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A B S T R A C T

Tensors provide a powerful and at the same time concise mathemati-
cal formalism to encode intricate physical phenomena. They describe
multi-linear functions independently of a frame of reference and cap-
ture anisotropic properties which vary as function of direction. How-
ever, the wealth of information contained in tensor data can be a
mixed blessing as in return this can heavily aggravate their interpre-
tation. This thesis is concerned with analysis and visualization meth-
ods to support the interpretation of second order tensors per se and
fields of such tensors. The focus is on tensor fields from engineer-
ing and mechanics. We present visualization concepts for indefinite
symmetric tensors as well as asymmetric tensors which both bring
about their individual properties and requirements. The aim is to
truthfully reflect the specific properties in the tensor fields and at the
same time to support an immediate understanding by the user. The
presented methods are developed for two dimensional second order
tensor fields defined on planar or curved surfaces. These tensor fields
naturally occur e.g. on boundary surfaces but also if the data is ana-
lyzed on cuts extracted from three dimensional data. This facilitates
to inspect the intrinsic properties on these geometries in full detail.
One primary constituent of this work is to find expressive structures
in order to present the tensor data in a condensed and simplified man-
ner. The results are given as explicit geometries which can be used
for further processing such as tracking over time or statistical inquiry.
For symmetric second order tensor fields we extract the topology
which captures all essential structural features in a strongly reduced
graph structure. This graph structure is used as a basis to develop en-
riched visualization methods. In this vein, a complete segmentation
is presented that partitions the field into regions of homogeneous
eigenvector and eigenvalue behavior. This segmentation serves as
well defined framework for rich visualizations – texture mapping for
a continuous and dense depiction and a glyph placement strategy
for detailed inspection on demand. Finally, a sketch-like visualiza-
tion of vector fields and their spatial derivatives, asymmetric tensor
fields, is presented. The initial asymmetric tensor data is uniquely
decomposed and automatically filtered based on scalar field topology
and homological persistence. The extracted prevalent features are de-
picted in an illustrative, easy to read visualization which facilitates a
comprehensive overview of the field characteristics. All contributions
in this thesis are topological methods or build on such which guaran-
tees that the results depict the data in a simplified but uncorrupted
and consistent manner.
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Z U S A M M E N FA S S U N G

Tensoren bieten ein mächtiges und präzises Konzept zur Formulierung
komplexer physikalischer Phänomene. Sie beschreiben multi-lineare
Funktionen und erfassen anisotrope Eigenschaften. Diese Mächtigkeit
kann jedoch einen gravierenden Nachteil bedeuten – die Interpre-
tation von Tensordaten wird dadurch signifikant erschwert. Diese
Arbeit präsentiert Analyse- und Visualisierungsmethoden, die das
Verständnis von Tensoren zweiter Ordnung unterstützen. Hierbei
liegt der Fokus auf Tensordaten aus den Anwendungsfeldern Physik,
Mechanik und Ingenieurswissenschaften, die Visualisierungskonzepte
für indefinite symmetrische so wie für asymmetrische Tensoren er-
fordern. Ziel ist es, die jeweiligen Eigenschaften wahrheitsgetreu
wider zu spiegeln und gleichzeitig dem Benutzer ein intuitives Er-
fassen zu ermöglichen. Die hier vorgestellten Methoden wurden
für zwei dimensionale Tensorfelder entwickelt, die auf planaren oder
gekrümmten Flächen definiert sind. Dieses beinhaltet physikalische
Randflächen, aber erlaubt auch die Analyse dreidimensionaler Daten-
sätze, die zum Beispiel bezüglich ihrer intrinsischen Eigenschaften
auf extrahierten Isoflächen untersucht werden. Elementarer Bestand-
teil dieser Arbeit ist die Extraktion expressiver Strukturen, um Ten-
sordaten in einer kompakten und vereinfachten Art darzustellen. Die
Ergebnisse werden als explizite Geometrien definiert, die eine weiter-
führende Analyse begünstigen, wie die Untersuchung zeitabhängiger
Felder oder eine statistische Analyse. Für symmetrische Tensoren
zweiter Ordnung präsentieren wir ein Modell zur Berechnung der
Topologie. Diese beinhaltet alle essentiellen strukturellen Merkmale
in einer stark reduzierten Graphstruktur und dient als Basis für er-
weiterte Visualisierungsmethoden. Darauf aufbauend wird eine Seg-
mentierung vorgestellt, die das Tensorfeld in Regionen gleichen Eigen-
vektor- und Eigenwertverhaltens partitioniert. Diese wohldefinierte
Struktur erlaubt Visualisierungsmethoden hoher Informationsdichte:
Texturmapping als kontinuierliche Darstellung des gesamten Feldes
und Glyphenplatzierung für eine detaillierte Untersuchung an aus-
gezeichneten Stellen. Für asymmetrische Tensoren präsentieren wir
eine Visualisierungmethode, die in ihrem Grad an vereinfachter Dar-
stellung Handzeichnungen aus Lehrbüchern ähnlich ist. Die Ten-
soren werden hierbei in ihre Komponenten zerlegt und automatisch
durch eine Kombination von Skalarfeldtopologie und homologischer
Persistenz gefiltert. Alle hier vorgestellten Beiträge sind topologische
Methoden oder basieren auf solchen. Dies garantiert eine Ergebnis-
visualisierungen der Originaldaten in vereinfachter, jedoch in unver-
fälschter und konsistenter Art.
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1
I N T R O D U C T I O N

An image is worth a thousand words – this adage is a commonly recog-
nized saying which characterizes that a single still image can some-
times transport a large amount of information that is not feasible to
communicate by other means. It can also be used to summarize one
of the main goals of visualization - the aim of facilitating the absorp-
tion of a large amount of data by giving appropriate images, dia-
grams, or animations. This builds on the fact that the human eye is
able to perceive a multitude of parameters synchronously: colors in
various shades, patterns, and geometric objects just to name a few.
The term visualization itself cannot be assigned to a specific defini-
tion as the attempt to depict ideas and facts can be seen through-
out the history of mankind, be it ancient cosmological maps (e.g.
Fig. 1.1(a)) or the example of a visualization by Dr. John Snow of
the cholera outbreak in London, 1854 (Fig. 1.1(b)) collected by Ed-
ward R. Tufte [Tuf86]. In the last decades computational power has

(a) (b)

Figure 1: Early Visualizations. (a) Ancient map illustrating the orbits of the
planets dated around 10. century. (b) Visualization of Dr. John
Snow of the cholera outbreak in London, 1854. Bars plotted in the
street map of London indicate the number of deaths in a house-
hold and where used to detect sources of the epidemic. Image
courtesy: E.Tufte [Tuf86].

strongly increased and the growth of resources available was also
extensively used in science. Here, the facility was soon discovered
to produce computer graphics to visually assist researchers in un-
derstanding their generated data. In 1987, Bruce H. McCormick et
al. [MDB87] were the first to formulate the concept and the need for
a new and explicit scientific discipline which they called scientific visu-
alization. McCormick et al. describe scientific visualization as method
of computing, that transforms the data into visual representations
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2 introduction

which allow researchers to observe their results and draw expected
but also unexpected conclusions.

In scientific computing data sets mostly consist of a geometry and
associated attributes. The geometry defines the domain of the data
set at discrete coordinates, e.g. on vertices of a computational grid.
The attributes are the scientific research results in terms of function
values given on the discrete points of the domain. Common types
of attributes are scalars, vectors, and tensors which led to the differ-
entiation into scalar, vector, and tensor field visualization. The fourth
and younger discipline, information visualization, can have attributes
of various expression. Further, an explicit geometry as such is mostly
not given. This thesis is primarily concerned with the visualization
of tensor fields.

The remainder of this chapter is structured as follows: In Sec. 1.1
tensors and tensor fields are characterized and key mathematical con-
cepts are introduced on a rather colloquial level to characterize basic
ideas. Sec. 1.2 outlines the basic visualization principles that were
guiding the development of the visualization methods presented in
this work. Sec. 1.3 summarizes how these principles were imple-
mented. Finally, Sec. 1.4 gives a brief overview of the thesis’ structure
and Sec. 1.5 lists the publications building the basis of the presented
work.

1.1 tensors and tensor field visualization

Tensors are multi-linear functions that provide an elegant simplic-
ity for the modeling of complex problems and deliver the necessary
generalization where vectors and scalars are too limited. Although
founded in the work of Carl Friedrich Gauss (1777 − 1855) on dif-
ferential geometry tensors had their breakthrough in the beginning
of the last century. Many discoveries were made in the early twenti-
eth century that changed the perception of the world around us: the
special and the general theory of relativity, and quantum mechanics
might summarize the highlights during that period. It is no accident
that this coincides with the time where tensor analysis was developed
to its present form. For example, Albert Einstein (1879 − 1955) had
an enormous breakthrough when he managed to formulate his theory
of gravity with tensors. Also the laborious and pioneering work of
Emmy Noether (1882 − 1935) on the famous theorems predicting the
existence and precise nature of conservation laws (applied to physi-
cal field theories) can be deduced nowadays with strongly reduced
effort by using tensorial notation [LR75]. From that time many other
disciplines also incorporated tensor calculus: the areas range from
physics and engineering to modern medicine and image processing,
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just to name a few.

Tensors are ubiquitous in science. Also scalars and vectors are sub-
sumed by the concept of tensors – a scalar is a tensor of zeroth order
and a vector a tensor of first order. In this thesis we concentrate on
tensors of second order which are defined to be acting on two vec-
tor spaces. The benefit of using tensors can be regarded from two
points of view (although they can not be perfectly separated): first
they give a concise and versatile framework to model scientific phe-
nomena – especially as transformations from one coordinate system
to another can be made effortlessly. Secondly, it can also enhance
the understanding of some phenomenon by inspecting the results
of simulations or measurements in terms of tensors. For tensors of
second order an important property comes into play: they are capa-
ble to capture anisotropic properties. There is no comprehensive for-
mal definition of anisotropy but it can be summarized to the quality
of some regarded phenomenon exhibiting different properties when
measured from different directions.

A descriptive case of anisotropic behavior is that of light reflection.
In an idealized world a ray of light would be reflected on a perfect
mirror in an non scattered manner, without loss of intensity, and the
emergent angle would be equal to the incident angle (see Fig. 1.2(a)).
However, in reality surfaces are not perfectly mirroring and thus, the
light reflection is anisotropic. This means the reflection is scattered
and depending on the reflection direction the light intensity varies
(see Fig. 1.2(b)). The opposing notion of anisotropy is isotropy where
properties remain identical independent of the measured direction.

(a) (b) (c)

Figure 2: Schematic illustration of anisotropy. (a) No anisotropy: the reflec-
tion of a ray of light in an idealized world causes no anisotropic
behavior. (emergent angle equals incident angle). (b) Anisotropy:
in reality the ray of light is scattered as it is reflected. The light
intensity (yellow distribution function) of the emergent rays is
anisotropic. (c) Central topic in the area of mechanics: anisotropic
directions and strengths of forces. Pushing (blue arrows) and
pulling (red arrows) forces acting in one location can lead to mate-
rial failure such as cracks.

Another example is more related to the application focus of this
thesis. In mechanics, it is of strong interest to understand the forces
acting in one location, as for example the occurence of pushing and
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pulling forces from different directions at a specific position which
can lead to material failure, such as cracks (Fig. 1.2(c)).
Tensors of second order can capture such anisotropic behavior. Di-
rections and strengths occurring at a specific location can be directly
inferred and allow valuable insight to a data set.

This wealth of information contained in tensor data however, poses
a specific challenge for their interpretation and consequently visual-
ization. Second order tensors are frequently distinguished between
symmetric and asymmetric tensors and both types are underrepre-
sented in scientific visualization despite their scientific significance.
Comprehensive depictions have to be found, that reflect the tensor
properties but which are at the same time intuitive and do not over-
whelm the user. For both types of tensors, mathematical concepts
exist that allow to derive expressive quantities and structures to ease
their analysis. These are introduced below as they are fundamental
to the visualization methods developed in this thesis.

Eigenvectors and eigenvalues
Tensors can be decomposed and analyzed in terms of their eigenvec-
tors and eigenvalues. They are attained by performing an eigenanalysis
and uniquely represent the original tensor without loss of informa-
tion. Extremal directions in the transformation encoded in tensors
can be identified and visualized by eigenvectors. The strength and
quality of the transformation in the respective eigenvector direction
is given by the associated eigenvalues.

Topology
Topology is a mathematical approach to reduce some phenomenon to
a highly abstract representation and is not restricted to tensor fields.
Hereby, the topology contains structures which are rather qualitative
than quantitative in nature and properties are captured which are pre-
served under continuous transformations. Absolute measurements
based on an underlying metric such as distance or angles are not re-
garded. Looking at the Greek origin of topology – topos "place" and
logos "study" – already suggests that topology is the study of positions
and relative positions in terms of neighborhood relations. A classical
example is the problem of the Seven bridges of Koenigsberg – where the
question is to find a walk through the city of Koenigsberg by cross-
ing its seven bridges once and only once (Fig. 3). This problem is of
topological nature as the solution does neither depend on how long
the bridges are nor their mutual distance. Purely the position of the
bridges and their relative position to each other defines that – in the
case for Koenigsberg – no such walk can be found.

In scientific visualization topology is a meaningful instrument to
extract essential structures of a given data set. Topology is repre-
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Figure 3: The topological problem of the seven bridges in Koenigsberg: find
a walk through the city without traversing a bridge twice. This
question can be represented by an abstract graph structure.

sented by a graph structure which partitions a field into regions of
similar properties based on well defined criteria. The vertices of the
graph represent distinguished locations in the field from which sep-
arating lines or shapes are computed, the connections of the vertices.
The graph captures the original data in a strongly compressed man-
ner and the resulting skeleton can be used as visualization itself. Sur-
prisingly, the topology of tensor fields is not as unfamiliar as one
might think. The growth of the human fingerprint pattern and its
directional layout is defined by anisotropic properties and can be rep-
resented by a tensor field. In fingerprints the key locations of ten-
sor field topology can be observed (see Fig. 1.4(a)). From those key
locations appropriate separating lines can be computed which parti-
tion the entire fingerprint into regions of homogeneous behavior (see
Fig. 1.4(b), 1.4(c)). In these regions the layout of the skin pattern
is continuous and can be qualitatively reconstructed from the sepa-
rating lines. Similarly, computing the topology of tensor fields for
scientific results allows to highly condense the input data to the key
topological features. The resulting graph structure gives a continu-
ous and complete view on the essential structures of a tensor field
and therefore, is a valuable mean in tensor field analysis. Please note,
the topology of a tensor field is purely based on the eigenvector fields
and thus, only structural features are captured and eigenvalues are
not respected.

1.2 objectives and basic visualization principles in this

thesis

Visualizing an entire field of a quantity that changes in dependence
of direction at each location in the field is a challenging question. It
is certainly desirable to present as much information as possible to
a user. Still ideally, the final visualization should not overwhelm the
user. In summary, an incomplete view is as undesirable as a cluttered
image. Any principle to generate a winsome visualization especially
holds for the depiction of tensor fields. In the following those con-
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(a) (b) (c)

Figure 4: Tensor field topology for fingerprints. a) Key topological locations
can be observed in the blue squares. b) Specific separating lines
(red) deliver a segmentation of the domain into qualitatively equal
directional behavior. c) Surrounding directions (light red) can be
reconstructed from the separating topological lines.

cepts pursued in this thesis are summarized.

Simplification and Overview
One obvious way to support the comprehension of tensor fields is
to develop sensible simplification strategies to reduce the amount of
information to display. The reduction should be reproducible and
preserve important features and details in the data set. This is of spe-
cial importance as naturally scientific visualization has to treat data
with great care. But also because visualization is not only about de-
livering images to specific questions that were posed in advance. A
valuable contribution is that the created images can also reveal the un-
expected and allow new insights that were or could not be predicted
ahead. The eye can discern discontinuities, outliers, or coherence in
an image which might be painstaking to find in a data set of numbers.
Thus, ideally the final visualization should be complete with respect
to the regarded quantity.

Full Information on Demand
In contrast to a reduced view on the data is the need of the user to
also examine data in full detail. Giving the user an overview visu-
alization at first and showing those details on demand is a common
way to provide data at full resolution without overburdening the user.
Special examples are focus and context visualizations – these provide
a strongly simplified context visualization that allows the user see the
data set as a whole. Within the focus region the data is depicted in
full detail. This supports the understanding of the entire data set in
an interactive and top-down manner. The user can request informa-
tion bit by bit which is finally less tedious than absorbing the entire
content at once.
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Comprehensive Depiction of Tensors and their Properties
Often researchers reduce the analysis of their results to derived scalars
or vectors as the interpretation of tensors seems unintuitive. This can
be helpful for a first understanding however, this may be unsatisfac-
tory as it naturally implies loss of information. Thus, tensor field
visualization is not only concerned with supporting the analysis of
individual tensor data sets but also with the understanding of ten-
sors themselves. At best, tensor properties and the transformation
encoded by tensors are visually explained in the final image.

1.3 accomplishment of visualization principles

A central part of this thesis is concerned with simplification meth-
ods for tensor fields which assist the user in understanding the given
data set but at the same time guarantee reliability and reproducibil-
ity. Hereby, essential structural characteristics in tensor fields are ex-
tracted and depicted.
These reduced structures can be further inspected or are used as basis
for extended visualization methods. The aim is to give the user the
freedom to explore data sets at a level of finer granularity or enriched
with additional information. This provides the flexibility to meet the
diverse demands of different tensor types and application areas.

1.3.1 Dimension Reduction

The developed methods are designed for two dimensional tensor
fields of second order defined on planar or curved surfaces. This
can inherently represent a first simplification step – dimension reduc-
tion. Often, two dimensional data occurs if dimension reduction is
chosen to get a hold of the data which is a common approach for
tensor data. The initial three dimensional data is projected onto slices
or cuts (e.g. extracted by isosurfacing) and inspected in terms of its
intrinsic properties on these geometries. However, two dimensional
tensor data also appears for data sets where the quantity of interest
is defined on two dimensional manifolds, such as boundary surfaces.
Here, the fields are inherently two dimensional.
On these manifolds the depiction of tensors in their full information
content is significantly alleviated. On such surfaces depiction ele-
ments which cover the anisotropic properties of tensors are easier to
arrange and compared to three dimensional space problems like oc-
clusion and clutter are strongly reduced. In this thesis we will attach
importance of also providing the necessary concepts to visualize ten-
sor fields on curved surfaces.
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1.3.2 Topological Analysis

Topology provides a sound mathematical foundation to strongly re-
duce the amount of information in the field without introducing
heuristics about which information should be kept or can be omit-
ted. To extract the tensor field topology several challenges arise. The
extraction of the topology is based on a continuous model of the ten-
sor field. However in visualization mostly fields occur that are given
at discrete data points. Consequently, a fundamental challenge is to
provide a model for continuous reconstruction of the field that allows
the detection of topological elements. Chap. 4 proposes a new model
to compute the topology of two dimensional symmetric tensor fields
defined on planar surfaces. It is founded on a specific interpolation
scheme [HSNHH10] decoupling shape and direction of tensors (in
terms of a consistent linear interpolation of eigenvectors and eigen-
values). Our model of topology computation is analyzed towards its
validity in generating qualitatively correct results. The resulting struc-
ture, the integral topological graph, captures all directional features of
both eigenvector fields and segments the field into curvilinear cells of
homogenous directional behavior. Depending on the data the topo-
logical graph may result in complex structures which are still hard
to interpret. The integral topological graph of the proposed method
extracts topological elements of higher dimensionality which is com-
pared to previous approaches more cleaned up. Chap. 7 extends the
usability of the topology extraction model by giving the necessary ex-
tensions to conduct the topological analysis for piecewise continuous
and piecewise constant tensor fields.

1.3.3 Complete Segmentation

The integral topological graph is a highly compact representation
of all directional features in a symmetric tensor field. In Chap. 5

this graph is the basis for a segmentation that respects the full ten-
sor information. An adaptive refinement workflow incorporates the
eigenvalue fields to partition the field into explicit geometric cells
that delineate regions homogeneous eigenvector and eigenvalue be-
havior. Alternatively, the refinement process of the topological graph
can also be guided by more application specific scalar invariants. The
segmentation framework consists of flexible building blocks giving
the user the freedom to adjust the process towards divers segmen-
tation criteria or granularity and adapt it to meet the demands of a
specific application. The resulting cells can be considered as visu-
alization glyphs where eigenvector and eigenvalue characteristics are
subsumed in form of tiles. The cells are delineated by tangent lines to
the eigenvector fields. Like this the structure of the segmentation re-
sembles a net and allows immediate interpretation of the directional
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behavior in the field. Color coding of the cells encodes the eigen-
value characteristics. Such a segmentation allows to comprehensively
inspect the entire tensor field on a higher level of abstraction. The
user is assisted in the exploration of the data set as rather similar re-
gions can be distinguished from regions of strong variation. Further,
a focus and context visualization can be directly deduced.

1.3.4 Texture and Glyph Mapping

Chap. 6 uses the variability of visualization methods like textures
and glyphs to enrich the abstract topology based segmentation de-
scribed above. This combines the accuracy of topological methods
with more intuitive visualizations. The segmentation structure serves
as basis to map textures and place glyph exponents. The textures
encode physical properties of the underlying symmetric tensor field
and support the understanding of the field as a whole. The glyph
exponents in contrast, can be used to give detailed insight at distinct
locations. Any kind of tensor glyph can be placed into the centers
of the segmentation cells with homogeneous characteristics. For the
texture mapping the cells of the segmentation provide a consistent
parametrization. Textures offer a multitude of parameters to encode
tensor properties – eigenvector directions, eigenvalues and other de-
rived quantities – combined in a continuous, dense visualization of
the entire field. The textures are mapped such that physical prop-
erties of the tensor field like compression or expansion are directly
reflected in the texture frequency. The field can be explored in great
detail and coherences discovered. Further, selective color mapping
and post processing are applied to visually assist the users to direct
their attention to features of interest.

