 244 9631 104.06| 500.09 27.46 45192 53494
Denmark 1008.82  322.45 292.00 1377.00 | 8068.75 737.58 7192.70 892498 | 26.56 3.53 20.86 30.81 | 416.68 19.29 377.02 440.43
Finland 129391 46558 184.00 1756.00 |12844.10 1342.51 11251.02 14380.25| 185.62 16.26 155.60 205.53| 346.51 19.14 311.06 369.24
France 8311.46 2627.65 1425.00 10909.00 {126489.10 3404.08 122569.80 130383.50| 417.88 34.32 379.91 505.69|3739.69 93.07 3543.70 3829.43
Germany 31328.55 10153.03 6738.00 40494.00 (235506.10 7169.71 227042.00 243748.10| 923.38 27.03 899.79 984.07 |7594.50 265.25 7175.89 8119.92
[reland 214.45 89.01 47.00 329.00 | 3149.89 153.26 2965.63 3322.22 | 65.04 16.89 40.53 91.21 | 428.75 24.28 39341 45491
[taly 492991 1409.71 1909.00 6488.00 | 42905.19 114.67 42765.27 43019.69 | 248.24 14.71 225.13 266.75|8513.60 153.87 8127.31 8717.51
Japan 21125.64 7292.83 2606.00 27615.00 (486848.40 18084.60 465781.70 507609.80| 4215.53 74.92 4058.65 4320.42(15395.44 943.06 14044.39 16722.28
Netherlands 3431.82 118597 777.00 4747.00 |24787.83 446.53 24222.00 25293.68 | 83.75 14.64 65.56 108.82|1319.26 55.68 1205.07 1375.66
South Korea 171991 1323.35 526.00 4548.00 | 69024.85 3494.39 66553.94 71495.76 | 2750.78 430.54 2317.89 3472.43/6073.16 397.72 5340.16 6761.01
Spain 937.64 362.05 441.00 1631.00 | 1683296 1105.64 15624.49 18158.09 | 523.04 119.31 318.33 685.37|1441.02 230.98 995.70 1730.36
Sweden 2441.73 63441 728.00 3008.00 |36348.87 2820.43 32826.70 39345.42 | 116.89 2735 84.87 165.36/| 870.20 30.12 835.65 926.61
United Kingdom 6117.46 1961.52 801.00 7673.00 |97799.71 2146.41 95243.11 100233.10| 781.08 69.20 660.10 851.81|5356.43 569.71 4325.81 6002.40
United States 33048.82 10558.20 3428.00 39608.00 (880727.00 5370.19 873631.70 886484.20| 7781.95 380.48 7083.66 8304.06(22283.022549.71 18570.38 24570.59

Source: EU KLEMS database and PATSTAT, own calculations.
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Table A.3

Summary statistics: industry level (2000-2004)

Industry Patents R&D High-skilled Medium-skilled

Mean S.D. Min Max Mean S.D. Min Max Mean S.D. Min Max | Mean S.D. Min Max
Food products, beverages, 1728.4 444 1688.0 1781.0 |39514.3 2113.7 37416.1 41892.0 |1466.1 45.6 1414.7 1539.0|8342.7 105.6 8240.3 8509.2
and tobacco
Textiles, textile products, 1159.2 132.2 968.0 1311.0 |10461.8 247.9 10109.2 10670.9 | 492.6 53.2 421.1 550.1 | 4409.0 502.6 3823.1 5084.7
leather, and footwear
'Wood, products of wood and | 178.4 40.5 139.0 229.0 | 3206.6 925.8 1838.5 3865.2 | 213.6 49.1 145.2 272.4|1888.6 265.7 1530.6 2236.2
cork
Pulp, paper products, 1211.8 81.1 1109.0 1290.0 |24509.5 1870.3 22443.2 26875.3 |2027.1 148.8 1836.7 2173.2| 61629 3064 5844.7 6595.8
printing, and publishing
Coke, refined petroleum 683.8 23.3 667.0 723.0 |23958.7 1255.6 22586.2 25623.2 | 111.8 5.2 107.1 119.0 | 316.5 18.0 289.3 339.1
products, and nuclear fuel
Chemicals and chemical 28545.2 892.0 27214.0 29570.0(368141.9 13914.7 353882.7 384520.4 |1586.9 30.7 15529 1628.1|3406.5 127.6 3261.5 3564.4
products
Rubber and plastics products| 5617.4 1069 5496.0 5734.0 |37502.2 1949.3 352194 39634.4 |928.7 314 893.7 9629 |4114.7 155.2 3984.6 4344.7
Other nonmetallic mineral 3789.8 236.3 3487.0 4124.0 |22539.5 245.4 22347.6 22865.9 | 526.8 9.0 518.7 5389 | 2863.2 141.0 2713.2 3056.6
products
Basic metals and fabricated | 6307.6 128.1 6162.0 6455.0 |62275.4 563.9 61605.1 62982.3 |1798.8 46.2 1750.0 1869.9|10166.4 316.3 98915 10637.8
metal products
Machinery, NEC 24701.8 686.5 24001.0 25828.0|144652.2 6548.6 137205.5 151711.5 |1911.0 109.7 1812.0 2066.9| 7989.2 4899 7545.3 8633.6
Electrical and optical 56945.4 1828.0 55674.0 60165.0|779547.2 38031.6 735008.9 816686.9 4081.3 138.4 3916.6 4249.4|9973.3 899.6 9080.8 11099.8
equipment
Transport equipment 11288.0 802.7 10531.0 12345.0(502620.9 16632.0 488258.5 522170.6 |2134.1 111.6 2049.3 2295.6| 7145.6 157.9 7011.5 7367.8
Manufacturing, NEC 2256.8 65.4 2188.0 2343.0 |15615.8 1050.5 14448.7 16803.1 | 695.6 22.8 669.9 7215 (38754 181.0 3721.8 4147.5

Source: EU KLEMS database and PATSTAT, own calculations
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3. International Knowledge Spillovers and
Productivity:
Applying Panel Cointegration to the Industrial

Sector Level

Abstract

Using panel data for 14 OECD countries and 13 sectors for the period 1985-2004, this
paper analyzes the significance of the linkage between channels of international
knowledge spillovers and total factor productivity. We distinguish between domestic
and international intra- and inter-sectoral spillover sources. Data on patent applications
are exploited to estimate the contribution of technology transfer to industrial
productivity. To account for technological distance, we weight foreign knowledge by
bilateral technological proximity. By adopting estimation methods reflecting recent
developments in the treatment of non-stationary panel data econometrics, we find that
industry-specific knowledge both nationally and internationally mainly drives

productivity in the respective sector.

Keywords: Knowledge Spillover, Total Factor Productivity, Manufacturing, Panel
Cointegration

JEL Classification: C23, L60, 030, 040
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1 Introduction

The transmission of technological knowledge to stimulate growth and productivity is an
issue that is widely discussed in modern economics. The endogenous growth theory
posits that technological progress is determined by innovative activity which in turn
responds to economic incentives (e.g. [52], [1]). In this view, efforts devoted to R&D
together with existing expertise on technologies and processes determine a country’s
productivity level. Empiricists argue that the seminal contribution of Coe and Helpman
[12] and numerous subsequent studies (e.g. [37], [13]) confirm the importance of
technology spillovers for a country’s total factor productivity (TFP). In this view, a
country’s productivity is enhanced by its own R&D efforts first and then by foreign R&D

capital.l

Unlike country-level studies, there has been little investigation of the role and channels
of spillovers across sectors (e.g. [32], [41]). Nevertheless, the pattern of productivity of
countries and industries has undergone remarkable changes by either transferring
knowledge indirectly through trading intermediate goods, or directly through
exchanging tacit knowledge at the micro level [58]. Being integrated into flows of
knowledge tends to equalize the differences in productivity domestically across
industries and internationally between countries whereas being cut off tends to
aggravate existing differences and increase the danger of lagging behind. Analyzing the
importance of knowledge spilling over within and between industries is relevant
because it enables policy-makers to shape and refine appropriate policies. This paper
contributes to the discussion by stressing the importance of inter- and intra-industry

knowledge spillovers in explaining productivity growth.

The literature on the effects of spillovers on industrial TFP differentiates between
domestic and foreign spillovers and between intra- and inter-sectoral sources [41], _—
the four channels over which knowledge can transcend boundaries and affect
productivity (e.g. [6]). Recent work can be traced to Keller [32] who analyzes whether

knowledge transfers indirectly affect TFP via the international trade of goods. The

1 Excellent surveys of the literature on R&D spillovers are [45], [11] and [33].
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notion of trade as an influential factor was introduced by Coe and Helpman [12], who
show that R&D spillovers take place through imported goods. Among others,
Lichtenberg and van Pottelsberghe [40] generally confirm their findings, but point to
the methodological concerns which have given rise to an alternative specification for
foreign knowledge that is still based on trade flows. These measures are used in
subsequent work on the analysis of technology transfer (e.g. [37], [38]) and, more
recently, the contribution of institutional variables [13] and human capital (e.g. [14],

[2]) to TFP.

In general, empirical studies on the role of knowledge spillovers for TFP growth mainly
rely on two features: 1. the approximation of existing knowledge by R&D capital stocks;
and 2. a weighting of foreign knowledge by the trading patterns of countries. Both
aspects have been discussed critically. Griliches [20] suggests distinguishing between
rent spillovers and pure knowledge spillovers. In his view, rent spillovers occur when
an increase in the quality of intermediate goods is not accompanied by a proportionate
increase in prices which causes knowledge to spill over from the supplier to the
producer of the final good and results in efficiency gains. Hence, rent spillovers are
assumed to depend on international trade flows. Studies using import shares for
weighting purposes therefore focus on rent spillovers originating from economic

transactions (e.g. [41], [32]).

On the contrary, pure knowledge spillovers are difficult to quantify since they are
assumed to be mainly tacit [15]. However, it is not easy to separate pure knowledge
from rent spillovers in theory and empirics [44]. Verspagen [59] and Los and Verspagen
[42] exploit patent data to study this type of spillover and use a measure of
technological proximity suggested by Jaffe [27] to quantify the ease of knowledge
circulating between countries. Eaton and Kortum [16] argue that patent data can be
interpreted as a more direct indicator of innovative activity compared to R&D because
the data contain information about the origins of technologies and are legally related to
invention and novelty. Using patents, Madsen [43] examines the impact of knowledge

stocks on TFP for historical data and finds that international patenting has a substantial
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effect on TFP growth and convergence. To our knowledge, 2 Lach [35] has conducted the
only patent-based analysis on the industry level to evaluate the impact of the patent
stock on productivity growth in American manufacturing. He finds an output elasticity
of knowledge of around 0.3, which is remarkably high compared to those found for

R&D.

Related to the measure of innovative activity - R&D or patents - is the choice of a
weighting scheme for foreign spillover sources. As mentioned above, focusing on trade
structures is related to the analysis of rent spillovers. Studies on pure knowledge
spillovers therefore apply the concept of technological proximity between countries,
industries or firms - depending on the level of observation - to measure the
technological distance from the spillover-receiver. Los and Verspagen [42] apply this
methodology to study the effect of the two types of spillovers in U.S. manufacturing.3 An
update by Lee [36] casts further doubt on the importance of trade for the diffusion of
knowledge by showing that the impact of import shares nearly vanishes when

controlling for real knowledge spillovers.

To our knowledge, this paper is the first to study the channels of pure knowledge
transfer on the industry level using patent data and applying the concept of
technological proximity to ensure focusing on direct knowledge spillovers. We close the
existing research gap by providing empirical evidence on the productivity and
innovation linkage via an analysis of patent data for 14 OECD countries and 13
industries. We suggest that using patents as an indicator of innovative output highlights
the robustness of previous results considering the different approaches of capturing

knowledge.

Previous literature has partly neglected the time-series properties of the underlying
variables. Referring to the work of Coe and Helpman [12], Kao et al. [30] emphasize the
need to account for non-stationarity of data and suggest applying dynamic linear

regression analysis. We conduct various panel unit root and recently developed panel

2 For stylistic purposes, the plural form “we” is used in this single-authored paper.

3 The patent-based measure of technological proximity is also combined with R&D data to stress the role
of pure knowledge transfers: e.g. [22] uses this measure to study the impact of domestic R&D by sources
of funding.
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cointegration tests to investigate the time series properties of our variables.
Estimations are presented for ordinary (OLS) and dynamic ordinary least squares
(DOLS). Our results indicate that domestic and international intra-industry knowledge
spillovers have significant impacts on TFP growth and that technologies originating
from other sectors do not affect productivity. Our results indicate that intra-industry
knowledge spillovers, domestically and internationally, have a considerable effect on
TFP growth. Technologies originating from other sectors are not found to affect

productivity.

The paper is organized as follows: Section 2 sketches the theoretical background and
Section 3 introduces data sources and the construction of variables. Section 4 presents
the econometric techniques and discusses the estimation results. Section 5 presents our

conclusions.

2 Theoretical Background

The idea that externalities like knowledge spillovers affect productivity has an even
longer history in the economic literature than the endogenous growth theory. In the
early contributions, the main source of externalities is assumed to be “learning by
doing” as suggested by Arrow [3]. The model still being used in empirical applications
nowadays goes back to Griliches [20]. It transfers the early approaches on knowledge

externalities to the field of R&D.

Generalizing the initial model to the country level, we assume that a country’s output in

industry j is given by the following Cobb-Douglas style production function:

Y =ASSILK ™, 0<a<1,
with L; denoting manpower, K; representing physical capital and A being a positive
constant. Production is linked to technological capital via S, where §; is the knowledge

capital being specific to industry j. S, stands for the state of aggregate technological

knowledge outside the industry. The two major assumptions in this model are: 1.
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constant returns to scale with respect to physical capital, and 2. labor and common

factor prices to all firms within a certain industry.*

An aggregation of inputs to a conventional total input index
_qopl-a
X, =LK;

leads to the common definition of TFP

| =<

TFP =15

><

j
Given the production function as specified above leads to the following linear equation

relating productivity to knowledge inside and outside the industry:

In(TFP,)=In(A)+38In(S,)+yIn(S,).

To adapt this theoretical framework to a multi-country and multi-industry setting, we
follow previous studies and further distinguish between domestic and international

knowledge to specify S,. Therefore, we assume that the production of industry j in

country i depends on knowledge within and outside the industry as well as on

international knowledge inside and outside sector j:
In(TFP, ) =In(A)+8(S} )+v|In(S?,)+In(Sf)+In(ST, )|
We thereby allow for four channels of spillovers: two intra-sectoral, national SE and

international S, and two inter-sectoral sources, S, and international S ;.

Theoretically, the impact of inter-sectoral spillovers could also be estimated by treating
all sectors in the sample as separate regressors in the estimation equation. However,
sector-specific knowledge pools reveal a high degree of correlation leading to the
problem of collinearity. Griliches [21] mentions this empirical issue and points to the
problem of “wrong” signs and insignificant test statistics. Other authors choose only a
few. However, this still incurs the danger of omitted variable bias and therefore is
sometimes combined with certain restrictions (e.g. [5]). We circumvent the problem by

separating spillovers only into intra- and inter-sectoral components.

4 Relaxing these assumptions leads to the inclusion of further terms, which reflect e.g., how productivity
alters as the firm structure of an industry changes.
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3 Data and Variables

The econometric analysis is based on a balanced panel of 14 OECD countries® and 13
industries from the manufacturing sector over the period 1985-2004.7 The analysis

begins with the construction of variables for TFP and knowledge spillovers.

3.1 Total Factor Productivity
Calculating the measure of TFP derives from a homogenous Cobb-Douglas technology
using the EU KLEMS8 growth and productivity accounts which combine an extended
historical time series with a detailed breakdown at the industry level.® TFP in the
industry sector j for country i is defined as:

Y,
TFPU: o Jl—(x
LK

where Y.

; indicates value-added in the respective industry, K; denotes physical capital

input and L; labor service inputs in terms of hours worked. TFP in this context is

modeled as the ratio of an output quantity index of value added to the weighted sum of
quantity indices of capital and labor inputs where «, the average annual share of labor
compensation in value added, serves as weight. 10 All variables are indexed such that

1995 equals 100.

TFP reveals an upward trend over the period 1985-2004, even though substantial
variation is present across countries and industries. The different sectors show
remarkable differences in average productivity growth rates (Table 1), which vary
between -2.2% for coke, petroleum and nuclear fuel and +5.8% for electrical and optical

equipment.

5 In the absence of measurement error.

6 Australia (AUS), Austria (AUT), Belgium (BEL), Denmark (DNK), Finland (FIN), France (FRA), Germany
(GER), Italy (ITA), Japan (JPN), Netherlands (NLD), South Korea (KOR), Spain (ESP) United Kingdom (UK),
United States (USA).

7 Only in the case of South Korea, one industry (Wood) must be dropped due to insufficient patenting
activity.

8 EU KLEMS database, March 2008, see [56] for a short overview and [57] for a detailed description of the
underlying methodology.

9 Most of the previous studies are based on the OECD STAN database. The advantages of the EU KLEMS
database are the harmonized methodology in calculating capital stocks and the use of additional data
sources to expand coverage [46].

10 EU KLEMS uses Torngqvist indices for aggregation.
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Table 1
Cumulative average annual growth rates of TFP (1985-2004)

Industry description TFP growth rate
Food products, beverages, and tobacco 0.14
Textiles, textile products, leather, and footwear 1.32
Wood, products of wood and cork 1.43
Pulp, paper, paper products, printing, and publishing 0.34
Coke, refined petroleum products, and nuclear fuel -2.23
Chemicals and chemical products 2.16
Rubber and plastics products 3.14
Other nonmetallic mineral products 1.44
Basic metals and fabricated metal products 1.23
Machinery 1.93
Electrical and optical equipment 5.79
Transport equipment 2.17
Manufacturing NEC, recycling 0.47

Notes: Averages are calculated over countries. Growth rates in %.
Source: EU KLEMS database. Own calculations.

Figures A.1-A.4 (Appendix) display the evolution of TFP in the R&D-intensive industries
chemicals and chemical products; machinery; electrical and optical equipment; and
transport equipment for selected countries. We find a positive trend in all sectors, with
the growth of TFP highest in electrical and optical equipment, especially in the United
States and Finland. Compared to this expansive growth, the average productivity
increase in machinery is moderate, with the exception of France. In chemicals and
chemical products, Germany shows the largest growth when comparing the initial with
the final level, whereas France exhibits relatively weak progress. Transport equipment
provides a mixed picture concerning the relative positions of countries, but overall

reveals an upward trend.

3.2 Technological Proximity
Foreign spillover pools are constructed as the sum of foreign countries’ established

knowledge weighted by bilateral technological distance, which is supposed to reflect the
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ease of knowledge transcending boundaries. Technological proximity are calculated
according to Jaffe [27], [28] who compares countries’ positions in technology space. The
potential to benefit from foreign R&D is affected by bilateral distance: the closer

countries’ profiles the more they will spur each other’s research activities.

Initially, Jaffe’s measure was developed to derive weights for potential spillover pools
on the firm level. Subsequent studies applied it to the country level to characterize the
similarity of innovative activities in countries (e.g. [37], [23]).1! There are two main
assumptions: 1. all countries possess an equal ability to appropriate knowledge [28],
and 2. technology can flow directly without the need of letting goods circulate [22]. This
second assumption is an important distinction to the approach suggested by Coe and

Helpman [12], which relies on tradable goods and therefore focuses on rent spillovers.

