Chapter 3

Abstraction and Restriction Techniques

The number of vertices of a state-transition graph of a larger QDE tends to explode as dis-
cussed in section2.2.4 (p. 36). In this chapter | present several new methods to improve
reasoning with such model ensembles. | define meaningful abstractions and subgraphs of the
state-transition graph and restrict the model ensemble by including additional assumptions
which cannot be expressed by a monotonic landmark ensemble. 1 develop algorithms to use
these methods in practice.

For the first strategy the generic graph theoretical definition of abstraction techniques as
supplied in section 2.2.4 is used. Graph theoretical versions of viable and invariant sets as
introduced in section 2.4 (p. 45) are formulated to define subgraphs of interest. The so called
no-return set appears as a new and useful concept which is associated with the notion of irre-
versibility. It turns out that there is a close relationship to strongly connected components, a
well-known concept in graph theory. This is helpful to derive appropriate algorithms and to
clarify the structure of a no-return abstraction. It can be tested in which regions of the quali-
tative state space the model respects certain specifications, even if the state-transition graph
is too large to be visualised effectively. Then I analyse how the new abstraction technique
can be combined with established ones.

For the second strategy, | posit restrictions of the space of admissible trajectories £ and
the model ensemble M in the sense defined in section2.1 (p. 17). This idea is a guiding
principle for the rest of the chapter. At first, £ is restricted, which results in the elimination
of edges representing unprobable marginal cases. Then, M is restricted by assumptions
which cannot be expressed as a monotonic landmark ensemble, but still keep the model
ensemble infinite, covering a broad set of functional relationships: in addition to requiring
a sign matrix X ~ [J(f(z))], knowledge on the order of the coefficients of the Jacobian is
used in the sense that for indices i, j, £, [ assumptions hold like D, f;(x) > Dy fi(x). Finally,
| further restrict M by prescribing quantitative intervals u,; such that D; f;(z) € u;;. Here,
QDEs are combined with differential inclusions (cf. section2.3, p. 42). The concept of an
absorption basin and the viability algorithm (cf. section 2.4, p. 45) are central to determine
the conditions under which one qualitative state is the successor of another one.
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52 Abstraction and Restriction Techniques

3.1 No-Return Abstraction

Abstraction techniques can be used to simplify a large state-transition graph. Recall that an
abstracted state-transition graph G is determined from a family of disjoined subgraphs which
cover GG. Two important examples, chatter-box abstraction and projection, were introduced
in section 2.2.4 (p. 36). The disjoined subgraphs can be displayed as clusters in G, or as a
new graph H where each vertex corresponds to a subgraph, and edges are inherited from G.

In this section I introduce several new types of subgraphs which are meaningful in the
context of sustainability science. Simply speaking, all of them are related to the notion of
irreversibility in some sense: For example, if a region of the state or velocity space of a
system is valued as problematic, the modeller wants to know whether the systems persists
there once it is attained. Problems of this kind are closely related to the concepts from
viability theory as introduced in section 2.4 (p. 45).

The basic ideas of this work appeared in Eisenack and Petschel-Held (2002), and are
extended in this thesis. The main challenge is that the characterisation of the subgraphs
exhibiting irreversible structures is not sufficient for their use as abstraction techniques —
usually, they are not disjoined. Thus, further relations between these structures have to be
investigated to develop an applicable method, the no-return abstraction. | show that it can be
computed by combining well-known algorithms from graph theory related to reachability and
connected components (e.g. Behzad et al. 1979). Finally, | explore how this new technique
interferes with projection and chatter-box abstraction.

3.1.1 Characterisation of Subgraphs

Irreversibility is closely related to reachability: a system shifts from one region of the state
space to another irreversibly if the former region cannot be reached from the latter. The
system resides in a region forever if no state outside this region is reachable from inside it. In
the following, G always denotes a state-transition graph. Reachability of a state w € V(G)
from another state v € V(G) is expressed as the existence of a path v, ..., w. Hence, the
basic tool in this section is the set-valued successor map I' : V(G) ~ V(G),v ~ I'(v).
By I'*(v) we denote the set of successors of vertex v in the transitive closure G* of G. The
vertex w € I'*(v) if and only if there is a path v, ..., w. Recall that a state-transition graph
is loop free (cf. section 2.2, p. 20), and therefore it is not generally true that v € T'*(v).

The relation between paths in G and solutions of a monotonic landmark ensemble
M, C) should be kept in mind here. As shown in section2.2 (p. 20), the existence of a
path in G with length greater than two does not imply the existence of a solution of M (u, C)
which has this path as landmark abstraction. On the other hand we know that if w is not
reachable from v, i.e. w ¢ I'"*(v), there is no corresponding solution.

We now introduce the basic types of sets D C V(G) which will be investigated in this
section. Let G be a state-transition graph of a monotonic landmark ensemble My, C).
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DEFINITION 18: Aset D C V(G) is
1. Viable, if for all vy € D

Jpath vg,...,v;,... INGYi>0:v; € D
or dpath vg,..., v, ING: [(vy,) =2@andVi=0,...,m:v; € D.

2. Invariant, if for all vy € D
YV paths vy, ..., v, ... ING,1>0:v; € D.
3. No-return, if for all vy € D
V paths vg, ..., Vm,...,v; ING with v,, € D i > m : v; € D°.

In a viable set a path starts from every vertex which remains in the set. Invariant sets corre-
spond to regions in the phase space which cannot be left once they are entered, and no-return
sets cannot be re-entered once they have been left. In the context of sustainability science,
invariant sets correspond to robust facts under uncertainty or generality. Since there is no
edge leaving an invariant set, no model of the ensemble My, C) has a solution leaving
the associated region in the state and velocity space (i.e. every ODE with a Marchaud-map
f € M(u,C) as right-hand side has an invariance domain). In contrast, no-return sets cor-
respond to a fragile configuration of states and velocities: Since there is no re-entering path,
no solution of M (u, C) re-enters the region. A negative consequence holds for viable sets.
If D is not viable, there are vertices in D where all successors are outside D, i.e. there is a
region in the state and velocity space where any solution of M (u, C') (supposing it does not
have a constant qualitative value) necessarily leaves this region — a problematic situation if
such a region is valued as positive.

To find such sets in the state transition graph and to improve our understanding of these
concepts, we provide further characterisation in the following propositions. They also make
the connection to viability theory more clear and prepare for the development of efficient
algorithms.

PROPOSITION 16: Aset D C V(G) is viable iff the following criterion holds:
Voe D:T(v)ND#@orl(v)=0.

PROOF: First, choose v € D. If I'(v) = @, the criterion obviously holds. Otherwise, there
isapath v, w,...in D, since D is viable. Thus, w € I'(v) N D.

Now, let D fulfil the criterion and choose vy € D. If I'(vy) = @, it is obviously an element
of a viable set. Otherwise, we can choose one v; € I'(vg) with v; € D. This can be repeated
infinitely or until some I'(v,,) = @. Thus, D is a viable set. O

As discussed above, viable sets can only be used in a negative sense. In practice large state-
transition graphs have viable sets comprising most vertices of GG, making this structure not
very distinctive. Viable sets were introduced here for sake of completeness and will not be
considered further. This could be different if strong restriction techniques to eliminate edges
are used before computing viable sets. In contrast, invariant sets, which are characterised
now, will be more helpful.
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PRoOPOSITION 17: If D C V(G) is an invariant set, this is equivalent to each of the following
conditions:

() YveV(G):T'(v) CD
(i) (D) = D,where ¢ : V(G) ~ V(G),v ~ ¢(v) :=T*(v) U{v}.

Moreover, the set-valued map ¢ has the following properties:

1. Forall D CV(G): D C ¢(D), i.e. ¢ is extensive.
2. Forall C,D CV(G),C C D:¢(C)C ¢(D),Ii.e. ¢ismonotone.
3. Forall D CV(G): ¢(¢(D)) = ¢(D), i.e. ¢ is idempotent.

The properties of ¢ will be useful for various proofs in this section. As G is loop free, it
holds for all v € V(G) thatv ¢ T'(v), but v € ¢(v). If w € ¢(v) then w = v or there is a
path from v to w in G.

PROOF: We begin with the properties of ¢.

The map is extensive by definition.

If C C D, choose w € T*(C). Then there is a path v, ..., w withv € C. Since also v € D,
we have w € T'*(D), and ¢ is monotone.

It holds for every set-valuedmap F' : X ~~ X and A, B C X that F(AUB) = F(A)UF(B).
For the successor map I'* it holds that I'* (T'™*(D)) C I'*(D), since it operates on the transitive
closure of G. Thus,

o(o(D)) =o(I*(D)uD)=T" (F*(D) U D) U (F*(D) U D)
= I*(D*(D)) UT*(D)UT*(D)U D = I'*(D) U D = $(D),

and ¢ is idempotent.

Equivalence to condition (i): Choose v € D, D invariant. If I'(v) = @, the condition is
met. Otherwise, select an arbitrary w € I'(v). Since D is invariant, it holds that w € D,
i.e.['(v) C D.

Let D fulfil the condition. If some v; € D, then all v;;; € T'(v;) C D. Thus, all paths
starting from an v, € D remain in this set — it is invariant.