1.3.5 Illustrative Visualization

In Chap. 8 asymmetric tensor fields are used to generate illustrative
representations of vector fields. A major advantage of visualizing
tensors is their property of being independent of the chosen frame
of reference. Visualization methods purely based on vectors have the
difficulty that computed features can disappear if the frame of ref-
erence is changed. Looking at the spatial derivatives of the vectors
leads to asymmetric tensors which allow valuable insight to the prop-
erties of the vector field, such as rotation, shear, and isotropic scaling.
We present an automatic framework to extract a highly simplified
representation of the vector and asymmetric tensor field. The tensors
are decomposed into their rotation, shear and isotropic scaling com-
ponents and processed in terms of these individual components. This
allows to decompose and depict the transformation encoded in asym-
metric tensors into easier to comprehend elements. In their simplicity
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the representations aim to resemble hand-drawn sketches which can
be found in subject literature. They are reduced to the most prevalent
features and use easy to read icons. Large scale trends are depicted as
background visualization and strongly expressed features displayed
in the front. The automatic approach uses the extrema of scalar field
topology to extract all local features in the field and on the basis of ho-
mological persistence those features are filtered to the most prevalent
ones. This provides a sound mathematical basis for the simplification
process; the results are reproducible and have a clear mathematical
interpretation.

1.4 outline of this thesis

In Chapt. 2 the mathematical basics are introduced which build the
foundation for the content of this thesis. Existing visualization tech-
niques related to the scope of this work are introduced in Chapt. 3.
The actual contributions for new methods in tensor field visualiza-
tion are presented in Chapt. 4, 5, 6, 7, and 8. In Chapt. 9 the work
is discussed and a conclusion drawn towards its achievements and
options for future work.

1.5 publications

The content of this thesis builds on the following papers which have
been peer-reviewed and published in international conference pro-
ceedings, journals, and books: [SNAHH11], [ASNZH11], [AH11],
[ASKH12], and [AKKH13].



2
B A S I C S

This sections introduces the basics and notations used throughout the
thesis. If basics are only related to one specific chapter they will be
introduced there to keep the reading of this text modular.
Tensors of second order are the main subject of this thesis, accordingly
they are introduced in more detail. While scalars (Sec. 2.2) and vec-
tors (Sec. 2.3) are probably familiar to most readers with general scien-
tific background, the notion of tensors might be unknown to readers
without specific background in natural science. Also the wide range
of applications (engineering, natural science, medicine, and other dis-
ciplines) lead to a multitude of notions or interpretations of tensor
values. Sec. 2.4 gives a brief overview on the different definitions of
tensors to provide a broadened entry point to the specific focus of
this thesis. Second order symmetric and asymmetric tensors – both
subject of this thesis – are introduced and set in relation and impor-
tant properties and derived quantities summarized.
Further sections cover key aspects about the interpolation of tensors
(Sec. 2.5) and the topology of tensors (Sec. 2.7). Knowledge which
is specific to the visualization methods presented in this thesis is
also summarized: different application areas and types of tensors
(Sec. 2.8), and important derived quantities of tensors (Sec. 2.9).

2.1 notation

If not stated differently the following notation convention will be ap-
plied. Scalars and scalar-valued functions are denoted by lower-case
letters, i.e. s and s(x), x ∈ Rn, respectively. Points, vectors, and
vector-valued functions are represented by bold lower-case letters, i.e.
v and v(x). vT denotes the transpose of vector v. Tensors of second
order, matrices, and tensor-valued functions are referred to by bold
upper-case letters T and T(x). The identity matrix is denoted by I
and TT is the transpose of T.
Eigenvectors and eigenvalues (Sec. 2.4.5) are important derived quan-
tities of tensors. In this thesis they are foremost relevant for two di-
mensional symmetric tensors leading to two eigenvectors and two
real valued eigenvalues for each tensor. Unless stated differently,
eigenvalues are named λ1, λ2 ∈ R, such that always λ1 6 λ2. Ac-
cordingly, λ1 is referred to as the minor eigenvalue and λ2 as the
major eigenvalue. Due to the direction indeterminacy the eigenvec-
tors are denoted by

↔
vi, with i = 1, 2 and

↔
v i ∈ R2. The index i of an

eigenvector
↔
vi is assigned according to its associated eigenvalue λi.

11
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In all illustrations tensor lines (Sec. 2.6) integrated along the major
eigenvector field are depicted in red and tensor lines of the minor
eigenvector field in blue.
New terms which are introduced for the first time in the text are
highlighted by italic letters.

2.2 scalar fields

A scalar field is defined as a map s(x), x ∈ D and D ⊂ Rn that
assigns a scalar to each point in the domain D. In scientific visual-
ization scalar fields are ubiquitous, either as primary scientific results
but also as characteristic derived scalar quantities of vector and ten-
sor fields.

Gradient
The gradient of a smooth scalar field s(x) is defined by the first order
spatial derivative of the scalar field. It is given by

∇s = (
∂s

∂x1
, ..,

∂s

∂xn
), (1)

with ∂
∂xi

denoting the partial derivative in the i-th component of x.
The gradient points towards the direction of strongest change in the
scalar field.

Figure 5: Topology of a scalar field (represented as height field). Critical
points are given as small spheres – maxima in red, minima in blue
and saddle points in yellow. Separatrices are depicted as connect-
ing lines. Image courtesy: Jens Kasten [Kas12].

Topology
The topology of scalar fields is represented by their critical points (min-
ima, maxima and saddle points) and their connectivity, see also Fig. 5.
The connectivity is defined by separatrices which are specific curves
everywhere tangential to the gradient field of s(x). They segment the
field into regions where the scalar function is monotonic. Imagining
the scalar field as height field these curves would be the path of a ball
rolling down a hill. The topology can be computed discretely based
on Morse-Smale theory [Mil63] or numerically based on the gradient
vector field of s(x).
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(a) v(x) = (x,y) (b) v(x) = (−y, x)

Figure 6: Two examples of a discrete vector field given as arrow plots – ori-
entation and magnitude illustrated by direction and length of ar-
rows.

2.3 vectors and vector fields

A vector field is defined as a map v(x), x ∈ D and D ⊂ Rn that
assigns an n-dimensional vector v = (v1, .., vn) to each point in the
domainD (see Fig. 6 for two simple examples). We assume the reader
to be familiar with the basics of vector calculus. For an introduction
please refer to [MT88] for example. Unless normalized, vectors en-
code a direction and a magnitude. Vector fields occur in many scien-
tific disciplines, for example as displacement fields, flow fields, or as
gradients of scalar fields.

Stream lines
Integrating line structures along a vector field is a common approach
to give a continuous impression of the directions in the field. For
flow visualization a popular type of such line structures are stream
lines which provide a snapshot at a specific time step in the vector
field. They are tangential everywhere to the vector field and give a
sense of the instantaneous flow directions. Decisive criteria besides
the precision of the stream line computation approach are the chosen
interpolation model and the placement strategy. The definition and
the computation approaches of stream lines and tensor lines (Sec. 2.6)
are almost equal. Therefore these details are given in the vein of ten-
sor lines (Sec. 2.6).

Gradient
The vector gradient tensor of a n-dimensional vector field v(x), also
called the Jacobian, is the first order spatial derivative and defined by:

T =

(
∂vi
∂xj

)
, i, j ∈ {1,n}. (2)

The vector gradient tensor is independent of the chosen frame of ref-
erence for v(x). This property is of especial importance in the area of
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fluid mechanics and will be revisited at the end of this section and in
Sec. 2.8.3.

Divergence and vorticity
Both, divergence and vorticity are important quantities that can be
intuitively understood by looking at a vector field as a flow of a fluid
or gas. However, they are also used for other data types like images,
meshes, and scalar and tensor fields.

Divergence for a vector field v(x) : D → Rn with n ∈ 2, 3 can be
defined as:

div v =

n∑
i=1

∂vi
∂xi

. (3)

If a flow field v(x) is considered as transporting mass then a positive
divergence value at a specific location can be interpreted that mass
spreads outward from that point. A negative divergence value indi-
cates a drain location and zero divergence that mass is transported
with neither loss nor gain. A vector field that is divergence free has
neither sources and nor sinks of mass.
Please note, divergence is exactly the isotropic scaling quantity (apart
from a constant factor) which will be defined for asymmetric tensors
in Eq. 14 .

Vorticity, also called curl, for a three dimensional vector field v(x) :

D→ R3 can be defined as:

rot v = (
∂v3
∂x2

−
∂v2
∂x3

,
∂v1
∂x3

−
∂v3
∂x1

,
∂v2
∂x1

−
∂v1
∂x2

). (4)

The resulting vector is related to the axis of strongest rotation at a
specific location and its magnitude gives the speed of angular rotation
around rot v.
For two dimensional vector fields v(x) : D → R2 vorticity is defined
as scalar quantity:

rot v =
∂v2
∂x1

−
∂v1
∂x2

. (5)

For the two dimensional case, vorticity is exactly the rotation quantity
which will be defined in Eq. 14, apart from a constant scaling factor.

Trying to perceive divergence and rotation from vector illustrations
only might be misleading. Looking at Fig. 2.6(a) it seems obvious that
the flow is expanding as it spreads out from the center point. How-
ever, if the flow would be slowing down as it moves outward we
would have a negative divergence value although the vectors point
outward and might suggest otherwise.
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(a) (b) (c) (d) (e) (f)

Figure 7: Representatives of first order critical points in a linear vector fields:
(a) saddle point, (b) node, (c) focus point, (d) center, (e) spiral, and
(f) improper node.

Topology
The topology of vector fields is again given by critical points and separa-
trices. The critical points are defined by the zeros in the field v(x) = 0
and can be characterized by analysis of their gradient tensor (Eq. 2).
For two dimensional stationary vector fields the following types of
first order critical points occur (Fig. 7): saddle points, nodes, focus
points, centers, spirals, and improper nodes. The separatrices are
found by integrating stream lines from saddle points. They partition
the domain into regions which are topologically equivalent to uni-
form flow.

Dependence on chosen frame of reference
For vector fields in the application area of fluid mechanics it is of spe-
cial importance that the interpretation of vector fields depends on the
chosen view or frame of reference they are represented in. Two com-
mon perspectives on vector fields are the Lagrangian and the Eulerian
view. For the Lagrangian view the field is regarded from a perspec-
tive of a particle moving along with the flow, i.e. position or velocity
are associated with the particle. In contrast, the Eulerian perspective
assumes an observer with a fixed position on a given mesh. Individ-
ual particles play no role and properties like position and velocity
are associated with the spatial location in the mesh. Changing these
perspectives can lead to strongly differing results for the same vector
field.
Another important notion is Galilean invariance which originates in
fluid mechanics. It denotes the quality of some field being indepen-
dent of the change of reference frame by a relative constant (also
called Galilean transformation). Tensors like the vector gradient tensor
(Eq. 2 and Sec. 2.8.3) or the rate of strain tensor (Eq. 11 and Sec. 2.8.4)
in contrast are invariant under the change of coordinate system and
consequently Galilean invariant. Misinterpretations due to different
perspectives cannot arise. This induces a strong importance of such
tensors in the area of fluid mechanics.

This is very compact introduction to vector fields. For further read-
ing on vector fields and their visualization please refer to Telea [Tel08]
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for an introductory summary. Also the state of the art reports given
in the Related Work chapter (Chap. 3) give a good introduction to
vector field visualization for specific application areas.

2.4 tensors and tensor fields

Tensors are multi-linear functions that allow to encode intricate phe-
nomena in natural science, engineering, and other disciplines inde-
pendently of a chosen frame of reference. Tensors generalize and
extend the concept of scalars, vectors and matrices. They provide a
framework that is highly generic and concise for the formulation of
scientific questions. In fact, tensors of order zero are scalars and ten-
sors of order one are vectors. This thesis is concerned with tensors
of order two, also called second order tensors, which allow to encode
anisotropic properties which vary as function of direction.
In this section, first different ways to define a tensor are given to
allow access to a broader audience. The subsequent information
is then restrained to two dimensional tensors of second order de-
fined on planar or curved surfaces which are primarily treated in
this work. Basic concepts and properties of second order tensors are
introduced. For further reading extensive introductions about tensors
can be found in [AMR88] and [Lan12]. Additionally, more informa-
tion about tensors from an engineering point of view is provided
in [Bra03] and [Dan97] .

2.4.1 Definition of Tensors

Due to the power and flexibility of tensors one might encounter vari-
ous definition formalisms, dependent on the discipline or application
area. These definitions describe the same concept and can be equally
transferred into another. In the following two common abstract defi-
nitions are introduced and along that delimited to the aspects that are
relevant for this work. The first definition is that of a tensor as a multi-
linear map which is highly generic and the second is the definition
of a tensor as a linear operator with a possibly clearer interpretation
for a reader new to tensor calculus. Both allow to describe a phe-
nomenon without specifying an explicit coordinate basis. Finally, a
third definition of a tensor in indicial notation is given which is less
generic but occurs frequently as visualization input data.

Tensors as multi-linear maps

T : V∗ ⊗ ..⊗ V∗︸ ︷︷ ︸
n

⊗V ⊗ ..⊗ V︸ ︷︷ ︸
m

→ R (6)

where V is a vector space, V∗ its corresponding dual space, and ⊗ de-
notes the tensor product. T is called a tensor with valence (n,m) and
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of order r = n+m. Please note, the order of a tensor is independent
of the dimension of the given vector space. The order of a tensor de-
notes the number of (vector and dual) spaces it acts on.
In this thesis V is always identified with Cartesian space, therefore V
and V∗ do not have to be distinguished explicitly. Related to this is
the notion of co- and contra-variance, which can be omitted in this
case, as well.
Also the tensors occurring in this thesis are of no order higher than
two. When referring to tensors in this text, tensors of second order
are denoted.

Tensors as linear operator
The following definition of a tensor as linear operator can be general-
ized to a definition equally powerful to that of the multi-linear map.
However, here we restrict it to second-order tensors and assume V as
Cartesian space:

T : V → V (7)

This definition is frequent in engineering and physics. It interprets
the tensor as a linear operator that maps one input vector to a result
vector.

Tensors in indicial notation
In visualization mostly tensors defined by indicial notation appear.
For a beginner, this definition might be more apprehensive. However,
it requires a fixed coordinate basis and is less generic. In this vein
a second order tensor T ∈ Rn×n can be represented by a (n × n)
square matrix (often also referred to as multidimensional array).

T = Tij, i, j ∈ {1, ..,n} (8)

This thesis is concerned with two dimensional tensors, which leads
to a 2× 2 matrix:

T =

(
t11 t12

t21 t22

)
. (9)

2.4.2 Symmetry of a Tensor

Given a tensor T in indicial notation (Eq. 8). T is called

• symmetric if tij = tji,

• asymmetric if tij 6= tji, and

• anti-symmetric or skew-symmetric if tij = −tji.

Symmetric two dimensional tensors are defined by the three in-
dependent scalars t11, t22, t12 = t21. For readers unfamiliar with
tensors the effect of a transformation encoded by a two dimensional
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symmetric tensor can be depicted by a simple icon in form of a circle
that is deformed to an ellipse by a tensor (see Fig. 8).
Asymmetric tensors are defined by all four scalars t11, t22, t12, t21
and in contrast to their symmetric counterpart incomparably more
complex to handle. A straightforward intuition about the informa-
tion encoded by an asymmetric tensor cannot be given like for the
symmetric case. Therefore existing work in visualization for asym-
metric tensors mostly applies some decomposition either to the ten-
sors themselves (see e.g. [ZYLL09] and Sec. 2.4.4 below) or to the
tensor field (see e.g. [ZPP05] and Sec. 2.7.2).

Figure 8: Illustration of the tensor concept: result (ellipse) of applying a
tensor to an isotropic element (circle). The resulting eigenvectors
are depicted as arrows and the eigenvalues are reflected by the
scaling of the arrows. For the isotopic element the eigenvectors
are not uniquely defined and every vector is an eigenvector.

2.4.3 Definiteness of a Tensor

Given a tensor T. Then if for all non-zero vectors v

vTTv > 0 T is called positive definite,

vTTv > 0 T is called positive semi-definite,

vTTv ∈ R T is called indefinite,

where vT denotes the transpose of v. The notion for negative (semi-)
definiteness can be derived of positive (semi-) definiteness, only that
the sign has to be changed.

Properties
Positive definite tensors have eigenvalues (Sec. 2.4.5) and a determi-
nant (Eq. 32) greater than zero. For semi-positive definite tensors the
same holds for greater or equal than zero. For indefinite tensors non
of these assumptions can be made which makes the development of
visualization methods more challenging.

2.4.4 Decomposition of Tensors

Tensors can be decomposed into unique components to alleviate their
processing and interpretation.
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2.4.4.1 Symmetric Tensors

Naturally symmetric tensors cannot contain a rotational component.
However, they can be decomposed uniquely into an isotropic part D
and a deviatoric part A:

T = D + A =

(
t11+t22
2 0

0 t11+t22
2

)
+

(
t11−t22
2 t12

t12 −t11−t222

)
. (10)

Please note, frequently D is also used to denote the deviatoric part
of a tensor. In this thesis however, we adopt the notion of Zhang et
al. [ZYLL09] and identify the isotropic part with D.

Figure 9: Schematic illustration of the asymmetric tensor decomposition
into isotropic scaling, rotation, and shear components. In the im-
age the individual components are applied to the isotropic element
on the left side.

2.4.4.2 Asymmetric Tensors

A popular approach decomposes asymmetric tensors uniquely into
the sum of a symmetric Q and an antisymmetric R component:

T = Q + R

= (T + TT )/2+ (T − TT )/2,
(11)

where TT is the transpose of T. The matrix Q measures the scaling
and shear, and R the rotation induced by the tensor. They are called
rate of strain and vorticity tensor, respectively (see also Sec. 2.8.4).

Further splitting Q (Eq. 10) leads to the following equation:

T = D + S + R

= γd

(
1 0

0 1

)
+ γs

(
cos θ sin θ

sin θ − cos θ

)
+ γr

(
0 −1

1 0

)
,

(12)
with

γd = (t11 + t22)/2,

γs =
√

(t11 − t22)2 + (t12 + t21)2/2, (13)

γr = (t21 − t12)/2.
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The scalar θ is the orientation of the stretching and is given by the
angular component of the vector(

t11 − t22

t12 + t21

)
.

In the following, these components are denoted that D represents the
isotropic scaling, S the pure shear, and R the rotational component of T.
The components of the decomposition are illustrated in Fig. 9.

2.4.5 Eigenvalues and Eigenvectors

A tensor T can be represented uniquely by its eigenvalues λ1 and λ2
and corresponding eigenvectors

↔
v1 and

↔
v2. The eigenvalues λi ∈ R,

i ∈ {1, 2} of a tensor T are defined by the solution of the characteristic
equation:

det(T − λiI) = 0, (14)

where det denotes the determinant of T (Eq. 32) and I ∈ R2x2 the
identity matrix. Solving the following equation delivers the eigenvec-
tors

↔
vi.

(T − λiI)
↔
vi = 0. (15)

In consequence, the eigensystem of a linear system defined by T is
given by:

T ·↔vi = λi ·
↔
vi. (16)

The eigenvectors represent the directions of maximal variation en-
coded by the tensor, the eigenvalues give the maximal magnitude of
this variation, sometimes also referred to as amplitude (for symmetric
tensors see Fig. 8, for asymmetric tensors Fig. 10).

2.4.5.1 Symmetric Tensors

In contrast to asymmetric tensors, the eigenvalues of symmetric ten-
sors are always real valued and eigenvectors mutually orthogonal.
Positive eigenvalues allude to expansion and negative eigenvalues
to compression at a specific location. Since the multiplication of
an eigenvector by any non-zero scalar yields an additional eigen-
vector, eigenvectors should be considered without norm and orienta-
tion. The orientation indeterminacy is indicated by the double arrows
above

↔
vi. As already mentioned above, eigenvalues are named such

that always λ1 6 λ2, associated eigenvectors
↔
vi are indexed accord-

ingly.
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2.4.5.2 Asymmetric Tensors

Eigenvectors for asymmetric tensors are in general not orthogonal
and eigenvalues may be complex. Depending on the eigenvalues a
domainD can be decomposed into real domains (eigenvalues are real
valued), degenerate lines (eigenvalues are equal), and complex do-
mains (eigenvalues are complex valued). The degenerate lines form
the boundaries between the real and complex domains. Along the de-
generate lines the eigenvectors coalesce. In complex domains no real
eigenvectors exist, therefore alternative directional clues have been
developed as continuous extensions of eigenvectors into the complex
domain.

ϕ = π
2 ϕ = 3π

8 ϕ = π
4 ϕ = π

8 ϕ = 0 ϕ = −π8 ϕ = −π4 ϕ = − 3π8 ϕ = −π2

Figure 10: Joint visualization of vectors and derived eigenvector types (ex-
ample vectors depicted as black (curved) arrows). Evolution of
eigenvectors, dual eigenvectors, and pseudoeigenvectors for the
exemplary case of θ = 0 (see Eq. 18). Circular point (Eq. 28) at
ϕ = π/2 indicating purely circular behavior of the vectors. For
ϕ = 3π/8 dual eigenvectors and pseudoeigenvectors depict the
elliptical flow behavior. In ϕ = π/4 the eigenvectors coalesce, for
ϕ = π/8 the eigenvectors are not orthogonal, and in ϕ = 0 the
tensor is symmetric and eigenvectors are orthogonal.