We first identify the areas of innovative activity across technologies using technology
areas defined by Schmoch et al. [54].12 Formally, a vector covering the shares in
patenting behavior over well-defined technological fields summarizes the technological
position of a country. The number of elements in the vectors equals 44, one element for

each field n in country i at time t:

P P

itl it44
44 P o 44 P
Z n=1 itn Z n=1" itn

is the number of patent applications filed in field n and F, reflects the

F.=(F, .. F,)=

where P

itn

corresponding frequency distribution.

Using the angular separation of vectors of country i and k, the proximity measure PM,,

is derived as:
EFE.'
Mi — it” kt .
© JEE)(EE,)

Intuitively, the measure is calculated as the uncentered correlation between two vectors

of technological position. It is therefore bounded by 0 and 1, with a value of 1 indicating

identical technological patterns of innovative activity. A proximity of 0 implies

11 An application at the industry level is [42].
12 The 44 technological fields are in Appendix A.2.
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orthogonal positions in technology space with no potential to benefit from each other’s
research activities. The technological distance is calculated for every year and thereby
underlies certain dynamics. Unlike the Euclidian distance, this approach is not sensitive

to the length of vectors.

Table 2 displays the average pattern of technological similarity. In terms of
technological distance, the United States and the United Kingdom are quite close.
Overall, Japan and South Korea exhibit the lowest proximity on average to European
countries, which reflects a slightly different pattern of specialization that might reduce

their ability to benefit from European technological externalities.
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Table 2

Average technological proximity (1985-2004)

AUS AUT BEL DNK ESP FIN FRA GER ITA JPN KOR NLD UK USA
AUS 1
AUT 0.867 1
BEL 0.841 0.805 1
DNK 0912 0.794 0.828 1
ESP 0.892 0.882 0.817 0.870 1
FIN 0.628 0.634 0591 0.572 0.610 1
FRA 0.914 0.899 0.859 0.833 0901 0.718 1
GER 0.859 0909 0865 0.780 0.865 0.660 0.949 1
ITA 0.870 0930 0.858 0.825 0915 0.625 0.908 0.937 1
JPN 0.741 0.690 0.744 0.616 0.673 0.608 0.846 0.792 0.715 1
KOR 0.659 0.588 0.603 0.583 0.637 0.583 0.723 0.624 0.607 0.814 1
NLD 0.818 0.764 0806 0.723 0.756 0.697 0.887 0.824 0.788 0918 0.778 1
UK 0.943 0.841 0887 0.898 0.882 0.692 0955 0.888 0.873 0.841 0.737 0.885 1
USA 0.899 0.766 0866 0.846 0.801 0.645 0908 0.842 0.810 0.889 0.754 0901 0.962 1

Notes: Displayed is the average proximity over years (1985-2004).
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3.3 Knowledge Stocks
In line with previous literature, we distinguish between intra- and inter-sectoral
knowledge spillovers. The reasoning is that research carried out in other countries but
within the same sector might stimulate certain local innovative activities more than
those in other sectors due to the same underlying technology set. This requires the
calculation of four distinct technological variables covering domestic externalities
within the sector and from other sectors as well as international externalities, again in-

and outside the sector.

We use patent applications as measures of innovative output to approximate existing
knowledge. The information on patent applications made between 1985 and 2004 is
taken from the European Patent Office’s Worldwide Patent Statistical Database.l3

Applications are dated using the priority date.

The assignment of patents to industries covered by EUKLEMS is based on a
concordance developed by Schmoch et al. [54], who use expert assessments and micro-
data evidence on the patent activity of firms in the manufacturing industry to link
technologies to industries. The technological classes contained in the patent application
are linked to technological fields and then aggregated to industries based on the NACE

code.l4

We construct domestic and foreign knowledge stocks to model potential pools for

spillovers. The domestic knowledge stock of country i originating from industry j at

time t is denoted by Si[].’t. It is indexed such that 1995=100 and calculated using the

perpetual inventory method, which depreciates knowledge at a constant rate.l5

Compared to the evolution of TFP, the increase in Sgt in the R&D-intensive industries is

larger and smoother over time (Appendix Figures A.5-A.8). Especially in the chemicals

and chemical products sector, we observe a uniform upward trend across all countries.

13 PATSTAT 1/2008, maintained by the European Patent Office (EPO).

14 The entire concordance of International Patent Classification (IPC) classes and NACE industries is given
in Appendix A.1. A patent counts for each sector covered by its IPC classes.

15 We assume a depreciation rate of 15% and an initial growth rate of 20% which is common in the
literature.
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The same holds for machinery; overall the domestic knowledge stocks rise on average
by 50% between 1995 (our base year) and 2004, which is slightly less than in the
chemical industry. Finland experiences a drastic knowledge increase in its electrical and
optical equipment sector; the stock quadrupled in the second half of our estimation
period. Finland is followed by Germany which doubles its domestic industry-specific
stock. Transport equipment shows Germany and Japan in the lead while the other

countries reveal a relatively lower but steady growth.

Knowledge potentially spilling over from other sectors in the economy is summarized

by

D _ D
Si—jt - zsimt )

mj
which is simply the sum of the domestic stocks in country i, except for industry j.
International knowledge stocks are constructed as the weighted sum over foreign
knowledge stocks where bilateral technological distance serves as the weighting
scheme. In the case of international intra-sectoral spillovers, i.e. within one industry, the

corresponding variable is given by

F prox __ D
Sijt - ZPMiktSk]’t '
k#i

Accordingly,

Sf—jtprox = Z z PMiktSEmt

k#i m#j
defines the inter-sectoral foreign knowledge available to country i and sector j

originating from other countries and sectors.

To further control for the impact of the weighting scheme, we derive unweighted
spillover variables as follows. Let the unweighted international spillover pool be
denoted by S;t being the sum of foreign knowledge (available to country i) produced in
industry j, and therefore representing international intra-sectoral spillovers. In the
same manner, the inter-sectoral (other than sector j) foreign stock available to country i
can be derived and is denoted by SiF_].t. Again, we transform all explanatory variables

into index values with base year 1995. This ensures comparability by the freedom from

units of measurement and erasing the industry- or country-specific differences in levels.
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Tables 3 displays the summary statistics for the dependent and the explanatory

variables used.

Table 3

Summary statistics: (1985-2004)

Variable

Description

Mean

S.D.

Min

Max

In(TFP)

n(s)

In(s )

ln(S:.)

Value-added based
TFP growth,
constructed as index
with 1995=100
Domestic stock of
patent applications in
industry j,
constructed as index
with 1995=100
Domestic stock of
patent applications in
all industries, except
j, constructed as
index with 1995=100
Foreign stock of
patent applications in
industry j, countries
weighted by
technological
proximity,
constructed as index
with 1995=100
Foreign stock of
patent applications in
industry j,
constructed as index
with 1995=100
Foreign stock of
patent applications in
all industries, except
j, countries weighted
by technological
proximity,
constructed as index
with 1995=100
Foreign stock of
patent applications in
all industries, except
j, constructed as
index with 1995=100

4.586

4,558

4.569

4.579

4,584

4,594

4,598

0.298

0.564

0.604

0.360

0.341

0.383

0.367

-0.252

0.469

1.718

2.815

3.591

3.070

3.893

7.157

7.017

6.811

5.390

5.381

5.262

5.231
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4 Empirical Analysis

4.1 Estimation Model
To estimate the effect of different channels of knowledge spillovers on productivity in a

multi-country, multi-industry setting, we use the model described in Section 2:

S? s> St Sk
In(TFP, ) =0, +B, | 5" |+B,In| = |+B,In| -2~ [+B,In| = |+u,,
Sij1995 Si—j1995 Sij1995 Si—j1995

with i=1,..,14 j=1,.,13 t=1985,..,2004.

We thereby allow for dissimilar coefficients of the knowledge stocks and country-

specific fixed effects a,, which cover determinants not included in our model. Note that

each estimated coefficient could be interpreted as an elasticity of TFP with respect to
the variable of interest. Because we cannot exclude the possibility of non-stationarity of
our variables, we could face the spurious correlation problem when running
regressions on this equation. Therefore, before estimating the model and interpreting
the coefficients as reflecting the long-run relationship between knowledge stocks and
productivity, we turn to the analysis of the stochastic properties of the underlying time

series.16

4.2 Cointegration Preliminaries
The first step is to pre-test all variables to find whether they contain a unit root. Several
procedures for testing the presence of unit roots in case of panel data have been
suggested in the literature.l” All approaches try to combine the time-series with the
cross-sectional dimension of the data to improve inference on unit roots and
cointegration. Given this background, a persisting problem is the asymptotic behavior of

the test statistics as N and T both tend to infinity.

16 Granger and Newbold [19] introduce the notion of spurious regression. Based on simulations, they
show that regression analysis based on non-stationary data series produces statistically significant
results that have no economic meaning except for the case of cointegration.

17 Breitung and Pesaran [8] review recent developments in this field. Concerning the first generation of
tests, see Banerjee [4].
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Table 3 presents the results for four different unit root tests: Levin et al. [39], Breitung
[7], Im et al. [26] and Hadri [24]. Levinl8 et al. [39] were one of the first to develop a
panel unit root test, which tests the hypothesis of non-stationarity of all time series
against the alternative of stationarity of all series. The hypothesis of non-stationarity
cannot be rejected by the Levin et al. [39] test for all variables. Breitung [7] suggests a
slightly different approach that conducts an adjustment before running the regression.
Thereby, bias correction is no longer necessary. Also the Breitung [7] test cannot reject
the null hypothesis that all panel members reveal a unit root. Im et al. [26] suggest a
more flexible framework by allowing for heterogeneity in the autoregressive
parameters. Hence, we can still hypothesize that all series are non-stationary under the
null, but under the alternative only a fraction needs to be stationary. However, we find

no evidence for stationary processes.

Table 4
Panel unit root tests (1985-2004)

Variable Levin, Lin and Breitung Im, Pesaran Hadri
Chu and Shin

In(TFP) 5.116 1.790 0.098 43.089***

ln(S?) 8.358 1.113 -1.203 66.352%***

ln(S?].) 31.203 2.898 5.788 78.012%**

1n(stPr°><) 5.862 4120 5.817 84.216***

1n(st) 17.460 6.307 18.462 88.497***

In(s” ") 26315 -1.159 -0.838 73.28%%*

In(s")) 12.902 2.749 17.515 96.126%**

Notes: Significance levels of 10%, 5%, and 1% for the one-tailed tests are indicated by *,
**and ***. The null hypothesis of a unit root is rejected if the test statistic is significant
in case of Levin et al. [39], Breitung [7] and Im et al. [26]. On the contrary, Hadri [24]
tests the null of stationarity. Variables are demeaned to mitigate the impact of cross-
sectional dependence. Lags are specified such that the Akaike information criterion is
minimized.

18 The test is often referred to as the Levin and Lin test because it started circulating as a working paper
in 1992. Chu joined the co-authors in the published version.
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If it can be argued that we are interested in showing that our variables are stationary, it
might be more appropriate to test the null hypothesis of stationarity against the
alternative of non-stationarity. As Hadri [24] points out, classical hypothesis testing
tends to accept the null hypothesis unless the data series exhibits strong evidence for
the alternative. He proposes a Lagrange multiplier-based test on the null of stationarity.
We find that the hypothesis of stationarity can be rejected for all dependent and
explanatory variables at the 1% level. As all tests rely on the assumption of cross-
sectional independence, we demean all time series when conducting the panel unit root
tests to mitigate the impact of dependence being prevalent in the data as suggested by

Levin et al. [39].1°

Having established that all variables exhibit a unit root, i.e. are non-stationary, we next
conduct a panel cointegration test to ensure that a long-term relationship exists. Note
that we consider panel cointegration as the long-term relationship between our
dependent and explanatory variables being present in the countries and sectors. This is
in sharp distinction to the concept of cross-member cointegration where the dependent

variables of panel members are cointegrated.

Methods of testing for panel cointegration are receiving more attention, especially in
empirical applications. The most influential contribution is Pedroni [47] [48] who
develops several panel cointegration tests based on the residuals of the estimated
regressions.20 A weakness of this type of test is its dependence on a common factor
restriction: long-run cointegrating vectors (with variables in levels) are supposed to
equal the short-run adjustment parameters (for variables in differences). As a
consequence, a number of studies, e.g. [25], fail to reject the null hypothesis of no-
cointegration even in cases where it is predicted by economic theory. The explanation is
that these tests lose significant power when the common factor assumption is violated
[34]. For these reasons, Westerlund [61] suggests four additional cointegration tests

that explicitly relax this assumption by focusing on short-run dynamics.?! Starting from

19 An alternative would be to use “second generation” panel unit root tests which relax the assumption of
cross-sectional dependence, e.g. Chang [9] or Pesaran [50].

20 Notable contributions to the literature are Kao [29] and Westerlund [60].

21 The test is implemented using a STATA code provided by [49].
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an error-correction representation of the data generating process, the coefficient of the
error-correction term is used to test the null hypothesis of no-cointegration:
bi Pi
Ay, =9,'d, + o, (Yi,t—1 —B'%i 4 ) + zaijAYi,t—j + Z YijAXi,t—j T& .
=1 =i
Error-correction in this setup occurs if o, <0, and therefore x, and y, are cointegrated.

Accordingly, cointegration does not exist if o, =0, which implies the corresponding

specification of the null hypothesis (of no-cointegration).

Concerning the alternative hypothesis, two different kinds of statements are possible:

one assumes that o, =a <0 for all i, or a, <0 for at least one i. The first type of test is

termed panel tests and the second group-mean tests. We choose one test out of each
group to test for the existence of a cointegrating relationship between productivity and
knowledge spillovers. As Westerlund [61] shows by means of Monte Carlo simulations,
these tests outperform both their counterparts and Pedroni-style tests in terms of

power even in the presence of cross-sectional dependence.

Table 5 displays the tests where the null of no-cointegration is firmly rejected by the
panel-type test at the 1% significance level. The group-mean test also mostly rejects the
null, especially when controlling for a deterministic trend in the cointegrating
relationship. Evidence for cointegration is strongest for the specification including
domestic intra- and inter-sectoral spillover sources and international intra-sectoral
knowledge, weighted by technological proximity, which is the preferred specification in
our estimations. Taken together, we find evidence for the existence of a long-run

relationship between productivity and international knowledge spillovers.
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Table 5
Panel cointegration tests (1985-2004)

Variable Panel test Group-mean test
in(TFP) 1n(S) (3] SO0L 10495 1365 117950
ln(TFp),ln(s?),1n(5fpm’<) -10.441%**  -35.841%** 2.171 -7.493%**
ln(TFP),ln(S?),ln(S?j) 2.467 -5.647*** 5.081 -8.897***
ln(TFP),ln(S?),ln(S?].),ln(SjFp“’X) -4.253%F 4 703%** -2.006**  -10.938%**
ln(TFP),ln(S?),ln(S?].),ln(Sf) -25.715%%*  -43.727%** 2.421 -4.505%**
In(TFP),In(SP ), In(S/P™), In (™) -3.961%**  -4763**  -1479*  -10.817**
ln(TFP),ln(S?),ln(S?].),ln(SjF), -6.835%** -18.762 -4.721%%* -3.448%**
ln(S:.)

ln(TFP),ln(S})),ln(S?j),ln(sjpp“’x), -5.24 5% -1.742** 0.977 -7.051%*%*
nfs')

Notes: Error-correction-based cointegration test developed by Westerlund [61]. The
null hypothesis is absence of cointegration. Significance levels of 10%, 5%, and 1% for
the one-tailed test are indicated by *, ** and ***. Lags are specified such that the Akaike
information criterion is minimized.

4.3 Estimation Results
Having shown that the regressions will not be spurious, we now turn to the estimations.
The two econometric methods applied to estimate the effect of knowledge spillovers are
ordinary least squares (OLS) and dynamic ordinary least squares (DOLS). In case of
cointegration, the standard OLS estimator is “super consistent”, i.e. estimated
coefficients converge faster to the true value. Table 6 presents panel estimations with
stepwise expanding specifications derived by means of OLS. Starting with the impact of
domestic spillovers, we find a significant influence of both intra- and inter-industry
spillovers (Model 1). Model 2 shows the alternative where we begin by focusing on the
sectoral perspective and therefore only include national and international industry-
specific knowledge stocks. Again a clear impact is observed for both spillover channels.
Evidently, concentrating exclusively on either the sectoral or the national perspective is
misleading, since both specifications seem to suffer from omitted variable bias. As a

consequence, Model 3 encompasses both perspectives. Here we find that existing
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domestic knowledge is no longer significant when allowing for international spillovers
within the industry. The coefficients of domestic and international sectoral channels

remain robust and comparable in size relative to Model 2.

So far, we have used foreign knowledge stocks adjusted for technological bilateral
distance since the emphasis of our analysis is on direct knowledge and not on rent
spillovers. Wanting to know the sensitivity of the results to a change in the weighting

pattern, we reestimate Model 3 with the unweighted sector-specific knowledge stocks

SjF. The only difference occurring is the slight decrease in coefficient size of the

respective variable, while domestic knowledge remains fairly stable. So far, knowledge
from other countries within the same sector has a substantially larger impact on TFP
than technological development in the national arena. To check whether international
spillovers from other sectors also affect productivity, we include them together with
national and international intra-sectoral knowledge (Model 5) and then in the full
model specification (Model 6) as derived in Section 2. Again, domestic industry-specific
spillovers are robust to these changes. International flows originating outside the
industry turn out to be insignificant. The picture is slightly different for international
intra-sectoral spillover sources: the corresponding coefficient only remains significant
at the 10% level even though it increases substantially in magnitude. Its non-
significance could be caused by the problem of collinearity. As Griliches [20] notes,
estimations on international spillovers are often hampered by this type of obstacle,
because the different series are usually closely related. This problem is frequently
discussed in the empirical literature when assessing spillover channels on both the
country-wide- and sector-levels (e.g. [41]). In our dataset, the correlation coefficient is
highest - almost 0.9 - for the two foreign knowledge stocks whether or not we use the
weighted or the unweighted type. Nevertheless, Lee [37] argues that since no clear
criterion for determining the presence of collinearity exists, even correlations above 0.8

do not cause serious problems in this context.
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Table 6

Estimation results OLS

Model 1: Model 2: Model 3: Model 4: Model 5: Model 6:

In(S}) 0.108%* 0.080%"* 0.081*** 0.084*** 0.082%* 0.082***
(0.019)  (0.015) (0.020) (0.020) (0.014)  (0.014)
In(s”,) 0.047%+* 0002 0.014 0.014
(0.017) (0.020)  (0.019) (0.026)
In(s"") 0.138%**  0.139*** 0.221*  0.228*
(0.020)  (0.023) (0.131)  (0.140)
In(s} ) 0.114%+*
(0.020)
In(S*P™) -0.082  -0.099
(0.137)  (0.157)
Number of groups 181 181 181 181 181
Observations 3620 3620 3620 3620 3620

Notes: 1. Dependent variable: In(TFP), 1985-2004.

2. Robust standard errors are given in parentheses below the coefficient estimates.
3. % *#* and * denote significance at the 1%, 5%, and 10% level, respectively.