Equivalence to condition (ii): Let D be invariant. Since ¢ is expansive, only ¢(D) C D has

to be shown. If we choose w € ¢(D), thereisa path v, ..., w with v € D. Due to invariance,
alsow € D.

Let D = ¢(D), take v, € D and an arbitrary path vg, ..., v;,...InG. Since Vi > 0 : v; €
od(vo) C ¢(D) = D, the set is invariant. O

The notion of an invariant set can be used to further describe no-return sets (a further relation
between both types of sets will be shown below):

PROPOSITION 18: Aset D C V(G) is a no-return set iff (D) N D¢ is invariant.
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PROOF: First, let D be a no-return set. Choose v,, € ¢(D) N D°. Then there is a path
Vo, - -+, Uy IN G With vy € D. Since v,, ¢ D and D is a no-return set, it holds for every
continued path vy, ..., vy, ..., v; that Vi > m : v; € D°. Consequently, v; € ¢(D) N D¢,
such that ¢(D) N D¢ is invariant.

Now, let ¢(D) N D¢ be invariant. Choose vy € D. If there is no path leaving D, it is

already a no-return set. Otherwise, there is some v,,, € ¢(D) N D¢ with vy, ..., v, a path
in G. Then, due to invariance, it holds for all continued paths vy, ..., vm,...,v;, ... that
Vi >m:v; € ¢(D)N D C D¢ and D is a no-return set. O

3.1.2 Computing Invariant Sets and the No-Return Abstraction

Invariant sets need to be computed and displayed efficiently if they are to be exploited in
applications from sustainability science. Moreover, we would like to integrate them into the
generic definition of abstraction techniques as introduced in section 2.2.4 (p. 36) — requiring
a disjoined family of subgraphs. In this section we will see important obstacles to this task —
although the family of all invariant sets of a state-transition graph has a very regular structure.
| show that no-return sets and connected components play the decisive role to overcome
them.

At first we investigate the structure of the family of all invariant sets of a state-transition
graph. Recall that for an arbitrary set X, a family of sets £ C P(X), ordered by inclusion
C, isaset lattice if for all A, B € L the supremum AU B € L and the infmum ANB € L
(see, e.g. Davey and Priestley 1990).

PROPOSITION 19: The family £ of all invariant sets of G is a finite set lattice.

PROOF: LetC, D € L. Since C and D are invariant, PROP. 17 yields
$(CUD) =¢(C)Ug(D)=CUD,

such that also C' U D is invariant by PROP. 17.
It holds for every set-valued map F' : X ~» X and A, B C X that F(ANB) C F(A)NF(B).
Since C' and D are invariant and ¢ is extensive, we can use PROP. 17 (p. 54) again to see that

CNDC¢(CND)Cop(C)ng(D)=CND,
and C N D is invariant. O

Furthermore, this lattice can be constructed from simple invariant sets of the form ¢(v) which
are the atoms of L:

PROPOSITION 20: For all v € V(G), ¢(v) is an invariant set.
For all invariant sets D of G,

D= ¢().

veED
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PROOF: The set ¢(v) is invariant by PROP. 17 (p. 54) since ¢ is idempotent.

By definition, v € ¢(v), and thus D C (J,p #(v).

Now choose w € |J,.p #(v). Thenthereisav € D : w € ¢(v), i.e. w = v or there is a path
v,...,w. Since D is invariant, also w € D, and | J,.., #(v) C D. O

This situation seems comfortable at first, as ¢ can be easily obtained from the transitive
closure of G for which various efficient algorithms are well-known. However, the sets ¢(v)
have a nested structure:

PROPOSITION 21: Letv, w € V(G). Then ¢(w) C ¢(v) iff v = w or thereisapathv,...,w
inG.

PROOF: If w € ¢(w) C ¢(v), thenw = v or thereisa path v, ..., w.
Suppose there is a path v, ..., w, then w € ¢(v). Since ¢ is monotone and idempotent, we
conclude that ¢(w) C ¢(d(v)) = ¢(v). O

This makes it impossible to compute an abstracted state-transition graph (cf. DEF. 8, p. 37)
directly from the invariant sets, since this needs disjoined subgraphs. To display all invariant
sets of a state-transition graph, we would lose the overview due to the variety of nested
clusters. Moreover, invariant sets need not be connected, e.g. if there is no path between
v,w € V(G) and D = ¢(v) U ¢(w). The basic idea for the solution of this problem lies
in the following proposition which draws a new connection between invariant sets and no-
return sets. | will go on to show that there is a “basis” of disjoined no-return sets from which
all invariant sets can be constructed in a unique way.

PROPOSITION 22: Let D € L be an invariant set, and D+,..., D, € L the family of all
invariant sets D; with D; G D. Then,

Bp:=D\ |J D,

j=1,..n
iS a no-return set.

PROOF: Choose vy € Bp and a path vy, ..., v, ..., v;, ... With v, ¢ Bp (if there is no
such path, Bp is a no-return set obviously). Since also vq € D, due to invariance v,, € D,
and therefore v, € U,_, _, D;, i.e. there is one j such that v, € D;. Since D; is invariant,
Vi>m:v; € D; gZ Bp. Therefore, Bp is a no-return set. O

In other words, we obtain a no-return set by taking an invariant set and eliminating all in-
cluded invariant sets. When this proposition is applied to the basic invariant sets ¢(v), we
obtain a family of no-return sets with stronger properties as building blocks for the no-return
abstraction:

PROPOSITION 23: For v € V(G) define

B, :=¢(v) \ U D;.

D;eL

D;Go(v)

Then, v € B, and B, is a single vertex or is strongly connected.
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PROOF: Suppose, that v ¢ B,. Since v € ¢(v), there would be a D; € £ with D; G é(v)
and v € D;. Hence, since ¢ is monotone and D; is invariant, this would imply that

o(v) C d(D;) = D; G ¢(v),
which is a contradiction. Therefore, v € B,,.

If |B,| > 2, take w € B,,w # v. As w is also an element of ¢(v), there is a path v, ..., w.
Supposing there is no path w, ..., v, then from PROP. 21 (p. 56) we yield the contradiction
that ¢(v) € é(w) C ¢(v). Thus, B, is strongly connected. O

Taken with PRoP. 22, it follows that all B, consisting of more than one vertex are strongly
connected no-return sets. The following proposition guarantees that they can be computed
by standard algorithms from graph theory to detect strongly connected components (e.g. van
Leeuwen 1990, p. 571). It is also another characterisation of no-return sets.

PROPOSITION 24: Aset D C V(@) of a graph G is a strongly connected no-return set if
and only if it is a strongly connected component.

PROOF: Assume that D is a strongly connected no-return set. If it were not a strongly
connected component, there would be a path v,...,w with v € D,w ¢ D, and a path
w, ...,v. The latter is a contradiction since D is a no-return set.

If D is a strongly connected component, we have to show that D is a no-return set. Choose
vo € Dandapathvy,...,vy,...,v; Withv,, ¢ D. Suppose D is a no-return set. Then there
is some v; € D with ¢ > m. Consequently, there is a cycle vy, ..., v, ..., 0, ..., v SINCE
D is strongly connected. Hence, v,, ¢ D belongs to the same connected component as vy,
which is a contradiction to maximality. Thus, D is a no-return set. O

Thus, if the strongly connected components are computed, a large part of the set
B:={B,|veV(G)}

is known. What remains are the single vertices which are not part of any component. Luckily,
all these vertices are no-return sets:

PROPOSITION 25: If v € V(@) is not an element of any strongly connected component of
G, then it is a no-return set and B, = {v} € B.

PrROOF: If vy € V(G) does not belong to any strongly connected component, there is
no cycle vy, ...,v;,...,vg, and thus it holds for every path v, ..., v; with v; # v, that
Vi > 1:v; ¢ {v}, making v a no-return set.

Due to PrROP. 23, v € B,. If there were another w € B, distinct from v, it would be an
element of the same strongly connected component. O

We conclude from these results that:
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PROPOSITION 26: The family B is a cover of V(G), which contains only no-return sets.

PROOF: Due to PROP. 23 (p. 56), U,cy(q) B» = V(G). It holds for all B,, B,, € B that
B, = B, or B, N B, = &, since strongly connected components and/or single states not
being part of a strongly connected component are always disjoined.

The elements of B are no-return sets due to PROP. 24 and PROP. 25. O

Thus, we arrive at the first of our aims: B has the necessary properties to compute an ab-
stracted state-transition graph (cf. DEF. 8, p. 37):

DEFINITION 19: Let G be a state-transition graphand B = {B, | v € V(G)} the disjoined
partition of V(G) with B, as defined in PROP. 23 (p. 56). The resulting abstracted state-
transition graph G’ with V(G’) = B is the no-return abstraction of G.

The other result is that there is a one-to-one correspondence between the atoms of the lattice
L of invariant sets, ¢(v), v € V, and the “no-return basis” B: together with PRoP. 20 (p. 55),
where each invariant set is constructed from appropriate ¢(v), every invariant set can be con-
structed by a union of appropriately chosen elements of B, and every union of appropriately
chosen elements of B yields an invariant set.

PROPOSITION 27:

() Forallv € V(QG) : ¢(v) = ¢(By).
(i) Forallv € V(G) :
o(v) = U B,,.