Zheng et al. [ZPP05] introduce dual eigenvectors. In the real domain
dual eigenvectors are the bisectors of the eigenvectors (Fig. 10). From
the viewpoint of flow visualization an intuition about dual eigenvec-
tors in the complex domain is given by interpreting them as the axes
of elliptical patterns a flow forms in this regions. The dual eigenvec-

tors
↔
j1 (minor),

↔
j2 (major) are computed in dependence of the eigen-

vectors
↔
vi and eigenvalues λi according to the following relationship:

↔
vi =


√
λ2
↔
j2 ±

√
λ1
↔
j1 , T in real domain,

√
λ2
↔
j2 ± i

√
λ1
↔
j1 T in complex domain.

(17)

In addition to the dual eigenvectors Zhang et al. [ZYLL09] introduce
pseudoeigenvectors. Again the elliptical flow pattern given by a ten-
sor T shall be represented (Fig. 10). Here, the direction of the pseu-
doeigenvectors is defined by the minimal enclosing diamond of the
ellipse pattern. Since the tensor magnitude and the isotropic scaling
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component have no influence on the eigenvectors only the unit trace-
less tensor is regarded. The tensor T is re-parametrized as follows:

T(θ,ϕ) = sin ϕ

(
0 −1

1 0

)
+ cos ϕ

(
cos θ sin θ

sin θ −cos θ

)
, (18)

with ϕ = arctan
(
γr
γs

)
.

For T = T(θ,ϕ) the major pseudoeigenvector is defined as the minor
eigenvector of the tensor T(θ, π2 −ϕ) if ϕ > π

4 and T(θ,−π2 −ϕ) if
ϕ < −π4 . The minor pseudoeigenvector is defined as the major eigenvec-
tor of the above given tensors under the same conditions.

Eigenvector and eigenvalue manifold
Zhang et al. [ZYLL09] expose that the eigenvectors of a tensor T only
depend on γr, γs, and θ and the eigenvalues can be defined by γd,
γr, and γs. They propose to study the occurring strengths by the
inspection of unit tensors, in their work defined by γ2d + γ

2
r + γ

2
s = 1.

Accordingly, the eigenvalue manifold Mλ and the eigenvector manifold
Mv can be defined as follows:

Mλ = {(γd,γr,γs) | γ2d + γ
2
r + γ

2
s = 1 and γs > 0}, (19)

and

Mv = {(γr,γs, θ) | γ2r + γ
2
s = 1 and γs > 0 and 0 6 θ 6 2π}, (20)

These manifolds are used to classify the tensor field by dominant be-
havior. The eigenvalue manifold Mλ in particular will be used in
Chap. 8.

2.5 tensor interpolation

Interpolation is a fundamental process in scientific visualization. The
definition of scalar, vector, and tensor fields in visualization requires
a continuous model of the given fields. However, in visualization
they are mostly given as sets of discrete data points with associated
values. This happens because the data is measured at discrete loca-
tions or simulations results are written out on various grid types, for
example. Still, most visualization methods require a model for con-
tinuous reconstruction of the data. One very simple reason is for data
given on a grid: visualizing it only at the grid points can introduce a
pattern by the structure of the grid itself and lead to a misconception
of the data (e.g. see recapitulation of works in glyph placement in
Sec 3.2.2). Also the concept of topology which has high importance
in this work affords a continuous model of the underlying data. De-
pending on the data and the application the reconstruction can be a
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sensitive process. Ideally, the chosen interpolation model optimally
approximates the properties of the original data and function. Here,
the choice of the interpolation method strongly influences the quality
of reconstruction.
Although using a higher order interpolation scheme guarantees the
continuity of derivatives (up to the chosen order of interpolation) in
visualization mostly linear interpolation is used. This is efficient and
also sufficient in most of the cases. Still, especially for data of higher
dimension (e.g. vectors, tensors) it has several drawbacks. In the fol-
lowing we address the central issues related to this thesis. A more
general discussion of tensor interpolation can be found in [KASH12].
Foremost, by linear interpolation single features of higher order de-
cay to multiple features of linear order, which limits the clarity of
representation. In general, the interpolation of tensors requires spe-
cial care. Interpolating the data linearly in its components may not
reflect the nature of the initial data and introduce artifacts, such as
the swelling effect. Further and more grave, inconsistencies can arise.
Special attention has to be given, e.g. to positive-definite tensors. But
also for indefinite tensors inconsistencies can be introduced if the in-
terpolation does not respect the topology.

2.6 tensor lines and integration methods

Tensor lines are curves tangential everywhere to the eigenvector fields
which are computed for one specific time step of the tensor field. The
integration of the eigenvector fields results in two orthogonal families
of continuous curves. In the following these curves will be called ma-
jor and minor tensor lines according to the eigenvector field integrated.
Tensor lines are strongly related to the concept of stream lines for
vector fields (Sec. 2.3), only that for tensor lines the integration has
to be kept consistent by orienting the bidirectional eigenvectors into
integration direction. Thus, the theory described below can be used
for both types of integral lines, tensor and stream lines.
In general, the integral lines cannot be described by an analytic ex-
pression, but they can be derived by ordinary differential equations.
Let v(x) be a Lipschitz continuous vector or eigenvector field. The
integral curve c is parametrized by s ∈ R with

c : I → D, 0 ∈ I ⊂ R, I interval

s → c(s)

and for a specific time step t0

∂c

∂s
= v(c(s), t0). (21)
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The solution to Eq. 21 can be obtained by formulating it as an initial
value problem. Several numerical techniques exist to compute a nu-
merical approximation of this initial value problem. We will shortly
summarize two approaches. Let x0 be the starting point of the inte-
gration and h > 0 a chosen step width.

(a) Euler (b) Runge Kutta

Figure 11: (a) Euler integration of first order (three integration steps). (b)
Runge Kutta 4th order integration with evaluation of the vector
field at four sample points (one integration step).

Euler integration
The Euler integration is a first order numerical procedure (Fig. 2.11(a)).
It is defined by

xi+1 = xi + hv(xi) (22)

The Euler integration is rather simple as it only requires one evalu-
ation of the (eigen-) vector field per integration step. Naturally, this
delimits the accuracy of the integration scheme.

Runge Kutta integration
A refined integration scheme is the family of Runge Kutta integrators.
Runge Kutta integration exists of arbitrary order, where the order de-
notes the number of sample points for the evaluation of the function.
In this thesis integration of fourth order (Fig. 2.11(b)) will be used
as we consider it as a good trade off between accuracy and computa-
tional costs:

q1
i = v(xi)

q2
i = v(xi + h/2 q1

i )

q3
i = v(xi + h/2 q2

i )

q4
i = v(xi + hq3)

xi+1 = xi + h/6 (q1
i + 2q

2
i + 2q

3
i + q4

i ) (23)

Further, the integration schemes can be combined with step size adap-
tation. Here, the step size is refined (e.g. divided by two) until the
angular difference of the evaluated (eigen-)vectors is less than a pre-
defined threshold. Stream and tensor lines of an individual field
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are uniquely defined and cannot intersect each others. However, as
they are approximated numerically intersections may occur and if
required, need to be treated explicitly.

2.7 topology of two dimensional tensor fields

In visualization and data analysis topological methods are in general
associated with segmentation algorithms. Two classes can be deter-
mined for the segmentation of a tensor field. First, the algorithms that
generalize common segmentation and clustering techniques known
from image processing. These approaches require the definition of
appropriate dis-/similarity measures for tensor fields which offers a
certain flexibility towards the quantity steering the segmentation pro-
cess. The entire tensor, but also any plausible derived quantity can be
used to partition the field according to the required properties. These
methods are mostly applied in diffusion tensor imaging (DTI). For an
overview of existing methods see Sec. 3.2.1.
The second class of algorithms are those that decompose the tensor
field by extracting the topology. This yields a structural segmentation
that is purely based on the eigenvector characteristics of the field.

2.7.1 Symmetric Tensor Fields

The topology of two dimensional symmetric tensor fields plays a ma-
jor role in this thesis. Hence, it will be introduced in more detail.

2.7.1.1 Topological Graph

The fundamental topological elements are represented by the topolog-
ical graph or topological skeleton which is constituted by:

• Degenerate elements (Sec. 2.7.1.2): Locations in the field where
the tensor’s eigenvalues are equal and the dimension of the
eigenvector space is larger than one. For two-dimensional fields,
the generic case are degenerate points. They can be classified ac-
cording to the behavior of the eigenvector field in their vicinity.
Typical patterns are shown in (Figure 12).

• Separatrices (Sec. 2.7.1.3): Distinctive tensor lines (Sec. 2.6) that
emerge from the degenerate elements and that are tangent to
the eigenvector fields everywhere. Separatrices segment the
tensor field such that they bound regions of qualitative homo-
geneous eigenvector behavior. Fig. 12 shows the separatrices of
both eigenvector fields as bold blue and red lines.

Please note, to complete the topology definition also closed tensor
lines would need to be considered. In practice however, these are very
rare and will not be considered in the presented methods as such.
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2.7.1.2 Degenerate Elements

Common definition
Degenerate points are the basic singularities of the tensor field topol-
ogy. Depending on the application area degenerate points are also
called umbilics or isotropic points. In these locations the tensor behav-
ior is purely isotropic: the two eigenvalues of the tensor are identical
λ1 = λ2, and the eigenvectors are no longer uniquely defined. There-
fore the tensor is proportional to the identity matrix and all vectors
are eigenvectors. Please note, the actual magnitude of the eigenval-
ues is not of importance for degenerate points. Degenerate points
in tensor fields correspond to critical points in vector fields. Due to
direction indeterminacy of tensor lines, however, these points exhibit
structures different from those seen in vector fields.

Tensor index
The existence of an isolated degenerate point can be detected and the
degenerate point categorized by computing its tensor index. This is the
number of windings an eigenvector performs when encompassing it
on a Jordan curve [Del94] in counterclockwise direction. A Jordan
curve is homeomorphic to a circle, e.g. a closed, smooth, and simple
curve. The undirected eigenvector field allows winding-numbers to
be multiples of one half. The closed curve can be encompassed ar-
bitrarily close to the degenerate point. Accordingly, the tensor index
can also be directly assigned to an isolated degenerate point.
In a tensor field defined by linear interpolation only isolated degener-
ate points which are simple (tensor index of ±12 ) can exist. A degen-
erate point with a tensor index of −12 is called trisector; for a tensor
index of 12 it is called wedge point (see Figure 12).

Multiple degenerate points
In general, multiple degenerate points which are degenerate points of

(a) (b)

Figure 12: Basic first order degenerate points for 2D tensor fields: (a) tri-
sector, and (b) wedge. Separatrices for both eigenvector fields
are drawn as bold red or blue lines, respectively. Exemplary in-
tegrated tensor lines (thin lines) emphasize how the eigenvector
behavior within can be reconstructed by the bounding separatri-
ces.
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higher order do not occur in linear tensor fields. However, in very
rare cases or for artificial data sets they can occur as one of the ini-
tially given tensors of the discrete input tensor field (e.g. on the grid
vertices). For these points the neighborhood is no longer linear but
piecewise linear. Their characterization is defined by δ ∈ R, which
can be computed in a simplified approach [Del94] by

δ = ac− bd, (24)

with

a ≡ 1
2
∂(t11−t22)

∂x b ≡ 1
2
∂(t11−t22)

∂y

c ≡ ∂t12
∂x d ≡ ∂t12

∂y .
(25)

at the location of the degenerate point x0. For δ = 0 the degenerate
point is of higher order. To simplify the analysis of multiple degen-
erate points, Delmarcelle [Del94] proposed the physical formalism of
the far field. Here, a multiple degenerate point of index IT regarded
in the far field is equivalent to the sum of simple degenerate points
whose indices sum up to IT:

W + T = IT, (26)

with W and T the number of wedges and trisectors, respectively.

Exact location of linear degenerate points
To compute the location of degenerate points based on a component-
wise interpolation model on a linear planar field only the deviator
tensor A (see Eq. 10) has to be considered as the topology is purely
structural and the scaling component D has no influence on it [Tri02].
Looking for the zeros of the deviator field, can be solved e.g. by com-
puting the zeros of the functions defined over the tensor components.

For the interested reader, the tensor index of an orientable surface
is directly related to the properties of the surface itself. Precisely
speaking, the tensor index of an orientable surface with tangent ten-
sor field T(x) is equal to the Euler characteristic of the surface. This
property holds for any tensor field T(x).

2.7.1.3 Separatrices

Common definition
The behavior of the tensor lines in the vicinity of degenerate points
follows certain characteristic patterns. Although in the degenerate
elements the eigenvectors are not uniquely defined specific tensor
lines can be determined. These tensor lines emerge radially from
the degeneracy and partition the vicinity into sectors of qualitatively
homogeneous eigenvector behavior (see Fig. 22): hyperbolic, elliptic, or
radial sectors.
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Traditionally only radial tensor lines bounding hyperbolic sectors
are called separatrices and constitute the edges of the topological graph.
However, in this work we also consider the radial tensor lines as struc-
tural relevant which bound elliptic sectors (Sec. 4.3) .

Traditional approach - computation
In the approach based on component-wise interpolation the exact di-
rections of the separatrices si from a degenerate point are computed
in terms of angles θi between the x-axis and the separatrices si. For
simple degenerate points all radial directions are delivered by com-
puting the real roots zk (including infinity) of the following cubic
equation:

dz3 + (t21 + 2t12)z
2 + (2t11 − t22)z− c = 0, (27)

with dzk = tanθk. Classifying the sectors bounded by the radial lines
and only keeping those radial lines that coincide with the boundary
of a structurally relevant sector finally delivers all separatrices.
The actual classification is explained in detail in Sec. 4.3.4.

2.7.2 Asymmetric Tensor Fields

Here, the topological features of asymmetric tensor fields are briefly
summarized, for more detail please refer to the work of Zheng et
al. [ZPP05], for example. Degenerate lines where eigenvalues are
equal, and eigenvectors coalesce constitute an important topological
feature. As mentioned before, degenerate lines form the boundaries
between complex and real domains. Like this an asymmetric tensor
field can be decomposed into regions where tensors have a stretching
effect (real domains) and into regions where tensors have a swirling
effect (complex domains). Degenerate points are referred to as circular
points. Circular points are defined by

(t11 − t22)
2 + (t12 + t21)

2 = 0. (28)

In fluid mechanics these locations indicate purely circular flow pat-
terns.

2.8 areas of application and types of tensors

Tensors occur in a multitude of areas ranging from medicine to im-
age processing. The methods presented here focus on the area of me-
chanics and engineering. With mechanics we summarize continuum
mechanics, fluid mechanics, and geomechanics. Introducing these ar-
eas of research in depth is beyond the scope of this thesis. We will
briefly characterize them and add a reference that can be used by the
interested reader for further reading.
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Continuum mechanics examines the internal forces in a body as re-
action to external forces. The body is considered to be a continuous
mass rather than a set of discrete particles (Segel [SH87]). Fluid me-
chanics summarizes liquids, gases, and plasmas as fluids. Especially
of interest are fluid dynamics (Batchelor [Bat67]) which study fluids
in motion (see also Sec. 2.8.4). Finally geomechanics (Elsoufiev [Els07])
studies forces acting within soil and rock. This is strongly related to
seismology (study of earthquakes, primarily), or finds its application
in geotechnical engineering like tunnel design or rock drilling.
These areas of application share the fact that important results are
given by indefinite symmetric tensors and asymmetric tensors. For
both types of tensors rather few visualization methods have been de-
veloped.

2.8.1 Stress Tensor

One very important type of tensor in mechanics is the stress tensor. It
describes internal forces occurring in deformable bodies experiencing
small deformations. These internal forces arise as a reaction to exter-
nal forces applied to the body. For researchers an interesting issue
is, if these forces can lead to structural failure. However, also liquids,
and gases have stress fields. Given on infinitesimal small volume ele-
ments the stress tensor is symmetric (see Fig. 2.13(a)).

(a) (b)

Figure 13: Forces (red arrows) acting on a deformable body. (a) Compo-
nents of the resulting stress tensor defined on an infinitesimal
small volumetric element. (b) Stress vector tn on specific cutting
plane with surface normal n. The stress vector can be further
decomposed into the shear and normal stresses τn and σn, re-
spectively.

Measures of stress
The principal stresses can be directly derived from the stress tensor,
they are the eigenvalues of the stress tensor. The eigenvectors are
called principal directions in this context. Further investigation is done
by inspecting stress forces on a specific cutting plane (see Figure
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2.13(b)): the stress tensor maps a corresponding surface normal to
a stress vector t. Normal (σ) and shear (τ) stresses can be determined
from the stress vector t. Another important measure for shear is the
maximum shear stress defined in Eq. 31 below. In this thesis we
will be concerned with the principal stresses and the maximum shear
stress.

2.8.2 Strain Tensor

Directly related to the stress tensor is the strain tensor. The strain
tensor describes the deformation in terms of a change of shape due
to applied forces. The stress-strain relationship is described by con-
stitutive equations, such as Hooke’s law for linear elastic materials.

2.8.3 The Vector Gradient Tensor

The vector gradient tensor has been formally introduced in Eq. 2. For
the sake of completeness of this section we will shortly revisit it here.
It can be of interest from many points of view. Inherently, any deriva-
tive of a function allows further inference on specific properties. With
respect to vector fields especially another quality comes into play –
the vector gradient tensor is independent of the chosen frame of ref-
erence. A pure vector based visualization might lead to misinterpre-
tations due to the chosen frame of reference which cannot happen for
the gradient tensor and its derived quantities (see also Chap. 8).

2.8.4 Rate of Strain Tensor

The rate of strain tensor occurs mostly in fluid dynamics and is de-
rived from the vector gradient tensor according to the decomposition
of Eq. 11. It reflects the amount of stretching and shearing in a flow.
The diagonal entries of Q are called the normal strain rates. The non-
diagonal entries are the shear strain rates.
Its asymmetric counterpart, the vorticity tensor R, allows inference
on vortical activity in a flow. In this thesis it will only be visited in
terms of its scalar strength quantity γr (Eq. 14).

2.9 derived scalar quantities

In this section we will shortly summarize derived scalar quantities
of tensors which are commonly important and which will partially
enrich or guide the visualization methods in the subsequent chapters.
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2.9.1 Fractional Anisotropy

Anisotropy is commonly used as notion to describe the direction de-
pendency of some phenomenon’s properties. The opposing notion is
isotropy which indicates that properties are equal in all directions.
In diffusion tensor imaging (DTI) fractional anisotropy FA is a mea-
sure which describes the strength of anisotropy:

FA =

√
1

2

(λ2 − λ1)2

λ22 + λ
2
1

(29)

The definition results in an anisotropy measure with a range from
zero to one for λi > 0, see also Fig. 2.14(a). The minimum value 0 is
reached in the isotropic case when λ1 = λ2. The maximum value of
1 is reached for λ2 = −λ1. For λ2 = λ1 = 0 the values are undefined
which poses no problem for positive definite tensors like they are
used in DTI applications.

(a) (b) (c)

Figure 14: (a) Plot of the original fractional anisotropy definition over the
λ1, λ2 plane as height functions with highlighted isolines. The
function is undefined in (0, 0), else the values for the isotropic
case λ2 = λ1 are zero. Plots in (b) and (c) show the generalized
fractional anisotropy measure FA∗ where the discontinuity in the
origin is removed with two different values for the parameter A.
The values for isotropic case are still zero.

In this work we require a generalization of this measure to indef-
inite tensors. A way to eliminate the discontinuity close to zero is
to introduce an additional positive constant which is added to the
denominator.

FA∗ =

√
1

2

(λ2 − λ1)2

λ22 + λ
2
1 +A

2
(30)

This results in low anisotropy values for tensors with eigenvalues
with different sign but small absolute value, see Fig. 2.14(b), 2.14(c).
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2.9.2 Maximum Shear Stress

Maximum shear stress S is defined by the principal stresses as

S = |λ2 − λ1| (31)

and is related to the anisotropy. Here, absolute values are regarded.
The maximum shear stress denotes the maximum difference of the
principal stresses that can occur in a specific location. Thus, it is an
important measure for possible material failure. Thereby the direc-
tion of most likely failure is along the bisectors of the two eigenvec-
tors

↔
v1 and

↔
v2.

2.9.3 Determinant

For a 2× 2 matrix the determinant is defined as

det(T) = t11t22 − t12t21 (32)

If the determinant is non zero the matrix is invertible. The transfor-
mation can be characterized by the absolute value of the determinant
which gives the scaling factor by which an area or volume is multi-
plied. The sign of the determinant indicates if the transformation is
orientation preserving.

2.9.4 Trace

The trace of a tensor T is defined as the sum of its diagonal compo-
nents

tr(T) =
n∑
i=1

tii. (33)

The trace is equal to the sum of the eigenvalues. Its notion is similar
to that of the determinant as it also encodes the change of size or
volume.

2.10 used grid types

All presented algorithms are developed for data sets given on a trian-
gulated domain. Of special importance are Delaunay triangulations
(see e.g. de Berg [dBvKOS00]) that maximize the smallest angle inside
a triangle. If data is processed based on a triangulation the triangles
themselves introduce a bias as all points within a triangle are pro-
cessed purely based on the data defined for this triangle.
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(a)

(b)

Figure 15: Image illustrating the effect
of a Delaunay triangulation
for interpolation. (a) Ran-
dom triangulation ignoring
inner angles. (b) Delau-
nay triangulation maximiz-
ing minimal inner angles.