4. All estimated models include unreported country-level fixed effects.

Even though OLS estimates are “super consistent” in the presence of cointegration, a
shortcoming is their non-normal distribution due to the finite sample bias which arises
in the cases of endogeneity of regressors or serial correlation in the error terms.
Therefore, the usual t-statistics could be misleading. Chen et al. [10] compare the finite
sample properties of OLS with its bias-corrected counterpart and fail to reveal
substantial improvements. More promising alternatives are the fully modified OLS
(FMOLS) (e.g [48], [51]) and the DOLS estimator (e.g. [53], [55]). Kao and Chiang [31]
study the asymptotic distributions of OLS, FMOL and DOLS and conduct Monte Carlo
simulations to compare the finite sample properties. Their results illustrate that FMOLS
does not outperform OLS and that DOLS is superior to both OLS and FMOLS in terms of

bias reduction.
Even though the DOLS estimator shares the limiting distribution of the FMOLS

estimator, the obtained coefficients may vary remarkably. To avoid the bias of OLS, the

DOLS estimator expands an OLS approach by lead and lag terms of first differences of
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the explanatory variables to control for endogeneity.22 As Kao and Chiang [31] show,
the estimated coefficients of DOLS depend on the chosen number of leads and lags. We
follow the suggestion of Kao et al. [30] by including two lags and one lead of first

differenced explanatory variables.

Table 7 presents the coefficient estimates of DOLS. With respect to statistical
significance, the results corroborate our findings from the OLS estimations.23
Comparing the size of the coefficients of Model 3 for OLS and DOLS, we observe that
DOLS delivers a higher elasticity of the industry-specific international knowledge

spillovers at the expense of a slightly lower effect of domestic stocks. While the

estimated coefficient of ln(Sf"“’X) is 0.139 for OLS, it increases to 0.157 for DOLS.

Overall, we find an effect of ln(Sfp"’X) nearly twice as large as the domestic one in the

DOLS estimations. The elasticity of foreign knowledge originating within the industry
remains surprisingly stable (0.154) when replacing the technology proximity weighted
stock by the unweighted one (Model 4). We therefore do not observe a substantial effect
of the weighting scheme in our analysis, possibly due to the fact that technological
distance is a bilateral concept, varying only over countries but not over industries.
Estimating the full model again confirms the importance of local knowledge with an
elasticity of TFP of 0.07. As in all specifications including international spillovers, we
never find evidence for a linkage between TFP and domestic inter-sectoral spillovers.
The inclusion of both international spillover stocks leads to insignificant coefficients,
but as already discussed, the issue of collinearity might influence the results for this

certain specification. Therefore, Model 3 becomes our preferred specification.

22 Serial correlation is accounted for in the calculation of standard errors.
23 Models 1 and 2 are provided to re-emphasize the importance of covering sectoral and international
spillover sources.

62



Table 7
Estimation results DOLS

Model 1 Model 2 Model 3 Model 4 Model 5

In(S}) 0.104%  0.082°%  0.074%*  0.081%*  0.071%**
(0022)  (0.018)  (0.022)  (0.022)  (0.025)
In(s”,) 0.038* 0.011 0.012 -0.014
(0.021) (0.027)  (0.023)  (0.042)
In(S7™) 0.152%*%  0.157%* 0.192
(0.025)  (0.026) (0.168)
In(S;) 0.154+*
(0.025)
In(S*P™) -0.033
(0.191)
Number of groups 181 181 181 181 181
Observations 3258 3258 3258 3258 3258

Notes: 1. Dependent variable: In(TFP), 1985-2004.

2. Robust standard errors are given in parentheses below the coefficient estimates.

3. % *#* and * denote significance at the 1%, 5%, and 10% level, respectively.

4. All estimated models include unreported country-level fixed effects.

5. For the DOLS estimation, two lags and one lead of first differenced independent
variables are included.

Our findings are in line with the empirical literature when stressing the importance of
international knowledge spillovers. Initially, Coe and Helpman [12] provided evidence
on the role of international R&D for enhancing productivity growth. Subsequent studies
cast doubt on the results by raising methodological concerns, e.g., Kao et al. [30] reject
the effect of foreign R&D to TFP by using panel cointegration techniques while Edmond

[17] claims the relationship is unstable across alternative specifications.

We address the sector specificity of knowledge by distinguishing between inter- and
intra-sectoral channels. Thereby, we are able to show that foreign knowledge is
conducive to TFP growth, but only within industries and it may explain why the
country-level evidence is mixed. Previous studies on R&D spillovers at the industry
level also corroborate our finding that foreign knowledge spurs productivity (e.g. [41],
[18]). Numerically, even though we adopt a different measurement approach by relying
on patent data together with technological proximity to focus on pure knowledge

spillovers, our elasticities of TFP concerning intra-sectoral spillovers take a similar
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direction: Frantzen [18] reports a value of 0.095 for domestic and 0.079 for
international R&D stocks. Even though our results are of course not directly
comparable, the domestic effect is surprisingly close, but our influence of knowledge
originating from other countries is substantially higher. With Braconier and Sjoholm
[6], we share the result of non-significance of knowledge within the country being

generated in other sectors.

5 Conclusion

The theoretical and empirical literature suggests that knowledge transcending national
boundaries contributes positively to productivity growth in other regions. Until
recently, however, few studies focused on differences in technology transfer across
sectors. The purpose of this paper was to assess the importance of different channels of
spillovers at the industry level by distinguishing between domestic and international
intra- and inter-sectoral technological externalities, clearly focusing on pure knowledge
spillovers. Using patent data as a measure of innovative output to capture generated
knowledge, we estimate the contribution of existing knowledge to industrial
productivity. To account for technological distance between countries, we weight

foreign knowledge by bilateral technological proximity.

The analysis is based on 14 OECD countries and 13 industries between 1985 and 2004.
By adopting estimation methods reflecting recent developments in the treatment of
non-stationary panel data econometrics, we find that industry-specific knowledge, both
nationally and internationally, mainly drives productivity in the respective sector. By
contrast, knowledge flows from other sectors of the economy prove to be ineffective
channels for knowledge transmission. Cross-border flows from other countries and

sectors also turn out to have no productivity-enhancing effect.

Our results confirm the notion that the international flow of ideas is an influential factor
for productivity growth. However, the investigation of the different channels of
spillovers shows that policies designed to enhance the flow of knowledge must be
targeted to the industry level. Based on our results, we suggest that policies accounting

for sector-specific differences will be more beneficial for stimulating technological
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innovation and increasing productivity - the two important challenges posed by the

Lisbon Agenda for the European Union.
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Appendix A

Table A.1

Concordance assigning [PC classes to European NACEZ4

NACE?s (Rev.1)

Industry description

IPC Classes

15t16

17t19

20

21t22

23

24

25

26

27t28

Food products,
beverages, and tobacco

Textiles, textile
products, leather, and
footwear

Wood, products of
wood and cork

Pulp, paper, paper
products, printing, and
publishing

Coke, refined petroleum
products, and nuclear
fuel

Chemicals and chemical
products

Rubber and plastics
products

Other nonmetallic
mineral products
Basic metals and
fabricated metal

24 Based on Schoch et al. [54].
25 Nomenclature générale des activités économiques dans les Communautés européennes
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AO1H, A21D, A23B, A23C, A23D,
A23F, A23G, A23], A23K, A23L, A23P,
C12C, C12F, C12G, C12H, C12], C13F,
C13]J, C13K, A24B, A24D, A24F

D04D, D04G, D04H, D06C, D06],
DO06M, DO6N, DO6P, D06Q, A41B,
A41C, A41D, A41F, A43B, A43C, B68B,
B68C

B27D, B27H, B27M, B27N, E04G

B41M, B42D, B42F, B44F, D21(,
D21H, D21]

C10G, C10L, GO1V

B01J, B0O9B, B09C, B29B, C01B, C01C,
C01D, €01, CO1G, CO2F, CO5B, CO5C,
CO5D, CO5F, C05G, C07B, CO7C, CO7F,
C07G, CO8B, C08C, CO8F, C08, C08]J,
CO8K, CO8L, C09B, C09C, C09D, CO9K,
C10B, C10C, C10H, C10J], C10K, C12S,
C25B, F17C, F17D, F25], G21F, AO1N,
B27K, A61K, A61P, C07D, CO7H, C0O7],
CO7K, C12N, C12P, C12Q, CO9F, C11D,
DO6L, A62D, C06B, C06C, C06D, CO8H,
C09G, CO9H, C09jJ, C10M, C11B, C11C,
C14C, C23F, C23G, D01C, F42B, F42D,
GO3C, DO1F

A45C, B29C, B29D, B60C, B65D,
B67D, E02B, F16L, HO2G

B24D, B28B, B28C, B32B, C03B, C03C,
C04B, E04B, E04C, E04, EO4F, G21B
B21C, B21G, B22D, C21B, C21C, C21D,
C22B, C22C, C22F, C25C, C25F, C30B,



29

30t33

products

Machinery

Electrical and optical
equipment

DO07B, EO3F, EO4H, F27D, HO1B, AO1L,
A44B, A47H, A47K, B21K, B21L, B22F,
B25B, B25C, B25F, B25G, B25H, B26B,
B27G, B44C, B65F, B82B, C23D, C25D,
E01D, EO1F, E02C, E03B, E03C, E03D,
EO5B, E05C, EO5D, EO5F, E05G, E06B,
FO1K, F15D, F16B, F16P, F16S, F16T,
F17B, F22B, F22G, F24], G21H

B23F, FO1B, FO1C, FO1D, FO3B, F03C,
FO3D, FO3G, F04B, F04C, F04D, F15B,
F16C, F16D, F16F, F16H, F16K, F16M,
F23R, A62C, B01D, B04C, BO5B, B61B,
B65G, B66B, B66C, B66D, B66F, C10F,
C12L, F16G, F22D, F23B, F23C, F23D,
F23G, F23H, F23], F23K, F23L, F23M,
F24F, F24H, F25B, F27B, F28B, F28C,
F28D, F28F, F28G, G01G, HO5F, A01B,
A01C, A01D, AO1F, A01G, A01J, AO1K,
AO01M, B27L, B21D, B21F, B21H, B21],
B23B, B23C, B23D, B23G, B23H,
B23K, B23P, B23Q, B24B, B24C(,
B25D, B25], B26F, B27B, B27C, B27F,
B27],B28D, B30B, E21C, A21C, A22B,
A22C, A23N, A24C, A41H, A42C,
A43D, BO1F, B02B, B02C, B03B, BO3(,
B03D, BO5C, BO5D, B06B, BO7B, BO7C,
B08B, B21B, B22C, B26D, B31B, B31(,
B31D, B31F, B41B, B41C, B41, B41F,
B41G, B41L, B41N, B42B, B42C, B44B,
B65B, B65C, B65H, B67B, B67C, B68F,
C13C, C13D, C13G, C13H, C14B, C23C,
D01B, D01D, DO1G, DO1H, DO2G,
DO2H, D02J, D03C, D03D, D03]J, D04B,
D04C, DO5B, DO5C, D06B, D06G,
DO06H, D21B, D21D, D21F, D21G,
EO01C, E02D, EO2F, E21B, E21D, E21F,
FO4F, F16N, F26B, HO5H, B63G, F41A,
F41B, F41C, F41F, F41G, F41H, F41],
F42C, G21], A21B, A45D, A47G, A47],
A47L, B01B, DO6F, E06C, F23N, F24B,
F24C, F24D, F25C, F25D, HO5B

B41], B41K, B43M, GO2F, GO3G, GO5F,
G06C, GO6D, GO6E, GO6F, GO6G, GO6J,
GO6K, GO6M, GO6N, GO6T, GO7B,
G07C, GO7D, GO7F, GO7G, GO9D, GO9G,
G10L, G11B, HO3K, HO3L, HO2K,
HO2N, HO2P, HO1H, HO1R, HO2B,
HO1M, F21H, F21K, F21L, F21M,
F21S,F21V, HO1K, B60M, B61L, F21P,
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34t35

Transport equipment

F21Q, GO8B, GO8G, G10K, G21C, G21D,
HO1T, HOZH, HO2M, HO5C, B81B,
B81C, G11C, HO1C, HO1F, HO1G, HO1]J,
HO1L, GO9B, G09C, HO1P, HO1Q,
HO1S, HO2J, HO3B, HO3C, HO3D, HO3F,
HO03G, HO3H, HO3M, H04B, HO04]J,
HO04K, HO4L, HO4M, H04Q, HO5K,
GO3H, HO3J, HO4H, HO4N, HO4R,
HO04S, A61B, A61C, A61D, A61F, A61G,
A61H, A61], A61L, A61M, A61N,
A62B, BO1L, B04B, C12M, GO1T,
G21G, G21K, HO5G, F15C, GO1B, GO1C,
GO01D, GO1F, GO1H, GO1], GO1M,
GO1N, GO1R, GO1S, GO1W, G12B,
GO1K, GO1L, GO5B, G08C, G02B, G02C,
GO3B, GO3D, GO3F, GO9F, G04B, G04C,
G04D, GO4F, G04G

B60B, B60D, B60G, B60H, B60], B60,
B60L, B60N, B60P, B60Q, B60R, B60S,
B60T, B62D, EO1H

FO1L, FO1M, FO1N, FO1P, FO2B, FO2D,
FO2F, F02G, FO2M, FO2N, FO2P, F16],
GO1P, GO5D, GO5G, B60F, B60V, B61C,
B61D, B61F, B61G, B61H, B61], B61K,
B62C, B62H, B62], B62K, B62L, B62M,
B63B, B63C, B63H, B63], B64B, B64C,
B64D, B64F, B64G, E01B, F02C, FO2K,
FO3H
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Table A.2

Technological fields26

Number Field Number Field

1 Food 23 Agricultural machinery
2 Tobacco 24 Machine-tools

3 Textiles 25 Special machinery

4 Wearing 26 Weapons

5 Leather 27 Domestic appliances

6 Wood products 28 Computers

7 Paper 29 Electrical motors

8 Publishing 30 Electrical distribution
9 Petroleum 31 Accumulators

10 Basic chemicals 32 Lightening

11 Pesticides 33 Other electrical

12 Paint 34 Electronic components
13 Pharmaceuticals 35 Telecommunications
14 Soaps 36 Television

15 Other chemicals 37 Medical equipment

16 Man-made fibre 38 Measuring instruments
17 Plastic products 39 Industrial control

18 Mineral products 40 Optics

19 Basic metals 41 Watches

20 Metal products 42 Motor vehicles

21 Energy machinery 43 Other transport

22 Non-specific machinery 44 Consumer goods

26 Based on Schmoch et al. [54].
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Figure A.1
TFP growth, 1995=100
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Figure A.5 Figure A.7
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4. Technological diversification and market value:

An empirical analysis of U.S. manufacturing firms

Abstract

This paper analyzes the linkage between technological diversification and stock market
valuation in order to identify the impact of technological relationship. We use U.S.
manufacturing firm-level data on tangible and intangible assets and innovative activity
between 1983 and 1995. Based on an expanded Tobin’s g approach, we find that
diversification implies a discount on the market value unless the new technologies are
highly related to the existing ones. The estimated elasticity of technological
diversification considering Tobin’s g is 6%, but the discount drops to 4% for the 75%
quartile of the relatedness distribution. We study the possibilities that diversification
reduces the potential to benefit from economies of scale and that in cases of
diversification additional spillovers can be received when a firm enters related

technologies.
Keywords: Technological Diversification, Relatedness, Tobin’s g, Patents, Knowledge

Assets
JEL Classification: L.25, 031, 032
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1 Introduction

Most empirical research has evaluated the impact of knowledge assets such as R&D
expenditures and patents on the market value of a firm, yet little has been published
about the actual relationship between the range of a firm’s innovative activity and its
valuation by financial markets. Firms can either focus on a few key technologies or
spread their activities over numerous fields, i.e. they are technologically diversified. A
diversified firm must manage a portfolio of technologies when developing new products

and services, but specialization suggests focusing on competencies [4], [23].

The impact of technological diversification on firm performance is mainly driven by
economies of scale and scope [19], [34]. Firms acquire a specific technology portfolio,
i.e. the range of technologies covered, which is then used as an input for future research
projects. A firm’s technology portfolio can either be highly concentrated on specific
technologies, or provide access to a broad range of technologies [23]. Thus, an
individual structure of a firm’s technology portfolio determines its potential to exploit

economies of scale and scope in future research.

While specialization in certain technologies generates economies of scale (e.g by
learning effects [8]), technological diversification enhances the possibility of
technological spillovers within and across firms [9]. Spreading the resources might
enable firms to better make use of new technological opportunities or evolutions [28].
Furthermore, the transfer and application of knowledge to completely new
technological fields becomes easier. Another argument used to promote diversification
is risk reduction. As Scherer [35] notes, only 50% of all R&D projects are successful,
implying that diversification could reduce the variance of returns to R&D, especially for
large firms. Focusing on only a few technologies might leave firms with the risk of
technological lock-in, implying that firms become trapped in their current technologies

[38].

Recently, the concept of coherence has gained researchers’ attention. The concept is

that firms usually reveal some type of coherent pattern when diversifying, either at the
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product or at the technological level [24], [40]. Scott [36] argues that firms’ activities
generally follow purposiveness. Breschi et al. [4] illustrate that knowledge-relatedness
is an important factor in shaping firms’ technological diversification decisions.
Empirical evidence reveals that relatedness to established technologies has a significant
impact on observed diversification patterns. Nesta and Saviotti [29] suggest a measure
of coherence of the knowledge base using patent data and find it an influential factor in
explaining innovative performance. They even claim that the role of scope and

coherence of the knowledge base is becoming increasingly important over time.

Despite the abundance of literature on technological diversification and relatedness, the
impact of these two factors on the market value of a firm has been largely ignored. The
only attempt we found that links knowledge assets, including coherence, to stock
market valuation, is Nesta and Saviotti [30] for biotechnology firms. They use an
aggregated integrated knowledge stock based on the measure of technological
relatedness and observe a positive and significant impact of the adjusted knowledge
stock on the market value. We include technological diversification, relatedness and size
of knowledge assets separately in our expanded Tobin’s g model on the theory that the
market —depending on diversity and relatedness of the technology portfolios — can
value two firms with equivalent tangible and intangible assets quite differently.
Economies of scale and scope in R&D influence the cost structure of a firm and the

related current and future cash flows.

Knowledge assets can be circumscribed using the knowledge creation process as
suggested by Hall et al. [15]: R&D expenditures lead to innovations and thereby to
patenting activities since patents can be interpreted as a measure of inventive output
[31]. Citations being received by patents are then used as a method to approximate the
economic value of individual patents [41]. Thus, we approximate knowledge assets
using the three stock variables R&D, patents and citations, and amend the specification
by the corresponding degree of technological diversification and relatedness. To
determine technological diversification we exploit patent data since patents can be

assigned to technologies which define the future range of action.
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Some scholars suggest using product diversification measures instead (e.g. [39]). For
our purposes, this is inappropriate, because product and technological knowledge
belong to different stages of the value chain. Furthermore, Fai and von Tunzelmann [7]
show that product and technological diversification are only directly connected in
history while today’s technological diversification is usually greater due to the far more
complex technological environment [9]. The contribution of this paper is to elaborate on
the influence of technological diversification, which is assumed to also anticipate the

evolution of product and market diversification [33] on market valuation.