Bw€B
By Cé(By)

(iii) If D C V(G) is an invariant set, then

D= U B,.

By€B
veED

PROOF: Part (i): By PROP. 23 (p. 56), v € B, C ¢(v). Since ¢ is monotone and idempotent,
¢(v) C ¢(B,) C ¢(o(v)) = ¢(v).

Part (ii): Generally,
U B.CeéB) o).

ByeB
BwC¢(By)

For the inclusion in the other direction take v € ¢(v). Since ¢(u) C ¢(v), it holds by
PROP. 21 (p. 56) and (i) that u € B, C ¢(u) C ¢(v) = ¢(By), i.e.u € |J sues By,

BwC¢(B)

Part (iii): It holds that D C s, s B, since v € B, (cf. PROP. 23, p. 56).
vE
Now, take a u € UBU%B B,. Then, by (i) and PrRoP. 20 (p. 55),
vE

ve |J o(B,) =] ¢() =D.

By€B veD
veED
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Figure 3.1: Stylised example for a no-return abstraction of a state-transition graph (top: a
graph G, middle: the family B displayed as clusters, bottom: no-return abstraction of 7).

In practice, it is sufficient to compute and display only the basic no-return sets B to obtain
the no-return abstraction of G. It is quite simple for the end-user to find all relevant invariant
sets from such a presentation: It is well-known in graph theory that directed graphs can be
decomposed as an acyclic graph of strongly connected components (van Leeuwen 1990): If
G’ is the no-return abstraction of G, for all B, € V(G') = B and for all paths By, ..., B;
in G' it holds that B; # B, for ¢ > 0. Otherwise, there would be a path v, ..., v;, ..., v
with vy € By and v; ¢ By, which is impossible since By is a no-return set. Thus, by picking
a no-return set B € V(G"), one can trace “downstream” to all other vertices in G’ which
are attainable from B — which is straightforward in an acyclic graph — to obtain an invariant
set. Of course, there are other invariant sets, but the most likely question when performing
a no-return abstraction is: Where do irreversible changes of the qualitative state occur? This
happens exactly for all edges entering a B € B, because ¢(B) is an invariant set (see Fig. 3.1
for a stylised example).
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3.1.3 Consistency of Projection, No-Return and Chatter-Box Abstrac-
tion

For the analysis of large state-transition graphs we would like to combine no-return abstrac-
tion with other methods, e.g. projection and chatter-box abstraction (cf. section 2.2.4 (p. 36),
DEF. 9 and DErF. 11). Since all abstraction methods take an input graph and produce a new
one which is not larger than the input graph, the idea is to apply the abstraction methods sub-
sequently to substantially improve the clarity of the model result. The result is a sequence
of graphs Gy, ...,G,, where G;,; is an abstraction of G;, determined by the abstraction
methods used.

For a chosen set of abstraction methods, does the result G,, depend on the sequence
in which they are computed? In other words, if the methods are regarded as operators,
do they commute? As | will show below, they do not, so the appropriate sequence has
to be determined. Since the objective of this exercise is to reveal properties of the state-
transition graph which would not be easy accessible otherwise, there is a pragmatic criterion
for appropriateness: If we observe a certain type of structure in GG,,, we want to be sure that
the structure also exists in G,. In the following, | infer the sequence in which projection,
chatter-box, and no-return abstraction should be applied. Start with a simple observation.

PROPOSITION 28: Every chatter-box is contained in a no-return set.

PROOF: If D be a chatter-box of G, it is strongly connected in the subgraph G~ = GNG ™!
by definition (cf. DEF. 9, p. 38). Since E(G ) C E(G), D is part of a strongly connected
component of G, and thus also part of a no-return set due to PROP. 24 (p. 57). O

The consequence of this proposition is that we do not “split” chatter-boxes when we compute
a no-return abstraction as second step after chatter box abstraction. On the other hand, the
chatter-boxes are not visible any more in the no-return abstraction — we may only note the
sets B € B which contain a chatter-box. However, it makes no sense to apply the abstraction
procedures the other way round, since there are no chatter-boxes in the no-return abstraction
due to its acyclic structure. Now consider the case where projection is combined with no-
return abstraction.

PROPOSITION 29: For G and an index set I, denote G’ := 7;(G). If D' is a no-return set
in G, then D := 77! (D') is a no-return set in G.

PROOF: Suppose that D is not a no-return set. Then there is a path vg, ..., Vm,..., v, IN
G with vy, v, € D and v,, ¢ D. By taking m7(vg), ..., 7r(vm),- .., 7r(v,) and eliminat-
ing all elements of this sequence which are identical to their predecessor, we obtain a path
Vs« -« s Vgy -, Uy IN G With v = 71 (vg) € 7 (D), v; = w1 (vy,) € m(D), and vy, = 77 (vyy).
Therefore, since D is the inverse image of D', it holds that v}, ¢ 7;(D). Thus, 7;(D) is not
a no-return set. Since surjectivity of 7; guarantees that 7;(D) = (7, '(D")) = D', this is
a contradiction to D' being a no-return set. a

This means that if there is a no-return set in a projection, it corresponds to a no-return set
in the original state-transition graph. Conversely, the property of being a no-return set is not
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Figure 3.2: Example for a projection not preserving no-return sets. The graph to the left is
the no-return abstraction G’ of some state-transition graph with V/(G") = B = { By, By, Bs}.
We consider a projection 7; and assume that Vo, w € B; U Bs : 7;(v) = 7;(w), and that
Yvo,w € By : m;(v) = m(w), i.e. By and Bj are projection equivalent. The resulting
projection H = 7;(G") is displayed to the right. Although the vertex By is a no-return set in
G',it’simage 7;(B;) = {B1, B3} is obviously not a no-return set in H.

generally preserved under projection, as the example in Fig. 3.2 shows. Thus, a no-return
abstraction should be performed after a projection. To be complete, we consider the third
possible combination of abstractions: projection and chatter-box abstraction.

PROPOSITION 30: Let G be a state-transition graph and H := 7;(G) its projection. If D is
a chatter-box in G, then D' := 7;(D) C V(H) is a single vertex or induces a chatter-box in
H.

PROOF: The subgraph induced by D is strongly connected in G~ = G N G~! by definition.
It follows that D’ = 7;(D) is a single vertex in H or it is strongly connected in 7;(G™)
(cf. p. 39). We show that 7;(G~) = 7;(G)~ = H, making D’ a chatter-box in H.

Since V(G~) = V(G), we have that V (7;(G) ) = V(71 (G)) = V(7 (G™)). For the edges,

holds. O

Simply speaking, chatter-boxes remain chatter-boxes under projection. Again, the converse
is not generally true: If D' is a chatter-box in 7;(G), it cannot be concluded that 7 *(D")
IS a chatter-box in G (see example in Fig. 3.3). Hence, one has to be careful when applying
chatter-box abstraction after projection. To sum up, for a large state-transition graph the
different abstraction methods should be applied in the following sequence:

1. Chatter-box abstraction
2. Projection

3. No-return abstraction
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Figure 3.3: Example for a projection producing “artifical” chatter-boxes. The diagram to
the left represents a state-transition graph G' with V(G) = {vy,vs, v3,v4}. We consider a
projection 7; and assume that 7;(v1) = m7(v2), but 77 (v1) # wr(vs) # wr(ve) # 7r(v1),
i.e. only v; and v, are projection equivalent. The resulting projection H = 7;(G) is displayed
to the right. The set {{v1, v}, {vs}} € V(H) induces a chatter-box in H, while its inverse
image {v1, v9, v3} C V(G) does not so in G.

3.2 Marginal Edges

In this section I present two techniques to simplify the state-transition graph of a QDE by
eliminating edges which are of little relevance in most applications. They also preserve con-
nectedness properties of the graph, thus being a special type of transitive reduction. Main
ideas appeared in Eisenack and Petschel-Held (2002) and are formulated here more rigor-
ously. There is related work of Bouwer and Bredeweg (2002), who compute another type of
transitive reduction of the state-transition graph. Along some edges two or more qualitative
directions or qualitative magnitudes change at the same time. This implies the existence of a
solution which passes through the intersection of two main isoclines or the intersection of a
main isocline with a landmark. It can be shown that for many systems the set of trajectories
with such features is of measure zero (Bernard and Gouze 2002). The completeness of the
QSIM algorithm guarantees that also the abstractions of such solutions are represented in
the state-transition graph. By restricting the space of admissible trajectories £ to functions
which do not attain values on such intersections of measure zero, we obtain a graph with
fewer edges. The implied loss of information is acceptable, since no features of relevance
are left out.

3.2.1 Characterising Marginal Edges

In the following let S be a qualitative state space with n quantity spaces, and G the state-
transition graph of a monotonic landmark ensemble M (u, C'). For each edge (v, w) € E(G),
there is at least one component 7 such that qdir,(v Aw) = 0 or that qmag; (v Aw) = A with a
landmark A € Q;. If qdir;(v) # qdir;(w), we say in the first case that the edge transgresses
the ith main isocline, while in the second we say that it transgresses the landmark X if
gqmag;, (v) # qmag,(w). This corresponds to the existence of a solution z(-) of a system of
the monotonic landmark ensemble such that for one ¢t € R, : fi(z(t)) = 0 (if it transgresses
a main isocline), or that z;(t) = A, where A € R is defined by the landmark vector A
associated with the system (cf. PROP. 2, p. 25, DEF. 4, p. 29 and Eq. 2.12).
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Figure 3.4: Different types of composed edges. Arrows in the boxes show qualitative direc-
tions of two variables.