Here, the Delaunay triangula-
tion can represent the more "nat-
ural" triangulation. It reduces
elongate triangles that are un-
favorable (see Fig. 15). This
is also important for the topol-
ogy computation in Sec. 4.3
where degenerate points are in-
serted to the Delaunay trian-
gulation with subsequent re-
triangulation. This facilitates
degenerate elements of higher
dimensionality and strongly re-
duces the complexity of the
topological graph.
Within the triangles we use lin-
ear interpolation by barycentric
coordinates (see e.g. Sec. 4.2).
For curved surfaces we use a polyhedron structure. It provides a
structure for geometric meshes with vertices, half-edges and facets
with their incidences. In our case the facet shape is restricted to trian-
gles. We can define piecewise linear interpolation on this structure.
For all grid types the implemented structures of CGAL [cga] were
used.
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Tensors provide a highly flexible language to capture a multitude of
phenomena. Accordingly, visualization methods are often designed
for explicit applications as the tensor fields have differing and often
very application specific characteristics.
Many visualization and analysis methods for tensor fields are built
on derived scalar fields. While this approach is often helpful it is not
always sufficient as looking at the isolated scalar values implies loss
of information. Thus, tools are required representing the entire tensor
information. For this purpose a variety of visualization methods has
been developed. However, most existing tensor field visualization
work has been done in the area of diffusion tensor imaging (DTI),
which is restricted to semi-definite tensors. In contrast, visualization
methods for mechanics and engineering need to be applicable for in-
definite tensors which poses specific challenges.

In this chapter, we will recapitulate methods that are related to the
work presented in this thesis. Hereby, we pursue two major goals:

• To provide an overview over related methods – the main con-
cepts will be summarized and set in contrast.

• Where a direct relation exists the respective chapters of this the-
sis are referenced and are set into context with the related work.

For further reading we recommend the overviews given by Kratz et
al. [KASH12] and Cammoun et al. [CCMMM+

09]. The state of the
art report by Kratz et al. revises methods for indefinite symmetric
tensors with a focus on engineering and physics. Cammoun et al.
introduce tensors from the perspective of signal processing and com-
puter graphics.

The remainder of this chapter is structured as follows:

1. An overview about the subject of tensor field interpolation is
given which is relevant for the eigenvector-based interpolation
presented in Sec. 4.2.

2. Existing work in tensor field visualization is summarized. The
methods are subdivided into structure and image focused ap-
proaches. Structure focused methods are the most important
part for this thesis, the topology computation (Sec. 4.3, Chap. 7)
and the topology based segmentation (Chap. 5) are methods

35
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that can be used as visualizations themselves, but they also re-
turn explicit geometric structures that characterize the tensor
field and that allow the use of multiple further analysis and vi-
sualization methods. Image focused methods are employed in
Chap. 6: the topology based segmentation of Chap. 5 serves as
framework to map textures and glyphs.

3. Methods for vector field simplification and feature analysis are
also summarized as in Chap. 8 asymmetric tensors will be used
to give a simplified, sketch-like visualization of vector fields.
Asymmetric tensors occur as derivatives of vector fields and
derived quantities enhance the illustrative depiction of vector
fields.

3.1 tensor interpolation

Interpolation is a central subject in scientific visualization. Mostly
the phenomena to be visualized are given as sets of data points. To
provide an trustworthy analysis and visualization the data has to be
reconstructed to a continuous function in a sensible manner. Depend-
ing on the type of data and application different demands arise. In
tensor field visualization the preservation of tensor properties and/or
invariants, consistency, and efficiency are some of the central ques-
tions for interpolation models (for more details see Sec 2.5).
Especially in the context of tensor imaging an important requirement
is the preservation of positive definiteness of the input tensors. Ex-
cellent theoretical properties are given by works based on a metric
defined on the Riemannian manifold that guarantees affine invari-
ance [MB06, FJ07, LRDF06, PFA06]. Less computational costly ap-
proximations are based on a log-Euclidean metric [AFPA06, FAPA07].
Here again, positive-definiteness is preserved and the determinant is
monotonically interpolated along geodesics.
Alternatives to preserve the nature of the tensor data are methods
separating direction and shape. Due to the direction indeterminacy
of eigenvectors a consistent interpolation of the directions is no trivial
task. Many proposed approaches are based on heuristics [BCG+

92,
CAA01, MFWAL04, BWHK05] which is feasible if isotropic regions
are not regarded. Kindlmann proposed an interpolation based on
geodesic loxodromes[KEN+

07] which interpolates three dimensional
tensors in one dimension along a line.

Context to this thesis: The interpolation models decoupling shape
and direction are those related to the work in Sec. 4.2. The eigenvector-
based interpolation for two dimensional tensors interpolates direc-
tions and shape separately. Therefore it is shape preserving. No
inconsistencies can be introduced by this interpolation schema as de-
generate elements are incorporated in the model.
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3.2 tensor field visualization

Although this is no absolute classification, for this thesis it is conve-
nient to split previous work in tensor field visualization into structure
focused and image focused approaches. In this classification structure
focused methods are regarded to return some geometric structure or
entity (such as partitions) as primary result. These structures can
be used as visualization themselves but they also provide a basis for
further processing such as tracking, simplification or as preprocess-
ing step for a variety of visualization methods. With image focused
methods the main attention lies on the final image.

The major part of this thesis is concerned with structure focused
methods. The extent in the review of existing methods is adapted
accordingly, especially the overview of topological methods will take
a large portion.

3.2.1 Structure Focused Approaches

The structure focused methods for tensor fields related to this the-
sis can be subdivided into two types: tensor lines and their refined
variations, and the extraction of structures that segment the tensor
field. Such a segmentation is either based on structural properties
and returns the topological structure or it is based on an appropriate
dissimilarity measure and partitions the tensor field more generally.

3.2.1.1 Tensor Lines

To depict the behavior of a single eigenvector field, tensor lines can
be used. These are defined as lines that are tangential to the chosen
eigenvector field. They are strongly related to streamline methods
used for vector fields. Hyperstreamlines introduced by Delmarcelle
and Hesselink [DH92] are an extension, which additionally incorpo-
rate the eigenvalues and other principal directions.
Hyperstreamlines have been utilized in a geomechanical context by
Jeremic et al. [JSF+

02]. Wilson et al. [WB05] modified the idea of in-
tegrating tensor lines. Instead directions of maximum shear stress in
two dimensional tensor fields are integrated. The overall directional
behavior in the field can be understood in terms of an evenly spaced
stress net.

3.2.1.2 Tensor Field Topology

Methods concerned with the structural segmentation of possibly in-
definite tensor fields are based on tensor field topology. They concen-
trate on the structure of the eigenvector fields neglecting the scalar
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entities like eigenvalues.

Topology of two dimensional symmetric tensor fields – The idea of using
topology to analyze the structures of tensor fields goes back to Del-
marcelle et al. [Del94, DH94] and Lavin et al. [LBHL97]. This builds
the basis for the tensor field topology methods proposed in this thesis.
They have introduced the topological skeleton consisting of degen-
erate points and connecting tensor lines as basic constituents. The
topological skeleton separates the field into regions of qualitatively
homogeneous eigenvector behavior.
Simplifying and tracking over time of the resulting structures was
started by Delmarcelle [Del94]. Following this work, much effort has
been put into simplification and tracking by Tricoche et al. [TSHC01,
Tri02]. This results in structures, that are easier to understand and
enhances their practical applicability, especially if more complex 2D
tensor fields have to be analyzed.
Alliez et al. [ACSD+

03] proposed an application to curvature tensors
and their topology for polygonal re-meshing of surfaces.

Context to this thesis: Sec. 4.3 presents the topology extraction for
two dimensional symmetric tensor fields based on the shape preserv-
ing interpolation model (Sec. 4.2). The topology is consistent and
delivers qualitatively equal results to the method invented by Delmar-
celle et al.(Delmarcelle1994, Delmarcelle1994a). It extracts the integral
topological graph which captures both eigenvector fields. This graph
is automatically simplified, in contrast to the methods presented by
Tricoche et al. [TSHC01, Tri02] which are parameter dependent or re-
quire user interaction. Methods presented by Tricoche et al. reduce
the number of degenerate points, whereas our method reduces the
number of relevant separatrices.
The results of Chap. 5 share many aspects with the re-meshing of
Alliez et al. [ACSD+

03]. Alliez uses the curvature tensor of a triangu-
lated surface to re-mesh it to polygonal structures. For this purpose
initially also the topology of both eigenvector fields is computed, ac-
cording to [Del94]. Then the topology is refined until the surface is
re-meshed to a predefined granularity. In contrast to our work Alliez
performs initial smoothing to the tensor field to obtain clean results,
which seems feasible if the goal is re-meshing. The only directive
for the generation of the final mesh is a distance measure based on
anisotropy. Our method is optimized for a variety of measures and
applications. Depending on the resolution of the initial surface’s tri-
angulation it might be an valuable extension to the re-meshing pro-
cess to also look in the vertices and edges for degenerate elements as
proposed in Chap. 7.
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Topology of three dimensional symmetric tensor fields – 3D tensor field
topology was initiated by Hesselink et al. [HLL97] . Zheng et al. [ZP04]
picked up the work in Their analysis shows that in three dimensions
degenerate one-dimensional structures (lines) are stable topological
features, while degenerate points are not. A reformulation by Tric-
oche et al. [TKW08] leads to a definition of these degenerate lines
as crease lines of a tensor invariant. This allows the adaptation of
methods from scalar field analysis for the extraction of degenerate
elements. Still, the understanding and representation of the topology
for tensor fields of dimension higher than two is subject to ongoing
research.

Asymmetric tensor field topology – Tensor field analysis is also becom-
ing increasingly interesting in context with fluid dynamics. The ten-
sor of interest is the gradient of the vector field, which is not symmet-
ric. Zheng et al. [ZPP05] extend the topological analysis to 2D general
(asymmetric) second order tensor fields. Their goal is give a continu-
ous view onto the field by partitioning the domain. In regions where
eigenvalues are complex the tensor has a rotational effect and in re-
gions with real valued eigenvalues the tensor has a stretching effect.
These regions are separated by degenerate lines, where the eigenvec-
tors coalesce. Zhang et al. [ZYLL09] continued this approach. At
the core of their analysis is a reparameterization of the tensor space,
which allows to understand the topology of asymmetric tensor fields
by studying the manifolds of eigenvalues and eigenvectors.

3.2.1.3 Vector Field Topology on Piecewise Linear Surfaces

There has not been much work on the extraction of tensor field topol-
ogy on piecewise planar surfaces. However a few publications deal
with the related problem for vector fields, which is often referred to
as 2.5 dimensional topology. Already Helman and Hesselink recog-
nized the importance of surface topology [HH90]. While focusing on
the related flow phenomena they are not concerned with issues aris-
ing for piecewise planar surface representations. Kenwright [KHL99]
proposed to investigate the wall shear stress vector field, which is
a tangential vector field, to find separation and attachment lines in a
flow around an embedded object. This idea has been further followed
by Tricoche et al. [TGS05] who also recognize the problem of discon-
tinuities of the tangent vector field on piecewise planar surfaces. A
solution for a consistent integration of streamlines is discussed. Li
at al. [LV+

06] model arbitrary higher order singularities represented
at vertices on simplicial surfaces. The focus lies on the introduction
of an appropriate vector interpolation schema on the mesh. Central
to this interpolation is an integer called the period jump, which is
associated to each dual edge of the triangulation. The primary goal
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of this method is to find a good discrete approximation for continu-
ously given vector fields and not the analysis of a given field. The
detection of the complete set of singularities is not guaranteed. An-
other approach is followed by Zhang et al. [ZMT06] with the purpose
of vector field design for texture synthesis. To create continuous vec-
tor fields on curved surfaces represented as meshes, they use geodesic
polar maps and parallel transport to interpolate vector values defined
at the vertices of the mesh. This yields a non-linear vector field inside
each triangle, loosing the simplicity of linearity. Later this work has
been extended to tensor fields [ZHT07]. Garth et al.[GLT+

07] extract
the boundary topology of engine simulation data. In their work they
hint at the necessity of integrating so-called ‘singular edges’ into the
topological analysis. In context with vector field singularity track-
ing on curved surfaces Wiebel et al. [WTS+

07] observe singularities
disappearing in vector field discontinuities. They propose to tackle
this problem by parameterizing the mesh such that further compu-
tation can be carried out in the plane. The singularities are then
mapped back onto the triangle mesh. They avoid to compute a global
parametrization of the whole surface restricting the analysis to sub-
regions of the triangle mesh, which are homeomorphic to a disc and
without sharp edges. However these parametrizations have to be
computed involving a distortion of the triangles. For the interested
reader an overview of topology-based methods in flow visualization
can be found in [LHZP07].

Context with this thesis: In Chap. 7 we will present the model of con-
tinuous transition bridges, that is locally applicable (in vertices and
edges of a triangulation) to detect simple and higher singularities for
vector and tensor fields.

3.2.1.4 Segmentation by Dissimilarity Measure

For diffusion tensor imaging (DTI), a lot of effort has been put into
tensor field segmentation, mostly with the goal of brain segmenta-
tion. Extending methods from image segmentation and clustering,
the central research topic is the definition of an appropriate dissim-
ilarity measure for tensors. The simplest dissimilarity measures are
based on tensor components separately considering the tensor seg-
mentation as a multi-channel segmentation of scalar values. More
elaborate methods use dissimilarity measures based on invariants or
comprise the entire tensor data. In general the chosen dissimilarity
measure determines the applicability to indefinite tensors.
A review of developments that focus on the segmentation of anatomi-
cal structures from DTI can be found in [dLGLW09]. Proposed meth-
ods range from active contours [Wan04], level sets [ZMB+

03, FWB03]
to graph-cut algorithms [WH07, ZTW06]. Used metrics are the angu-
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lar difference between principle eigenvector directions, or standard
metrics considering the entire tensor, like the Euclidean or Frobenius
distance.
Wang et al. [Wan04] introduced a distance measure based on the
Kulback-Leibler distance from information theory designed for Gaus-
sian distributions. Although, it is a good representation of the diffu-
sion tensor characteristics, it is limited to positive definite tensors.
A segmentation designed for meshes based on the curvature tensor
was introduced by Lavoue et al. [LDB05]. Vertices are clustered ac-
cording to their principal curvature values using a k-means classifica-
tion. The boundaries of resulting cells tend to be parallel to lines of
minimum curvature but do not exactly represent the principal direc-
tions.

Context to this thesis: In Chap. 5 we provide a segmentation that
is topology based and offers a variety of scalar quantities (e.g. eigen-
values, anisotropy measures) that are employed as dissimilarity mea-
sures to steer the granularity of the segmentation. The boundaries of
the segmented regions are given explicitly in terms of tensor lines and
consistency is guaranteed. However, inherently segmentation meth-
ods that are derived from image processing approaches offer more
possibilities to be performance optimized.

3.2.2 Image Focused Approaches

In general, the developed visualization methods can be subdivided
into local, continuous or hybrid methods. If the goal is to convey the
entire information contained in single tensors, local methods might
be favored. For the representation of an entire field, however, this can
lead to perceptional issues and most importantly overwhelm the user
in its information content. Therefore, continuous representations are
more appropriate to convey an overview of the data. Mostly these
methods build on derived scalar or directional quantities. The combi-
nation of both – continuous and local methods – are especially bene-
ficial for 3D tensor fields. They are referred to as hybrid methods.
For all approaches an adept mapping of the quantities to be displayed
can strongly support the understanding of the field.

3.2.2.1 Mapping

Applying a sensible mapping to the occurring input parameters can
do a great deal for the final visualization. Mapping techniques in
terms of scaling the data allows to get a hold on a large range of data
values. Additionally a specific interval in the data values can be em-
phasized. Exponential mapping (i.e. [SK10]) can be applied to tensors
describing infinitesimal deformations to provide clear differentiation
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of the eigenvalues’ signs. A generic mapping is given by Hotz et
al. [HFH+

04] which also allows to distinguish the eigenvalues’ sings.
Also it can be used to encode physical properties, e.g. compression
and expansion, in the final visualization.

Context to this thesis The approach of Hotz et al. is employed and
adapted in Sec. 6.1.2.2.

3.2.2.2 Local Visualization

Direct tensor visualization approaches focus on displaying tensor val-
ues in discrete points. In this context research issues usually deal
with the design and placement of glyphs. Shape, size, orientation,
color, and texture can be used to encode tensor properties. Evidently,
the entire tensor information and derived quantities can be displayed
in one geometric object. Still, the design and use of glyphs always
has to be guided by a trade-off between richness in information and
perspicuity. The applicability of glyphs is mostly restricted to ten-
sor fields defined on two dimensional surfaces. Naturally, glyphs are
well suited for hybrid methods and interactive probing at distinctive
locations for detailed inspection.
A complete review of all existing work about Glyphs is beyond the
scope of this thesis. A collection with related papers can be found
in [WW05, LW09].
For an overview about the design of glyphs the reader is referred to
the article by Hashash et al. [HYW03] (glyphs for stress and strain
tensors), and about perceptional issues such as visual ambiguity to
[SK10]. Additionally, the state of the art report [KASH12] thoroughly
reviews design-guidelines, appropriate mapping of encoded quanti-
ties, and a discussion of the most common glyphs in DTI and me-
chanics.
In the following a brief summary of glyph types for three dimen-
sional tensor fields is given. Probably the simplest glyph for ten-
sors to depict the entire tensor information is an ellipsoid aligned
to the tensor’s eigenvectors and scaled according to its eigenvalues
(Fig. 8). An important glyph family are superquadric glyphs based on
a parametrizable space. Barr [Bar81] introduced the idea of a generic
interpolation of complex glyph geometries within the parametrized
space defined by simple base types. Improvements were made to-
wards perception [SHB+

99, Kin04], applicability for for indefinite
tensors [SK10] and a specified glyph variant for traceless tensors
[JKM06]. For mechanical applications a broad variety of glyphs is
available: Mohr’s circle [BN03, CRBC04, CRB+

05, KMH11], Lamé’s
stress ellipsoid, the Haber glyph [Hab90], Reynolds glyph [MSM96,
KYHR05], HWY glyph[HYW03], quadric surfaces, and plane-in-a-
box-glyph [NJP05].
Another challenge is the placement of glyphs to maximize the in-
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formation that is conveyed in an image. Like this a continuous im-
pression of the field can be achieved. Previous methods in this con-
text aimed to create sample distributions that avoid holes and over-
laps [SYI96, HSH07, FHHJ08, KW06, KKH11]. Their applicability for
visualization is mostly limited to tensor fields defined on two dimen-
sional surfaces.

Context to this thesis: Chap. 6 addresses the question where to place
glyphs by exploiting the segmentation of the tensor field into cells –
the aim hereby is not to give a continuous representation of the entire
field, but to use the homogeneous cells as frame for selective probing
for more detailed insight at distinctive locations.

3.2.2.3 Continuous Visualization

While glyphs are appropriate for displaying single tensors, they are
limited to low resolution and might fail to give insight into the struc-
ture of the entire field. First overview or context visualizations can
be generated by volume rendering. This approach is based on the
definition of relevant derived scalar quantities that are mapped by a
transfer function to color and opacity [DGBW09, KW99, HSW+

09].
However important information is lost by the reduction to scalar in-
put parameters.
An alternative can be given by employing textures. They provide a
multitude of parameters to reflect tensor characteristics without re-
ducing the information content of the tensor field. In return, texture-
based methods are generally restricted to two-dimensional surfaces.
Textures based on line integral convolution (LIC) [CL93], for example,
have been extended to HyperLIC [ZP03]. HyperLIC uses a multi-pass
approach to represent the orientation of one eigenvector field and to
highlight anisotropy.
Another extension are fabric textures [HFH+

04]. Two LIC images for
every eigenvector field are computed and blended, which leads to an
image that resembles a fabric encoding central physical properties of
stress tensor fields into fiber thickness (thin = compression, thick =
expansion).
A novel method based on anisotropic sampling [KKH11] has been
introduced. By computing a generalized Voronoi diagram on the ba-
sis of a tensor-determined local metric, the resulting regions can be
mapped with textures which results in a large variety of possibilities
to create visualizations.
Similar to textures a continuous view on a tensor field can be gen-
erated by tensor splats [BW03, Ben04]. Tensor splats can also be
used for three dimensional tensor fields if the volumetric data can
be strongly filtered.
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Context to this thesis: In Chap. 6 we present a method to map
a variety of textures using the tensor field segmentation of Chap. 5.
The segmentation solves the intricate question where to map textures
by providing the framework by the explicit cell geometries.

3.2.2.4 Hybrid Visualization

Three-dimensional visualization methods are rare. Hybrid methods
can help to propose three dimensional context visualization with de-
tailed depictions in regions of interest. Dick et al. [DGBW09] pro-
posed a visualization of stress tensor fields for implant planning.
They focus on hybrid methods to emphasize important regions and
to avoid clutter. When features of interest are not known in advance,
explorative methods can help [KKH11]. Here integrated views help
to understand tensor fields from different perspectives.

3.3 vector field visualization : simplification strate-
gies and feature analysis

Chap. 8 will introduce an illustrative visualization of vector fields by
analyzing the properties of the gradient vector field in terms of an
asymmetric tensor field.
The analysis and visualization of vector fields has already a long tradi-
tion in the area of visualization. Accordingly, a large amount of inter-
esting work has been done in this field which is far beyond this paper.
Considering different views on the topic, good review articles can
be found: Texture and Feature-Based Flow Visualization [EGL+

06],
Topology-Based Flow Visualization [LHZP07], Partition-based Tech-
niques [SJWS08], and Illustrative Flow Visualization [BCP+

12]. For
the work in Chap. 8 methods for vector field simplification and fea-
ture analysis are of interest which are be summarized below.