The remainder of the paper is organized as follows: Section 2 presents the theoretical
framework. Section 3 introduces our measures of technological diversification and
relatedness. Section 4 describes the data sources and Section 5 discusses the

econometric specification and results. Section 6 summarizes our findings.

2 Value of Innovation

In an ideal world, the private returns to innovation would be measured directly.
However, in the real world we only observe demand for goods and services but not for
certain kinds of innovation. Therefore, market valuation serves as a proxy for the
private returns to innovative efforts since public markets for these assets do not exist.
Relating the measures of knowledge assets to the market value establishes their
marginal contribution assuming that valuation by financial markets depends on the set

of assets a firm possesses [13].

The market value encompasses all assets that will likely influence expected future cash
flows and profits [6]. Obviously, changes in these assets will alter the expectations
about uncertain future cash flows and hence the present value of the firm’s expected
revenue stream. The market value under simplifying assumptions should immediately
react to changes in this stream and reflect the new revaluations. Predominant in the
literature is the division of assets into tangible ones, i.e. plant, equipment and

inventories, and intangible ones i.e. knowledge assets, usually approximated by R&D
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expenditures, patent counts and patent citations.! Empirical studies on the relationship
of intangible knowledge stocks and stock market valuation mainly conclude that

financial markets reward innovative efforts (e.g. [15]).

However, we would argue that current measures of knowledge assets do not fully
reflect all of the characteristics that affect market valuation. In fact, when assessing the
potential for future performance, the number of technological fields and their
relatedness add much useful information for shareholders and market operators. New
technologies developed in the innovation process influence the market value and
current knowledge assets serve as an input for future research projects and thereby
determine the cost structure. Inputs like researchers, equipment and codified
knowledge can be devoted to several technological areas but at varying costs. A
widespread technology portfolio, i.e. the coverage of many technologies, may generate
economies of scope in research. Future research in those fields will be less costly when
the corresponding knowledge base is already established [39]. In contrast,
specialization in certain technologies gives rise to economies of scale as firms benefit

from learning effects [7].

The simple representation of a firm’s market value can be traced back to Griliches [10]
and is based on hedonic Tobin’s g equations:

V=[A+7K].
In this typical model of the value function, the market value V is assumed to be a
function of physical A and intangible knowledge assets K2 The firm invests
continuously in its various assets to maximize its market value. The variable g can be
interpreted as the current market valuation coefficient of a firm reflecting its monopoly

position, differential risk and overall costs of capital adjustment.

We extend the standard version of the value function to capture technological
diversification. Within this framework, the variable D denotes the technological fields

where a firm can utilize its assets productively and generate future cash flows. We also

1 Various approximations of intangible assets can be found in the empirical literature, e.g. [15], [3] and
[37]
2 We assume constant returns to scale of the value function.
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allow the impact of technological diversification to vary with the degree of technological
relatedness (R) between the technologies. R captures the amount of common
knowledge across distinct technologies and thereby influences the potential to make

use of economies of scope:
V=q[(A+yK)D*™ ].
The term SR adjusts the response of the market value to technological diversification

(9) by accounting for relatedness. Accordingly, this effect is either reduced or enhanced

with this modification depending on the expected parameters of the model and the

measure of relatedness.

To derive our hypothesis, we refer to the following arguments. Firms reduce their
ability to exploit economies of scale when they diversify their technology portfolio. This
is linked to the idea of economies of scale developed by Baumol et al. [2]. In contrast, the
benefits generated by economies of scope depend on the amount of relatedness within
the portfolio since it will be less costly to enter related technologies with the given
knowledge base. Wernerfelt and Montgomery [42] argue that transferring technological
knowledge to new fields might lead to a reduction in economic efficiency since factors of
production contain a firm- and thereby field-specific component. Accordingly, the rent
generated by these factors depends on the closeness of the current field and the newly
created ones. Firms may still decide to spread their economic activity because of excess
R&D capacity even though they then face a lower rent on their factors of production.
The decision to cover many technologies can further be interpreted as an indicator for
the degree of risk aversion of the decision-makers. Future returns of technological
improvements are uncertain and diversification can reduce the variance of these

returns. Mansi and Reeb [25] therefore argue that the negative impact of technological

diversification can be interpreted as reflecting a risk premium.
In other words, we argue that technological diversification is valued negatively, i.e.

causes a discount on the market value. This effect discount can be counterbalanced

when diversification takes place in technologically related fields.
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3 Measurement of Technological Diversification and

Relatedness

To test our hypothesis, we measure technological diversification and the corresponding
degree of relatedness in a firm’s portfolio. In particular, we use the weighted and
unweighted number of technological fields to capture diversification since we define
diversification as innovative activities that span more than one technology. We suggest
an index to approximate the degree of relatedness between technologies based on

Teece’s [40] approach of measuring corporate coherence.

3.1 Diversification
To capture technological diversification, we can use an unweighted count measure,
which simply counts the areas of innovative activity, or weight them by economic
relevance. We empirically test both alternatives. From an economic view, the simple
count measure has the shortcoming of neglecting the unequal importance of
technologies. Therefore, we also employ an entropy? measure to calculate the degree of
technological diversification [21], which accounts for both the number of technologies
and the distribution of innovative activity across them, and finds how concentrated a

firm’s activities are by weighting with relative importance.

Suppose all technologies are classified into N fields; we then use the share of the

patenting activity S, in each field j with patent count pc; as weight:

pC,
Db
-1 PCi

The weighting scheme mirrors the relative sizes of technological fields within a

S;=

portfolio. It is obvious that the entropy measure assigns a lower contribution to total
entropy to fields with small shares compared to the unweighted count measure. The

total entropy of firm i’s portfolio can be derived using the common formula

E=)"5, ln(si] 0<E, <In(N).
ij
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The entropy takes on the value of zero in case of complete concentration in one field
and is maximized at In(N), when innovative activity is distributed equally across all

technologies.

To make the entropy measure comparable to the unweighted count measure, we use a
special variant of the entropy measure called its number-equivalent* counterpart,

which is derived by:

NE, = exp Zj‘zlsnln[siJ ,  1<NE<N.

ij
1 and N, the total number of technologies, bound the number-equivalent entropy
measure. Practically, the upper bound is defined by the technology classification scheme

in use. NE, equals 1 when a firm specializes completely in one technology. Only in cases

of equal distribution of innovative activity across technologies, will its value equal the
simple field count; otherwise it will be lower. Hence, a firm with a number-equivalent
entropy of 5 — and actually serving seven fields — is seen as being as diversified as

another firm engaged in five fields having 20% of their patents in each field.

3.2 Relatedness
Since we posit that the discount for technological diversification can be
counterbalanced when a firm spreads its activities in related fields, we need a measure
that will describe the degree of relatedness within the firm’s portfolio. A first attempt to
measure coherence in portfolios is conducted by Teece et al. [40] who argue that
“activities which are more related will be more frequently combined within the same
cooperation”. Their assumption is based on the idea that inefficient combinations of
activities will be erased by competition. This measure, sometimes termed the survivor
measure of relatedness, studies the phenomena of corporate coherence by comparing
the existing combinations of activities with random expectations. Nesta and Saviotti

[29] adapt this concept to the coherence of a firm’s knowledge base by exploiting patent

3 The term entropy originally comes from thermodynamics. It captures the degree of organization within
systems. There are applications in information theory as well as in corporate diversification, e.g. [20] and
[32].

4 Baldwin et al. [1] suggest using the number-equivalent entropy.
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data.> Applying it to patents implies that patent classes exhibit technological relatedness
if patents are assigned more often to the same combination of technological classes than
expected. Instead of using patent classes, we conduct our analysis on the level of
technological fields to determine the relatedness across technologies. The information
on the relatedness of technologies is then used to calculate the coherence of a firm's

technology portfolio as follows.

Suppose the total number of patents applied for by all firms is H and these H patents can
be assigned to one or more technological fields according to the patent classification

classes mentioned in the initial patent document. Let the variable P, take on the value

of 1 if patent h is assigned to technology field j and 0 otherwise. Stacking this
information across all patents (with N fields) gives us an HxN matrix containing only

Os and 1s:

P11 Plj ... PlN
P= Phl Phj PhN
P P P

H1 Hj HN
The observed number of joint occurrences of two technologies (1 and j) is then given by

the generic cells O, in the square matrix:

011 Olj 01N
Q=PP=|0, .. O, Oy
0 0 0

N1 Nj NN
The next step compares the count of joint occurrences to its expected value under the

hypothesis of randomness. Note that O, can either be affected by the relatedness of

technologies 1 and j or the number of patents assigned to them. We therefore define a

variable X, for the number of co-occurrences under the assumption of random joint

5 A similar approach is found in Piscitello [34] and Breschi et al. [4], where the number of firms patenting
in two or more fields is used to determine technological relatedness. In contrast, Leten et al. [23] compare
the observed number of co-citations with its expectation.
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occurrence, i.e. independence of technologies. X, is supposed to follow a

hypergeometric distribution® with mean

and variance

If the actual number of joint occurrences O, in technologies | and j exceeds its expected
value p;, we assume they are related. Of course, the opposite holds: if the actual

number is small compared to the expected, we assume that the technologies are barely

related. The measure of relatedness is thus based on the following test statistic:

_ Olj —Hy
s
lj

t

which can also be used to calculate p-values to test the significance of relatedness under

the null hypothesis of random joint occurrence [4]. Calculating t, for all combinations

of technologies leads to a symmetric NxN relatedness matrix.

Next, we proceed to the firm level and use this matrix to calculate a measure of
coherence of the firm’s technology portfolio. We derive the weighted average
relatedness of technology j to all other technologies covered by firm i's portfolio:
Ztl]‘pcil
WAR, =2,
: chil
1#j

WAR; shows the relatedness of technology j is weighted by the share of patents to all

other technologies in the portfolio. Next, the weighted average relatedness vector is

collapsed to a single measure of portfolio coherence

6 K denotes population, C1 number of successes and C]. the sample size.
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A positive value of COH, suggests a generally high relatedness or complementarities

between the technologies covered in the portfolio of firm i, while a negative value
reveals poor relatedness. Changes in portfolio coherence can either occur because of
modifications in the portfolio composition or because of alterations in the relatedness

pattern.

4 Data and Descriptive Statistics

To estimate a market value equation, we need firm-level information on Tobin’s g; data
on knowledge assets such as R&D, patent and citations stocks; and our measures of

technological diversification and relatedness.

We merge two datasets, the NBER Patent Database [14] and the Manufacturing Sector
Masterfile [12], to create our unique database. The NBER Patent Database contains all
patents granted by the United States Patent and Trademark Office (USPTO) between
1965 and 1996 and the corresponding patent citations. We exploit these data to

calculate firm-specific patent and citation stocks using the perpetual inventory method.”

The Manufacturing Sector Masterfile contains firm-specific data which are based on the
Compustat Annual Industrial Files. Firms are publicly traded on the American Stock
Exchange and belong to the U.S. manufacturing sector. The Masterfile provides
information on market value, book value of physical assets, and R&D investment. We
calculate firm-specific R&D capital stocks, again derived according to the perpetual

inventory method.

7 We impose an initial growth rate of 20% to approximate the initial stock and a depreciation rate of 15%,
which is common in the literature (e.g. [11]).
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Firm-level data are linked to patent data by means of a match file provided by Hall et al.
[14]. We caution that the problem with matching patent applications to firms is that
while patents can be applied for under a variety of names, the Masterfile only contains
one firm name. The so-called CUSIP match file resolves the problem by establishing

unique linkages between firm names and patent applications.

To measure technological diversification and relatedness, we use the USPTO patent
classification scheme® to define technological fields. Each patent is assigned to these
fields based on the U.S. patent classes given in the application. Hence for each firm we
have a complete description of its innovative activity: the number of patent applications
in each technological field, the number of technologies covered — either weighted or
unweighted — and the corresponding technological relatedness across technologies.
Both measures, technological diversification and relatedness, are calculated as three-
year moving averages since yearly data would be too volatile [30]. Hence, we assume

that technology portfolio changes are at least medium-term decisions.

Merging our datasets (cleaning and dropping all companies with less than two patents
in our observation period), gives us an unbalanced panel of 1700 firms for the period
1969 to 1995. The analysis is conducted using a sample from 1983 onward. Several
important changes took place in the U.S. legal environment in the early 1980s, which
enhanced the ability of patent holders to enforce their patents and led to increasing
patenting activities of companies [22], [17]. The used version of the CUSIP match file
only covers assignee names up to the year 1995; therefore our sample period ends at

that year.

Table 1 displays the summary statistics for the estimation period 1983-1995. On
average, the market value exceeds the book value by a factor of 1.8. Comparing mean
and median of Tobin’s g, we observe as expected a distribution skewed to the right. The
average value of the R&D/asset ratio shows that R&D efforts of patenting companies are

considerably higher compared to their assets.
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Table 1

Summary statistics (1983-1995)

Variable Description Mean Median S.D. Min Max
Tobin’s q Market value 1.79 1.37 1.34 0 8.29
R&D/ Ratio of stock of R&D 0.35 0.17 0.70 0 19.45
Assets expenditures (deflated)

to the book value of

assets
Patents/ Ratio of patent stock to 1.01 0.55 5.11 0 333.33
R&D R&D stocks
Citations/ Ratio of patent citations 12.99 10.20 10.09 0 179.01
Patents to patent stock
Number Weighted number of 5.0 3.99 3.72 1 20.98
Equivalent technological fields
Entropy covered by a firm’s

patent portfolio,

measure of technological

diversification
Number of = Number of technological 8.28 5.00 7.97 1 39.00
Fields fields covered by a firm’s

patent portfolio,

measure of technological

diversification
Relatedness Technological 8.87 5.35 13.65 -35.46 108.19

relatedness of fields
within a firm’s patent
portfolio

Notes: Tobin’s q is derived as the sum of the common stock, the preferred stock, the
long-term debt adjusted for inflation, and the short-term debt excluding assets. R&D
stocks are deflated [12].

Turning to technological diversification, we find that firms are on average engage in 8

fields. Using the number equivalent entropy reduces this number to 5. No observed

company is active in all fields. The maximum portfolio size equals 39 technologies, but

the number drops to 20 when the number equivalent entropy is applied, since there are

numerous fields of minor importance. Figure 1 shows the kernel densities of weighted

and unweighted measures of technological diversification to illustrate their distribution.

The majority of firms include up to 6 fields within their technology portfolios, but

seldom more than 10 fields.

8 The USPTO classification scheme is in Appendix 1.
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Figure 1
Kernel densities (Epanechnikov) for weighted and unweighted number of technological

fields
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Kernel density (Epanechnikov) for technological relatedness
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The measure of technological relatedness ranges from -35.46 (less-related than
expected) to 108.19 (more-related than expected). Figure 2 shows the corresponding
estimated kernel density. The distribution is centered around 0 with a median value of
5, and suggests that the majority of firms exhibit a related technology portfolio. This
result might be the first indication of a strategic alignment focusing on expansion into

related technologies.

5 Empirical Analysis

5.1 Methodology

After our theoretical model, moving the book value (Ait) to the left side and taking logs

leads to our fundamental estimation equation, which has the conventional Tobin’s g (of

firm i at time t) as the dependent variable:

it it

1n(Qit)=ln(%J =1n(qt)+ln£1+y%J+ 6In(D,, )+38In(D, )R, +u,

The deviation of Tobin’s g from unity thus depends on the ratio of intangible capital to

assets, technological diversification (D, ), relatedness (R, ) and a constant (In(q,)),

which captures its current market valuation coefficient. We note that by taking the
logarithm we are left with the usual entropy measure in our estimation equations. For
explanatory purposes, we refer to the number-equivalent entropy in the upcoming
discussion of the results, since the estimated coefficient together with the relatedness
adjustment equals the elasticity of the market value with respect to the number of

technological fields.

There are two different approaches in the literature regarding the treatment of the non-

linear term ln(l + yﬁ] Approximating® the term by yﬁ leads to linearization of the

it it

estimation equation. The accuracy of the approximation depends on the magnitude of

K, . o

—t, and generally speaking, the smaller the term the better the approximation. Even
it

though a non-linear estimator avoids committing an approximation error, it reveals a
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major shortcoming because it restricts us to the use of a pooled model without
controlling for unobserved heterogeneity. However, firms are likely to exhibit various
inter-firm differences such as unmeasured capital components, monopoly power or
market characteristics that influence the magnitude of Tobin’s g. Still, it is possible to
claim that the high correlation between individual heterogeneity and slowly changing
R&D intensities leads to an over- correction of R&D effects [15], [26]. We argue instead
that the correlation between individual effects, explanatory variables and existing inter-
firm differences creates biased coefficient estimates, unless we control for them.
Therefore this leaves only the risk of a bias due to the approximation of the non-linear

logarithmic term. Approximating and defining q, by

q;. = eXp(nt +m; + Uy ) ,
with time effects n, and unobserved heterogeneity m,, leads to:

ln(Qit ) = y%+ eln(Dit)+ E‘)ln(Dit)Rit +N M +uy

it

The empirical literature on innovation suggests various approaches to specify the

knowledge assets (K ) of a firm. We follow Hall et al. [15] who define the knowledge

it
creation process as a continuum starting with R&D, proceeding with patents and ending
with citations. Every step adds further information about the value of innovations. R&D
exhibits the commitment of a firm to promote innovation; patents are interpreted as the
corresponding output indicator; and citations measure the extent to which these
innovations turn out to be “important” and valuable for the firm [41], [18]. Instead of
dividing all three measures by physical assets which would introduce the problem of

collinearity, we include ratios according to the relative positions in the knowledge

creation process. Our linear estimation equation is therefore:

R&D. Pat. Cit
ln ) — 1t+ it + it
(Q:) [vl n YZR&Dit Yapoe

it

]+eln(Dit)+61n(Dit)Rit +M, +m, Uy,

it

A first look at the correlation matrix reveals the expected positive correlations between
R&D intensities and citations per patents and the logarithm of Tobin’s g (Table 2). The

magnitude of correlations with Tobin’s g differs substantially, from 0.3 with citations

9 Approximation: In(1+x)=x if x is small.
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per patents to 0.02 with patents per R&D. In line with our hypothesis, our measures of

technological diversification — the number equivalent entropy measure and the

number of technologies — are negatively correlated with Tobin’s q.

Table 2

Correlation matrix (1983-1995)

Variable Log R&D/ Patents/ Citations/ Num.Equ. Number
(Tobin’s q) Assets R&D Patents  Entropy Fields

Log 1

(Tobin’s q)

R&D/ 0.19 1

Assets

Patents/ 0.02 -0.05 1

R&D

Citations/ 0.30 0.17 0.01 1

Patents

Number Equ. -0.14 -0.12 -0.01 -0.15 1

Entropy

Number of -0.07 -0.09 -0.01 -0.09 0.85 1

Fields

Relatedness 0.14 0.07 0.01 0.02 -0.29 -0.17

5.2 Results

A first impression of the stock market valuation of technological diversification is

gained by comparing the average Tobin’s g across different portfolio sizes. Figure 3

displays the averages for different degrees of diversification measured by the number-

equivalent entropy. We observe that the average q is maximal for firms covering

roughly 2 or 3 fields. The average q of firms concentrating on one field is lower which

could indicate that the market appreciates reaching a minimum threshold of

technological diversification. After the second and third fields, the average g steadily

declines until the seventh field, where g is about 0.4 lower compared to a firm engaged

in two technologies. Overall, we find the first descriptive evidence for a negative

relationship between the degree of technological diversification and the market value.
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Figure 3

Mean Tobin’s g at different degrees of technological diversification
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Table 3 presents the estimation results under the linear approximation of the term
encompassing the knowledge assets. Starting with the simplest approach to
approximate knowledge including patents, citations and R&D, the specification is

expanded stepwise by including technological diversification and relatedness.