Some edges e = (v, v3) in the state transition graph are composed in the sense that there
are two other edges f = (v1,v2) and g = (vq,v3), in simple words, e is a “shortcut”. If
all landmarks or main isoclines which are transgressed along f and ¢ are also transgressed
along e, it is tempting to elemi nate e: Along this edge the transgressions occur simultane-
ously although they do not necessarily have to by the model assumptions (otherwise only
the edge e would exist, but not the edges f and g). Eliminating all edges (v, v.,) for which
a path vy, ..., v, exists is conceptualised as transitive reduction in graph theory. However,
it is well-known that — in contrast to transitive closure — this operation cannot be defined
in a unique way (cf. van Leeuwen 1990). There is another subtlety: what happens along
alternative paths from v, to v3? Two cases have to be distinguished (see Fig. 3.4):

1. Along f some components change their qualitative direction or transgress a landmark,
while along ¢ other qualitative values change. Along the edge e the qualitative values
change at the same time.

2. Along g some qualitative directions change back to the value they had in v or transgress
the same landmark in the other direction, while other components change to a new
qualitative value. Along e only landmarks or main isoclines not transgressed along g
are affected.

The first case is a marginal edge, since along e the landmarks or main isoclines are trans-
gressed simultaneously “by accident”. This interpretation is not valid for the second case,
since some landmarks or main isoclines are crossed twice. Here, the edge e exhibits — com-
pared to f and g — a notable new property which should not be ignored. Only composed
edges e of the first type can be omitted, where transgressions coincide which do not neces-
sarily have to. Usually, they have no special relevance: Nothing basically new happens, the
result of both paths is the same (namely the system being in state v3), and e is not likely to
be observed in empirical studies.

Now, these considerations are formalised. Note that, since the quantity spaces @;,7 =
1,...,n are ordered (cf. section2.2.2, p. 27), expressions like “) is between qmag,(v) and
gmag,(w)” and max(qmag,(v)) are well-defined. If qdir,(v) # qdir;(w), then qdir;(v A
w) = 0, and if qmag;(v) # qmag,(w), then qmag, (v A w) = X is a landmark (by Eq. 2.12).
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Before defining a marginal edge, the following “qualitative intermediate value theorem” is
formulated.

PROPOSITION 31: Let vy,...,v,, be a path in G and ¢ € {1,...,n}. Then, for every
landmark A between qmag;(v;) and qmag;(v,,,) thereisa j € {1,..., m — 1} such that the
edge (v;, v;4+1) transgresses A.

PROOF: Since paths of length 1 in G correspond to abstractions of reasonable trajectories,
an edge (v, w) can only transgress landmarks A € qmag,(v) N qmag;(w) with A € @; by
continuity (cf. Eq.2.12). Thus, along the path vy, ..., v, there must be an edge (v;, vj11)
with gmag; (v; A vj41) = A O

DEFINITION 20: Let vy,...,v, With m > 3 be a path in G. Then, an edge (vi,v,,) €
E(G) is called marginal edge if for all i = 1, ..., n there are not two edges (v;,v;41),J =
1,...,m — 1 which transgress the same landmark or the sth main isocline more than once.

The concept is further clarified by the following equivalent characterisation, which is helpful
for the elimination techniques. For its formulation we define for (v, w) € E(G) the change

set Ch(v, w) = {i [ qmag; (v) # qmag;(w)} U{j = n + 1 | qdir;(v) # qdir;(w)}.

PROPOSITION 32: An edge (v1,v,,) € E(G) is marginal if and only if there is a path
V1,...,Up IN G, m > 3, such that the change sets Ch(v;,vjt1),7 = 1,...,m — 1, are
pairwise disjoined.

PROOF: If the change sets are pairwise disjoined, every i = 1, ..., 2n occurs no more than
once in a change set. Since only changing components can transgress a landmark or main
isoclines, (v1,v,,) is a marginal edge.

Now assume that no landmark or main isocline is transgressed twice. Take an arbitrary
i=1,...,2n.

For i > n, there is not more than one j such that qdir,_, (v; A vj11) = 0 and qdir;_,, (v;) #
qdir;_,(vj+1), and consequently not more than one j with ¢ € Ch(v;,v,41) — the intersec-
tions of the change sets with {n + 1, ..., 2n} are pairwise disjoined.

For i < n define Ay := qmag;(v; A vy,). Choose the smallest j such that i € Ch(v;,v;41)
and set \; := qmag;(v; A v41). If A; < Ag, then

qmag;(vj1) < A; < qmag;(v;) = qmag; (v1) < A < qmag,(vm).

Due to ProP. 31, A; will be transgressed a second time on v;,1,...,v,, Which is a con-
tradiction. If Ay < );, the analogue contradiction applies. Thus Ay = ;. The same ar-
gument applies for the next smallest £ > j with i € Ch(v,vx41). Therefore, it holds for
alll = 1,...,m — 1 with ¢ € Ch(v,,v;51) that gmag;(v; A vj11) = Ag. Since Ay cannot
be transgressed twice, also the intersection of the change sets with {1,...,n} are pairwise
disjoined. O

Later we will need the following property of the change sets to show the applicability of the
restriction techniques:
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PROPOSITION 33: If (v1,v,) € E(G) and there is a path v1,...,v,,m > 3 in G with
pairwise disjoined change sets Ch(v;,v;41),5 =1,...,m — 1, then

U Ch(?)j, Uj+1) = Ch(U1, ’Um).

j=1,...,m—1

PROOF: Let i € Ch(vy,v,). Since qval,(vy) # qval,(v,,) there must be at least one
j € {1, S (e 1} with i € Ch(vj, Uj+1).

Now suppose that i ¢ Ch(vy,vy,), i.e. qval,(v1) = qval,(v,). It is not possible that there
is one and only one j such that ; € Ch(v;,v;41), since otherwise qval;(v,) = qval;(v;) #
qval;(v;41) = qval;(v,). Because the change sets are disjoined, there also cannot be more

than one such j, and therefore i ¢ | J,_, ., Ch(vj, v;11). O

3.2.2 Eliminating Marginal Edges

| present two algorithms to eliminate marginal edges. One uses a preprocessing approach, the
other a postprocessing approach. Both can be combined. The preprocessing strategy requires
the modeller to reason about marginal edges which are likely to occur. This can be based on
earlier qualitative simulations, on algebraic reasoning or on knowledge about the application
domain. Removing marginal edges means preventing simultaneous changes of qualitative
values which can also occur subsequently. If two such changes are identified, associated
edges can be filtered out by introducing a new constraint into the qualitative landmark system,
called correspondence-not,

((cornot x y) <(Ix ly)>)

with a sequence of m pairs (| x |y), where | x represents a landmark of the variable x
(associated with index ¢) and | y a landmark of variable y (associated with index j), denoting
sequences of landmarks A;1,..., Aim and Aj1, ..., Ajm. Anedge (v,w) € E(G) satisfies
this constraint if

i ¢ Ch(v,
or j ¢ Ch(v,
orVi=1,...,m:qmag;,(v Aw) # Ay or qmag,(v A w) # A,

w)
w)

I.e. if no pair of changing components transgresses the given landmarks at the same time. All
marginal edges can be excluded if the qualitative directions of the state variables are included
as additional qualitative magnitudes of auxiliary variables with indices ¢ = n + 1,...,2n,
i.e. by augmenting the qualitative state space with the qualitative velocity space (as default
in the QSIM algorithm, cf. section 2.2.3, p. 32).

PROPOSITION 34: If the qualitative state space is augmented with the velocity space and
(v1,v,) IS @ marginal edge, there is a correspondence-not constraint which contradicts the
edge (v1, vy, but all edges along the path vy, . . ., v,, satisfy it.
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PROOF: At first recall that for the augmented qualitative state space Vv € V(G),i =
n+1,...,2n : [qmag;(v)] = qdir,_,(v), and consequently Ch(v,w) N {1,...,2n} in the
augmented state space equals Ch(v, w) in the original state space.

Let (v, v,,,) be amarginal edge. Choose &k, € {1,...,m—1},k #landi € Ch(vg, vg4+1)N
{1,...,2n}, j € Ch(v,vi41) N{L,...,2n}, i # j, such that \;; = qmag;(vg A vgy1) IS
between qmag; (v1) and qmag; (v,,,), and also A;; = qmag; (v; A vi41) is between qmag; (v;)
and gqmag;(v,,). This is possible since for a marginal edge, by PROP. 32, the change sets
are pairwise disjoined. The correspondence-not constraint given by the components i, j and
the pair of landmarks A; 1, A, has the required properties: Since ¢ # j, all edges along
v1, - - -, U, Satisfy the constraint. However, (vy, v,,,) does not, because due to PROP. 33,4, j €
Ch(vi,vm), amag;(vi A v,) = Aiq, and qmag,(vi A v) = Aj1, because );; is between
qmag; (v1) and qmag; (v,,), while A, is between qmag;(v,) and qmag;(v,,), and PROP. 31
(p. 64) holds. O

This strategy can substantially reduce computing costs, since fewer edges have to be gener-
ated during simulation.