3.3.1 Simplification via Vector Clustering

One approach to simplify complex data sets is to group regions of
similar behaviors and represent them using on icon, e.g. one repre-
sentative vector or a curved arrow icon. For all methods, the choice
of an appropriate similarity measure on which the clustering is based
is essential. Mostly, they are a combination of a position and vec-
tor (orientation and magnitude) error. Being able to display several
levels of details the construction of vector field hierarchies has been
the goal of several clustering algorithms. The methods can be mainly
distinguished by choosing a top-down or bottom-up approach. An
early work by Heckel et al. [HWHJ99] recursively uses planes to split
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clusters based on streamline discrepancy as error measure. The re-
sult is a hierarchy of convex clusters. Another top-down approach
using a generalized normalized-cut algorithm has been proposed by
Chen et al. [CBHL03]. The goal of their method is to cluster vectors
that are associated with the same critical point. Du et al. [DW05] pro-
pose a simplification of vector fields resulting in a predefined number
of clusters based on Centroidal Voronoi tessellations (CVTs). Based
on the chosen distance function, the vector fields are then naturally
clustered by the CVT. A generalization of the K-means clustering has
been introduced by Mc Kenzie et al. [MOD05]. Its basic component
is a variational clustering algorithm, that minimizes a global error for
a given number of cluster sets. The algorithm is applicable to 2D and
3D fields and the error metric is flexibly exchangeable. There are also
a couple of approaches pursuing a clustering based on an anisotropic
diffusion process. In contrast to other clustering approaches, this is
a continuous process without explicit split or merge events. Garcke
et al. implemented a phase field model adapting the Cahn Hillard
model to vector fields [GPR+

01]. Greibel et al. propose to use an alge-
braic multi grid method to achieve similar results. While generating
impressive results, theses methods do not provide a direct error con-
trol. The method we build on was developed by Telea et al. [TvW99].
The goal of their work was to produce simplified but suggestive im-
ages without much user interaction. The clustering process works
bottom-up starting with clusters for every data point. Then clusters
are successively merged according to differences in position and ori-
entation and magnitude. A nice feature of the method is the design
of the similarity measure which allows to control cluster shapes by
adapting to the weights of the various terms in the error measure.

3.3.2 Simplification via Streamline selection or Clustering

Another approach is to simplify the vector field representation dis-
playing only selected streamlines. There are several streamline place-
ment algorithms with the goal to achieve a uniform coverage of the
domain that is sparse but still gives a continuous impression of the
field, e.g. for 2D fields [JL01, RPH+

09] and for 3D fields [MCHM10,
CYY+

11]. Techniques that cluster precomputed streamlines are fre-
quently used in context of fiber tracking for diffusion tensor data. An
evaluation of related methods can be found in [MVvW05]. Kuhn et
al. [KLG+

11] have introduced a clustering technique using streamline
properties, as curvature, to detect regions of similarity and visualize
them by means of compact cluster boundaries.

A natural segmentation of vector fields in regions of similar stream-
line behavior is defined by its topological structure. Methods to sim-
plify this structure and use it for visualization purposes have been
proposed by Tricoche and Garth et al. [TSH01, GTS+

04].
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3.3.3 Feature Extraction for Vector Fields

The second component of the visualization frame work in Chap. 8

builds on existing work on feature extraction and definition for vector
fields. Papers in this area are concerned with the definition, stable ex-
traction, and simplification of features. One can distinguish features
that are directly defined on the vector vector field, as vector field
topology, and features that facilitate a derived scalar field. Vector
field topology thereby focuses on finding features like source, sinks,
and saddle points as well as separatrices connecting them [LHZP07].
Scalar typed features are mostly defined as iso-contours for a given
threshold or the extremal structure of the field [SWC+

08]. Prominent
examples are vortex like features defined on basis of vorticity [SPP04,
SWTH07], λ2 [JH95], the Q quantity proposed by Hunt [Hun87], or
the acceleration magnitude [KRHH11]. An evolved analysis of mul-
tiple scalar and vector-like features has been presented by Zhang et
al. [ZYLL09, CPL+

11]. They consider the gradient vector field as ba-
sic feature carrier, which is composed in three components: isotropic
scaling, rotation, and shear. While the first two components have
only two distinct expressions, i.e., positive respective negative, the
shear factor is also equipped with directional information. Based
on this tensor decomposition, the domain is classified into regions
where one feature dominates the others. We built on this work but fa-
cilitate the strength of the respective tensor components for a layered
visualization. A decomposition with similar meaning is the Hodge
decomposition which decomposes the field into a a divergence-free,
a curl-free part, and a harmonic part. A topological analysis and
multi-scale decompositions based on this decomposition has been
persuaded in [PP03, TLHD03]. A glyph-based visualization of time-
dependent flows has been proposed in [HLNW11].

Context to this thesis: Based on the tensor decomposition of Zhang
et al. [ZYLL09], we will present in Chap. 8 a simplified depiction of
vector fields. In contrast to previous work on simplified vector fields
we also incorporate the information gained by looking at the gradient
vector field. This information is independent of the chosen frame of
reference and presented to the user in a suggestive manner. Features
with clear mathematical definition and interpretation are extracted by
using scalar field topology in combination with homological persis-
tence on the strengths of the three respective tensor components.
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E I G E N V E C T O R - B A S E D I N T E R P O L AT I O N A N D
S E G M E N TAT I O N

In this chapter we propose a segmentation of two dimensional sym-
metric tensor fields towards eigenvector characteristics. The segmen-
tation is based on the topology of the tensor field. In contrast to pre-
vious approaches (see Sec. 2.7.1) we take both eigenvector fields into
account to extract the underlying topological graph structure – which
is represented by the integral topological graph. This graph partitions
the domain into cells bounded by separatrices with homogeneous
quality of eigenvector behavior. As eigenvector fields of symmetric
tensors are orthogonal the cells are always curvilinear and cannot
degenerate.

Hereby, we particularly analyze the influence of the interpolation
scheme on the resulting topology, considering the component-wise
and the eigenvector-based [HSNHH10] linear interpolation models.
When using eigenvector-based interpolation the most significant mod-
ification to the standard topology extraction algorithm is the insertion
of additional vertices at degenerate points. A subsequent Delaunay
re-triangulation (Sec. 2.10) leads to connections between close degen-
erate points. These new connections create degenerate elements of
higher dimensionality, degenerate edges and triangles. When com-
paring the resulting topology per triangle with the one obtained by
component-wise linear interpolation the results are qualitatively equal.
However, due to the degenerate elements of higher dimensionality
the resulting topological structure is strongly cleaned up. Further
by simultaneously analyzing both eigenvector fields for the integral
topological graph we are able to propose a compound classification
for separatrices.

4.1 notation

For convenience in this section we decompose the two dimensional
symmetric tensors T according to Eq. 10 and use the following nota-
tion:

T =

(
d 0

0 d

)
+

(
∆ F

F −∆

)
. (34)

Eigenvalues are named λ and µ, with µ 6 λ and eigenvectors
↔
v (ma-

jor) and
↔
w (minor). This facilitates the clarity of equations involving

triangles indices (e.g. Eq. 36).

47
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4.2 eigenvector-based interpolation

The definition of tensor field topology is based on continuous data
and hence, we rely on an interpolation of the available discrete data.
The standard interpolation is linear in tensor components. Instead,
we use an interpolation based on eigenvectors and eigenvalues, see
Figure 16. This method is shape-preserving and minimizes the number
of eigenvector computations.
The interpolation is defined such that the resulting topology per tri-

(a) (b)

(c) (d)

Figure 16: Comparison of interpolation methods : (left images) eigenvector-
based (shape preserving), (right images) component-based. Top
row: the eigenvector-based interpolation (a) of two strongly
anisotropic tensors delivers anisotropic tensors again, thus it pre-
serves the shape. In contrast, for this example the component-
wise interpolation (b) induces the swelling-effect, meaning that it
passes through a highly isotropic tensor (center ellipse in (b)).
The interpolation of an anisotropic and an isotropic tensor how-
ever is very similar (c,d).

angle is qualitatively the same as for component-wise interpolation,
see Figure 20. It is defined on a triangulated domain. In this work we
employ a Delaunay triangulation to obtain a clearer topological struc-
ture. The main steps of this interpolation are: edge labeling, location
and insertion of degenerate points, subdivision of triangles, and vec-
tor interpolation.

Assignment of directions to eigenvectors - edge labeling
Using vectors for the interpolation we first have to assign orientations
to the eigenvectors to specify the interpolation uniquely. Doing so the
fact has to be considered that not all structures occurring in tensor
fields can be simulated by global vector fields, e.g., winding numbers
of half integers. Thus a consistent global orientation of the eigenvec-
tor field is not possible. Therefore we keep the arbitrarily directed
eigenvectors at vertices as generated by numerical computations and
only encode relative directions between neighboring vertices using
edge labels. For the label definition we follow the eigenvector behav-
ior given by the component-wise interpolation. When moving from
point Pi to Pj the absolute value of the rotation angle of the eigen-
vectors is limited to π/2. The direction of the rotation is given by
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Figure 17: Triangle (a) without and (b) with degenerate point, edge labels
indicate whether two adjacent eigendirections match.

the value Fj∆i − Fi∆j. If the value is equal to zero, then either both
eigenvectors are the same or they encompass an angle of π/2 and the
rotation direction is undetermined. Then there exists a degenerate
point on the edge. The edge label of an edge ek with endpoints Pi
and Pj is defined as:

l(ek) =



1 if the directions of vi and vj match the direction
propagation, meaning vi · vj > 0,

−1 if the directions of vi and vj do not match the direc-
tion propagation, meaning vi · vj < 0,

0 if there exists a degenerate point on the edge, vi ·
vj = 0.

The existence of a degenerate point inside a triangle Pi,Pj,Pk with
edges ei, ej, ek, is directly related to the product of its edge labels,
see Figure 17. It is:

3∏
i=1

l(ei) =


1 no degenerate point in triangle,

-1 one isolated degenerate point in triangle,

0 there is a degenerate point on at least one of the
edges.

(35)
If there exist two edges with degenerated points, we have a degen-
erate line. If there are three degenerate edges, the entire triangle is
degenerate.

Interpolation in triangles without degenerate point
The tensor in point P(β), β = (β1,β2,β3), which are the barycentric
coordinates of point P inside a triangle P1, P2, P3 is defined by its
eigenvectors v and w, which are not normalized, and eigenvalues λ
and µ given by

v(β) = β1v1 +β2l(e3)v2 +β3l(e2)v3,

w(β) = β1w1 +β2l(e3)w2 +β3l(e2)w3,

λ(β) =
3∑
i=1

βiλi, and µ(β) =
3∑
i=1

βiµi.

(36)
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Interpolation in triangles with degenerate point
In such triangles it is not possible to define a continuous vector field
representing the tensor field structure. However, we can resolve this
problem by inserting an additional vertex D at the degenerate point
and subdividing the triangle to triangles without interior degenerate
point. To determine the eigenvalue at D we linearly interpolate the
mean eigenvalue d = (λi + µi)/2 in the original triangle and set the
deviator ∆ = (λi−µi)/2 to zero. Thus we can reconstruct the triangu-
lar domain by using piecewise linear interpolation in the subdivided
domains. The tensor at point D is defined as a multiple of the unit
tensor. The eigenvectors at D are set to zero, in correspondence to
vector field singularities. Each new triangle with vertices Pi, Pj, D is
interpolated separately. With P(β) := βiPi + βjPj + βkD, (cyclic in-
dices) eigenvalues and eigenvectors are interpolated using Equation
36. The resulting eigenvectors are independent from the coordinate
βk which respects the fact that in D eigenvectors are not uniquely
defined. Accordingly in a triangle containing a degenerate line the
eigenvector fields become constant, see Fig. 18.
Please note, for a consistent interpolation the eigenvectors v,w need
to be mutually oriented that for each tensor the numerical represen-
tation of w is in counterclockwise direction to v.

(a) (b)

Figure 18: Higher order features: (a) shows a degenerate line; (b) shows a
degenerate triangle, with three degenerate vertices. In the interior
of the neighboring triangles the vectors are set to constant.

4.3 eigenvector-based segmentation

The basic steps for extracting the integral topological graph are: loca-
tion and classification of degenerate points, determination of separa-
trix directions for both eigenvector fields, and their integration. We
restrict this section to eigenvector-based interpolation. Topology com-
putation based on component-wise interpolation is summarized in
Sec. 2.7.1 and for further details we refer readers to [Del94, Tri02]. The
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main difference between the two interpolation schemes is caused by
the triangle subdivision and subsequent Delaunay re-triangulation.
All degenerate points lie on vertices with piecewise linear behavior
in the vicinity and can exhibit structures different from trisector and
wedge points. If degenerate points are interconnected we call them
degenerate elements of higher dimensionality. These elements ap-
proximate degenerate points of higher order (in Sec. 2.7.1 also intro-
duced as multiple degenerate points).

(a) (b)

Figure 19: (a) The location of aD is well-defined if the three lines connecting
the vertices and their opposite points intersect in one point. (b)
Radial tensor line entering degenerate point D.

4.3.1 Location of Degenerate Points

Since degenerate points at vertices can be detected easily by com-
paring the eigenvalues, this section is restricted to triangles without
degenerate vertices. Initially, we also assume that there is no degen-
erate point along edges, and thus from Equation 35, the edge label
product has to be -1. We define the location of the degenerate point

Figure 20: Comparison of interpolation models and resulting topological el-
ements in one triangle: Degenerate points D1 from component-
wise, D2 from eigenvector-based interpolation, in the case of (a)
trisector, and (b) wedge point.

exclusively dependent on the eigenvector field. Starting with a lin-
early interpolated eigenvector field on the edges ei with endpoints
Pk and Pj, i, j,k ∈ {1, 2, 3} cyclic, we compute

v(t) = (1− t) · vj + t · l(ei) · vk, t ∈]0, 1[. (37)
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Even though the resulting vector field v on the boundary may not
be continuous at all vertices, the corresponding un-oriented direction
field

↔
v is. It defines a continuous rotation angle varying from zero

to ±π. The intermediate value theorem implies that for each vertex
a parameter ti ∈]0, 1[, i=1,2,3, exists such that vi · v(ti)=0. Thus, for
every vertex there exists a point on the opposite edge, called opposite
point of the vertex, with rotation angle ±π/2 with degenerate point on
this connection. The parameters ti are given by

vi ·
(
(1− ti)vj + l(ei)tivk

)
= 0, (38)

where i, j,k ∈ {1, 2, 3} are cyclic indices. This leads to the following
definition:
The location of the degenerate point is defined as the intersection of the con-
nections of triangle vertices to their opposite points, see Fig. 4.19(a)
It can easily be seen that the point D is well-defined. From the def-
inition of ti in Equation 38, it follows t1t2t3 = (1− t1)(1− t2)(1−

t3), which is the condition that three lines connecting the vertices to
points on the opposite edge, defined by parameters ti, intersect in
one point. For degenerate points on edges the three connecting lines
degenerate to a line. In this case we use the eigenvalues at the vertices
to determine the degenerate point.

4.3.2 Non-isolated Degenerate Points

Two degenerate vertices connected by an edge give a degenerate line.
The resulting eigenvector field inside adjacent triangles is constant
and does not contribute to the final structure (see Fig. 18). Similarly
a degenerate triangle, where all vertices are degenerate points, is en-
closed by three triangles with constant eigenvector field. Thus from
a structural point of view it is enough to consider the vertices of the
degenerate entity and ignore the connecting edges. It is not uncom-
mon to even see degenerate polylines when applying a subsequent
Delaunay re-triangulation (see also Fig. 21).

4.3.3 Determination of Radial Directions

The neighborhood of the degenerate point is characterized by seg-
ments separated by radial tensor lines. For linear eigenvector inter-
polation, radial tensor lines are straight lines and are determined
by their intersection P(tr) with the edges of adjacent triangles, see
Fig. 4.19(b). For each edge of the triangle,

v(trv)× (P(trv) −D) = 0,

w(trw)× (P(trw) −D) = 0, trv, trw ∈ [0, 1].
(39)

trv and trw specify the radial directions for the eigenvector fields
v and w respectively. In contrast to component-wise interpolation,
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(a) (b) (c) (d)

Figure 21: Close ups of the one-point load data set (red lines indicate the
major eigenvector directions in the vertices). (a) and (c) show
the resulting triangulation structure if degenerate points are only
inserted in the triangulation, (b) and (d) the result with subse-
quent Delaunay re-triangulation. In (b) three connected degener-
ate lines and in (d) 2 degenerate triangles arise. This degenerate
elements of higher dimensionality will lead to a strongly cleaned
up topological graph structure.

Figure 22: The neighborhood of a degenerate points is characterized by a
number of half-sectors with qualitatively equal behavior.

where radial directions are given by one cubic equation, we obtain
one quadratic equation per edge and per eigenvector field. If not
trivially fulfilled this leads to a maximum of two solutions per edge
and eigenvector.

4.3.4 Half-sector Classification

In the case of linear component-wise interpolation without re-triangulation
a point classification into trisector or wedge points serves as basis for
the classification. To cover all possible cases of degenerate elements,
for piecewise linear behavior, we built on an immediate sector anal-
ysis similar to [Del94]. In contrast we classify half-sectors, as we con-
sider the topology of both eigenvector fields together. Half-sectors are
radial segments enclosed by two neighboring radial directions, inde-



54 eigenvector-based segmentation

Figure 23: Half-sector classification of radial tensor lines extends traditional
classification. Shaded half-sectors can be classified correctly and
at one step for both eigenvector fields.

Figure 24: A close-up of sector classification for the one-point load data set
using linear interpolation of eigenvectors, with (top) and without
(bottom) subsequent Delaunay re-triangulation. Shaded regions
show the sectors: green and yellow for non-hyperbolic and hy-
perbolic, respectively. Red and blue lines show separatrices and
light red and light blue radial lines, which were not classified as
structurally relevant; black points and lines are the degenerate
points and lines.

pendent of the eigenvector field, either red (major) or blue (minor),
see Fig. 22. The following types of half-sectors can occur:

hyperbolic sector - bounded by one red and one blue radial line: ten-
sor lines approach, sweep past the degenerate point and leave
the sector through one bounding radial line.

parabolic sector - bounded by two radial lines of same color: all
tensor lines, of this color, start from the degenerate point and
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then diverge. The tensor lines of the other color enter and leave
the sector through bounding lines.

elliptic sector - bounded by one red and one blue radial line: the
tensor lines start from the degenerate point, and leave the sector
through one of the bounding lines.

To classify the sectors the rotation angle of the eigenvectors ∆α is
compared to the opening angle of a half-sector ∆Θ as shown in Fig. 22

∆α = ∆Θ radial, concentric,

∆α = ∆Θ− π/2 hyperbolic,

∆α = ∆Θ+ π/2 elliptic.

The same sector classification can also be used for degenerate lines
and triangles. In this case all radial lines entering one of the partic-
ipating vertices have to be considered. An example from a real data
set is shown in Fig. 24.

Traditionally, for the skeleton computation only radial lines, which
are boundaries of hyperbolic sectors, are relevant. This was defined in
analogy to vector field topology. However, we will consider elliptic
sectors as structurally relevant as well and keep radial tensor lines
bounding elliptical sectors.

With the classification by the opening angle ∆Θ to the actual rota-
tion angle ∆α given above one can easily see that both eigenvector
fields can be correctly classified at once. Due to the orthogonality of
the eigenvector fields the quality of the half-sectors induces the same
∆α for both eigenvector fields (see also Fig. 23).

4.3.5 Separatrix Computation

To complete the topological skeleton we integrate all radial tensor
lines bounding the hyperbolic sectors using Runge-Kutta 4th-order in-
tegration scheme with adaptive step size. Alternatively, an exact ten-
sor line integration for the linear eigenvector field can be used [NJ99].
Direction consistency is not an issue in our approach, as in the case
for component-wise interpolation, since eigenvector interpolation gives
directed eigenvectors.

We implemented the following termination conditions, to obtain a
clean integration of tensor lines.

1. A separatrix leaves the domain, a trivial condition.

2. A separatrix gets close to a degenerate point, line or triangle. It
is terminated at its intersection with the degenerated entity, see
Fig. 25a.

3. A separatrix describes a circle or spiral and passes itself closely
in parallel integration direction , see Fig. 25b and 25c. Circulat-
ing separatrices overload the topological graph without adding



56 eigenvector-based segmentation

(a) (b) (c)

(d) (e)

Figure 25: Close-up from one-point load data set: (a) tensor line runs into
a degenerate line (black line); circulating tensor line (light blue)
(b) before and (c) after clean up; (d,e) separatrix integration for
component-wise and eigenvector-based interpolation.

structural information for the final segmentation. We delete cir-
culating tensor lines in a clean up process, which starts at the
end of the separatrix and continues as long as the separatrix has
a neighboring separatrix of the same color. The cleanup process
ends in a point of intersection with a separatrix of the other
color.

4.4 segmentation

After computing the topological skeleton for both eigenvector fields,
we find the intersections of the red and blue tensor lines. The proper-
ties of the resulting segmentation as can be seen in Fig. 22 are
(a) Cells without degenerate point are quadrangular with two red
and two blue tensor lines as boundary, in an alternating order. All
red tensor lines passing through this segment enter at one of the blue
boundaries and leaves the cell at the opposite boundary and vice
versa. All angles are orthogonal.
(b) Cells with one degenerate vertex lying in a hyperbolic sector are
quadrangular. The angle at the degenerate point is in general not or-
thogonal.
(c) Cells having a degenerate point in one vertex, lying in a parabolic
segment, degenerate to a triangular shape.
(d) In elliptic sectors, cells with either two or three vertices are possi-
ble.
(e) Cells containing degenerate lines as edges can exhibit more com-
plicated structures.
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4.5 results

We tested our method on two dimensional slices of three different
data sets simulating stress behavior in a solid block: one and two
forces applied to the top of a solid block (Sec. A.1.2 + A.1.3) and
multiple forces applied to a notched block (Sec. A.1.4).

Figure 28 is a slice of the one-point load data set. It shows that the
results of the topology extraction for component-wise and eigenvector-
based interpolation are qualitatively equal. Since the results for the
eigenvector- and component-wise interpolation schemas are qualita-
tively equal we will further inspect the results in close-up views show-
ing the major and typical differences.

Figure 26: Full segmentation of two-point load data set.