The specification in Model 1 is our benchmark model, covering the whole knowledge
creation process with R&D, patents and citations. Applying a pooled OLS estimator, we
find that R&D, patents and citations reveal a stable, positive and significant impact on a
firm’s market value. Model 2 exploits the panel structure of the data by using a fixed
effects estimator. An F-test on the significance of individual effects indicates the
presence of unobserved heterogeneity. The Hausman-test rejects the null hypothesis of
zero correlation between individual effects and explanatory variables; therefore, a fixed
effects approach is used. However, the impact of R&D, patents and citations still remain
positive and significant, even though the coefficients become substantially smaller,
which is not surprising due to the exploitation of within variance. Knowledge stocks are
known to change only slowly over time and in particular R&D expenditures remain
rather stable. The largest drop occurs in the case of citations per patents where the

coefficient reduces to less than half of the pooled one.
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Table 3

Estimation results of the linear model

Model 2: Model 4: Model 5: Model 6:
FE FE FE
R&D/Assets 0.050** 0.046**  0.052* 0.046
(0.021) (0.021) (0.030) (0.031)
Pat/R&D 0.004*** 0.004***  0.004*** 0.004***
(0.001) (0.001) (0.001) (0.002)
Cit/Pat 0.007*** 0.007***  0.007***
(0.002) (0.002) (0.002)
Entropy -0.074%**
(0.024)
log(Number Fields) -0.059%***
(0.016)
Entropy*Related 0.002**
(0.001)
Entropy (corr.) -0.069***
(0.024)
Entropy*Related (corr) 0.002**
(0.001)
log(Sales) -0.040
(0.028)
Year dummies Yes Yes Yes
Intercept 0.204*** 0.618*** 0.620*** (0.807***
(0.031) (0.042) (0.051) (0.197)
Observations 7826 7084 7084
Firms 1007 950 950
R-squared (overall) 0.123 0.175 0.163

Notes: 1. Dependent variable: logarithm of Tobin’s q, 1983-1995.

2. All models include a dummy for non-reported R&D.

3. Robust standard errors are calculated by clustering at the firm level. Standard errors

are given in parentheses below the coefficient estimates.

4 = ** and * denote significance at the 1%, 5%, and 10% level, respectively.
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Introducing the entropy measure (Model 3) which captures technological
diversification shows a negative and significant influence with a coefficient of -0.06.
This corresponds to an elasticity of the weighted number of technological fields (D)
with respect to the market value of minus 6%. Hence, a firm with equivalent tangible
and intangible assets and with a second field in its technology portfolio (compared to
another firm with one field only) experiences a discount in its market value of 6%. The

coefficients of the other knowledge stock variables are not affected.

Model 4 uses the logarithm of the simple count measure instead of the entropy measure
to control for the impact of the weighting scheme. Again we find a negative and
significant impact with a coefficient being absolutely similar in size. This is not
surprising since the number-equivalent entropy is bounded from above by the
unweighted count measure; the number of technologies will generally be at least as
large as the corresponding weighted measure. The point estimate of -0.06 implies again
an elasticity of the size of the technology portfolio with respect to Tobin’s g of 6%. Our
estimations therefore reveal no remarkable difference between the two measures of
technological diversification. However, we believe that weighting according to
economic relevance is a meaningful task and therefore experimented with a Herfindahl
index of diversification, obtaining similar results even though the interpretation is not

as straightforward since the Herfindahl index lies between 0 and 1.

Model 5 introduces the measure of technological relatedness which helps to distinguish
between the different effects of economies of scale and scope. Only companies with
large portfolios, i.e. at least two technologies, can exhibit technological relatedness. The
analysis is therefore restricted to firms engaged in a minimum of two fields. The
parameters summarizing the knowledge stocks remain stable compared to the other
models. All parameters exhibit a positive influence on Tobin’s g and are mainly
significant at the 5% level. As suggested by our hypothesis, the coefficient of the
interaction term is negative, suggesting a counterbalancing effect in the case of large
and related technology portfolios. Evaluated at median relatedness and entropy, we find
a discount of 6%. This discount reduces to 4% for the 75% quartile of the distribution of
relatedness, implying that highly related technology portfolios experience smaller

losses. Hence, stock market valuation strongly depends on the perception of whether or
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not firms diversify into technologically-related areas. We believe this relationship is
firms’ ability to exploit economies of scope drops when enlarging their portfolios to
unrelated technologies and that spreading into related areas increases the possibility to
benefit from economies of scope, which in turn can reduce the costs of R&D and

increase future profits.

As a robustness check, Model 6 contains a size-corrected entropy measure constructed
by regressing the entropy and the interaction term on the logarithm of sales and
utilizing the residuals. We develop Model 6 because it is often argued that portfolio size
is mainly driven by firm size. We further include sales as an explanatory variable. The
coefficients of technological diversification and relatedness are hardly affected by this
correction, which is more evidence for the robustness of our results and the absence of

a size effect in our analysis.

Now, we compare the linear estimation results with the exact non-linear specification of
the model (Table 4). In contrast to the linear specification, the parameters of R&D,
patents and citations in the non-linear pooled model exceed those of pooled OLS and
fixed effects (Table 3). The difference in size between pooled OLS and pooled non-linear

is caused by the linear approximation of the logarithm.

As expected, the coefficients of the entropy measure and the relatedness interaction
term are comparable in size to the linear model, probably because they are outside the
non-linear part of the equation (Table 4, Model 1). However, the coefficient of the
relatedness adjustment term becomes substantially larger, which emphasizes the
importance of diversifying into related technologies. In contrast, the coefficient of the
number of technologies — the entropy measure — becomes smaller. In total, this will
lead to a reduction in the corresponding elasticity. The elasticity of technological
diversification with respect to Tobin’s g — evaluated at mean entropy — is minus 4% at
the 25% quartile of the relatedness distribution. At the median, it reduces to 0.6%. For
high levels of relatedness, we find a positive elasticity, e.g. 5% for the 75% quartile. This
implies that firms could even benefit from diversifying into technologically-related

fields by exploiting economies of scope via a common knowledge base.
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Table 4

Estimation results of the non-linear estimations

Model 1: Model 2: Model 3:
NL OLS NL OLS NL OLS
R&D/Assets 0.2971%** 0.306™** 0.166***
(0.034) (0.036) (0.020)
Pat/R&D 0.018*** 0.023%** 0.013***
(0.004) (0.004) (0.002)
Cit/Pat 0.045%** 0.047*** 0.034***
(0.004) (0.004) (0.003)
Entropy -0.051** -0.043*
(0.022) (0.022)
Entropy*Related 0.006*** 0.007***
(0.001) (0.001)
Entropy*Related (25%) -0.056**
(0.023)
Entropy*Related (50%) -0.054**
(0.023)
Entropy*Related (75%) -0.041
(0.028)
Entropy*Related (100%) 0.022
(0.035)
High-Tech 0.100*
(0.53)
Stable Tech (long run) -0.115**
(0.057)
Stable Tech (short run) -0.002
(0.074)
Year dummies Yes Yes Yes
Observations 7084 7048 7084
R-squared 0.438 0.429 0.450

Notes: 1. Dependent variable: logarithm of Tobin’s q, 1983-1995.
2. Robust standard errors are calculated by clustering at the firm level. Standard errors

are given in parentheses below the coefficient estimates.

3. High-Tech and Stable-Tech denote dummy variables. The classification scheme is -

in Table A.2 of the Appendix.

4. Entropy*Related (x%) denotes an interaction term of the entropy and dummy
variables for the x-quartiles of the relatedness distribution.
5.** ** and * denote significance at the 1%, 5%, and 10% level, respectively.
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To allow for a varying impact of technological diversification at different degrees of
relatedness, we generate interaction terms of diversification and dummy variables
indicating the quartiles of the relatedness measure distribution (Model 2). Firms
revealing a low degree of relatedness in their portfolios, the 25% percentile, exhibit a
significantly negative impact. This corresponds to an average discount for firms with
unrelated portfolios of nearly 6% for an additional technology. The coefficient for the
second quartile — again portfolios with a degree of relatedness smaller than the median
— is also negative, significant and comparable in size. In the upper 50% of the
distribution the results are less compelling. Even though we observe larger coefficients
which are in line with our argument, they are no longer significant. This result still
indicates that the negative impact on the market value diminishes as the relatedness
within the portfolio rises, since a significant discount occurs in the case of unrelated

portfolios.

Finally, we include industry effects according to segments developed by Chandler [5] as
a last robustness check (Model 3). The segments are based on technological dynamics
and distinguish between high-tech, stable-tech and low-tech industries. The results
show that some sort of technological fixed effect does not drive the coefficients of
technological diversification and relatedness. As expected, firms in high-tech industries
experience a significantly higher Tobin’s g on average. In contrast, no systematic

difference occurs in the market value of stable-tech industries.

6 Conclusion

This paper analyzed the impact of technological diversification on stock market
valuation. We showed that in addition to the common knowledge stocks used to
describe intangible assets — R&D, patents and citations — two additional properties of
intangible assets significantly affect the market value of a firm: technological
diversification and the degree of relatedness within the technology portfolio. The range
over which a firm spans its innovative activities affects its ability to benefit from
economies of scale and scope in innovation and thereby affects future profits. Based on
a theoretical framework using an expanded Tobin’s g approach, we found evidence for a

negative influence of technological diversification on market value. This discount can be
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counterbalanced partly when the relevant fields share a common technological base,

which is approximated by the degree of relatedness.

In the linear version of our model, we found a diversification discount, evaluated at
median relatedness and entropy, of 6% per additional field. This discount reduces to
4% for the 75% quartile of the distribution of relatedness, implying that highly related
technology portfolios experience a smaller loss. The picture changed slightly when a
nonlinear estimator was applied. We observe a discount of 4% at the 25% quartile of
the distribution, evaluated at mean entropy. At the median, this reduces to 0.6%. For
high levels of relatedness, we even find a positive elasticity, e.g. 5% for the 75%

quartile. Hence, it might occur that a firm benefits from additional technologies.

Generally speaking, enlarging the technology portfolio in unrelated fields negatively
influences the market value of a firm, because it reduces the ability to exploit economies
of scale and scope. Our results suggest that under the objective of value maximization,
the composition of the technology portfolio plays an important role for valuation by
financial markets. This aspect should be taken into consideration when deciding to
expand research activities into new areas, and the relatedness of the current
technologies and the targeted new field or fields should be analyzed as well. We
conclude that a properly designed diversification pattern can substantially influence

future profits and market value.
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Appendix A
Table A.1

Classes within the U.S. classification system (December 2006)

Field Description

Superconductor technology: Apparatus, material, process
Nanotechnology

Life and agricultural sciences and testing methods

Stock materials; articles

Compositions and synthetic resins; chemical compounds
Chemical processing technologies: processes and apparatus
Calculators, computers, or data processing systems
Information storage

O ONUTHS WN -

9 Measuring, testing, precision instruments

10 Electricity, heating

11 Electro-mechanical systems

12 Electricity: Subsystems, components or elements

13 Ammunition, weapons

14 Body treatment care, adornment

15 Apparel and related arts

16 Plant and animal husbandry

17 Teaching

18 Amusement devices

19 Foods and beverages: apparatus

20 Heating, cooling

21 Buildings

22 Receptacles

23 Supports

24 Closures, partitions, panel

25 Textiles

26 Earth working and agricultural machinery

27 Check-actuated control mechanisms

28 Dispensing

29 Material or article handling

30 Fluid handling

31 Vehicles

32 Motors, engines, pumps

33 Coating, printing, and printed material; stationary, books

34 Manufacturing, assembling, including some correlative miscellaneous
products

35 Cutting, comminuting, and machining

36 Miscellaneous treating

37 Handling or storing sheets, webs, strands, and cable

38 Machine elements or mechanism

39 Miscellaneous hardware

40 Tools

41 Joints and connections

42 Fastenings
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Table A.2

Technology segments according to [5], [16]

Segment Industry code (SIC) Description Industry code (SIC)
High-tech (1) Electronic computing equipment 3570-3573 3575 3576 3577
Calculating machines excl. comp. 3578
Refrigerating & heating equip. 3580-3582 3585 3589 3596
Power distribution & transformers 3612
Switchgear & switchboard 3613

apparatus

Motors, generators & industrial
controls

Electronic & electric coils &
connectors

Household refrigerators & freezers

Lighting fixtures & equipment

Primary & storage batteries
Engine elctrical equipment & misc
Electronic & electric connections
Electronic signaling & alarm
systems

Radio & TV broadcasting sets
Radio & TV receiving sets
Records, magnetic, &optical
recording

Communication equipment

Electron tubes

Semiconductors & printed circuit
boards

Electro. components, computer acc.
Engineering scientific instruments
Measuring & controlling devices
Aircraft parts & engines

Ship & boat building & repairing
Railroad equipment

Complete guided missiles, aerospace
Optical instruments & lenses

Dental equipment & supplies

Surg. & med. inst., appliances, &
supplies

X-ray apparatus

Photographic equipment & supplies
Electromedical apparatus
Pharmaceuticals

Opthalmic goods

3600 3620 3621 3622 3625

3524 3677

36303631 3632 3633 3635
3639

3640 3641 36425 3646 3647
3648

3691 3692 3693

3694 3699

3643 3644 3678

3669

3663
3651
3652 3690 3695

3661 3662 3669 4810 4812
4813

3671

3672 3674 3675 3676

36703679

381x

382x
372037213724 3728
373x 3795

374x

376x

3827

3843

3840 3841 3842

3844
3861
3845
283x
3851
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Stable-tech
(2):

long horizon

Industrial inorganic chemicals
Plastic materials & resins

Paints & allied products

Industrial organic chemicals
Fertilizer

Explosives & misc. chemicals
Asphalt, roofing & misc coal/oil
prods

Petroleum & refining

Steelworks, rolling & finishing mills
Iron & steel foundries
Primary metal products

Prim aluminum smltg, reg, roll,
&draw

Primary smeltg & refing (non-
ferrous)

Secondary smeltg & refing (non-fer.)
Rolling, drawing, & extruding of
nonferr.

Drawing & insulating of nonfer.
wires

Nonferrous metal casting

Turbines, generators, & combustion
eng.

Lawn, garden & farm mach. & equip.
Const. & mining mach. & equip.
Oilfield machinery
Conveyors, ind. trucks&cranes,
monorails

Mach. tools, metalworking eq. & acc.
Special industrial machinery

Food prods & packaging machinery
Textile machinery

Wood & paper industry machinery
Printing trades machinery & equip.
Pumps & pumping equip.

Ball & roller bearings

Compressors, exhaust., & ventilation
fans

General industrial machinery

Ind. high drives, changers & gears
Industrial process furnace ovens
Scales & balances excl. laboratory
General office machines

Motor vehicles

Motor homes

Motorcycles & bicycles

281x

282x

285x

286x

287x

289x

2950 2951 2952 2990 2992
2999

291x 1311 1389
331x

332x

339x

3334 3353 3354 3355

33303331 3332 3333 3339

334x
33503351 3356

3357

336x
351x

35233524
35303531 3532
3533 3534
35353536 3537

354x excl. 3548
3550 3559
3556 3565
3552

3553 3554
3555

3561 3586 3594
3562

3563 3564 3634

3560 3568 3569 359x
3566

3567 3558

3596

3579
37113713 3715 3799
3716 3792
37513790
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Stable-tech
(3): short
horizon

Tires & innertubes

Plastic products

Unsupported plastics, films &sheets
Packing & sealing dev. & fab. rubber
nec

Glass & glass products

Cement

Structural clay products

Pottery & related products
Concrete, gypsum & related prods
Abrasive asbestos & mineral wool
Metal cans & containers

Cutlery & hand tools

Heating equipment & plumbing fix.

Fabricated structural metal

Screw machine products, bolts, nuts
Metal forgings, plating & coating
Wire springs & misc. metal prods.
Ordnance & accessories

Valves & pipe fittings

Perfumes & toilet prods.

Soaps & cleaning products

Motor vehicle parts & accessories

301x

307x 3080 3084-3089
3081 3082 3083

3050 3051 3052 3053 3060
3061 3069

321x 322x323x

324x

325x

326x

327x

329x

3411 3412

342x

3430 3431 3432 3433 3437
3467

344x

345x

346x 347x

3495-3499

348x

3490 3491 3492 3493 3494
2844

2840-2843

3714
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Low-tech (4)

Meat products
Dairy products

Canned & frozen foods

Processed fruits & vegetables
Breakfast cereals

Animal feed

Grain mill products

Wet corn milling

Bakery products

Sugar chocolate & cocoa prods.
Fats & oils

Malt & malt beverages, alcoholic
bev.

Soft drinks & flavourings
Miscellaneous preproduced food
Tobacco products

Textile mill products

Rugs

Apparel

Footwear, rubber & leather
Leather & leather products

Logging & sawmills

Millwork, veneer & plywood
Wood products

Household furniture

Office furniture

Shelving, lockers, office & store
fixtures

Pulp, paper & paperboard mills
Industrial paper & paper products
Converted paper - household use
Commercial printing

Printing & publishing

Musical instruments

Sporting & athletic goods

Dolls, games & toys

Pens, pencils, & other office & artists
mat.

Misc. manufacturing industries
Jewelry & watches

20102011 2013 2015 2016
2020 2021 2022 2023 2024
2026
2030-2032 3037 2038 2053
3091 3092

2033 2034 2035 2068 2096
2043

2047 2048

2040 2041 2044 2045
2046

2050 2051 2052
2060-2067

207x

2082 2083 2084 2085

2080 2086 2087
2090 2095 2098 2099
21xx

22xx excl. 2270 2273
22702273

23xx 3965

3021 314x
310x-313x 315x 316x 317x
319x 3961

241x 242x

243x 2450 2451 2452
244x 249x

251x

252x

253x 254x 259x

261x 262x 263x
2600 264x 265x 266x
267x

275x 2796

27xx excl. 275x 2796
3931

3949

3942 3944

395x

399x
387339103911 3914 3915
396x
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5. Innovative Activity in Wind and Solar Technology:

Empirical Evidence on Knowledge Spillovers

Abstract

This paper studies technological change in renewable energies, providing empirical
evidence on the determinants of innovative activity with a special emphasis on the role
of knowledge spillovers. We investigate two major renewable energy technologies —
wind and solar — across a panel of 21 OECD countries over the period 1978 to 2004.
Spillovers may occur at the national level, either within the same technology field or
economic sector (intra-sectoral spillovers) or in related technologies or sectors (inter-
sectoral spillovers), or at the international level. We find that innovation is strongly
driven by knowledge spillovers, especially those occurring at the national level. Wind
and solar technologies exhibit distinct innovation characteristics: both are stimulated
by intra-sectoral spillovers, but respond differently to inter-sectoral spillovers, which
are only significant in the case of wind technology. We also find evidence that public

R&D stimulates innovation, particularly in solar technologies.
Keywords: Technological Change, Renewable Energy, Patents, Knowledge Spillover,

Climate Change, Innovation

JEL Classification: 031, Q42, Q55
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1 Introduction

Technological progress is generally viewed as a key answer to sustainable and less
carbon-intensive energy use. In this context, Acemoglu et al. [1] recently emphasized
the need to switch to green innovation. Increased awareness of the likely impacts and
costs of climate change have spurred interest in power generation from renewable
sources so as to reduce greenhouse gas emissions. Various forms of this technology
exist, but they are usually not yet competitive with the use of fossil fuels. Their larger-
scale use is dependent reducing their cost by means of technological innovation and
improvements. We know very little, however, about the determinants of innovation in
these technologies. This paper seeks to fill this research gap by empirically investigating
the determinants of innovative activity with a special emphasis on the role of
knowledge spillover in two major renewable energy technologies — wind and solar —

across a panel of 21 OECD countries over the period 1978 to 2004.1

Our point of departure is the observation that knowledge spillovers have had a
considerable impact on technological advances for energy saving technologies. Our
study focuses, first, on renewable energy technologies and, second, on analyzing
different sources of knowledge spillovers: on the one hand, at the national and

international level and, on the other hand, within and between sectors.