The second method avoids the problem of the first — namely having to know potential
marginal edges in advance — and is completely automatic. On the other hand, it requires the
state-transition graph of the QDE to be determined first. Taking this as input, all marginal
edges are determined and eliminated from the state transition graph by exploiting PROP. 32
(p. 64). In the basic version, the change set Ch(v, w) is assigned to every edge (v, w) of the
state-transition graph. The method subsequently starts a depth first search (DFS) from every
vertex v; € V(G), such that maximal paths w1, ..., v, with disjoined change sets are tra-
versed. Efficient algorithms are well-established for depth first search with a given criterion
(cf. van Leeuwen 1990). If there is an edge (v, v;), 7 € {3,...,m}, then it is marked as a
marginal edge. After all the paths starting from all vertices in G are traversed, the marked
edges are eliminated. Of course, there are various possibilities to increase the computational
efficiency of the method, e.g. by not re-considering vertices which have already been visited.
A problem would occur with this procedure if eliminating a marginal edge interrupts the path
defining another marginal edge. Then, vertices which were connected in G would become
unconnected. However, this can be excluded:

PROPOSITION 35: Let G' be the graph obtained from the state-transition graph G by
eliminating all edges which are marginal edges. There is a path vy, ..., v, in G iff there is
alsoapathvy,...,v, inG".

PROOF: Obviously, paths in G’ are also paths in G, since V(G) = V(G') and E(G") C
E(G).

Now, letvq, ..., v, be apath in G. We have to clarify that there is still a path from v, to v,, in
G' if some edges of GG are marginal (and do not occur in G'). Suppose that (wy, wy) € E(G)
is such a marginal edge with wy, = v; and wy = vjy1, j € {1,...,m — 1}. Then, there
is a path wy, . .., wy, not containing the edge (wy, wy). If this path does not contain another
marginal edge, there is a path vy, ..., ws, ..., wy, ... v, Which also exists in G', but there is
no edge (v;,v;41).
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If there are multiple marginal edges in vy, ..., v,,, or if one edge of wy, ..., wy is marginal
again, this argument can be repeated iteratively. The procedure stops when no further marginal
edge is contained — with the consequence that there is still a path from v, to v,, in G'.

It would not stop if one of the paths from the source to the target of a marginal edge contains
another marginal edge which was considered before during the iteration, yielding a cyclic
procedure. To show that this can be excluded, consider a path vy, ..., wy,..., Wk, ...V IN
G and let (vq,vy,), (w1, wy) be marginal edges. Then, by PROP. 32 (p. 64) and PROP. 33,
the change sets Ch(vy, vs), ..., Ch(wy, wy), ..., Ch(wg_1, wy), . .., Ch(vy,_1,v,,) are pair-
wise disjoined. If the path wy, ..., wy contains the marginal edge (v1,v,,) again, we must
conclude for the same reasons that the change sets

Ch(’Ul, 1)2), ceey Ch(wl, ’wg), ceey
Ch(v,v2),...,Ch(vm_1,Vm),-- -,
Ch(wg_1, k), - - -, Ch(vym_1, V)

are also pairwise disjoined — a contradiction. O

To sum up, marginal edges can be defined so as to simplify a state-transition graph by restrict-
ing the space of admissible functions in a way that is not an obstacle from the application
perspective. Two techniques with different advantages have been presented for this task.



68 Abstraction and Restriction Techniques

3.3 Ordinal Assumptions

To define a monotonic landmark ensemble M (u, C), the signs of the components of the
Jacobian J(f), f € M(u,C) are considered. Usually, this leads to a large state-transition
graph G due to the generality of M (u, C'). The no-return abstraction developed in section 3.1
(p. 52) helps to identify and display structural features in this case, and the elimination of
marginal edges (section 3.2, p. 62) brings about more structure in G by restricting the space
of admissible trajectories. However, practice shows that restriction techniques like the elim-
ination of marginal edges together with eliminating non-analytical states (cf. section2.2.4,
p. 36) are not always sufficient to bring about enough interpretable subgraphs as no-return
and invariant sets. In many cases, the graph consists of one connected component. If more
edges can be eliminated, the value of abstraction techniques increases substantially. This is
only possible if model ensembles are further restricted by including more assumptions than
can be expressed by mere sign and landmark properties. We can use quantitative information
(which will be investigated in section 3.4, p. 77), but when uncertainty or generality is high,
this might not be available: we need to integrate additional, but not quantitative, information
which is likely to be available when reasoning, for example, with causal loop diagrams.

3.3.1 The Effect of Ordinal Assumptions

Ordinal assumptions represent one such type of information. By these we mean statements
that the value of some functions on the state space are always above or below the values of
other functions. In this section | concentrate on ordinal assumptions for partial derivatives of
models f of a monotonic ensemble M (X) of the form

Ve € X : Difi(x) > D, f;(z),

with prescribed i, j, k,l € {1,...,n}, ¥ = (0i;)ij=1,..n 0i; € A, amatrix of (extended)
signs and X the state space. In practice, ordinal assumptions are often supplied together
with causal loop diagrams, when not only the positive or negative influences are stated, but
also comparative propositions are made about their strengths. Such statements can be like
“the influence of z; on z3 is more important than the influence of x5 on z3, but it is not
known how strong the influence of z, on x3 is in comparison to the other two”. This can
be interpreted as a partial order of the partial derivatives of the models to be considered. In
some cases we can deduce from such knowledge that a main isocline can be transgressed
by trajectories only once. Before giving a general proposition to eliminate edges, the idea is
illustrated with a simple qualitative model.

5= (* 7).

The resulting state-transition graph is depicted in Fig. 3.5. It has one trivial no-return set, the
graph itself, exhibiting a cycle through all four states. We perform a phase plane analysis.
From X we derive — using the implicit function theorem — the monotonicity properties of both
main isoclines z; = fi(z) = 0,45 = fo(x) = 0 (Supposed they exist), which are denoted by

ExAMPLE 9: Define
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Figure 3.5: State-transition graph of the QDE of the monotonic system M (3) (computer-
generated output, one non-analytic state is eliminated).
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Figure 3.6: Phase plane analysis of an exemplary system f € M(X). To the left: areas with
constant direction of change, indicated by arrows and numbers corresponding to Fig. 3.5. To
the right: area (1) and (3) are splitto (1a), (16) and (3a), (3b), respectively.

the functions v, 5, vy o (the indices will become clear in the next subsection). The functions
Vg2 ! R — Rand V12! R — R solve fl(fl?l, ’01,2(1‘1)) = 0 and f2(331, ’02,2(331)) =0, yleldlng

[Divsa] = [~ 5] = -],
[D1’02,2] = [— ll;:]):z] = [_]a

I.e. both functions are decreasing. In Fig. 3.6, left, see the phase plane structure of an ODE
with f € M(X) where both isoclines exist and intersect exactly once. It can be verified
that the state-transition graph is correct: From area (4), corresponding to the qualitative state
(4), only area (1) can be reached. If the system is somewhere in area (1) only area (2) can
be reached, etc. The result is a cycle in the state-transition graph. However (considering
Fig. 3.6, right), it is possible to split areas (1) and (3), such that (2) and (1b) cannot be
reached from (1a), while (4) and (3a) cannot be reached from (3b). It is tempting to draw
a modified graph (Fig. 3.7), which exhibits a stronger invariance structure than the original
state-transition graph. O

Why is it not possible to derive this structure directly from X? This stems from the fact that
there are other systems f € M(3) with a different phase plane structure. Suppose there is



70 Abstraction and Restriction Techniques

A VI —V (VI >V A
(3a) (4) (1a)

VI Al—>» A | Al—» AV
(1b) (2) (3b)

Figure 3.7: Modified state-transition graph derived from the example in Fig. 3.6.
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Figure 3.8: Phase plane analysis of a system with property Eq. (3.1).

an equilibrium for z; = z7, i.e. v1 2(z}) = va2(27), and the system has the property that

Vry < af tv10(x]) < vga(x]),
Vi > x] :vg0(2]) > vao(x]).
Then, the phase plane analysis may look like Fig. 3.8, showing that a cycle is possible under
these conditions. This is also the case when there are multiple intersections of main isoclines.
Since the state-transition graph covers all these cases, it is a strongly connected component.
To exclude the cycle case, the model has to be supplied with additional information. If, for
example, we impose the ordinal assumptions
Ve e X : lel(l') > Dgfl(l')(> 0),
D, fa(x) < Dy fa(x)(< 0),

(3.1)

it follows that
lel > D1f2

D2.f1 D2f2,

and thus
D1f2 + lel
Dyfs  Dafy
=D (?)2,2(3?1) - U1,2(~T1)),
meaning that the distance between the main isoclines strictly increases with z, excluding
multiple intersections and a situation as characterised by Eq. (3.1).