(a) (b)

Figure 27: left: one-point load with randomly colored segments, right: slice
of strain simulation of forces on notched block.
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In Fig. 25(d,e) a section of the one-point load containing three de-
generate points is shown. While the basic structure is the same, the
changes of the eigenvector directions are smoother for the eigenvector-
based interpolation, resulting in less curved tensor lines in the vicin-
ity of degenerate points. As a consequence, a proper step size adap-
tion (leading in general to a smaller step size) is especially important
for component-wise interpolation to obtain tensor lines of the same
quality. The calculation of the topological skeleton using eigenvector-
based interpolation is in general faster than the one based on the
component-based interpolation. This speed gain is a result of restrict-
ing the eigen-analysis to the vertices. Within the triangles interpola-
tion of eigenvectors and eigenvalues can be performed linearly. For
the component-wise interpolation the eigen-analysis has to be per-
formed for each integration step. The effect of the re-triangulation
on the complexity of the resulting topological structure is shown in
Fig. 21 and Fig. 24. These images are close-up views of the one-point
load data set, both using eigenvector-based interpolation. Fig. 21 de-
picts the difference in the resulting triangulation, and Fig. 21(b,d) in
particular the degenerate elements of higher dimensionality for a De-
launay re-triangulation. Fig. 24 demonstrates the effect on the topo-
logical graph. In the bottom image only vertex insertion for degen-
erate points is performed, whilst the top image was computed using
a subsequent Delaunay re-triangulation. The re-triangulation com-
bines seven degenerate points in one degenerate poly-line. The clas-
sification of the half-sectors along the degenerate poly-line reduces
the number of separatrices from 35 (bottom image) to 14, but still
consistently captures the dominant eigenvector patterns in the vicin-
ity. Details of the local topological structure are often not features
of the data set, but instead are by-products of the chosen interpola-
tion schema. This is an incentive to keep the resulting topological
structure simple while still being consistent with the data.

We also have applied our method to data sets representing the sim-
ulation of different force combinations acting on a solid block. Fig. 26

and 27 show complete segmentations of a slice of each data set. In
Fig. 4.27(a) the cells are randomly colored. The other images (Fig 26

and 4.27(b)) display the blue and red tensor lines bounding the seg-
ments. Black dots, lines and triangles show the degenerate entities.
The one- and two-point load data sets are simulated with very low
resolution resulting in artifacts that are reflected in the complicated
topological structure. An adaptive finite element method was used
in the third dataset which results in a much clearer structure, even
though the physical configuration is more complex. Fig. 4.27(b) em-
phasizes that this method can be applied to two dimensional tensor
data given on a multitude of grid types or even scattered data. The
only condition is that the data points are triangulated as preprocess-
ing step.
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4.5.1 Discussion

The presented method above allows the extraction of an eigenvector-
based segmentation of two dimensional symmetric tensor fields. The
segmentation is given by the integral topological graph, which cap-
tures the topology of both eigenvector fields. Applying topological
methods for tensors has the clear benefit that it is guaranteed that
all structural features are captured. The integral topological graph is
given as explicit geometrical structure that can be used as visualiza-
tion itself but also for any further processing or visualization. Tensor
interpolation defined with respect to the topology guarantees consis-
tent results.

The simplification of the graph structure induced by the degenerate
elements of higher dimensionality can be considered as linear approx-
imation of multiple degenerate points (Sec. 2.7.1). It is purely based
on the nature of the data, no user interaction, thresholds or heuristics
have to be applied to achieve the simplification. In this regard pursu-
ing the idea of a data dependent re-triangulation for an even stronger
support towards the formation of degenerate elements of higher di-
mensionality would be interesting future work. Here, quantities like
the isotropy in the field are a considerable measure.

With the help of edge-labels given in a pre-processing step to the
underlying triangulation structure the interpolation and the location
of degenerate points can be performed very efficiently. Also the com-
putation of start directions of radial tensor lines is strongly alleviated
as instead of a third order polynomial only a linear equation has to
be solved.

4.5.2 Conclusion

We have proposed a method to compute an eigenvector-based seg-
mentation of two dimensional symmetric tensor fields by means of
the extraction of the integral topological graph. This graph is an
explicit geometric structure that partitions the field into regions of
qualitatively homogeneous eigenvector behavior. As both eigenvector
fields are considered the topological graph delivers curvilinear cells
bounded by separatrices which determine the eigenvector behavior
within. However, as mentioned before the tensor field topology ig-
nores eigenvalues characteristics as it is defined by the eigenvector
fields. The work in Chap. 5 will build on the structural accuracy of
the integral topological graph and extends the segmentation towards
eigenvalue characteristics.
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(a) Component-wise interpolation

(b) Eigenvector-based interpolation

Figure 28: Slice of one-point load – complete eigenvector based segmen-
tation represented by the integral topological graph with (a)
component-wise interpolation (b): eigenvector-based interpola-
tion. Blue dots int the images indicate points in cleaned up
circulating separatrices (according to termination conditions in
Sec. 4.3.5)

.



5
T E N S O R F I E L D S E G M E N TAT I O N

In the following we present a segmentation that is based on the topol-
ogy extracted in the previous section (Sec. 4.3). As described before
the topology of a tensor field is defined by the eigenvector fields and
is hardly reflecting eigenvalue characteristics (apart from eigenvalues
being equal in degenerate points). This approach presents an adap-
tive refinement process that extends the extracted topological graph
to a full segmentation also respecting the eigenvalue fields.

The segmentation provides a structure that delineates cells of simi-
lar (or dissimilar) behavior in the underlying field. This allows a qual-
itative, focused comprehension of the field properties. The resulting
higher-level of abstraction of the field provides valuable analysis and
allows a top-down exploration of the given data set. Additionally, the
structure of the segmentation is given explicitly and can be used for
further statistical analysis inside the cells.

The extraction of the integral topological skeleton using both major
and minor eigenvector fields serves as a structural pre-segmentation.
The resulting curvilinear cells are bounded by tensor lines and al-
ready delineate regions of equivalent eigenvector behavior (Fig. 29(a)).
This pre-segmentation is further adaptively refined to achieve a seg-
mentation also respecting eigenvalue characteristics. Cell refinement
involves both subdivision and merging of cells achieving a prede-
termined resolution, accuracy and uniformity of the segmentation.
The building blocks of the approach can be intuitively customized to
meet the different demands or applications. The adaptive refinement
process of the segmentation is guided by the definition of a scalar
invariant as similarity or dissimilarity measure, see Fig. 29(b),(c). De-
pending on the application, a variety of scalar invariants can be used.
For example, anisotropy and maximum shear stress reflect the rela-
tion of eigenvalues and are of high importance in many applications.
A generalization of the notion of anisotropy to non-positive definite
fields allows us to extend our analysis to all tensor fields. In our ap-
proach, several dissimilarity measures can be applied either singly or
as combinations. Application to tensor fields from numerical stress
simulations demonstrates the effectiveness of our method.

5.1 initial cell generation

For the pre-segmentation we extract the topology of the tensor field
as described in Sec. 4.3. Please note, the segmentation process is not

61
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(a) (b) (c)

Figure 29: Schematic illustration of the segmentation process. (a) Step 1:
Integral topological graph with degenerate points as black dots,
separatrices as bold lines (major in red, minor in blue). The light
red lines depict tensor lines within the segmented regions and
exemplary illustrate how separatrices aggregate homogeneous
eigenvector behavior. (b) Step 2: Definition of scalar field reflect-
ing the eigenvalue fields. (c) Step 3: Refinement of topological
graph according to scalar field.

D D
D

(a) (b) (c) (d)

Figure 30: Cells defined by the topological skeleton: (a) regular cells without
any degenerate points, (b) hyperbolic sector, (c) parabolic sector,
and (d) elliptic sector.

restricted to our topology extraction – the traditional topology com-
putation [Del94] based on the component-wise interpolation model
could serve as basis, as well. As the initial cell structure given by the
topological skeleton will be refined according to the eigenvalue char-
acteristics the technical aspect of the cell generation and associated
data structures is introduced here in more detail.

After computing the topological skeleton for the major and minor
eigenvector fields the intersections of the red and blue separatrices
define the cells of the pre-segmentation. In detail, the vertices of the
resulting curvilinear cells are either intersection points of a red with
a blue separatrix, degenerate points, or intersections of separatrices
with the boundary. The separatrices form the edges of the initial cells.
The cells exhibit one of the following basic structures, see Fig. 30:

1. Cells without a degenerate point are quadrangular with two red
and two blue tensor lines as boundary, in an alternating order.
All red tensor lines passing through this segment enter at one
blue boundary and leave the cell at the opposite boundary. All
intersection angles are orthogonal.
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2. Cells with one degenerate vertex lying in a hyperbolic sector are
quadrangular. The angle at the degenerate point is in general
not orthogonal.

3. Cells having a degenerate point in one vertex, lying in a parabolic
segment, degenerate to a triangular shape.

4. In elliptic sectors, cells with either two or three vertices are pos-
sible.

5. Cells containing degenerate lines as edges can exhibit all kinds
of complicated structures.

The edges of the cell are segments of the separatrices and hence are
represented as polylines. The edges are ordered in counterclockwise
orientation of the cell, and stored in a doubly-linked list, for efficiency
in finding neighbors to the cell and adjacent edges in a cell. Each edge
is represented using a half-edge data structure.

5.1.1 Half-edge Data Structure

A half-edge data structure [cga, dBvKOS00] is an edge-centered data-
structure that maintains spatial information of vertices, edges and
cells. Each edge is shared by two cells. An edge can also be consid-
ered as two opposite directed half-edges, called twins. Each half-edge
stores its start point, the end point of a half-edge however is deter-
mined indirectly by referencing to the start point of the twin. The
prime advantage of using this data structure is that a half-edge and
its corresponding cell share a one-to-one relationship. Consequently,
neighbor-searches and an iteration through the cells become very ef-
ficient.

Half-edge twins always belong to the same separatrix, except in
the cases when the edges are part of either boundaries or degener-
ate lines. As separatrices are represented by polylines, the half-edge
data structure is represented by polylines. Our implementation using
CGAL [cga] additionally has to support irregularities in the cell lay-
out, namely T-junctions or hanging nodes, where twins have an n:m
relation, such that they share common points of the separatrix poly-
line but do not share the same start and end points, see Fig. 31(a). To
resolve the issue of continuities in irregularities, our half-edge data-
structure is modified as follows: (a) We store pointers to points rep-
resenting the current edge; (b) Two sets of twins are supported for
each edge - (i) a geometric twin: a single edge to identify the geomet-
rical limits of the edge and (ii) neighboring twins: an array of twins to
identify all neighboring cells in case of hanging nodes. The geomet-
ric twin of an edge is the flipped image of the edge with respect to
its starting and end points, which would ideally be the twin but nec-
essarily need not exist in the topological skeleton. The neighboring
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twins of an edge is the segmented set of the first twin, which are the
edges that actually exist in the skeleton. In the absence of hanging
nodes, the second set is a singleton set of the first twin.

5.1.2 Cell Extraction

The actual cell creation process involves physically creating the half-
edges from the topological skeleton, and using them to build the
curvilinear cells. Starting with a single cell as a seed cell, its neigh-
borhood is grown to find the entire set of cells. Convex cells can be
found by a strict rotation angle criteria at the vertices in a counter-
clockwise orientation. The remaining non-convex cells in the vicinity
of degenerate lines or triangles are found by implementing a greedy
walk of finding consecutive half-edges that are not associated with
any cells. Consecutive half-edges are all that have the current half-
edge’s end point as start point.

5.2 adaptive segmentation workflow

The segmentation resulting from the topology already decomposes
the domain in regions where the eigenvector fields have a qualita-
tively similar behavior, but it does not yet fulfill all our criteria for a
good segmentation. To represent the entire tensor information also
the scalar invariants based on the eigenvalues have to be considered.
This is achieved by adaptively modifying the cells, characterized by a
specified degree of similarity with respect to eigenvalue behavior.

The segmentation strategy on the initial cell structure builds on two
basic operations:

• Coarsening: Cells that do not exhibit enough structural infor-
mation on their own get merged with adjacent cells.

• Subdivision: Cells which exceed the defined criteria of similar-
ity are subdivided by new tensor lines.

Due to divergence and convergence of tensor lines, adaptive segmen-
tation inevitably causes occurrences of hanging nodes in the edges.
To keep these irregularities to a minimum, a growing strategy is em-
ployed where we continue to merge or subdivide on consecutive cells
as long as possible and necessary, see Fig.s 31(b,c). Algorithms for
coarsening and subdivision operations are described in Sec. 5.2.3.

To guide the modification process by eigenvalue behavior one or
more scalar fields are derived from the initial tensor field, which
directly render the eigenvalue behavior, see Sec. 5.2.1. The degree
of similarity and the need of modification is represented by weight
functions defined on the edges of the cells, see Sec. 5.2.2. These edge-
weights evaluate the derived scalar field but also reflect geometric
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Merge

Merge

Merge

Merge

Split

Split

Split

new 
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Figure 31: (a) T-junction or hanging node, where neighboring twins in half-
edge structure have an n:m relation. Adaptive refinement opera-
tions: Recursive strategy for avoiding hanging nodes in (b) coars-
ening of cells, and (c) subdivision of cells started by insertion of
new tensor line.

properties of the cells. Combined with data dependent thresholds the
edge-weights serve as decision basis whether cells have to be merged
or subdivided. Further the edge-weights help to steer the modifi-
cation by importance, as their values directly offer prioritization to
achieve a smooth segmentation. Using edge-weights for decision-
making is an efficient choice as edges are one-dimensional structures,
on which the weights are computed.
To extend the capabilities of the adaptive segmentation process, it is
designed to have a high degree of flexibility to customize the work-
flow. For example using this segmentation as preprocessing step for
glyph placement would have different demands than using it for tex-
ture mapping. We define the variables for customizing the workflow
of the adaptive refinement as:

• Operations: The operations of the refinement, namely coarsen-
ing and subdivision, are the modules of the workflow. They
can be repeated and the workflow customized by choosing the
number and the order of implementation of the operations.

• Control Parameters: The control parameters of the refinement
are the chosen edge-weights, the considered scalar fields and
the thresholds defined by the demanded accuracy and resolu-
tion. The choice of these control parameters impact the priority
queues used for the implementation of the operations.

The remainder of this section first presents the operations and con-
trol parameters of the approach. Then the basic workflow is demon-
strated by calculating a segmentation of the tensor field. The segmen-
tation follows accuracy towards tensor invariant similarity as wells as
geometric criteria. Implemented as focus and context visualization,
the refinement process is stopped for cells whose size falls below a
value proportional to the resolution of the displayed domain. This



66 tensor field segmentation

provides an overview of the field, on demand the user can specify a
focus region to view further detail, see Sec. 5.2.5. The flexibility of
the approach is finally shown by the extraction of degenerate regions,
see Sec. 5.2.6.

5.2.1 Choice of Scalar Field

Several scalar fields can be considered as basis for the refinement
depending on the specific application. We can either use both eigen-
value fields, an anisotropy value, the maximum shear stress (Eq. 31)
or other tensor invariants.

For the anisotropy we propose the generalized notion of fractional
anisotropy FA∗ (Eq. 30) which can also be used for non positive defi-
nite tensors.

5.2.2 Edge-weight Definition

A set of pre-defined functions as weights assigned to the cell edges is
provided. It consists of

• geometric measures representing the current cell size and shape
as well as

• similarity measures for scalar fields derived from the tensor
field.

This set can be extended by user-defined functions. The dominant
use of geometric edge-weights favors a more uniform segmentation,
whereas the scalar field based weights lead to a higher adaptivity to-
wards accuracy in eigenvalue similarity. In the following two weights
of each class are proposed. These weights can be arbitrarily com-
bined.
Let e be an edge of a cell consisting of k segments (xi, xi+1), by the
virtue of being part of a polyline, where xi is the position of the ith
point on the edge. Further, let s be a scalar function defined along
the edge and si = s(xi). The edge weights are then defined as given
in table 1

We chose the proposed edge-weights to be as intuitive and universal
as possible, independent of the various ranges that appear in differ-
ent data sets. Variance is a commonly known statistical quantity and
is a similarity measure which is robust to smaller perturbations of
scalar values along an edge, such as noise. Difference of minimal and
maximal scalar value in turn is strict towards any changes of scalar
values along an edge and directly renders the absolute difference of
scalar values appearing on an edge. Edge length can be used to adjust
the size of the segmented cells to optimize perceptibility by the user.
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wv(e) Variance of scalar values s(rxi) on the edge:

wv(e) =
∑k
i=1(sxi−s̄)

2‖xi+1−xi‖∑k
i=1 ‖xi+1−xi‖

, where s̄ is the mean of s along e

wd(e) Absolute difference of minimal and maximal scalar value along the edge:

wd(e) = abs(smin − smax)

wl(e) Edge length:

wl(e) =
∑k
i=1 ‖xi+1 − xi‖.

wc(e) Change of eigenvector direction along the edge:

wc(e) =
∑k
i=1 |∠(vi, vi+1)|, vi is the major eigenvector at position xi.

Table 1: Edge weights.

The eigenvector directions are already well represented by the cell
shape and tensor line boundaries, however if uniformity of the cells
is required change of eigenvector direction represents the curvature of
the cell boundaries and is therefore an appropriate measure.
In Sec. 5.2.5 we give a preset of thresholds for these weights, which
are calculated as percentages of the given ranges in the field. These
presets led to stable results of good quality, which experiments with
different data sets showed, see Sec. 5.3. However, they can be in-
tuitively strictened or loosened for different visualization purposes
with immediate interpretation.

5.2.3 Refinement Operations

If not noted differently the refinement operations always respect the
chosen thresholds towards the edge-weights. For example if a mini-
mum edge length for the coarsening operation is specified - no edge
subdivision is performed if one of the new edges would fall below
the minimum edge length.

5.2.3.1 Coarsening

The main goal of the coarsening operation is to get rid of small cells
that do not carry enough structural information on their own. Coars-
ening operation involves merges of cell pairs. Merging a pair of cells
requires the merge of up to two pairs of edges and removal of the
common edge of the cells (see Fig. 31(b)). For this operation, we
build an edge-weight based priority queue of pairs of cells that can
be merged. We use queues to follow the FIFO (first in, first out) order,
ascending or descending priority is fixed by minimum or maximum
thresholds respectively.

Merge Prerequisites – Based on the geometry layout, two cells can
only be merged if they share a common edge that can be deleted to
join these cells. Technically, a common edge between two cells means
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that one of the cells has an edge whose geometric twin is an edge of
the second cell. Edges containing hanging nodes cannot be common
edges.

Priority Queue and Sorting – For the coarsening operation a priority
queue of pairs of adjacent cells that can be merged is maintained.
A multi-pass sort is performed based on the number and order of
edge-weights. Like this edge-weights favoring different criteria can
be combined.

For the example of the segmentation workflow in Sec. 5.2.5 the pri-
ority queue is first sorted by minimum edge length of all cell edges in-
volved and then by maximum edge length of the edges to be merged.

Algorithm

– Check adjacent cells for if they can be merged and sort these
into the priority queue, based on the chosen edge-weight prior-
itization.

– While the priority queue is not empty, the pair with the highest
priority is merged.

– Update the data structure by merging the appropriate edges of
the pair cells, deleting the common edge and creating a new cell
from the new edges.

– Update the priority queue with the new merged cell.

– If contiguous cell pairs in direction of the deleted common edge
are to be merged move them on top of the queue to accomplish
the recursive workflow. See Fig. 31(b).

5.2.3.2 Subdivision

Single cells are subdivided by starting a new tensor line of oppo-
site color on one of its edges that has to be subdivided. Similar to
the coarsening operation an edge-weight based priority queue imple-
mented as FIFO.

Start Point of Subdividing Tensor line – Two possibilities for the
start point of the new tensor lines are provided. The first option fa-
vors the generation of equally sized cells, and starts the tensor line
in the midpoint of the edge. The second option starts the tensor line
between the extrema of the scalar values on the edge. This choice is
more adapted to the data and guarantees to decrease the edge-weight
when subdividing. There are no technical prerequisites to subdivide
a cell.
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Priority Functions and Sorting – Differently from the coarsening op-
eration, a priority queue for edges is used rather than cells. Again
the priority queue can be sorted according to multiple edge-weights.
The growing strategy in subdividing consecutive cells is implemented
by integrating a subdividing tensor line as long as possible and nec-
essary, see termination conditions (a,b) in the algorithm below. No
explicit prioritization has to be done.

Algorithm

– Sort edges to be subdivided into priority queue, based on cho-
sen edge-weights.

– While the priority queue is not empty, pop the top edge and
start a subdividing tensor line of opposite color.

– Integrate tensor line until one of the following termination con-
ditions is reached:
(a) It intersects an edge, which is not in the priority queue and
therefore should not be subdivided.
(b) It intersects an edge and it’s subdivision would generate
edges violating fixed edge weight thresholds, for example min-
imum edge length.
(c) It fulfis one of the termination conditions described in Sec. 4.3.5.

– Subdivide all cells corresponding to edges intersected by the
new tensor line, as shown in Fig. 31(c). Update data structure by
subdividing intersected edges, generating new edges along the
tensor line, and finally generating new subdivided cells using
the new edges.

– Update priority queue by deleting the original edges intersected
by the new tensor line, and adding and sorting the newly gen-
erated edges if they are candidates for further subdivision.

5.2.4 Customizable Adaptive Refinement

The possibility to customize the decisive quantities and the workflow
itself gives a high degree of flexibility in obtaining various analyzes
of the same data set. Essentially the workflow consists of modules
for operations, which are influenced by the control parameters and
strategies adopted for implementation. Variations in the workflow
are achieved by changing the number and order of the modules, by
adjusting the thresholds used for each operation, and by deciding on
the strategies to be used for the control flow of the modules. Strate-
gies include the choice of appropriate edge-weights and scalar fields
and choice of position of starting a new tensor line for subdivision of
edges.
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Basic operations coarsening subdivide

Edge-weight prioritisation geometric scalar field

Error measure for edge-weight variance max difference

Tensor line seeding middle of edge between max and min

Level of detail resolution accuracy

Table 2: Table to summarize the options when configuring for the segmenta-
tion process

For a domain expert the flexibility of the approach ranges from using
the presets with the scalar field of his choice over strictening or loosen-
ing thresholds to mixing and matching the implemented components
to his needs. Developers can extend the basic set by implementing
new elements, as e.g. edge-weights or tensor line seeding.