Generally speaking, knowledge spillovers occur when one inventor’s original idea “spills
over” to competitors, other sectors of the economy, or other countries, thereby
enriching the available stock of knowledge and stimulating the development of further
ideas without the recipient having to pay for it. This phenomenon may occur at the
national level, either within the same technology field or economic sector (intra-
sectoral spillovers) or in related technologies or sectors (inter-sectoral spillovers). In
fact, such inter-industry spillovers have occurred in the solar photovoltaic technology
sector, which is strongly entwined with the semiconductor industry, particularly in

Japan, using its silicone by-products for solar cell manufacturing and taking advantage

1 Countries: Australia, Austria, Belgium, Canada, Denmark, Finland, France, Germany, Great Britain,
Greece, Hungary, Italy, Japan, Netherlands, Norway, Portugal, South Korea, Spain, Sweden, Switzerland,
United States.
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of its process know-how. However, the distinction between inter- and intra-sectoral
spillovers has so far been neglected in other studies on innovation in renewable energy

or environmental technologies.

Knowledge that spills across international borders is also expected to be a critical
channel for advancing new technologies. The emerging Spanish wind industry, for
instance, acquired valuable expertise via technology licensing from the Danish wind
industry in the mid 1990s and has further assimilated this know-how for its own wind
technology innovations. We therefore investigate the relative importance of inter-
sectoral spillovers and intra-industry spillovers in the innovation process of wind and
solar technology. It is, moreover, crucial to distinguish between national and
international sources of knowledge. Additionally, we account for the fact that solar and
wind technologies each involve their own distinct innovation process. Even though both
are evolving and dynamically growing technologies, they are characterized by
significant differences in the underlying technical principles and are therefore
characterized by different innovation dynamics. We therefore allow for different

processes by estimating separate regressions for each technology.

Methodologically, we use a knowledge/ideas production function framework to model
the relationship between innovative output, as measured by the number of patent
applications in wind or solar technology, and knowledge-generating inputs such as R&D
expenditures, human capital, policy instruments, and spillover sources. The input
variables for national, international, intra- and inter-sectoral spillovers are also
constructed from counts of patent applications. Furthermore, public support
contributes to the innovation process of renewables as this technology still operates at a
cost disadvantage. Renewables rely, first, on support to spur their development, as
evidenced by public R&D funding, and, second, on incentives for technology adoption

and subsequent power production.2

2 The latter incentive schemes fall into one of two categories. In a price-based scheme, a tariff is
guaranteed per unit of renewable power supplied (feed-in tariff). A quantity-based scheme requires a
particular quantity or share of energy to be produced from renewable sources (obligation). Recently,
certificate trading systems have also been set up, under which renewable power generators can sell
power on the market and sell certificates on the green certificates market [25],[19].
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The empirical literature on innovation in energy or environmental technologies does
not systematically examine the role of various sources of spillovers, but there is one
strand of this work that uses patent data to analyze innovation in these fields. By legal
definition, obtaining a patent requires novelty and inventiveness and they are thus a
strong and frequently employed source of data for measuring innovation. To our
knowledge, the only studies explicitly on innovation in renewable energy technology
are Johnstone et al. [22].3 The authors analyze the impact of various policy instruments,
including obligations, tariffs, and tradable certificates, on the number of patent
applications in wind, geothermal, solar, ocean, biomass, and waste technologies. Policy
instruments are found to induce innovation in renewables, but the particular choice of
an instrument matters. There are important differences between the technologies:
obligations and tradable certificates work well for wind power innovations, which the
authors explain by noting that wind is the most cost-competitive technology and hence
development efforts focus on this less expensive field to meet regulatory obligations.
Innovation in more costly technologies such as solar power, on the other hand, is more

responsive to feed-in tariffs.

Articles with a broader technological scope include Popp [31] on energy-saving
innovations and Verdolini and Galeotti [36] on energy-efficient technologies. Popp [31]
examines how energy prices and the existing knowledge influence energy-saving
innovations.* Results confirm a strong stimulating effect of energy prices and,
moreover, establish the knowledge stock as a crucial driver for patenting in energy-
saving technologies. Verdolini and Galeotti [36] study which supply and demand factors
induce innovation in energy-efficient technologies. Using U.S. patent data from between
1975 and 2000, energy prices and externally available knowledge are confirmed to be

strong drivers of innovative activity in these technologies. Results also reveal that the

3 Some researchers also study diffusion of renewable energy technologies by using patent data, e.g.,
[32],[10].

4 Innovation is measured by the number of patents in diverse energy-saving technologies, for instance,
fuel cells, or renewables, compared to the overall number of patents in the United States. The knowledge
stock serves as a proxy for the supply of ideas. It is measured by the aggregate of all U.S. patents or,
alternatively, by a quality-controlled aggregate of the latter where patent citations are used to obtain the
quality weightings.

112



closer countries are in terms of technology or geography, the more knowledge flows

between them.>

Our work deepens the understanding of innovation in renewable energy technologies
by, first, emphasizing the importance of knowledge spillovers for technological change
and, second, studying the impact of various spillover sources. We find substantial
evidence that innovation is driven by knowledge spillovers, especially at the national
level. Hence, knowledge spillovers are predominantly a domestic phenomenon;
international spillovers are found to have a negligible influence. Wind and solar
technologies exhibit distinct innovation characteristics: both are stimulated by intra-
sectoral spillovers, but respond differently to inter-sectoral spillovers, which are only
influential in the case of wind technology. We also find evidence that public R&D

stimulates innovation, particularly in solar technologies.

The paper proceeds as follows: Section 2 introduces the database and discusses the use
of patent data to measure innovative activity. Section 3 outlines our model of innovative
activity using a knowledge production function framework and describes the estimation

approach. Section 4 presents the results of the analysis; Section 5 concludes.

2 Data and Descriptive Statistics

The econometric analysis is based on a balanced panel of 21 OECD countries over the
period 1978 to 2004.6 We focus on solar and wind technologies, two prominent and
intensively studied technologies within the field of renewable energy generation. Each
can be considered an emerging technology compared to more mature technologies such
as hydropower. In the OECD, wind accounted for 5.81% of gross electricity generation
from renewable sources in 2005 [21]. Wind energy generation is close to being cost

competitive — at least in very favorable sites (see, e.g.,, [27]). Solar energy is still

5 A number of studies investigate the link between environmental regulation, often measured by pollution
abatement expenditures, and innovation (e.g., [3],[5]). In contrast to our work and that of Johnstone et al.
[22], these scholars focus on the United States and rely on national firm- or sector-level data.

6 To compile a representative sample for innovative activity in renewable energies, we imposed the
restriction that any form of public R&D last for at least in one year and that domestic inventors applied
for at least five patents in wind and solar technology.
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expensive and its relative contribution to electricity generation is small (0.13% in 2005)

[21], but its potential is enormous [27].

2.1 Usage of Patent Data
A crucial aspect in tracking innovative activity is its measurement, an issue that is
discussed extensively in the literature on innovation. Given this paper’s research focus,
— studying the role of knowledge spillovers in “green innovation” — patents are a
powerful indicator, since, by definition, they involve truly new ideas and have a
common legal framework within each patenting authority. They thus assure
comparability across countries and over time. In addition, patent applications contain
detailed information on inventors, technological classification, timing of the invention,
and protection coverage that can be exploited to track innovation in wind and solar

technologies.

We use all patent applications filed with the European Patent Office (EPO) having a
priority date between 1978 and 2004. EPO applications, in contrast to those made at a
national authority, can be taken as a signal that the patentee believes the invention to be
of high enough value to justify the expense of an international application. By exploiting
patent applications, we assume that the knowledge they contain diffuses as soon as the
patent application is published, which usually happens 18 month after the filing date
[34].

We use these patent data to determine our output variable — innovation in wind and
solar technology — by using a classification scheme developed by Johnstone et al. [22].
In addition, patent data are used to construct our key exogenous variables: the sources
of spillovers are obtained by building four different types of knowledge stocks for solar
and wind technology — existing knowledge in the specific technology (wind or solar)
and existing knowledge in related technologies, distinguished according to whether the

inventor is domestic or foreign (see Appendix A for details).
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2.2 Other Explanatory Variables
Other exogenous variables in our ideas-generation framework are R&D expenditures,
policy instruments, and human capital. Annual data on publicly funded R&D in solar and
wind energy are from the IEA Energy Technology Research and Development Database
[20]. Data on private R&D energy expenditures are not easy to obtain, a common
problem faced by energy or climate researchers [28]. However, in the context of energy
technology projects, governments are often heavily involved via publicly funded

research or demonstration programs [16].

Information on the number of R&D personnel involved in renewable technologies is not
directly available for use in measuring the human capital input in knowledge
production. We can at least approximate the research potential present in a country by
an intensity measure relating the general number of researchers to the total labor force.
Even though researchers are no doubt working in various fields, their knowledge or
innovations may have the potential to spur technological development in renewable
energies, especially in case of basic research. Data on researchers per 1,000 employees
in a country are from the Main Science Technology Indicators published by the OECD
[29]. Since information on researchers is available only from 1981 onward, we are
restricted to the time frame of 1981 to 2004 when including this variable in our

estimations.

Johnstone et al. [22] find that policy instruments play a substantial role in encouraging
innovation in renewable energy technologies. Such promotion schemes fall into one of
two categories: price-based systems (feed-in tariffs)) or quantity-based systems
(obligations and certificates) [9]. Similar to Johnstone et al. [22], we follow the
categorization of IEA [19] and introduce time dummies that indicate the time period
during which any of the three policies were in effect in a country. The policy dummies
provide a somewhat narrow picture of the support schemes; it would be preferable to
have more elaborate data to evaluate the relative effectiveness of these policy schemes,
such as international rankings of the renewable support schemes. However, such

information is not available and cannot be easily compiled.”

7 Support schemes are comprised of several elements that are critical to their functioning and credibility.
For instance, feed-in-tariffs vary not only by technology and tariff level, but also by the period over which
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2.3 AFirst Look at the Data
Tables 1 and 2 display the summary statistics for the variables of interest in wind and
solar technologies, respectively. The average amount of (real) public R&D expenditure
is roughly $6.3 million for wind and $24 million for solar technologies, with substantial
country-level variation. The 1970s oil shocks markedly intensified research into power
generation from alternative sources. Government R&D spending — particularly in the
United States — was high afterwards, at levels unprecedented until now. Wind R&D
support peaked around the beginning of the 1980s at about $300 million and — apart
from a small upward trend around 1995 — stayed at a much lower level of about $100
million (Appendix Figure A.1). Solar technologies underwent a similar dynamic, though
at a higher overall level (Appendix Figure A.2). Support was highest, at $1,200 million,
at the beginning of the 1980s and has been significantly lower ever since (around $400
million). The oil crises of the 1970s substantially increased political awareness of issues
of energy security, and substantial funds were allocated for research on alternative,
nonfossil fuel technologies by governments worldwide. However, in the face of lower
energy prices from the 1980s on, political interest in alternative energy technologies

projects declined.

In the case of solar energy, patenting dynamics mirror, in part, R&D support: an early
peak at the beginning of the 1980s, followed by a trough lasting until 1989. Then, from
1990 onward, we observe a steady increase in innovative activity in solar technology
until 2004. Patenting activities of the main applicants of interest are shown in Figure
A.4 (Appendix). Since the early 1990s, Japan and Germany have played the leading roles
in solar technology, although the United States appears to be catching up. The United
States was a strong market for solar energy applications up to the beginning of the
1980s, but the substantial decline in public support under the Reagan administration
appears to have severely dampened U.S. technology developments in this field. Only
when Japan and Germany began their large-scale support schemes, did solar innovation

increase again. Japan concentrated its renewable energy technology efforts on solar

the tariff is granted, design (fixed tariff versus premium on the electricity price), size, and location of
applicability. This information is neither well documented nor easy to obtain and requires a consistent
approach to compile the data and evaluate the characteristics of the national support schemes in a
comparable standard for each technology. Currently, we are not aware of any such quantitative attempt
in the literature.
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technology to take advantage of knowledge already developed in the integrated circuit

and consumer electronics industry.

In contrast, patent applications in wind technology were filed at a steady, fairly low
level until 1995 (Appendix Figure A.3). After that year, we observe a boom in wind
technology patenting that continues to the present day. The age of modern wind
technology started in the aftermath of the 1970s oil crises. California experienced a
major boom in wind power installations; however, the turbine technology and other
components were largely imported from Denmark. While the U.S. interest in wind
technology faded during the 1980s, European countries such as Germany, the
Netherlands, and Denmark spurred technology development with major research and,
especially, demonstration projects from the 1980s on. In Japan, wind technology
development has usually had low priority due to little domestic expertise in this field

and in an effort to avoid reliance on imports of this technology.

Germany dominates innovative activity in wind technology. The United States and Spain
have only recently improved their performance in this domain. Spain is a late starter in
this field, not even starting technology until the 1990s, at which time it actively pursued
a strategy of encouraging foreign manufacturers to establish plants in Spain and form

joint ventures with local partners.

Summary statistics for patent applications in wind and solar technology show that
patenting activity is rather infrequent, leading to a large number of zero observations
combined with low mean values of slightly more than 2 in the case of wind technology
(Table 1) and about 5.5 for solar technology (Table 2). This pattern is mainly driven by
the fact that the classification identifying relevant inventions in wind and solar is quite

narrow and technologically specific (see Johnstone et al. [22]).
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Table 1

Summary statistics: wind technology (1978-2004)

Variable

Description Mean S.D. Min

Max

Patent Wind

R&D

Human_capital

Wind_stock

Wind_rel_stock

Int Wind_stock

Int_Wind_rel_stock

Feed-in Tariffs

Obligations

Certificates

Patent applications in ~ 2.240 8.220 0
wind technology
R&D expenditures in
mio. U.S. dollars,
2008 prices and PPP
Researchers per
1,000 employees
Stock of patent
applications in wind
technology, domestic
inventors

Stock of patent
applications in wind-
related technology,
domestic inventors
Stock of patent
applications in wind
technology, foreign
inventors

Stock of patent
applications in wind-
related technology,
foreign inventors

6.313 14.254 0

5.530 2.670 1.013

9.060

22.988 0

1074.329 2505.399 0

181.019  148.353 20

Policy instrument, 0.349 0.477 0
dummy
Policy instrument, 0.233 0.423 0
dummy
Policy instrument, 0.072 0.259 0
dummy

114

156.836

17.713

318.374

20698.110

731.927

21479.750 14743.550 1123.750 54948.520

Notes: Human-capital is only available from 1981 onward.
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Table 2

Summary statistics: solar technology (1978-2004)

Variable

Description

Mean S.D.

Min

Max

Patent_Solar

R&D

Human_capital

Solar_stock

Solar_rel_stock

Int_Solar stock

Int_Solar_rel_stock

Feed-in Tariffs
Obligations

Certificates

Patent
applications in
solar technology
R&D expenditures
in mio. U.S. dollars,
2008 prices and
PPP

Researchers per
1,000 employees
Stock of patent
applications in
solar technology,
domestic
inventors

Stock of patent
applications in
solar-related
technology,
domestic
inventors

Stock of patent
applications in
solar technology,
foreign inventors
Stock of patent
applications in
solar-related
technology,
foreign inventors
Policy instrument,
dummy

Policy instrument,
dummy

Policy instrument,
dummy

5.485 12.584

24.019 70.261

5.530

2.670

26.615 53.637

5337.713 11838.390

531.579 231.913

106720.700 71807

0.289 0.454

0.219 0.414

0.072 0.259

1.013

106.75

5186.75

116

859.348

17.713

404.447

64453.970

1196.473

254810.500

Notes: Human-capital is only available from 1981 onward.
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3 An Empirical Model of Innovative Activity in Renewable

Energy Technologies

3.1 A Knowledge Production Function Framework
Following the framework developed by Griliches [11], we estimate a knowledge
production function to discover the determinants of innovative activity in wind and
solar technology. Innovation is assumed to be the product of knowledge-generating
inputs, comparable to the process of physical goods production. The vector of
determinants usually encompasses the quantity of human capital or R&D expenditures
and the total stock of knowledge available to researchers. Hence, the productivity of
new knowledge is assumed to be strongly dependent on existent stock of ideas [33], the

“standing on shoulders” effect (e.g., [2]).

Formally, knowledge production in technology j and country n can be summarized as

follows:
I, =f(H,K),
where [ is innovation in technology (j) (wind or solar), H stands for human capital, and

K is the overall knowledge stock available to researchers. To enrich our understanding
of the knowledge-production process, we further distinguish between domestic and
international knowledge spillovers. The latter could be an especially important channel
of knowledge transfer for smaller countries whose existing knowledge base is narrow

or highly specialized.

To fully understand the externalities of national and international technological
knowledge, empirical work on R&D spillovers often distinguishes between intra- and
inter-sectoral spillovers by referring to sector-country observations (e.g., [24]). We
transfer this approach to the field of renewable energies and study not only the impact
of domestic and international spillovers in wind and solar technology (intra-sectoral
level), but also knowledge externalities in related fields (inter-sectoral level). Our

specification can be expressed as follows:

Ly =F(H,, K, K K K )

nj’ " nj’ " *n-j’ " *-nj’
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where K ; stands for the knowledge stock available in the same technology in the same

country, K, . is knowledge in the same country but in related technologies, K_ . is the

- j

stock in other countries in the same technology, and K _ . is knowledge from related

-j
technologies in other countries. In short, Km. and an]. represent domestic spillover,

whereas K_; and K_ ; proxy international knowledge spillover.

3.2 Econometric Approach
As explained in Section 2, we measure innovative activity in wind and solar technology
by the number of patent applications. The resulting dependent variable is a
nonnegative-integer-valued variable with many zeros and small values, especially at the
beginning of our estimation period. Thus, in the specification of our econometric model
we follow the seminal work of Hausman et al. [17] and assume a Poisson process with

parameter A ; for the number of patents applied for in country n in technology j:
E(Inj ) = x’nj = eXp(Xn]- 'B)
i exp(—knj)k:j
p(1, =i, )= T
nj
Again, 1 is the number of patents in country n related to technology j and the vector
X, encompasses R&D expenditures, human capital, our constructed knowledge stocks,

and additional explanatory variables such as policy measures, year dummies, and a time
trend. Time effects are often neglected in the empirical literature on “green innovation”
but are important for capturing general changes in the propensity to patent and
strategic patenting behavior across countries. R&D expenditures, human capital, and
knowledge stocks are measured in logarithms;8 hence the estimated coefficients can be

interpreted as elasticities.