0<—
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3.3.2 The ORDAS Algorithm

I now generalise this idea to state spaces with an arbitrary dimension. The result is a cri-
terion to eleminate paths using ordinal assumptions and the knowledge that a certain main
isocline was transgressed along a path before. We assume that > € A™*". At first a simple
proposition is shown, showing whether — for a given sign vector [z (¢)] and X — a state z(¢) is
above or below the ith isocline with respect to the direction of the &th unit vector. To avoid
complications only models f € M(X) are considered where for a given component i the
implicit equation f; = 0 is soluble for some & € {1,...,n}, meaning that there is a unique
solution v; , : X — IR, independent from z, such that

Ve e X : fi(xl,...,xk_l,viyk(xl,...,xn),xk+1,...,xn) =0.

Uniqueness of the solution v, is guaranteed by the implicit function theorem since f is
monotonic as specified by X2, such that the existence on X is the assumption here.

PROPOSITION 36: For a given 3, let f € M(X) be a function where f; is soluble for k. Let
v; . be the solution, choose an arbitrary x € X, and define o; := [f;(x)]. If 0, # 0 then

0i Oif T, > 0 04k Uik (T) if o; # 0,

or ry = ’Ui’k(.’L') if o; = 0.

PROOF: The case o; = 0 is obvious.
If o; > 0 then

fi(:vl, ey Tp—1,Thy Tht1, - - .,.Z'n) >0=
= fz-(:vl,...,:ck_l,vi,k(:vl,...,:Un),xk+1,...,:cn),

and thus O kT > Ui,k'ui,k(x).
By analogy for o; < 0, it holds that o; x5, < 0; xv;x(z). This and the former case together
yleld 0,0; kT > oiai,kvi’k(x). O

Next, we introduce assumptions about terms of the form
)= Difj - Difi — Dif; - Difs, (3:2)

defined for a differentiable function f : X — R", and 4,5,k,1 € {1,...,n}. Itis assumed
that the sign [dm Is constant on X. In some cases, this already follows from X2, but in other
cases it is a consequence of ordinal assumptions, as EX. 9 (p. 68) shows, where

(")
and [d}%} = [D1fi - Dafa — D1 fs - Dy fi] can be positive, negative or vanishing. If the

modeller knows, e.g. that Do fy > D: fi and Dafs > Di fo, then [dy’5] = [+]. This kind of
information is decisive for the elimination of edges:
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PROPOSITION 37: Let M(X) be a monotonic ensemble, G the resulting state-transition
graph, vy, v1, v9 @ path of length 2 in G, and let the following criterion hold:

(i) Thereexistsani € {1,...,n} such that
—qdir; (v) = qdir, (v1) = qdir,(v2) # 0, (3.3)
(i) thereisaj € {1,...,n} such that
qdir;(ve) = qdir;(v1) = —qdir;(v2) # 0, (3.4)
(iii) forsuchi, j thereexistsa k € {1,...,n} such that
qdir;(v1) 04 = qdir;(v1) 5% # 0, (3.5)
(iv) foralll € {1,...,n},1 # k, [d;] is uniquely determined, fulfilling
qdir;(vy) qdir;(vy1) ok [d;ﬂ > 0. (3.6)

Then there is no solution to an initial value problem & = f(x), [£(0)] = vo, f € M(X) with
fi soluble for &, which has the path v, v;, v, as abstraction.

PROOF:  Assume that there were a solution z(-) of the above type which has the path
vg, V1, U as abstraction. We demonstrate that this yields a contradiction.

For convenience, define o; = qdir;(v;) and o; = qdir;(v;). We know from Eq. (3.3) and
Eq. (3.4) (using Eq. 2.2) that there are ¢1, ¢, € R, with¢; < t5 such that &;(¢;) = 0 = 4;(¢2)
and z;(t2) # 0 # 4;(t1). Eq. (3.5) has the consequence that o, 5 and o do not vanish, and
thus PROP. 36 can be applied to x(¢;) and x(t2). Infer that

.Tk(tl) = Ui,k (.Z‘(t1)), (37)
0i 0i ) Tk (t2) > 0, 0,1 Vi k(2(t2)), (3.8)
2k (t2) = vjk(z(t2)), (3.9)
005k xk(tl) > 005k vj,k(x(tl)). (310)

Now consider the function A(t) := v, x(z(t)) — v;k(x(t)). It follows from Eqg. (3.7) and
Eqg. (3.10) that

00k At1) = 0505k 2x(t1) — 05056 vik(2(t1)) > 0,

and Eq. (3.5) implies that also o; 0, A(t1) > 0. Compare A(t,) with A(¢,): by differentiat-
ing and applying the implicit function theorem we obtain

DA= ) Dwip-in— Y, Dwjp-in= ) i = lgfkaJk”'f] lf)'
? J

I=1,...,n 1=1,...,n I=1,...,n
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The criterion guarantees that o; , o; D;A > 0, since o; x, 0, do not vanish and by Eq. (3.6)
forall [ # k

0<o0,0i05p [d;ﬂ =

= 0y (Uz',k Ui,k) 0;0j,k [d;cjl] =

[Dif; Difi = Difj Difi)
= 010 0 ;
Oik Ojk

where the last step exploits the multiplicative cancellation law of sign algebra (Eg. 2.1). Con-
sequently, o; 0; x A(t2) > ;05 A(t1) > 0, and Eq. (3.9) implies

0; 03 Vi (x(t2)) > 0505k vjk(2(t2)) = 0i 0i gk (t2),

which is a contradiction to Eq. (3.8).
We must conclude that there is no trajectory z(-) which has the path v, v1, ve as abstraction.
U

This proposition makes it possible to eliminate paths of length 2 if appropriate assumptions
about [djjl] are supplied by the modeller. Some of them are derived directly from X, while
others represent a new structural property of the QDE not already entailed by the sign matrix.
It should be noted that these assumptions cannot be chosen independently from each other
since, by symmetry,

4y = —dly = —dy], = df}. (3.11)
In contrast to the elimination of marginal edges (section 3.2), the criterion cannot be applied
to singular edges. In addition to the ordinal assumptions, some information about the “past”
of a qualitative state v, is used to exclude a potential “future” v,. It may be the case that the
path vy, v1, vo is excluded, while a path v, v1, ve is still possible.

Thus, an elimination algorithm is not straightforward. In the following, | present the
ORDinal ASsumptions algorithm. It exhausts PROP. 37 by “splitting” states as already in-
dicated in Ex. 9 (p. 68). This leads to a new graph containing multiple states with identical
qualitative values. Each of them represents one case were PROP. 37 can be applied, having
only the predecessors fulfilling Eq. (3.3) and Eqg. (3.4), and the successors which cannot be
eliminated under this condition.

DEFINITION 21: The ORDAS algorithm inductively computes a sequence of graphs
H,, ..., H; by the following procedure, which takes as input a state transition graph G and
a set of assumptions on the signs of expressions of the form Eq. (3.2).

Define Hy by

V(Ho) := {v x {0} |v € V(G)} CV(G) x N,
E(Hp) == {(v x {0}, w x {0}) | (v,w) € E(G)}.

For convenience, we write v; for v x {;}, and identify qdir(v;) with qdir(v). Enumerate the
vertices of Hy as vy, - .., vs, ... in an arbitrary order.
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For the inductive definition of the sequence of graphs we consider the vertex v§ at step i and
define the set of contradicting paths of a vertex v in H; as

Cp(v, H;) := {(u,0,w) € V(Hy)* |(u,v) € E(H;), (v,w) € E(H,)
and PROP. 37 (p. 72) can be used to
eliminate the path u, v, w}.

This also defines the set of contradiction initiating predecessors

Ci(v, H;) :=={u € V(H;) | (u,v,w) € Cp(v, H;)},
with its elements denoted by u, . .., ug, k := |Ci(v, H;)|.
Then, H; 1 is given by

V(Hi+1) = V(HZ) U {vzl'a S ’vlic}a
E(Hi—l—l) - E1 U E2 U E3 U E4 U E5,

where v, ... v’ are introduced as new vertices which appear in the following edges:
1> » Yk

By = {(u,w) [ (u,w) € E(H;) and u 7 vy # w},

By = {(vp, w) | (v5,w) € E(Hy)}

Es = {(u,v}) | (u,v}) € E(H;) and u ¢ Ci(vy, H)},

Ey = {(uj,v)) | 1 < j < k and u; € Ci(vj, Hy)},

Es = {(v},w) | (v, w) € E(H,),1< j < kand (uj, v}, w) ¢ Cp(ui, Hy)}.

The set F; represents all edges which are not affected by considering v§ at induction step s
and is consequently included in H; as well as in H; ;. Via E,, all successors of v} in H;
remain successors in H;, 1, since this vertex is made to represent all cases where PROP. 37
cannot be applied, and F5 contains are all corresponding predecessors in H;. In contrast,
the new vertices v!, ..., v} are introduced to represent a paths where the conditions of the
proposition are met. The edges F, subsume the contradiction initiating predecessors cor-
responding to each of the new vertices, and Es5 subsumes all remaining successors of a vj-
which cannot by excluded by PROP. 37. The next proposition shows that the result of the
ORDAS algorithm is a graph H which contains no path of length 2 contradicting the ordinal
assumptions, and maintains other important structural properties of G.