5.2.5 Workflow: Basic Segmentation

This workflow delivers a focus and context visualization, calculating
an initial context segmentation which can be browsed in detail by se-
lecting a focus region. The field is segmented in regions of similar
tensor invariant behavior. We chose FA∗ (see Sec. 5.2.1) as scalar field
to render the eigenvalue characteristics. For all operations the same
edge-weights and thresholds are used. Thresholds are denoted by
ϕi where i denotes the index of the corresponding edge weight wi
(Table 1). We chose the actual values of the thresholds to be relative
(percentages) to the occurring value ranges. This enhances the usabil-
ity as pre-defined parameters for a variety of data sets with strongly
differing ranges of eigenvalues (see also Sec. 5.3).

Figure 32: Focus and context visualization. The orange rectangle in the right
image is the chosen focus region On the right, the focus region is
displayed. As the minimum edge length is adapted according to
the current resolution the cells are further refined.
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The default parameters are, if not differently noted:
(a) Geometric edge-weight steering the granularity of the segmenta-
tion is the edge length wl with minimum edge length threshold fixed
to ϕl = 1% of the displayed domain range. By selecting a focus region
the minimum edge length is automatically adjusted and the segmen-
tation is refined displaying further details.
(b) Scalar field edge-weight steering accuracy is the absolute differ-
ence of minimum and maximum scalar value wd, with its threshold
set to 10 % of the scalar value range, which is for FA∗ as scalar field
ϕd= 0.1.
Resolution and accuracy are the basic level of detail parameters for fo-
cus and context visualizations, where the geometric edge-weight has
higher priority than the accuracy edge-weight. This means for edge
lengths smaller than the fixed minimum edge length a merge is per-
formed even if the merged edge exceeds the given accuracy threshold.

The following operations composite the workflow

1. First coarsening: in merging as many similar cells as possible
cleans up the pre-segmentation , especially very small cells are
removed. The priority queue is first sorted by minimum edge
length of the edges involved and then by maximum edge length
of the edges to be merged. Merging of small cells with rather
large cells favours the goal of a smooth segmentation.

2. Subdivision: the cells are refined to the pre-defined accuracy,
unless this violates the resolution criterion. The tensor line seed-
ing is between the extremal points. Experiments showed that
the best strategy for a smooth segmentation is to do a 2-pass
sort of the priority queue first based on maximum edge-length,
the second pass based on maximum scalar edge weight.

3. Final coarsening: cells with highest similarity are merged. The
priority queue is sorted first by minimum edge length of the
edges involved and then in ascending order by a pre-calculated
scalar edge weight wd of the edges to be merged.

For a chosen focus step 2 and 3 are repeated with adjusted geometric
edge weight, the accuracy edge weight remains. As the cells are given
as explicit entities, cells exceeding the accuracy edge weight can be
highlighted on demand.
This workflow and thresholds can be used in any tensor field seg-
mentation as stable presets. Results for using variance as scalar field
edge-weight are given in Sec. 5.3.

5.2.6 Workflow: Degenerate Regions

In the direct vicinity of degenerate entities tensors are almost isotropic
and thus directional behavior is not strongly expressed. Such ar-
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eas are collectively represented as degenerate regions, following the
paradigm of the coarsening operation, that all cells are combined
which do not exhibit enough structural information on their own.
These degenerate regions are "grown" from the degenerated entities
using two passes of the subdivision operation. FA∗ is used as scalar
field.

1. First subdivision: In the first pass only edges, called degenerate
edges, emerging from a degenerate entity are considered for sub-
division using a specific edge-weight, which is the maximum
anisotropy occurring on the edge. The start point for the sub-
dividing tensor line is the point on the edge (given as polyline)
with anisotropy below a fixed threshold ϕ = 0.05 and with max-
imum distance from the degenerate entity. prioritisation is done
by the least anisotropy value of the start points.

2. Second subdivision: As it cannot be guaranteed that the sub-
dividing tensor lines will intersect other degenerate edges at
points with anisotropy below ϕ, a second subdivision pass is
performed, where all edges participating in the intermediate
degenerate regions from the first subdivision step are consid-
ered.

It should be noted that the generation of degenerate cells may in-
duce subdivision of neighboring cells that may result in small not
well shaped cells, which may not get merged in a later step, as seen
in Fig. 37. It is still of benefit to extract degenerate regions, as the
weak expression of direction in such areas can result in numerical
instabilities.

5.3 results and discussion

We tested our algorithm on three data sets from structural engineer-
ing, which are finite element simulations of forces acting upon solid
blocks resulting in stress tensor data. These are simulations of one
(Sec. A.1.2) and two (Sec. A.1.3) forces applied to the top of a solid
block and of multiple forces applied to a notched block (Sec. A.1.4).
Again, we will refer to them as one-point load, two-point load, and
notched block, respectively. For the statistical analysis we will abbrevi-
ate them as 1PL, 2PL, and NB, respectively.
Fig. 32 shows the focus and context implementation proposed in Sec-
tion 5.2.5 on the one-point load data set. The right image shows the
selected focus. The focus is automatically further refined to the resolu-
tion threshold: the allowed minimum edge length is adapted to 1% of
the displayed domain range, the accuracy threshold remains. In this
visualization the cells delineate regions of similar eigenvalue behav-
ior, the color coding of the cells renders the relation of the eigenvalues.
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(a) (b)

(c) (d)

Figure 33: Adaptive segmentation of a slice in the one-point load data set.
(a) Superimposition of scalar field with adaptive segmentation
of tensor field. Choice of threshold for edge-weight wd with (b)
ϕd=0.1 and (c) ϕd=0.2. (d) Segmentation with edge-weight wv
and ϕv = 0.015

The two arrows in the lower right corner of the focus image schemat-
ically indicate how the eigenvector behavior can be interpreted from
the cell boundaries.
We conducted further analysis on thresholds, specific control param-
eters and strategies. Please note, as mentioned above thresholds are
denoted by ϕi where i denotes the index of the corresponding edge
weight wi summarized in Table 1.

To evaluate the quality of the overview segmentation we used the
following methods:

• Image representation of local error: The error is sampled in an im-
age of resolution u× v where each pixel (i, j) is mapped to a
point (x,y) in the tensor field, and is mapped to error value
err(i, j) = ‖s(x,y) − s̄cell(x,y)‖, where cell(x,y) is the cell con-
taining (x,y) and s̄cell(x,y) is the average scalar value on the
edges of cell cell(x,y). Error values are assigned a color from
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Figure 34: Image representation of error for a specific slice of two-point load
data set. Here the error is plotted against the initial segmentation
of tensor field (integral topological graph).

a red-shaded colormap. Results are given in Fig. 34, 35, and
36(a).

• Average error: While computing the image representation of the
local error, we calculate the average error for the field as �Err =∑
i,j err(i,j)
u∗v .

• Number of cells needed for pre-defined quality: We aim to have as
few cells as possible in an adaptively segmented field, which
makes the number of cells needed to achieve a segmentation of
predefined quality an important criterion.

The first example examines level of detail according to accuracy, see
Fig. 33. In Fig. 33(b) the threshold ϕd for the absolute difference of
scalar values along the edge is twice as strict as for Fig. 33(c). Us-
ing superimposition of the original scalar field on the segmentation
result of the one-point load data set, Fig. 33(a) demonstrates that the
segmentation and original scalar field match. Fig. 33(d) was gener-
ated by using the variance guided edge weight wv. The image shows
that variance gives a smoother segmentation. This edge weight is
not as sensitive to local changes of scalar values like the maximum
difference (wd) is.
The second example focuses on resolution as level of detail. In Fig. 35(b)
the minimum edge length ϕl is twice as strict as for Fig. 35(c). All
images are superimpositions of error images and the segmented cell
boundaries. Fig. 35(a) shows the pre-segmentation, and Fig. 35(b,c)
the results for the different levels of detail.
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(a) (b)

Figure 35: Image representation of error for a specific slice of two-point load
data set. (a) Adaptive segmentation usingwd (absolute difference
of scalar values along the edge) as edge-weight. (b) Adaptive
segmentation using double threshold for minimum edge length.

As differences in images may be hard to perceive we further eval-
uate the results analytically. Results are displayed in tables with ref-
erences to associated images, if available. The first block in Table 3 is
used as reference for the subsequent evaluation, it lists the values for
the overview segmentation of Sec. 5.2.5.
Test 1: Comparison of edge-weights, variance wv vs. absolute differ-
ence of extremal values of scalar field wd:
As threshold for the variance of the scalar value wv 0.1% of the scalar
value range is used, given by ϕv = 0.001. The middle block in table 3

and Fig. 33(d) demonstrate that wv leads to fewer cells at a higher
mean error, compared to wd used in the basic workflow. Variance is
a criterion that regards mean values and ignores smaller variations
along an edge. Thus, fewer cells have to be subdivided, see Fig. 33(d).
The smoothing effect of the variance-based edge-weight can be exten-
sively used to achieve desired results. wd is an edge-weight that is
rather strict and regards any change in the scalar field along the edge,
which results in more cells, but higher accuracy.

Test 2: Comparison of strategies in choice of start point of tensor lines
for subdivision operation: midpoint of an edge vs. point between ex-
trema of the scalar field along an edge.
Using the midpoint of an edge is a simple, straightforward technique,
which leads to a slightly higher mean error, as shown in Table 3

last block. Starting the subdividing tensor lines between the mini-
mum and maximum scalar values guarantees decrease in the edge-
weights. This leads to qualitatively higher subdivisions as shown in
Fig. 36(b,c).
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Data 2PL 1PL NB

Basic workflow:

#Cells 2830 1424 420

�Err 4.67e-2 3.38e-2 4.02e-2

Ref. Fig. Fig. 35(b) Fig. 33(b) Fig. 36(a,c)

Accuracy edge weight variance:

#Cells 2497 1129 285

�Err 5.039e-2 3.64e-2 4.93e-2

Ref. Fig. Fig. 33(d)

Start point for subdividing tensor line in the middle:

#Cells 2870 1414 402

�Err 4.75e-2 3.38e-2 4.02e-2

Ref. Fig. Fig. 36(b)

Table 3: Results for tests on control parameters and strategies 5.2.5.

(a) (b) (c)

Figure 36: Close up of adaptive segmentation of a slice in the notched block
data set: (a) Image representation of error shows how the edge-
weights only reflect the behavior of the scalar field on the cell
edges but not in its interior. Results of the choice of start point
for tensor lines in the subdivision operation, at (b) the midpoint
of an edge and (c) the midpoint of extrema along an edge.

5.4 conclusions

We have presented a segmentation that enhances the interpretation
of topology by extending it towards eigenvalue characteristics. The
segmentation represents the field in terms of reduced complexity. An
essential step to reduce the amount of information is a segmentation
that separates the field into regions of similar characteristic behavior.
The resulting cells in the final segmentation can be considered as vi-
sualization glyphs in form of tiles. They are bounded by tensor lines
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Figure 37: Close up: degenerate regions marked in violet.

which – as the segmentation is based on topology – allows immediate
interpretation of the eigenvector behavior within. Appropriate color
coding can display the eigenvalue characteristics in the segments. An
overview of the data is provided without missing important details
and at the same time without overwhelming the observer.
This higher level of abstraction allows a top-down exploration of the
given data set. Further, the geometry of the resulting cells is rep-
resented explicitly and offers statistical inquiry of properties inside
each cell. It has to be mentioned that the generation of the extracted
cells requires special care. Numerical rounding errors in the intersec-
tion computation of the major and minor tensor lines can make the
determination of the correct bounding tensor lines for very small cells
difficult. This can be avoided by computing these with integer based
arithmetic as provided by CGAL [cga].

We have shown that the presented segmentation approach is able
to generate segmentations aligned to the tensor field with low error
measures. The weights and strategies can be chosen dependent on
the demands of the specific application and allow a wide variety of
data representation.

The results in this section are based on the generalized notion of
fractional anisotropy FA∗ (Eq. 30) of the tensor field. However, it
can be easily extended to other scalar fields used individually or as a
combination of several fields. The main challenge for a segmentation
based on tensor lines is the fact that feature lines resulting from the
scalar field are in general not aligned with the eigenvector field and
thus they can only be approximated by a step function (see Fig. 36(a)).

The strength of the application lies in its flexibility - restricting the
modification process to geometric edge-weights delivers a uniform
segmentation, whereas steering it by accuracy edge-weights gener-
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ates a highly adaptive segmentation. There is a variety of options
to customize the segmentation and use it for example for tensor line
seeding or as preprocessing step for glyph placement or texture map-
ping (see Chap. 6).
During the design of the algorithm at many points decisions were
made to balance its efficiency and accuracy. One example is the
choice to define weights only on basis of the scalar field along cell
edges, which is very efficient. But it cannot be guaranteed that the
error contained in a cell is always well represented by the error along
its one-dimensional edges. An integrated analysis of all cell edges,
which leads to use of cell-weights as opposed to edge-weights is one
of the interesting options for the future.



6
G LY P H - A N D T E X T U R E - B A S E D V I S U A L I Z AT I O N

Topological methods have a long tradition and for domain experts
they serve as visualization itself. However, for untrained users this
might be too abstract – especially if the visualization is meant to sup-
port a first understanding of the data. In this chapter we show how
the variability of visualization methods like textures and glyphs can
be used to enhance established methods like topology. The topology-
based segmentation of Chap. 5 serves as framework to map textures
and place glyph exponents for two dimensional symmetric tensor
fields. The textures encode physical properties of the underlying field
and support the understanding of the field as a whole, whereas the
glyph exponents can be used to give detailed insight at distinctive
locations. Textures are a powerful tool to design continuous visual-
izations. They offer many parameters that can be used to encode
features of interest. This makes textures especially interesting for the
visualization of tensor fields. Tensor fields contain directional and
scalar features which can be encoded in texture parameters. One
challenge for many texture-based methods is the definition of appro-
priate texture coordinates. This is accomplished by the cells of the
topology-based segmentation; they serve as consistent framework for
the texture mapping. A dense visualization of the underlying ten-
sor field can be generated using every pixel of the image to convey
physical properties of the field. Furthermore, a diversity of visualiza-
tion options arises: To encode directional information, for example,
stripe patterns can be used; but also knitting or basketwork patterns
are presented and evaluated towards their applicability to depict cen-
tral tensor properties within the segmentation framework. The goal
hereby is not to display all possible features in one image but to offer
a flexible framework to a user to switch views for the different points
of interest.
Displaying glyphs at discrete locations allows to present a wealth of
features with one item. The placement of glyphs is an intricate topic
for vector as well as tensor visualization. Here, we use the tensor
field segmentation to display glyphs at distinctive locations in the
given cells. The advantages of the global structural information pro-
vided by the topology-based segmentation and the detailed depiction
of representative tensors via glyphs are combined in a single image.

79
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6.1 method

In this work we build upon the results of the segmentation (Chap. 5)
and extend it to a texture- and glyph-based visualization. Mapping
textures into the segmented cells yields a continuous rendering of
the tensor field. This facilitates a comprehension of the field’s global
nature. The glyph-based approach combines the advantages of the
global structural information provided by the topology and the local
detailed view of representatives via glyphs.

Cell structure – As explained in Sec. 5.1 cells that are not adjacent
to degenerate points or the domain boundary are quadrangular and
bounded by two major and minor tensor line segments in alternating
order (Fig. 30 and 6.39(a)). Other cells can have more general shapes.
The boundaries of the extracted cells are stored as polylines (Fig. 38).

Figure 38: Result of a segmentation, points of the cell bounding polylines
are depicted as spheres.

Preprocessing – As mentioned in Sec. 4.3.5, the bounding tensor
lines are computed by an integration scheme with adaptive step size.
This guarantees accurate results in the segmentation process but leads
to irregular distances between the vertices of the polylines. To obtain
good results for the texture mapping and glyph locations, however,
a more uniform sampling of the cell boundaries is favorable. This is
achieved by a pre-processing step deleting respectively adding ver-
tices if the distance to adjacent vertices does not fall in a pre-defined
distance interval. An angle criterion guarantees that tensor lines are
still sufficiently aligned with the eigenvector fields.
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For the texture mapping the segmented cells need to be triangulated.
We use the CGAL [cga] implementation of a constrained Delaunay
triangulation that maintains non-convex shape.
Please note, the pre-processing only has to be performed once after
the segmentation process.

Eigenvalue Mapping – The goal of this work are intuitive visual-
izations of indefinite tensors. We will use the eigenvalues to control
basic texture parameters such as texture density. We adopt a map-
ping that simulates a texture deformation generated by the underly-
ing tensor field presented by Hotz et al. [HFH+

04]. Thus, negative
eigenvalues (compression) lead to dense and positive eigenvalues (ex-
pansion) to sparse textures. Therefore the eigenvalues are mapped
into a restricted positive interval. Hotz et al. define:

F(λ) = a+ σ · f(λ) . (40)

The function f is chosen to have a large slope in the neighborhood of
zero. In this work, f is the hyperbolic tangent, which preserves the
differentiation of negative and positive eigenvalues. The parameter a
relates to an offset and σ is an additional scaling factor for the slope.
Both can be adjusted by the user.

6.1.1 Segmentation-based Glyph Placement

The characteristics of the tensor field – the eigenvectors and eigen-
values – are similar inside each extracted cell (Chap. 5). Thus, the
essential tensor properties of each cell can be visualized by one rep-
resentative glyph. The task is to find an appropriate position within
each cell to place this representative.
Since most of the segmented cells are non-convex we follow an algo-
rithm for the computation of barycentroids of arbitrarily shaped planar
polygons [RLF09]. This algorithm is based on an interior distance mea-
sure. The barycentroid is defined as the point with minimal average
interior distance to the boundary points. Finding this point is a con-
vex optimization problem and can be solved by standard gradient
descent routines. The barycentroid has the characteristic that it cap-
tures the semantic center of the polygon and lies inside any arbitrary
shaped planar polygon. See Fig. 41 for results.

6.1.2 Segmentation-based Texture Mapping

Using the segmented cells as basis for the texture mapping has sev-
eral benefits. The cells inherently provide the parametrization for the
texture mapping and the underlying topology ensures structural cor-
rectness. Also as the segmented cells are bounded by tensor lines the
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(a) (b)

Figure 39: (a) Texture mapping on segmented cell. Mapping of point pi to
texture coordinate (s, t) in quadrangular cell. (b) Illustration of a
hanging node for neighboring cells (black dot).

eigenvector directions within are correctly pre-determined. Simple
procedural stripe textures already depict one eigenvector field. Thus,
the use of textures with one or two orthogonal dominant directions
results in continuous representations of the correct eigenvector behav-
ior within these cells (Fig. 40). But also more sophisticated textures,
like knitting patterns, lead to expressive representations (Fig. 43). The
density of the texture pattern will also be used to reflect physical
properties of the tensor field, such as compression and expansion
(e.g. Fig. 40(b)).
Cells containing degenerate elements along their boundary can have
more complex shapes and the eigenvector behavior cannot be eas-
ily represented by simple stripe patterns. In addition, in the prox-
imity of degenerate elements the eigenvector behavior is weakly ex-
pressed. For such cells two options are provided. Either these cells
are skipped or textured with an isotropic noise pattern encoding in-
formation about the isotropic eigenvalues.
For one-directional textures, as stripe patterns, one image per eigen-
vector field is computed. To depict both eigenvector fields in one
image the results for each field are blended (Fig. 40(c), 42).
The texture mapping is performed by vertex and fragment shaders.
Texture coordinates (s, t), with s, t ∈ [0, 1] for quadrangular cells are
initially computed by mapping the points of a cell boundary to a unit
square (Fig. 39(a)).

6.1.2.1 Rendering of Eigenvector Directions

All methods that are presented in the following are based on textures
with line-like elements to depict directions. To ensure that the cell
size does not affect the perception of the pattern, we need a special
mapping approach that provides an approximately constant pattern
frequency presented by Hummel et al. [HGH+

10] (Fig. 40(a)). They
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(a) (b) (c)

Figure 40: Data set: Two-point load. Visualization of major eigenvector field
(a) with even pattern frequency, (b) with encoded mapped eigen-
values reflecting the physical properties. (c) Superposition of
both eigenvector fields, color by fractional anisotropy.

adjust the sampling frequency according to the image-space partial
derivatives ηs,ηt at pixel (i, j) of the texture coordinate (s, t):

ηs(i, j) =

√(
δs

δi

)2
+

(
δs

δj

)2
,

ηt(i, j) =
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δt
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)2
+

(
δt

δj

)2
.

(41)

The initial texture coordinates (s, t) remain unchanged. The evalua-
tion of the input texture P is modified according to the variation of
ηs and ηt and steers the pattern frequency in the final image. P̂ls,lt
gives the frequency adjusted texture values

P̂ls,lt(s, t) := P(s · 2
−ls , t · 2−lt) , (42)

with ls = log2 ηs and lt = log2 ηt. Hence, short edges with high
partial derivatives yield a low pattern frequency. For large edges this
works vice versa. The resulting pattern frequency also interactively
adjusts to the current zoom level and resolution of the image. As
resolution levels are discretely defined values for neighboring reso-
lution levels are computed and bilinear filtering applied to achieve a
smooth pattern frequency. The evaluation of Equation 41 can be done
by built-in functionality of the rendering system.