The most critical part of the Poisson model is the implicit assumption of conditional

mean and variance both being equal to 2 ;. If this assumption is violated by the dataset,

the model will produce misleading predictions of zeros and large counts [7], a

8 Hall and Ziedonis [15] suggest using logarithms when estimating a knowledge production function.
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phenomenon known as overdispersion. The mean-variance equality rarely holds in
empirical applications on patenting behavior (e.g., [18]). One option is the application of
a negative binomial estimator, which allows for flexibility in the parameterization of the
mean-variance relationship. The negative binomial density is obtained by combining
the Poisson distribution with a gamma distribution for the unobserved heterogeneity in

the parameter A .

Our dataset raises a more pressing concern; we need to handle a considerable number
of zero patent counts, roughly 50%.° This kind of problem occurs more often in the case
of firm-level micro data where one is always confronted with certain firms that do not
appear to innovate at all. In the case of wind and solar technology, we need to tackle this
issue at the country level because there is only a very small number of innovations in
these fields and we therefore do not observe relevant patenting activity for all countries
and years. This paucity of observations could be due, on the one hand, to some countries
never innovating at all in a certain technology and, on the other hand, to other countries
that may have tried to innovate but failed. This leads to a different data generating
process and a standard Poisson model cannot be used to describe it. We hence apply a
zero inflated Poisson (ZIP) model as proposed by Lambert [23]. Assuming that the
probability of not innovating is given by p and, accordingly, the likelihood of innovating

is 1—p, the ZIP model can be summarized as follows:

P(Im‘ - inj): AN :
(1 ~ Py )eXp(an )1—' i;=12.3,..
nj
The probability of exhibiting zero patents is modeled using the logistic distribution:
1
1-exp(-Z,"7)’

where we model the choice of not innovating as a function of public R&D support in the

Py = F(an 'Y) =

technology. The compound distribution is then maximized by means of maximum

likelihood estimation. Conditional on R&D support, the rate of innovation is given by:

In]. = exp[oc+B1 ln(R&Dnj)+B2 ln(Km.)—i-B3 ln(an].)+B4 ln(Kfn].)+Bs)_(n]},

9 The portion of zero counts in wind technology is slightly above 50%; that of solar slightly below.
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where )_(m. contains additional control variables such as human capital and policy and

time measures. Note that we omit the knowledge stock stemming from related
technologies in other countries. As could have been predicted, the various knowledge
stocks are correlated to a certain extent and the high correlation of above 0.75 between
the two international stocks make this omission necessary.l® Furthermore, this type of
knowledge stock is by far the most diffuse since it flows from numerous locations and

several technologies.

Additionally and consistent with recent literature on innovative activity, a lag structure
on inputs is imposed to account for the fact that R&D efforts do not immediately lead to
innovative output [13]. Therefore, we lag all inputs — except the policy dummies — by
two periods. In line with Johnston et al. [22], we do not lag the policy dummies because
the legislative process takes time and rational innovators are likely to start research
activity during the political decision-making process, instead of waiting until the policy
becomes legally effective [26]. In Section 4.3, we also account for individual

heterogeneity and apply a negative binomial panel data estimator.11

4 Empirical Findings
A key aspect of our work is to explore the role of knowledge spillovers in the
knowledge-production process in two renewable energy technologies, wind and solar.
We look at three sources of knowledge spillovers — first, domestic spillovers
originating from the domestic knowledge stock within the same technology; second,
domestic spillovers from closely related fields in the economy; and third, international
spillovers from either wind or solar technology. Our empirical results are presented in
three parts. We begin by discussing the findings for innovation in wind energy
technologies, followed by those for solar energy. In the last part we discuss the

robustness of our results.

10 The correlation between the other stocks is considerably smaller and ranges between 0.06 and 0.6.
11 For details on the negative binomial panel estimator see e.g., Cameron and Trivedi [4]. A ZIP panel data
estimator is not yet available.
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4.1 Determinants of Innovative Activity — The Case of Wind
We start with a base specification that includes public R&D expenditures, human
capital, policy support instruments, and the stock of existent domestic knowledge in
wind technology (Table 3, Model 1).12 The domestic spillover variable (Wind_stock) has
a significant and positive coefficient in the model — preliminary evidence in favor of the
relevance of knowledge spillovers in the innovation process of renewable energy
technologies. An increase in the national knowledge stock of 1% induces a growth in
wind patent counts of 0.83% on average. A second important driver of the wind
innovation process is public R&D. Such a link might not be as clear-cut in the case of

renewable energies as we proxy R&D by public funding.

Governments tend to fund basic or risky research projects that are less likely to result in
innovative outputs such as patents. Nonetheless, we find that government R&D appears
to be directed to research activities that result in patenting output or that at least
increase the productivity and innovation output.!3 The human capital variable is not
significant. Hence, there is no evidence that the overall national innovative capacity is
critical to innovative developments in wind technology.* We also control for time
effects by including a trend. As expected, its estimate shows that the number of patent

applications follows a strong growth path over time.

The model also includes policy measures: these include demand-side schemes aimed at
inducing the installation of the technology for power production, but that may also have
a stimulating effect on technology development via learning-by-doing effects [26]. In
contrast to Johnstone et al. [22], we find no evidence of a significant link between any of
the support measures and innovative activity. Note, however, that these policy dummies
measure only a certain aspect of the renewable support scheme, i.e., the period of time

during which obligations, feed-in tariffs, or certificates were in effect. They do not take

12 All estimations apply robust standard errors, which have been adjusted by clustering at the country
level.

13 For a more detailed discussion on the relationship between private and public R&D expenditures, see
David et al. [6].

14 Although the variable is not significant in this first estimation, we retain it in the specification to, first,
be consistent in the usage of the knowledge production function framework, which would be susceptible
to an omitted variable bias if differences in the national human capital/researcher endowment are not
controlled for. Second, we next extend our specification for the various sources of spillover, which might
affect the role of human capital due to different conditional expectations.
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other important elements into consideration (e.g. fixed tariff versus premium) and

therefore may provide only a narrow picture of the support mechanisms in place.

Model 2 now extends the analysis to study in addition the impact of knowledge
originating from technologically closely related fields. We find support for the
hypothesis that national inter-sectoral sources are an important factor affecting
knowledge generation in wind technology by providing an additional opportunity for
know-how transfers. The inclusion of this variable (Wind_rel_stock) results in small
reductions in the magnitude of the R&D and domestic wind spillover coefficient
estimates, but overall results remain robust. The inter-sectoral stock is, as would be
expected, less influential than the direct wind spillover source, with the size of the
coefficients differing by a factor 4. Anecdotal evidence suggests that knowledge in wind
technology field itself has a higher effect on innovation output than state-of-the-art

technology of related industries.

Model 2 is consistent with our notion of knowledge creation in renewable energy
technologies — spillovers are critical drivers of innovation: Wind developers are
exploiting and learning from technological know-how originating in the domestic wind
“area”/sector itself and from knowledge gleaned from closely related sectors in the
economy, such as machinery. Some key players in the wind industry have historical
roots in established industries such as agricultural equipment or the steel industry.
However, the role these long-established sectors of an economy play in innovation in

wind technology has rarely been made explicit in empirical analyses.

As discussed in Section 3, a serious weakness of the Poisson model is that it fails to
account for excess zeros in the dependent variable. We accordingly reestimate the
previous model with ZIP (Model 3). There are some minor changes in the size of
estimates but, again, we find a strong link between each of the two domestic spillover
sources and innovative activity. Our analysis clearly suggests that the exclusion of these
knowledge spillovers omits an important element of the innovation process of wind

technology.
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The previous Poisson regressions found R&D to be accelerating innovative wind
technology developments, but that link becomes nonsignificant in the main ZIP
regression. Turning to the regression equation for the excess zeroes, however, public
R&D is a significant determinant in the model predicting whether a country is an active

innovator in wind technology (bottom half of Table 3).1°

It is evident that public R&D funding is pivotal in explaining whether a country
generates any innovation output. Using the Vuong test to compare the ZIP and Poisson
models, we find a significant positive value of the test statistic, providing clear evidence

in favor of the ZIP approach.

To this point, all models have included a trend as our time measure. Alternatively, year
dummies can be used to control for the upward dynamics in wind patent applications
(Model 4). The results are in line with the previous regressions — both types of
domestic knowledge spillovers work are significant drivers of wind innovation even
though the innovative response to the stock of domestic wind knowledge is to some
degree smaller than in Model 3, whereas the impact of inter-sectoral spillovers appears
to be somewhat stronger. We will further elaborate on time effects in Section 4.3, where
we also cover subperiods of our sample. Overall, the inclusion of year dummies comes

at the price of losing degrees of freedom, leading us to prefer a trend specification.

The wind technology business exhibits a strong export orientation and
internationalization. Thus, we would expect a positive coefficient of the international
wind knowledge stock (Int_wind_stock) in Model 5 (Table 3). Contrary to our
hypothesis, knowledge spillovers across international boundaries do not seem to be an
important driver of technological progress in wind. The elasticities of the domestic
spillover variables remain significant and the coefficient of wind-related knowledge

spillovers drops slightly.

15 We experimented with several alternative specifications of the inflate equation (not reported).
Potential candidates were all variables already being covered in the Poisson stage of the regressions.
They turned out to be insignificant and did not affect our results. Additionally, we added a “demand-push”
perspective and controlled for existing wind energy capacity in a country. Again, our specification and
conclusion remained robust.
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Table 3

Determinants of innovative activity in wind technologies

Model 1: Model 2: Model 3: Model 4: Model 5:
Poisson Poisson ZIP ZIP ZIP
R&D 0.244** 0.199** 0.074 0.056 0.074
(0.095) (0.100) (0.114) (0.110) (0.106)
Human_capital 0.204 0.065 0.056 0.037 0.116
(0.229) (0.213) (0.249) (0.218) (0.254)
Wind_stock 0.833*%*  (0.728***  0.721** (0.713*%* (.723***
(0.072) (0.076) (0.078) (0.073) (0.070)
Wind_rel_stock 0.152** 0.150** 0.170** 0.130**
(0.068) (0.062) (0.069) (0.059)
Int_Wind_stock -0.199
(0.205)
Feed-in Tariffs -0.026 0.068 0.041 0.090 -0.002
(0.178) (0.177) (0.207) (0.183) (0.198)
Obligations 0.221 0.077 0.120 0.009 0.130
(0.167) (0.161) (0.148) (0.149) (0.142)
Certificates 0.266 0.396** 0.236 0.283 0.273
(0.179) (0.200) (0.232) (0.214) (0.251)
Trend 0.103***  0.104*** (0.087*** 0.107%**
(0.022) (0.023) (0.023) (0.016)
Year dummies - - - Yes -
Intercept -3.746%**  -4253%**F 3. 377F* _2.659%FF  -2.614**
(0.272) (0.341) (0.380) (0.578) (1.068)
Inflate regression
R&D -0.644**%*  -0.693*** -0.660***
(0.193) (0.201) (0.187)
Trend -0.112%*  -0.098**  -0.104***
(0.035) (0.041) (0.032)
Intercept 1.707** 1.242 1.554**
(0.790) (0.919) (0.725)
Observations 254 253 253 253 253
Countries 19 19 19 19 19
Log-likelihood -520.787 -506.684 -480.313 -450.218 -478.697
Vuong test 2.35%**

Notes: 1. Dependent variable: number of EPO patent applications in wind technologies,
1981-2004. Countries not included are Australia and Hungary.
2. Robust standard errors are calculated by clustering at the country level. Standard
errors are given in parentheses below the coefficient estimates.
3.%*x ** and * denote significance at the 1%, 5%, and 10% level, respectively.
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These findings lead us to conclude that although the market for the technology itself is
international, research and technology development appear to predominantly occur in a
domestic setting. A possible explanation for this is that the pool of knowledge available
domestically is still large enough that acquiring knowledge from abroad is generally
redundant. Though innovators have contact and are in exchange with international
business and research communities, appropriation from foreign knowledge is likely to

be more costly that that occurring through domestic knowledge.

Turning to policy relevance, our results suggest that if an innovation system is
predominantly characterized by domestic spillovers, and has the opportunity and
means to exploit its existing strong knowledge base, then a country that is a technology
leader is likely to maintain that position. This may also imply that “late movers” will
have difficulty stimulating innovation in wind technology as they lack their own

knowledge base.

4.2 Determinants of Innovative Activity — Solar Technology
Solar energy is still in a relatively early phase of development. This sector faces the
specific technological challenge of improving the efficiency of solar energy conversion

while significantly reducing the manufacturing costs.

We start from the same base knowledge production specification using a Poisson
estimation approach (Model 1, Table 4). The only difference is that the knowledge
spillover stock now stems from the domestic solar industry (Solar_stock). The findings
reveal a picture similar to that obtained for wind: domestic spillovers within the same
technology, i.e., solar, and R&D are the main drivers of solar innovation output. As a
comparison of the elasticity estimates reveals, domestic intra-industry spillovers are
again superior to R&D in stimulating innovation. We also find that the effect of domestic
intra-industry spillovers — relative to R&D — is less strong in the case of solar than for
wind (the ratio of elasticities of spillover to R&D is about 2.1 in solar technologies and
3.4 in wind technologies). Other variables, such as human capital intensity and policy

instruments, are not significant factors in explaining innovation.
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Table 4

Determinants of innovative activity in solar technologies

Model 1: Model 2: Model 3: Model4: Model5: Model 6:
Poisson Poisson ZIP ZIP ZIP ZIP
R&D 0.322***  (0.312**  0.271**  0.209%* 0.270*%* 0.269***
(0.061) (0.065) (0.076) (0.077) (0.074) (0.079)
Human_capital 0.252 0.194 0.363 0.383 0.367 0.331
(0.292) (0.273) (0.294) (0.292) (0.296) (0.311)
Solar_stock 0.682*** 0.633*** (0.688*** (0.605*** 0.688*** (0.661***
(0.078) (0.115) (0.126) (0.103) (0.126) (0.092)
Solar_rel_stock 0.072 -0.052 0.126 -0.044
(0.109) (0.138) (0.109) (0.133)
Int_Solar_stock 0.064 0.091
(0.450) (0.451)
Feed-in Tariffs -0.111 -0.111 -0.069 0.006 -0.071 -0.075
(0.159) (0.158) (0.165) (0.175) (0.176) (0.183)
Obligations -0.237 -0.231 -0.242 -0.144 -0.258 -0.261
(0.151) (0.148) (0.153) (0.172) (0.261) (0.261)
Certificates -0.020 0.001 0.023 0.133 0.023 0.031
(0.067) (0.075) (0.085) (0.164) (0.084) (0.080)
Trend 0.060***  0.055*** 0.060*** - 0.057***  (0.054%**
(0.008) (0.010) (0.013) (0.012) (0.012)
Year dummies - - - Yes - -
Intercept -2.791%%*  -3.036*** -2.319*** -45359* -2.741 -3.071
(0.392) (0.704) (0.873) (24.469) (2.938) (2.759)
Inflate regression
R&D -0.902*** -1.592* -0.902*** -0.886***
(0.257) (0.929) (0.260) (0.266)
Trend -0.056 -0.010 -0.056 -0.056
(0.051) (0.146) (0.051) (0.050)
Intercept 0.900 -0.455 0.882 0.813
(1.351) (3.347) (1.351) (1.286)
Observations 260 260 260 260 260 260
Countries 21 21 21 21 21 21
Log-likelihood -686.650 -685.759 -675.461 -575.617 -675.374 -675.579
Vuong test 1.33*

Notes: 1. Dependent variable: number of EPO patent applications in solar technologies,

1981-2004.

2. Robust standard errors are calculated by clustering at the country level. Standard
errors are given in parentheses below the coefficient estimates.

3. % *#* and * denote significance at the 1%, 5%, and 10% level, respectively.
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Next, we include national knowledge that could flow to the solar industry from
technologically closely related fields (Solar_rel_stock, Model 2). Interestingly, this factor
contributes little to innovative activity in solar technologies, whereas it had a strong
effect in the wind case. Possible explanations for this include, first, that solar technology
is still in its infancy (compared to wind) and it is most especially the exchange of
knowledge and expertise within the same technological field that is accelerating
technology development. Second, solar technology is more complex than wind
technology (for details see Section 3 and Appendix A). There are more and
heterogeneous potential opportunities for innovational complementarities. This implies
that it could be more difficult to measure how innovation responds to related

knowledge because the related knowledge is so diverse.

Do these findings hold in a ZIP specification? The Vuong test indicates that the ZIP
model is better suited to the data. The inflate regression is specified similarly to the
wind case regression. Public R&D expenditures are again found to be a critical
determinant in modeling the zero patenting outcomes.'® The ZIP model shows that
innovation production is only accelerated by absorption and utilization of knowledge
available in the domestic solar industry; inter-sectoral effects are negligible. As a
robustness check, we reestimate the model including year dummies instead of a trend
(Table 4, Model 4). The time dummies are mostly significant and positive; their size, as
expected, is increasing over time (see also Figure 2). Coefficient estimates remain

otherwise robust.

A third factor hypothesized to spur innovation is international spillovers. We
accordingly extend the analysis to investigate the role international knowledge
spillovers plays in innovation performance (Model 5). Again, international spillovers do
not affect innovation performance. The coefficient of Int_solar_stock is very small and
insignificant. Our analysis suggests that knowledge embodied in domestic spillovers
from the solar sector is superior in creating new knowledge compared to solar

knowledge from abroad or from related fields in the economy.

16 Again, we tested several specifications for the inflate equation (not reported). Additional variables
were not significant and did not change our results.
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We now examine another model to explore the robustness of the insignificant role of
international spillovers in the knowledge-creation process in solar energy. As national
related technology knowledge was previously found to be insignificant (Model 3 or 4),
we estimate a model including domestic and international solar stocks to elaborate on
the role of the specific solar knowledge base. The results show considerable support for
our earlier observation: solar innovative activity is predominantly spurred by domestic
spillovers within its industry and, to a lesser extent, by R&D, but is not stimulated by
international knowledge transfers (Model 5). It is not possible to state whether this is
due to international spillovers being less conducive to innovation or whether the lack of
influence is due to an incapacity, for whatever reason, of countries to exploit
international knowledge. For an evolving technology like solar, the learning
opportunities within the home country and the same technology field still seem to be
sufficiently large to foster technological advances. However, it could be that in the
future, as the technology matures, international knowledge spillovers will be more

influential.

4.3 Robustness

In this section we test the robustness of our results by applying panel estimation
methods and considering different time periods. To this point, we adopted a pooled ZIP
regression approach, but as this method is not able to account for country-level
heterogeneity, we use a negative binomial (Negbin) panel data estimator (e.g., [22],[3]).