PROPOSITION 38: The ORDAS algorithm computes a finite sequence of graphs
Hy, ..., H;, ..., Hsuchthat H has the following properties:
(i) Forall vertices v € V(H) the set of contradicting paths Cp(v, H) = @.
(if) For all not-contradicting paths u, v, w in Hy, i.e. (u,v,w) ¢ Cp(v, Hy), u,v,w Is a
pathin H.
(iii) For all edges (v',w') € E(H) there exists an edge (v, w) € E(Hp) with qdir(v) =
qdir(v") and qdir(w) = qdir(w’).
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The first property guarantees that all paths to which PROP. 37 applies are eliminated in H.
The second property ensures that not too many paths are eliminated. The third safeguards
that no essentially new edges are introduced (which would be artifacts of the procedure).

PROOF: Obviously, the algorithm terminates after a finite number of steps since the number
of vertices in Hy is finite.

To prove property (i), we show that at each induction step 7 it holds for all v € {vg,v%, ..., vi}
that

Cp(v, Hi1) = 2,
and VI > 7 : Cp(’l},Hl) =J = Cp(’U,HH_l) = .

Fora givenv € {v}, ¢, ..., v%} consider an arbitrary path u, v, w in H; ;.

If v = v}, then by DEF. 21 (u,v) € F3 and (v,w) € E,. Hence, in H; there is also an
edge (v, w) and an edge (u,v) with u ¢ Ci(vg, H;). This entails (u, v}, w) ¢ Cp(vs, H;),
such that the path u, v, w cannot by excluded from H; using PROP. 37. Likewise, it is not a
contradicting path in H;, .

If v = o, then (v,w) € E5, implying (u;, vj, w) ¢ Cp(vg, H;), i.e. there is a path u;, vj, w
in H; which cannot be excluded by PROP. 37. Since qdir(u;) = qdir(u) and qdir(v}) =
qdir(v), the path u, v, w can also not be excluded from H; .

Assume for the induction step that for a given vertex v € V' ( H;) there is no contradicting path
u,v,win H;. By DEF. 21, alsov € V(H,;1). Since | > i, all paths of length 2 in H;; having
v as second vertex are of the form 4, v, @ with qdir(4) = qdir(u) and qdir(w) = qdir(w).
Thus, none of the paths can be excluded in H; ;.

For property (ii), let u, v, w be a path in H; with (u,v,w) ¢ Cp(v, H;), and consequently
u ¢ Ci(v, H;). Depending on whether u, v or w equals v} we can determine if (u,v) and
(v, w) are elements of Ey, Ey, E3, E4 or E5, making u, v, w a path in H; ;.

First consider that v = v§. Then (v,w) € E,, and as u ¢ Ci(v}, H;), also the edge
(u,v) € Ej.

Now let v # vg. If u # v} then the edge (u,v) € FEy, if w # v} then (v,w) € Ej, and
if u = v} then (u,v) € Ey. Forw = v} and v ¢ Ci(v}, H;), it holds that (v,w) € Fs;.
Otherwise, v € Ci(vj, H;), and since v # v} there is one j > 1 such that (v, v}) € F4. Note
that qdir(v}) = qdir(w).

Thus, in any case there is a corresponding path in H;,.; which cannot be eliminated using
PROP. 37 since it has the same qualitative directions as (u, v, w). By induction, the corre-
spondence also holds from H, to H.

To show property (iii), consider an edge e = (v, w) € E(H;1). Distinguish whether e is
an element of E, E5, E3, E, or Es5. If e € Ey, itis also an edge in E(H;). If e € Es, then
v = v}, and the edge (v}, w) exists in H; (and qdir(vi) = qdir(v)). For e € Es3, we have
that w = v, making (v, v}) an edge in H;, and for e € Ej itis v = v}, making (v§, w) an
edge in H;. Inthe case thate € E, itis v = u; and w = v} with v € Ci(vf, H;), such that
(uj,v5) € E(H;) and qdir(v}) = qdir(vj). Since there are no other types of edges in Hi,1,
all of them correspond to an edge in H; with identical qualitative directions. By induction,
there is also a correspondence from H to H,. O
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Si

Figure 3.9: The state-transition graph of Ex. 10 (left) and the result of the ORDAS algorithm
(right).

| present an example for the ORDAS algorithm.

EXAMPLE 10: Let a monotonic ensemble be given by

+ + -
N=|- - 0
- 0 +

The resulting state-transition graph is displayed in Fig. 3.9 (left). If we impose the assump-
tions

12 2,1 2.1 1,2
—dyy = —dyy = dy’y = dy = [+],

31 13 13 31
—dys = —dy) = dy’y = d3)) = [+],

the ORDAS algorithm vyields the result as also given in Fig. 3.9 (right). As the result H
of the ORDAS algorithm is a graph where vertices represent qualitative states, abstractions
techniques can also be applied to H. Performing a no-return abstraction yields a new result:
The is a non-trivial no-return set D, i.e. there is no path in H which re-enters D C V (H)
after it is left: all solutions z(-) given by a model f € M () which respects the ordinal
assumptions and which is soluble for the appropriate components cannot re-enter D. If there
is one ¢t; > 0 such that [f(z(¢1))] € D, and a ty > t; such that [f(z(¢2))] ¢ D, then
Vt >ty : [f(z(t))] ¢ D. Since there are paths in G which do not occur in H, no-return sets
are more likely to occur in H (see Fig. 3.10 for the example). O

Thus, there is a synergy between the new abstraction and reduction techniques presented in
this chapter, making qualitative models more valuable for questions of sustainable system
design. 1 illustrate this added value in more detail in Chapter 4. But first the sequence of
restricted model ensembles is completed in the next section.
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Figure 3.10: No-return abstraction of the result of the ORDAS algorithm for Ex. 10. The
no-return set consisting of more than one vertex is displayed as a cluster.

3.4 Quantitative Bounds

In this section | introduce linear-interval differential inclusions, which restrict a monotonic
ensemble M(X) to models for which interval constraints hold for the components of the
Jacobian. If there are multiple successors of a single vertex in the state-transition graph,
the question which of them will be attained can be formulated as a viability problem. After
defining linear-interval maps and investigating their absorption basins, I show how this can
be used to analyse the state-transition graph of a QDE.

3.4.1 Absorption Basins of Linear-Interval Differential Inclusions

Linear-interval differential inclusions are given by set-valued maps. Throughout this section
we regard singletons as intervals and consider a state space X C R".

DEFINITION 22: Let U be a matrix of compact intervals (u; ;); j=1,...,, Where each interval
either vanishes or does not contain 0. A set-valued map F : X ~» R", F(z) := Ux, where
the latter denotes interval-valued multiplication, is called a linear-interval map.

Interval-valued multiplication is defined in the usual way by Uz := {M=x | M € U}, where
amatrix M = (m;;)ij=1,..n, € Uifandonly ifVi,j = 1,...,n : m;; € u;;. DEF. 22
guarantees that every coefficient of U has a prescribed sign (which will be related to X
below). Note that a linear-interval map F' defines a model ensemble (cf. section 2.3, p. 42)
which includes nonlinear models f : X — R™ such that Vx € X : f(z) € F(x). Before
analysing absorption basins, the regularity properties of linear-interval maps are investigated.
Based on a matrix norm || - || on R™*", we define the norm || F'|| := maxysep || M]].

PROPOSITION 39: A linear-interval map F' has compact interval-valued images. It is Mar-
chaud, Lipschitz (both with constant || F'||) and homogeneous, i.e. VA € R : F(Az) = AF(z).

PROOF: (i) F has interval-valued images: Each component F;,i = 1,...,n has the form
> j=1,..n WijTi, Where u; ; are compact intervals. The properties of interval arithmetic imply
that this yields an interval. As it results from a continuous operation on a compact set, it is
also compact.
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(ii) F' is Marchaud: Dom(F') = R™ is obviously closed. It has convex values, because they
are interval-valued. It has linear growth, because || F'(z)|| = ||[Uz|| < ||U||||lz|| = || F||||z|| <
I|F||(||z|| + 1). Its graph is closed, because F' has compact values and the upper and lower
bounds of the values depend continuously on z (cf. p. 43).

(iii) F'is Lipschitz: Let z,2" € R"™. Since U is compact we can choose a matrix M € U
such that | M (2’ — z)|| = || F||||]z" — =||, and define

M(z' — x)
e:=———+——"—¢€ B(0,1).
e —a) <O
Therefore,
, ; ; IF & =), .
M(x' —x)+ ||F|||lr —xlle=M(zx —z) — M(x' —z) =0,
(« =) + |Flllo’ = slle = M(' = 2) ~ Sppe TS (! )

and 0 € B(U(z' — z), ||F|/||l' — z||). Hence, Uz C B(Ux', ||F||||z’' — z||), i.e. F(z) C
B(F(@), | Flllla - z[l) (cF. p. 42).

(iv) F'is homogeneous: Choose arbitrary x € R™, A € R. Due to the properties of interval
arithmetic it holds forall = 1, ..., n that

j=1,...n j=1,...,n

g

As discussed below, we need to compute absorption basins of linear-interval differential
inclusions # € F(x). In principle, this can be done with the viability kernel algorithm
(cf. section 2.4, p. 45). But since it is designed for a bounded constrained set and target, and
we will have to deal with (unbounded) cones, some remarks are necessary. We start with an
observation resulting from the homogeneity of linear-interval maps.

PROPOSITION 40: Let F be a linear-interval map, z(-) € Sr(zo) a solution for z, € R",
and A € R. Then y(-) :== Az(-) € Sp(zo).

PROOF: For almost every ¢t € R, it holds that §(t) = Az (t) € AF(z(t)). Due to PROP. 39,
the last term equals F'(A\x(t)) = F(y(t)), making y(-) a solution. O

As a consequence, the absorption basin of a cone is also a cone:

PROPOSITION 41: Let C, K C R",C C K be cones, and F' : R™ ~» R™ a linear-interval
map. Then D = Absp(K, C) is a cone.

PROOF: Choose zy € D and A > 0. We show that 3, := Azy € D.

By definition of the absorption basin, for all solutions z(-) € Sg(zo) there existsa T > 0
such that z(7) € C and Vt € [0,T] : z(t) € K (see DEF. 13, p. 46). Define y(-) := Az(-),
which is an element of Sr(yo) by PROP. 40. Since C, K are cones, this proposition also
implies that y(7') = Az(T) € A\C = Cand Vt € [0,T] : y(T) = Mz(t) € \K = K.
Therefore, yy € D. O
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Figure 3.11: State-transition graph of the QDE defined in EX. 11 after removing marginal
edges, non-analytical and equilibrium states. The vertices vy, . . ., vg are discussed in the text.

For cones C, K we can compute the bounded set D), := Abs(KNAQ, CNAQ), where A > 0
and (Q is an appropriately chosen bounded set.

PROPOSITION 42: Let C, K C R",C C K be cones, Q@ C R"and A > 0. Then D, = A\D;.

PROOF: For zy € D,, we show that y, := §x0 € D;: Choose z(-) € Sr(zg) and set
y(-) :== 1x(-), which is an element of Sp(;x,) due to PROP. 40. If 3T > 0 : z(T) € C'N
AQ = ACNAQ = N(CNQ), theny(T) € CNQ. IfVt € [0,T] : z(t) € KNAQ = MKNQ),
then y(t) € KN Q. Thusyy € Dy, i.e. Dy C AD;.

By symmetry, A\D; C D, also holds. O

Finally, the absorption basin Absg (K, C') can be recovered from D, by the following prop-
erty:

PROPOSITION 43: If 0 € Int(Q) then Absp (K, C) = [J,5 Da-

PrROOF: If 2y € J,.,Dx there exists one A > 0 such that z, € D,. Thus, for all
z(-) € Sp(x0)3T > 0:2(T) e CNAQ C CandVt € [0,T] : z(t) € KNAQ C K.
Therefore, 2y € Abs(K, C).

Now choose 2y € Absp (K, C)andasolutionz(-) € Sp(xo). By DEF. 13 (p. 46), there is one
T > 0suchthatz(T) € C and Vt € [0,T] : z(t) € K. Since z(-) is continuous, z(T) finite
and 0 € Int(Q), thereisone A > O suchthatz(7) € CNAQ andVt € [0,T] : z(t) € KNAQ.
Therefore, 2o € [, Da. O
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Figure 3.12: Boundaries of the absorption basins of v; with target v,, v3, v4 restricted to
a cube Q. Large arrows indicate the directions towards successors. Qualitative transi-
tions to v, necessarily occur from Absy (K (v1)) N Q, K (v1) N K (v2) N Q), the region be-
tween the surface to the right and the plane given by ©; = 0. A shift to v, happens from
Absp (K (v1) N Q), K (v1) N K (vs) N Q) between the lower surface and the plane given by
i3 =0. Absp (K (v1) N Q, K (v1) N K (v3) N Q), which would lead to state vs, is empty.

3.4.2 Analysing a State-Transition Graph with Linear-Interval Differ-
ential Inclusions

I now show how the absorption basins of linear-interval differential inclusions can be used
infer system knowledge from a QDE when quantitative bounds are available. Starting with
a sign matrix X, we set-up a monotonic ensemble and solve it with the QSIM algorithm.
Then, quantitative bounds are considered by setting up a linear-interval differential inclusion
where the signs of the intervals correspond to the signs of 3. | give a precise definition of the
differential inclusion and discuss its relation to the associated QDE. Recall that a monotonic
ensemble M (X) defines a set of systems & = f(z) suchthatforallz € X : [J(f(z))] ~ X.
Changing the perspective from the state space to the velocity space, we saw in section 2.3
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(p. 42) that it is not possible to investigate a QDE by considering a differential inclusion
i€ F(2) := {A2 | [A] ~ 2},

since the set-valued map F is unbounded. However, if intervals u; ; are known such that
Ve € X : D, fi(z) € u,, the linear-interval differential inclusion

i€ F()=Us,

can be set-up. Itis very regular by PROP. 39 (p. 77), and “simulates” the monotonic ensemble
M(X) in the following sense. Define the restricted model ensemble

M(S,U) = {f € M(Z) |Vz € X : T(f)(z) € U} C M(X).

with the solution operator Sy (sv)(-). Then Vz, € X,z(-) € Sprzuvy(wo) @ () €
Sr(%(0)). On the other hand, the differential inclusion also covers solutions of non-auto-
nomous ODEs & = f(z,t) with J(f)(z,t) € U forall t € R.. Linear-interval differential
inclusions are more general than QDEs in the sense that they also include non-autonomous
models, and are more specific in the sense that they only include bounded models.

When the state-transition graph G of the QDE is computed and a linear-interval differ-
ential inclusion F' is defined, | propose the following procedure. The modeller takes a close
look at the state-transition graph of the QDE and identifies subgraphs of importance, i.e. ver-
tices with multiple successors (some of which may be problematic or preferable by value
judgement). We want to identify conditions for a given successor to be reached. If there is
an edge (v, w) in G, we know from section 2.2.1 (p. 21) that there is an initial valued zq € X
and a solution z(-) € Sax) (o) such that [£(0)] = vand it 3T > 0 : [¢(T)] = v A w and
Vit €10,T) : sgn(z(t)) = v.

To describe these reachability conditions we define — in the velocity space — the cones
K(v) := {& € R | [#] = v} forv € A". For the linear-interval differential inclusion
i € F(i) = Ui, the absorption basin Absy (K (v), K(v) N K (w)) of the closure of such
cones contains all initial velocities &, such that for all solutions &(-) € Sp (o) with [ig] = v
there existsa 7' > 0 with (7)) € K(v Aw) and V¢ € [0,7T] : @(t) € K(v). The results from
the previous subsection can be used to compute this absorption basin with the viability kernel
algorithm as outlined in section 2.4 (p. 45). If Absy (K (v), K (v) N K (w)) is empty, the edge
(v, w) can be eliminated. Otherwise, the algorithm provides insights about the velocities for
which a qualitative state is reached from another one. This can be valuable in the context of
sustainability science, as such conditions yield early warning indicators of the form “once the
rates of change are in such and such a relation, the following trend will necessarily reverse
at a later time”.

EXAMPLE 11: We present an application of the method, where the monotonic ensemble is
described by the sign matrix

0

Y=

+ o o

+
0
0

+ 1
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Figure 3.13: Boundaries of the absorption basins of vs, with target vs, vg, restricted to a
cube Q. Absy (K (v3) N Q, K (v3) N K (v5) N Q) is a very small cone, whereas the boundary
of Absy (K (vs) N Q, K (v3) N K (vs) N Q) appears to be a plane separating a large part of
the quadrant. The small part of the boundary to the upper right is an artifact resulting from
restricting the absorption basin to @, which can be eliminated due to PRoOP. 43 (p. 79).

The resulting graph after eliminating marginal edges (cf. section 3.2, p. 62) and non-analytical
state (cf. section2.2.4, p. 36) is shown in in Fig. 3.11. Supposing that quantitative informa-
tion is available we set up an interval matrix

0 0  [0.7,0.9]
U:==|[-07,-04 0 0 :
[0.5,3.0] [0.5,3.0] 0

where the coefficients have signs corresponding to Y. This defines the linear-interval differ-
ential inclusion # € Uz. We now analyse two exemplary qualitative states v; = ([—] [—] [+])*,
v3 = ([=][+][+])" in G where multiple successors occur (numbers in Fig.3.11 correspond
to indices). The computed absorption basins of state v; with targets vs, v3, v4 are shown in
Fig.3.12. One absorption basin is empty. The boundaries of the other basins are smooth
except along one ray from the origin. There are no combinations of velocities which safe-
guard that v3 is reached, but there is a considerable likelihood that v, is a guaranteed suc-
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cessor. However, a large part of this quadrant necessarily leads to v4. In state v3, we have
the successors vs; and vg. Since there is no edge (vs, v1) the corresponding absorption basin
Absp (K (vs)), K (v3) N K (v1)) (and even the respective capture basin) has to be empty. The
size of the regions necessarily leading from v3 to one of the outcomes is considerably dif-
ferent (Fig. 3.13). As both absorption basins of state v intersect K (v, A vs), in some cases
the successor of vz can already be predicted at a time ¢, when [£(¢)] = v;. If v is reached,
(which may be less likely as the absorption basin is significantly smaller than the other),
the state-transition graph implies that the only possible subsequent qualitative transition is
(?)5, ?)3). O