Beginning with wind technology, Model 1 in Table 5 shows random effects and Model 2
the fixed effects results. The Hausman test clearly rejects the assumption that error
terms are uncorrelated with the individual effects. Most coefficients in the fixed effects
model remain similar in magnitude, but the one for domestic wind spillovers is about
one-third smaller than that previously obtained. Knowledge from related sectors no
longer has a significant impact on innovation; however, one should be wary of
concluding that inter-sectoral spillovers do not matter in case of wind. As Hall et al. [14]
argue, R&D and, consequently, knowledge accumulation usually changes slowly over
time, implying that national spillover sources (stocks) could be highly correlated with

the individual effect.
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Table 5

Robustness checks — alternative model specifications and estimation methods

Wind Wind Wind Wind Solar Solar Solar Solar Solar Solar
Model 1: Model2: Model 3: Model 4: Model 5: Model 6: Model 7: Model 8: Model 9: Model 10:
Negbin RE Negbin FE ZIP ZIP Negbin RE Negbin FE Negbin FE Negbin FE ZIP ZIP
Full sample  Full sample Subsample: Subsample: Fullsample Full sample Fullsample Full sample Subsample: Subsample:
1982-1994 1995-2004 1982-1994 1995-2004
R&D 0.222%** 0.196** 0.331 0.064 0.4471%** 0.460*** 0.448%** 0.485%** 0.361** 0.155
(0.077) (0.097) (0.289) (0.118) (0.082) (0.106) (0.107) (0.106) (0.140) (0.095)
Human_capital 0.038 -0.241 -0.012 0.043 0.271 0.285 0.013 0.536 1.106** 0.149
(0.270) (0.459) (0.723) (0.268) (0.263) (0.439) (0.515) (0.460) (0.495) (0.253)
V;’t‘(‘)‘gls"lar 05327 0.34 7% 0.629** 0.678%** 0.433%%* 0.163 0.102 0.139 0.612%* 0.723%
(0.117) (0.127) (0.271) (0.092) (0.099) (0.123) (0.137) (0.125) (0.171) (0.090)
Wind|Solar g 136+ 0.077 0.134 0.179** - - 0.153 - - -
_rel_stock
(0.080) (0.137) (0.300) (0.078) (0.157)
Int_solar _stock - - - - - - - 0.501* - -
(0.302)
Feed-in Tariffs -0.136 -0.234 -0.634 0.241 0.142 0.022 0.022 0.054 -0.210 -0.079
(0.188) (0.208) (0.387) (0.221) (0.162) (0.199) (0.198) (0.200) (0.322) (0.138)
Obligations 0.022 -0.030 1.607* 0.047 -0.035 -0.029 -0.018 -0.135 0.716* -0.281
(0.176) (0.193) (0.830) (0.165) (0.147) (0.166) (0.166) (0.179) (0.425) (0.230)
Certificates 0.314 0.375 dropped 0.338 -0.006 0.024 0.051 0.036 droppped 0.056
(0.223) (0.244) (0.244) (0.164) (0.184) (0.187) (0.183) - (0.120)
Trend 0.109*** 0.132%** 0.122 0.102** 0.054%** 0.068*** 0.059*** 0.050** -0.023 0.052
(0.019) (0.024) (0.117) (0.048) (0.014) (0.018) (0.020) (0.021) (0.028) (0.039)
Intercept -4, 450% -3.457 %% -3.624%%% -3.925%#* -3.367%* -2.709%% -3.185%* -5.862%%* -3.376%** -1.879%*
(0.490) (0.719) (1.009) (1.077) (0.426) (0.605) (0.759) (1.991) (0.458) (0.802)
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Inflate regression

R&D -0.195
(0.324)

Trend 0.047
(0.088)

Intercept -0.794
(1.601)

Observations 253 237 121

Log-likelihood -406.552 -336.541 -134.525

chi2(8):
Hausman test 22.92%**

-0.750%**
(0.252)
-0.239*
(0.140)
4.599
(3.226)
132
-337.221

260
-526.225

249
-445.970

249 249
-445.503 -444.627
chi2(8):

3058.37**

-166.553%**
(9.196)
-6.321%**
(0.396)
89.748%
(5.308)

122
-251.058

-1.288%**
(0.355)
0.026
(0.219)
-0.724
(5.165)
138
-383.987

Notes: 1. Dependent variable: number of EPO patent applications in wind or solar technologies, respectively.

2. Robust standard errors are calculated by clustering at the country level. Standard errors are given in parentheses below the

coefficient estimates.

3.0 ** and * denote significance at the 1%, 5%, and 10% level, respectively.
4. Note that variable Certificates dropped due to lack of variation in the early subsample 1982-1994.
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We also reestimated the solar innovation model using a panel Negbin setting. Using a
fixed effects approach, we find a somewhat stronger effect of R&D on innovation output
(Table 5, Model 6). Compared to the results of a ZIP approach, we no longer detect a
significant role of domestic intra-sectoral spillovers, possibly because the country
dummies capture all permanent heterogeneity in each country and, accordingly, the
coefficient is determined by the remaining less pronounced within-country variation
over time. In line with our earlier results (Table 4, Model 3), spillovers from closely
related sectors still have no influence on innovation in solar technologies (Table 5,
Model 7). Interestingly, a different picture emerges when we include international
spillovers (Model 8). Here, international knowledge spillovers within the solar industry
are found to induce innovation, whereas the domestic solar spillovers remain
insignificant. Why this should be so is not immediately clear, but it should be kept in

mind that the effect described previously is only weakly significant.

Both solar and wind technologies have been around for several decades, but it is only in
the last decade that they have become the subject of renewed interest and rapid
commercialization. We therefore investigate whether significant changes in the set of
determinants and their relative strength for knowledge production can be observed. We
reestimate our ZIP model for two subsamples of the data, one for the period of 1982 to
1994 and the other encompassing 1995 through 2004. Wind technology development in
the earlier subsample is significantly driven by domestic knowledge spillovers within
the wind industry and by obligations (Model 3). For the more recent period, we see that

related-sector technology has become a stimulating factor (Model 4).17

Finally, a comparison between different time horizons for solar technologies reveals a
very similar picture (Models 9 and 10). Domestic knowledge spillovers within the solar
technology field have a major influence on innovation output. The magnitude of the
effect is revealed to be even stronger in the subsample covering the last decade. One
interesting difference is that R&D is significant in the early period only. Apparently,
solar technology innovation went through a phase during which R&D and human capital

were critical to innovative activity, but later on, when the knowledge base in the solar

17 We also conducted estimations including year dummies (results not reported), the results of which are
not in conflict with our previous findings.
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industry expanded, innovation in this domain is chiefly the result of within-field

knowledge spillovers.

5 Conclusion

Innovation is no panacea for mitigating climate change, but it is a crucial factor in
reducing greenhouse gas emissions and limiting the costs associated with that task. This
paper is one of the first to empirically study the channels through which innovative
activity in solar and wind technologies is spurred. Our work contributes to the literature
on innovation in renewable energy technologies by, first, emphasizing the importance
of knowledge spillovers for technological change and, second, studying the impact of
various spillover sources. A distinction is drawn between intra- and inter-sectoral

spillover sources, as well as between domestic and international spillovers.

Our analysis yields several important findings. Knowledge spillovers are an important
input in the knowledge-generation process of wind and solar technologies. Innovators
in both wind and solar technologies absorb and utilize existing own-field knowledge in
making technological advances. However, spillovers are predominantly a domestic
phenomenon — i.e., they chiefly occur within a country; international spillovers play a
negligible role. Another important finding from our estimation results is that wind and
solar technologies have distinct innovation characteristics and thus should be
considered separately in innovation analyses. Wind and solar technologies are both
stimulated by intra-sectoral spillovers, but they respond differently to inter-sectoral

spillovers, which are influential only in the case of wind technology.

Our results suggest that if an innovation system is predominantly characterized by
domestic spillovers, and it has the opportunity and means to exploit its existing strong
knowledge base, then a country that is a technology leader is likely to maintain that
position. This implies that “late movers” will have difficulty in creating their own
research in renewable energy technologies as they lack a corresponding knowledge
base; international spillovers do not seem to be to sufficient for activating innovation.
The use of renwable energy technologies in developing countries is expected to provide

significant benefits at the global level in terms of climate change, and also at the local
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level for environmental sustainability and development. There is an important debate
on how to best support a North-South technology transfer. An important lesson from
our study on OECD countries is that international knowledge flows have to date played
a negligible role and that successful technology development is currently contingent on
a solid domestic knowledge base in the same technology or, to a lesser extent, in related
sectors. This raises some concern over the ability of developing countries to develop,
not to mention improve, their own renewable energy technology sector. It should be
emphasized here, that we only analyzed the conditions for innovation in renewable
energy technology, not for patterns of production. There other factors such as factor
cost, particularly for labor, or commodity costs play a more prominent role.
International policy commitment will be needed to bring renewable energy
technologies to these countries. In some cases, increasing or building the capacity of
these countries to absorb knowledge transfers and spillovers may be effective but, as
our results reveal, the self-sustained development of renewable energy technologies
will not come easily in developing countries. That international knowledge spillovers
are so insignificant is additionally unfortunate as it could lead to a costly duplication of
research effort if each country independently engages in developing renewable energy

technologies.

Coordination of R&D efforts, priorities, and the exchange of failure and success stories
could avoid such duplication and, moreover, accelerate overall technological progress.
In this paper, we find that public R&D support stimulates innovation in renewable

energy technologies, a result that is particularly robust for solar technologies.

The importance of knowledge flows between sectors has to date been mostly ignored in
policy debates. If developers of clean technologies are able to learn from other sectors
in the economy, it could well reduce the costs of innovation. However, it is not a priori
clear whether policy intervention would in actuality enhance inter-sectoral knowledge
transfer and, if it could, how it should be designed to work most effectively. There is still
much to learn about the mechanisms of and incentives for absorbing and using external
knowledge. In general spillover mechanisms are weakly understood and there is a great
deal of room for further research on them. One extension of our work would be to

construct measures of “proximity” in technology space case studies or geographical
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distance. Additionally, studies based on micro data (e.g., from firms in renewable energy
technologies) could greatly expand our understanding of the underlying knowledge-
generation process. A further extension of our study would be to include national patent
data or make a detailed investigation of how knowledge flows across countries and

technologies as evidenced by patent citations.
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Appendix A

Calculation of the Spillover Variables

To derive knowledge stocks, we use information on patent applications from the
European Patent Office’s (EPO) Worldwide Patent Statistical Database. This database
contains all national and international patent applications. Note that patents often have
more than one inventor from different home countries. In the empirical literature, the
analysis is often restricted to the first inventor, which might be misleading, especially in
case of transnational research collaborations. We allow for multiple inventors when
calculating our patent counts. Given the possibility of affiliation with more than one
country, our patent counts might be larger than the total number of patent applications
at the EPO, e.g., a co-invention by a French and a German inventor counts twice, once in

the count for Germany and a second time in the count for France.18

Patents in wind and solar technology are collected according to a classification scheme
published by Johnstone et al. [22] that links technology classes, more specifically the
International Patent Classification (IPC) classes, to renewable energy technologies.
Methodologically, these relevant classes were determined by using a set of keywords

related to technological developments in this area.

Domestic knowledge stocks in wind and solar technology are derived by applying the
perpetual inventory method to the yearly patent applications in these fields in a certain

country. Accordingly, the knowledge stock available at time t is determined by:

K, =(1+8)K_, +pat,.
Hence, the stock is equal to the stock at time t—1 K, ;, minus depreciation §,1° plus
patent applications in period t pat, The initial stock is approximated using an initial

growth rate of 20%. Foreign knowledge stocks in wind and solar are calculated as the

sum of the domestic stocks minus those of the country of interest.

18 This approach helps to approximate the underlying value of innovative output since one might argue
that international co-inventions are of higher economic value due to the origination of larger costs. We
also experimented with first inventor patent counts in the estimations and it had very little influence on
our results.

19 We impose a depreciation rate of 15%, which is common in the literature (e.g., [12]).
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Another influential factor in determining innovative activity is knowledge spillover
from technologically closely related industries. To extract patent applications in related
industries, we combine the classification on renewable energy technologies by
Johnstone et al. [22] with a sectoral concordance provided by Schmoch et al. [35] that
links industrial fields to IPC classes. Expert assessments and micro-data evidence on the
patenting activity of firms in the manufacturing industry are used to link technology
classes to industry sectors. Based on this concordance, we identify those fields that
encompass the IPC classes defining innovation in wind and solar technology and denote
them as being related to wind or solar energy (Table A.1 and A.2). According to
Johnstone et al. [22], patents with IPC class “FO3D” belong to the field of wind energy.
The class “FO3D” belongs to the industrial field “energy machinery.”

We hence derive the patent stock in wind-related industries by summing over all
applications belong to the field “energy machinery” except for those belonging directly
to wind energy (“FO3D”). In case of solar energy, the procedure is slightly more

complicated because solar energy patents are found in five different fields: “mineral

» o« » « » «

products,” “metal products,” “energy machinery,” “electrical motors,” and “electronic
components.” We perform the calculation in the same manner as for the case of wind.
Detailed classifications for deriving related stocks are provided in the tables below.

Foreign stocks are determined according to the method described previously.
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Table A.1
Related wind technology

Field IPC Classes Except for wind
technology IPC Class

Energy B23F, F01B, FO1C, FO1D, FO3B, FO3D

machinery FO03C, FO3D, FO3G, F04B, F04C,

F04D, F15B, F16C, F16D, F16F,

F16H, F16K, F16M, F23R
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Table A.2

Related solar technology

Field IPC Classes Except for solar
technology IPC Class

Mineral B24D, B28B, B23C, B32B, C03B, E04D 13/18
products C03C, C04B, E04B, E04C, E04D,

E04F, G21B
Metal products AO01L, A44B, A47H, A47K, B21K, F24] 2

B21L, B22F, B25B, B25C, B25F,

B25G, B25H, B26B, B27G, B44C,

B65F, B82B, C23D, C25D, E01D,

EO01F, E02C, E03B, E03C, E03D,

EO5B, E05C, E05D, EO5F, EO5G,

E06B, FO1K, F15D, F16B, F16P,

F16S, F16T, F16B, F22B, F24],

G21H
Energy B23F, F01B, FO1C, FO1D, FO3B, F03G 6
machinery FO03C, FO3D, FO03G, FO04B, F04C,

F04D, F15B, F16C, F16D, F16F,

F16H, F16K, F16M, F23R
Electrical HO2K, HO2N, HO2P HO2N 6
motors
Electronic B81B, B81C, G11C, HO1C, HO1F, HO1L 27/142 & 31/04-
components HO01G, HO1]J, HO1L 078
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Figure A.1 Figure A.3

Innovative activity in wind technologies, EPO patent Wind patent applications by major innovators, EPO patent
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Zusammenfassung

Die vorliegende Arbeit besteht aus den folgenden wissenschaftlichen Beitragen:

1 Forschungseffizienz in der verarbeitenden Industrie

Ein wesentlicher Aspekt der Lissabon Agenda ist die geplante Erhéhung der FuE
Aufwendungen auf 3% des BIP zur Steigerung der Innovationstatigkeit. Die
Erreichbarkeit eines hoheren Niveaus von FuE und Innovation unterstellt erhohte
Effizienz der Forschung in Anbetracht knapper Ressourcen. Dieser Artikel identifiziert
Linder und Industrien mit hervorragender Forschungseffizienz mit Hilfe der DEA
Methodik und liefert erste Ankniipfungspunkte fiir Innovationsstrategien zur
Steigerung der Forschungsleistung durch Hervorhebung von Starken und Schwachen.
Die Analyse von Industrien in 17 OECD Landern in den Jahren 2000 bis 2004 ergibt,
dass Deutschland, die USA, und Danemark die hochste Effizienz im verarbeitenden
Gewerbe haben. Es ergeben sich jedoch erhebliche Abweichungen, wenn
branchenspezifische Effizienzwerte berechnet werden. Wesentliche Industrien, die die
technologische Grenze bestimmen, sind Elektrik und Optik, Maschinenbau, Chemie und

Mineralien.

2 Internationale Wissenstransfers und Produktivitat

Dieser Artikel analysiert die Bedeutung internationaler Wissenstransfers fiir totale
Faktorproduktivitit anhand eines Paneldatensatzes fiir 14 OECD Lander und 13
Industrien im Zeitraum von 1985 bis 2004. Der Transfer kann durch nationale oder
internationale und weiterhin innerhalb einer Industrie oder aus anderen Sektoren
erfolgen. Zur Messung von Wissenstransfers werden Patentdaten verwendet, die im
Falle von Transfers aus anderen Lindern mit der Ndhe des technologischen Profils
gewichtet werden. Unter Verwendung von Techniken aus dem Bereich der
Kointegrationsanalyse fiir Paneldaten wird gezeigt, dass Wissenstransfers
hauptsachlich innerhalb einer Industrie stattfinden, sowohl auf nationaler als auch auf
internationaler Ebene. Transfers aus anderen Sektoren sind von untergeordneter

Bedeutung.
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3 Technologische Diversifikation und Marktwert: Eine
empirische Ananlyse fiir das verarbeitende Gewerbe in

den USA

Dieser Artikel untersucht die Beziehung zwischen technologischer Diversifikation und
Marktwert und analysiert, ob der Grad der technologischen Ndhe diese Beziehung
beeinflusst. Die Analyse beruht auf Daten des amerikanischen verarbeitenden Gewerbes
im Zeitraum von 1983 bis 1995. Basierend auf einem erweiterten Tobin’s g Modell wird
gezeigt, dass Diversifikation einen Abschlag auf den Borsenwert zur Folge hat wenn
neue Technologien nicht in direktem Zusammenhang mit den bestehenden
Kompetenzen stehen. Die geschatzte Elastizitit im Hinblick auf technologische
Diversifikation betragt 6%. Dieser Abschlag reduziert sich auf 4% fiir das 75% Quartil
der technologischen Nahe. Eine mogliche Erklarung ist, dass technologische
Diversifikation die Moglichkeitenen reduziert, Skalenertrage und Verbundvorteile zu
nutzen, wahrend im Falle von Diversifizierung in verwandte Technologien von

Wissenstransfers profitiert werden kann.

4 Innovationstatigkeit und Wissenstransfers im Bereich

der Wind- und Solartechnologie

Dieser Artikel erforscht den technologischen Wandel in erneuerbaren Energien und
analysiert Determinanten der Innovationsaktivitit unter besonderer Beachtung der
Rolle von Wissenstransfers. Wir untersuchen zwei wesentliche erneuerbare
Energiequellen - Wind und Solar - iiber ein Panel von 21 OECD Landern im Zeitraum
von 1978 bis 2004. Wissenstransfers konnen nationalen Ursprungs sein, entweder
innerhalb der Technologie (intra-sektoral) oder in verwandten Technologien (inter-
sektoral). Alternativ kdnnen Transfers auch auf internationaler Ebene stattfinden. Es
zeigt sich insbesondere auf nationaler Ebene, dass Innovationen stark von
Wissenstransfers getrieben werden. Wind- und Solartechnologien weisen
unterschiedliche Innovationscharakteristika auf: beide werden belebt durch intra-
sektorale Transfers, reagieren aber unterschiedlich auf inter-sektorale Transfers, die

nur flir den Fall der Windtechnologie von Bedeutung sind.

147



	Deckblatt_v3
	Introduction_Zloczysti
	Chapter_One_Zloczysti
	Chapter_Two_Zloczysti
	Chapter_Three_Zloczysti
	Chapter_Four_Zloczysti
	End_Zloczysti_v2