6.1.2.2 Rendering of Eigenvalue Characteristics

Line frequency – The approach of Hummel et al. [HGH+
10] serves as

basis to encode physical properties like compression and expansion



84 glyph- and texture- based visualization

by the pattern frequency (Fig. 40(b)). This is achieved by replacing
Equation 41 by the following:

ηs(i, j) =
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δs

δi
· λ̃1
)2

+
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δj
· λ̃1
)2

,

ηt(i, j) =
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· λ̃2
)2
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δt

δj
· λ̃2
)2

,

(43)

where λ̃1 and λ̃2 are the mapped eigenvalues. Thus, the pattern fre-
quency steers the perception of the field: in combination with the
mapping (Eq. 40) negative eigenvalues lead to a higher frequency
and allude to compression. Mapped positive eigenvalues cause a
lower frequency which depicts expansion.

Color mapping – A simple but effective way of conveying additional
information is to apply blending of color information on the input
textures (Fig. 40(c), Fig. 42(a),(b), and Fig. 43(b),(c)). Coloring can
be applied to the eigenvector fields (one color for each field) but
also according to derived scalar measures such as the magnitude
of one eigenvalue, fractional anisotropy (Eq. 30), maximum shear
stress (Eq. 31), or the determinant (Eq. 32).

Blur by derived scalar quantities – If non relevant information should
be suppressed in the final image, a post-processing step can be ap-
plied. We employ a blur filter, but also the opacity can be modified
to hide regions of low information content. Again quantities like
fractional anisotropy and maximum shear stress come into question
(Fig. 42(b), and Fig. 43(b),(c)) to steer the post-processing. The pix-
els of the image are convolved with a Gaussian kernel, where the
size of the kernel is proportional to the respective value of the cho-
sen quantity. For example, if the blur should be determined with
respect to the fractional anisotropy, isotropic regions are convolved
with a larger kernel, whereas in anisotropic regions the kernel’s size
becomes 1 pixel. Like this, isotropic regions are blurred and regions
with strongly expressed eigenvector directions are enhanced.

6.2 results

The results of our approach are presented and evaluated by means of
the two stress tensor data sets: the one-point load (Sec. A.1.2) and the
two-point load (Sec. A.1.3). We applied the developed visualization
methods on planar cuts of the volumetric data sets.
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(a) (b)

Figure 41: Data set: One-point load. (a) Glyph placement within the seg-
mentation framework providing cells of similar characteristics.
(b) Close-up of pre-computed barycentroids that place glyphs
within cells at their semantic center.

6.2.1 Glyph-based Visualization

Fig. 41 shows the results of using the framework provided by the seg-
mentation for the placement of glyphs (Sec. 6.1.1). This is applied on
a slice of the one-point load data set. The glyphs are placed at the pre-
computed barycentroids, oriented according to the eigenvectors and
scaled by the mapped eigenvalues (Eq. 40). The color is assigned ac-
cording to the fractional anisotropy (Eq. 30). Isotropic tensors are en-
coded in light blue and appear as spherical geometries. Anisotropic
tensors are encoded in dark blue and result in well-marked ellipses.
This work is not concerned with elaborate glyph design or similar.
With the glyph placement we rather want to provide a basis for the
variety of glyphs provided in the literature (Sec. 3.2.2.2). The close-
up in Fig. 6.41(b) nicely shows how the barycentroids capture the
semantic center of non-convex polygons.

6.2.2 Texture-based Visualization

Fig. 6.40(a) displays the directions of the major eigenvector field. Here
the basic approach of approximately constant image space line den-
sity (Eq. 41) is applied. Even though the textures are mapped cell-
wise the continuous character of the image is harmonious. Only at
transitions of cells with hanging nodes (Fig. 39(b)) slight disruptions
are noticeable. Zooming in the image automatically adapts the tex-
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(a) (b)

Figure 42: Data set: One-point load. (a) Superposition of both eigenvector
fields, color coding according to mapped eigenvalues. (b) Post-
processing blur to assist the user in finding regions of interest.
Here these regions are defined by high fractional anisotropy .

ture such that the stripe frequency and the even appearance is main-
tained. Fig. 6.40(b) extends the representation by encoding the phys-
ical behavior. The pattern frequency is scaled by the mapped eigen-
values (Eq. 43). In the lower right corner negative eigenvalues are
predominant and clearly result in a higher pattern frequency. This re-
sembles to compressive forces and is in contrast to the upper left cor-
ner which is characterized by expansive forces. In Fig. 6.40(c) the tex-
tures for both eigenvector fields are blended. The pattern frequency
is determined again by Eq. 43 and color coding is applied according
to the fractional anisotropy. Isotropic regions are colored in blue and
characterized by an isotropic pattern frequency. In regions of high
anisotropy strongly differing eigenvalues lead to the unequal pattern
frequencies for the two eigenvector fields, which is additionally em-
phasized by the red color.
A similar visualization approach is applied to the one-point load
in Fig. 6.42(a). Here the color coding corresponds directly to the
mapped eigenvalues (Eq. 40). Anisotropic regions are still discernible
as the superposition generates mixed colors for strongly differing
eigenvalues. Specific regions can be highlighted additionally by ap-
plying the post-processing step: in Fig. 6.42(b) regions with low frac-
tional anisotropy are blurred. The focus of the user is directed to
anisotropic regions, where eigenvalues exhibit a large difference.

The versatility and power of textures is demonstrated in Fig. 43.
For texture samples with inherent variance discontinuities due to
hanging nodes in the original segmentation are less prominent. In
Fig. 6.43(a) a weave input pattern is employed to visualize the eigen-
vector directions. Due to the bidirectional nature of the weave pattern
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(a) (b)

(c) (d)

Figure 43: Data set: Two-point load. The comparison of the rendering with
different input textures shows the versatility of the framework.
(a) Bidirectional weave input pattern, the frequency is adjusted
to the mapped eigenvalues. (b) Rendering of the directions of
maximal shear. Regions of high maximal shear stress are em-
phasized in red. Regions of low maximal shear are blurred. (c)
Knitting pattern emphasizing major eigenvector directions from
far, in detail directions of maximal shear are perceivable. Color
coding according to fractional anisotropy. (d) Sample patterns.

both eigenvector fields are visualized at once. In Fig. 6.43(b) the user
can switch to investigate directions of maximum shear of the under-
lying field. Here a texture is used with line structures illustrating
the bisectors of the eigenvector directions. Additionally regions of
high maximal shear stress (Eq. 31) are emphasized by selective color
mapping. The third example, Fig. 6.43(c), generates a texture that
resembles a knitted piece of fabric.
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6.3 conclusion

We have combined the accuracy of topological methods for two di-
mensional symmetric tensor fields with the support of more intuitive
visualizations. Our approach uses the strength of textures for contin-
uous visualizations and allows to gain insight into detailed informa-
tion at discrete locations by placing glyphs. The topology-based seg-
mentation framework (Chap. 5) is used to employ these techniques.
The cells of this segmentation provide a consistent parametrization
for the texture mapping and the bounding tensor lines correctly pre-
determine the the eigenvector directions within. This offers a multi-
tude of textures that can be used to illustrate a continuous view on the
various tensor properties. A selection of textures is presented that en-
code directional features; simple stripe textures but also textures with
higher inherent variance, that support a smooth appearance over un-
even transitions (hanging nodes). We believe the latter textures can
also be used for other approaches that aim the mapping of directional
textures region- or cell-wise without apparent distorted behavior at
the boundaries.
Physical properties of the tensor field like compression or expansion
are reflected in the texture frequency. Selective color mapping and
post processing are applied to direct the users attention to scalar fea-
tures of interest. Certainly, there remains a large potential to opti-
mally assist the perceptional habits of a user and any development
towards this has to be evaluated by user studies to finally prove its
effectiveness. We also presented this work as flexible basis for further
advancement.
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C O M P L E T E T O P O L O G Y E X T R A C T I O N O N
S U R FA C E S E M B E D D E D I N 3 D

In the previous chapters we demonstrated how the topology captures
all structural characteristics of a tensor field and how it can be ex-
tended to a segmentation also respecting the eigenvalue fields. This
chapter is concerned with the extraction of the topology of two dimen-
sional symmetric tensor fields on triangulated manifolds embedded
in three dimensional space.

Due to the discontinuity of tensor fields on a piecewise planar do-
main, standard topology extraction methods might result in an in-
complete topological skeleton. In particular with regard that topol-
ogy is favored for accurate results this is not satisfactory. For instance,
given an explorative framework for volumetric three dimensional ten-
sor fields (e.g. Kratz et al. [KMH11]) it is highly desirable to provide
an investigation of planar or manifold cuts of the entire field with
distinctive properties and at reduced complexity. These cuts or also
geometries in flow fields are often given as two dimensional trian-
gulations embedded in three dimensional space. Commonly the in-
trinsic properties of such data sets are investigated on the projected
data [Tel08]. On piecewise planar domains this yields piecewise con-
tinuous data sets.

Figure 44: Piecewise constant ten-
sor field (red tensor
lines). All degenerate
points are hidden in the
corner vertices of the
cuboid.

The extraction of the complete
topology of a data set given on a
piecewise planar domain can be a
challenging problem. To analyze
these data sets by extracting the en-
tire topology, in terms of surface
topology, special attention has to be
given to the locations of discontinu-
ity on those triangulations – namely
edges and vertices. Many achieve-
ments have been made on the topic
of surface topology for vector and
tensor fields, however the fact that
topological features are also located
in discontinuous locations is mostly
out of focus. If they are neglected

the extracted surface topology obviously might be incomplete. A
simple but evident example is that of a piecewise constant tensor

89
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field defined on a cuboid. On the faces of the cuboid the tensor fields
are constant. Approaches only investigating the faces would fail to
detect a degeneracy on the cuboid, although the Poincare-Hopf the-
orem states that no closed surface with a non-constant field defined
on it can be without a critical point (Fig. 44).

This chapter extends the work of Chap. 4 and provides a simple
model to treat discontinuous fields defined on two dimensional tri-
angulations embedded in three dimensional space. The majority of
computations is carried out locally in two-dimensional space. Again,
we focus on the topology of symmetric tensor fields, while many
ideas are more general and can also be applied to vector fields. We
consider two applications. First, continuous three dimensional tensor
fields projected onto a surface, which are of interest when analyzing
indefinite tensor fields on distinguished geometries. The projected
tensor field expresses intrinsic properties to the given surface. Sec-
ond, piecewise constant two dimensional tensor fields are considered
defined per triangle. Such tensor fields naturally arise when consid-
ering derivatives of piecewise linear vector fields, e.g. a wall shear
flow field of a body embedded in a flow.

The model of continuous transition bridges is introduced (Sec. 7.2)
that allows to compute topological features in the locations of discon-
tinuity (Sec. 7.3).

7.1 basics and notation

In the following two and three dimensional objects will be discerned
by using normal letters for an object x ∈ R2, or T ∈ R2×2 and bold
letters for x ∈ R3, or T ∈ R3×3.

7.1.1 Tensor Field on Polyhedron Structure

Input for our topology extraction is a tensor field given on an ori-
entable two dimensional embedded manifold, which is triangulated.
To store the manifold we use the CGAL polyhedron structure [cga].
It provides a structure for geometric meshes with vertices, half-edges
and facets with their incidences. In our case the facet shape is re-
stricted to triangles. The CGAL polyhedron structure holds vertices
per triangle in counterclockwise order with respect to the oriented
surface normal. This facilitates global orientation consistency, when
oriented angles are calculated across locations of discontinuity. Each
triangle has its own local two dimensional coordinate system, ex-
plained in Sec. 7.1.2. This paper treats two cases: in the first case
three dimensional tensors are given at the triangle vertices and will
be projected onto the surface (Sec. 7.1.2). This yields in different ten-
sor values in the vertex for each adjacent triangle, causing discontinu-
ities in the surface tensor field. In the second case piecewise constant
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two dimensional tensors per triangle are given. The projected two
dimensional tensors are stored locally for each triangle in the vertices
and the constant two dimensional tensors for each triangle. If not
stated differently vertex points of triangles are denoted by pi, with
i = 1, 2, 3 cyclic indices. A half-edge ei denotes the half-edge oppo-
site to pi. For technical issues about the polyhedron structure we will
refer to facets, for details on the semantic model, e.g. interpolation we
refer to triangles.

7.1.2 Local Coordinate System and Projection Matrix

Every triangle of the polyhedron structure has its own Cartesian two
dimensional coordinate system and two dimensional tensor(s). The
local coordinate system is defined by the origin o = (0, 0) and two
basis vectors x = (1,0), y = (0,1). Its three dimensional counterpart is
denoted by boldface letters with origin o and basis vectors x, y ∈ R3

and is also stored for each triangle. o is a randomly chosen vertex
of the triangle, x is parallel to a half-edge starting from the origin
vertex and y = x×n is right-handed orthogonal to x with respect to
the surface normal n of the triangle (Fig. 45(b)). The projection matrix
P: R3→R2 into the local basis systems is defined as P = (x y). The three
dimensional tensors T in vertices are projected onto the triangles with
T = PT · T · P. Locally all necessary operations can be performed
in two dimensional space and the basic concepts of Chap. 4 can be
applied for the topology extraction.

7.2 continuous model

7.2.1 Continuous Transition Bridges

This section introduces the concept of continuous transition bridges.
They are models for a curved surface connecting two triangles at their
common edge imagined as a piece of cylinder. The normal on this
surface smoothly varies from one triangle normal to the other triangle
normal (Fig. 45(a)). This in turn provides a continuous transition
of the tensors between both triangles. As Gaussian curvature on a
cylinder is zero, the ensemble of two adjacent triangles with their
connecting transition bridge can be flattened without distortion.

7.2.2 Virtual Edge and Vertex Cells

Fig. 45(b) shows how the flattened bridges serve as planar virtual edge
cells on which a continuous interpolation is defined and methods for
two dimensional space can be applied. Similarly the model of virtual
vertex cells is defined as cells bounded by the adjacent virtual edge
cells (Fig. 45(c)). The boundary of virtual edge cells and virtual ver-
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(a)

(b)

(c)

Figure 45: Model for transition bridges: (a) the triangle normals transform
along the bridge into each other, (b) virtual edge cell defined
by flattened transition bridge, choice of local coordinate system
for common parametrization of tensors, (c) virtual vertex cell de-
fined as cell bounded by adjacent virtual edge cells. (a,b,c) Jordan
curves are colored in red. Different colors of Ti, i = 1, ..,n empha-
size different tensors for same vertex point but different triangles.

tex cells are homeomorphic to a piecewise smooth, simple and closed
curve defining a Jordan curve. This allows us to detect the existence
of degeneracies by calculating the tensor index [Del94] in the loca-
tions of discontinuity (Sec. 7.3). The Jordan Curve of the virtual cells
is depicted as red lines in Fig. 45(a)-(c). The precise location of degen-
erate elements has to be computed explicitly for the edges within the
virtual edge cells. However, as the location of degenerate points in
the virtual vertex cells can only be at the vertex itself there is no need
for an explicit definition of the virtual vertex cells.

7.2.3 Interpolation in Virtual Edge Cells

To define an interpolation model for the topological analysis in the
edges of the triangulation we need to provide a common parametriza-
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tion for the two dimensional tensors T ′i and T ′′i , i = 0, 1 given at the
virtual edge cells. Let e ∈ R3 be a normalized vector parallel to the
edge constituting the virtual edge cell. Further let n ′, n ′′ ∈ R3 be
the surface normals of the two triangles connected by the edge. To
represented the given tensors T ′i , T

′′
i , i = 0, 1 in matching frames of

reference we define the following local coordinate systems in analogy
to Sec. 7.1.2:

• o ′ = o ′′ = p0

• x ′ = x ′′ = e

• y ′ = e× n ′, y ′′ = e× n ′′

Fig. 45 illustrates how the frames of reference smoothly transform
into each other across the transition bridge. By flattening the bridge
the frames of reference become equal without distortion.
To summarize, to investigate a virtual edge cell the matching refer-
ence frames have to be computed and the tensors given at the vertices
of the edge cell transformed to their reference frame. This is a costly
operation, be it for computation time or storage. In our approach we
will avoid this costly step, whenever possible.

7.2.4 Eigenvector Rotation Across Transition Bridges

The computation of the topology in Sec. 7.3 requires the calculation
of signed rotation angles of eigenvectors for the transition bridges.
To sidestep the costly common parametrization the signed rotation
angle ∆α is composed by two partial angles ∆α ′,∆α ′′ computed in
three dimensional space. Again let e be a normalized vector paral-
lel to the connecting edge and n ′, n ′′ be the surface normals of the
adjacent triangles. The eigenvectors in one of the edge’s vertices are
numerically represented as vectors and given by v ′, v ′′ ∈ R3. The
partial angles ∆α ′,∆α ′′ are defined as the signed angles of the eigen-
vectors v ′, v ′′ and e with respect to the surface normals n ′ and n ′′

(Fig. 46(a)). The vectors v ′ and v ′′ must always be oriented, such that
|∆α| 6 π/2. The entire rotation angle ∆α across a transition bridge is
given as

∠(v ′, v ′′) = ∆α = ∆α ′′ −∆α ′

∆α ′ = sign(n ′ · (e× v ′)) arccos(v ′ · e)
∆α ′′ = sign(n ′′ · (e× v ′′)) arccos(v ′′ · e)

(44)

Please note that the vectors v ′, v ′′ are representations in the global
three dimensional coordinate system of the eigenvectors v ′, v ′′ ∈ R2

of the tensors in the triangles.
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7.3 topology extraction

To compute the complete topology over a non-smooth manifold we
build on Chap. 4. In general, all analysis operations carry over to the
interior of triangles of the embedded manifold. To achieve a complete
topological graph this section provides extensions for the extraction
of degeneracies (Sec. 7.3.1) and separatrices (Sec. 7.3.2) at locations
of discontinuity – triangle edges and vertices, facilitating the ideas
described in Sec. 7.2. In Sec. 7.3.3 the topology extraction of piecewise
constant tensor fields is treated as special case of this approach.

7.3.1 Degenerate Points – Structural and Virtual

Degenerate points that are detected within triangles of the manifold
are called structural degenerate points, because they are inserted as
new vertices into the triangulation structure. Those that are found
on the transition bridges are called virtual degenerate points. The
determination of degenerate points involves their detection and pre-
cise location (Sec. 7.3.1.1), the tensor definition (Sec. 7.3.1.2) in these
points and insertion into the polyhedron structure (Sec. 7.3.1.3). First
the field is evaluated for structural degenerate points. Then edges
and finally vertices are examined for virtual degenerate points. Only
edges and vertices that do not yet contain any degenerate point are
considered.

7.3.1.1 Detection and Location

Structural degenerate points:
The identification of isolated degenerate points inside triangles is ex-
actly carried out as described in Sec. 4.3.1.

Virtual degenerate points:
In either case, for edges and vertices, the decision if a degenerate
point exists is done by calculating the tensor index IT according
to [Del94]. Whilst the location of a degenerate point in a virtual ver-
tex cell obviously is the vertex itself, for virtual edge cells the precise
location of the degenerate points has to be calculated.

Virtual degenerate points – existence:
As mentioned in Sec. 2.7.1.2 the tensor index is the number of coun-
terclockwise revolutions made by the eigenvectors traversing an en-
closing Jordan curve L in counterclockwise direction.
Delmarcelle [Del94] states about it that it "is a remarkable fact that the
line integral [..] depends only on the nature of the enclosed degenerate point
and not on the specific integration path. This very fact grants us consider-
able freedom in choosing the most appropriate path for computing the index
at a degenerate point."
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(a) (b)

Figure 46: Calculation of tensor index around (a) edge with wedge (b) vertex
with trisector. Separatrices depicted in red and blue lines. (a)
below: determination of rotation angle across transition bridge.

L has to be homeomorphic to a circle. In our case L is a piecewise lin-
ear, simple, closed curve, which is modeled by the transition bridges
and triangle edges (see Sec. 7.2 and Fig. 45(a)-(c)) L =

∑
i li. To de-

termine the index we integrate the change of eigenvector directions
∆α along L in terms of signed rotation angles ∆αi of the eigenvec-
tors vi, vi+1 at the end points pi, pi+1 of each line segment li. If the
endpoints of li belong to the same triangle signed angles can be com-
puted straightforward. In case li is across a transition bridge ∆αi is
computed according to Equation 44. Computing the tensor index for
vertices we have to add the angle defect Θ encountered by the traver-
sal of L due to the surface curvature. It is defined by 2π −

∑
iΘi,

where Θi are the apex angles of the surrounding triangles. The ten-
sor index IT is then defined as

IT = ((
∑
i∆αi +Θ)/2π) − 1, (45)

where ∆αi are the signed rotation angles per line segment li of L. For
IT = ±1/2 ·n, n ∈N\{0}, a degenerate point exists, otherwise IT = 0.
Please see also Fig. 46

Virtual degenerate points – exact location on edge:
To calculate the exact location of a virtual degenerate point along an
edge, we actually compute virtual edge cells; for calculation purposes
we set its spatial extent to that of a unit square. The virtual edge cell
is subdivided in two triangles. Within these triangles the computa-
tion of degenerate points is done as for structural degenerate points.
As the virtual edge cells have no spatial extent the detected degener-
ate points are projected orthogonally onto the half-edges constituting
the cell. It can easily be shown that the actual choice of the spatial
extent for the stretched planar bridge has no effect on the location of
the degenerate points.
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7.3.1.2 Tensor Definition in Degenerate Points

Structural degenerate points:
Their definition is the same as given in Sec. 4.2.

Virtual degenerate points:
Tensors for virtual degenerate points are not defined as the tensor
values themselves have no relevance for the topological structure.

7.3.1.3 Insertion of Degenerate Points into Polyhedron Structure

Structural degenerate points:
A degenerate point found inside a triangle is inserted as new vertex
into the polyhedron structure to assure consistent eigenvector-based
interpolation. The triangle is divided in three new triangles, which
share the degenerate tensor in the new vertex. If a structural degener-
ate point is located on an edge, the new vertex has to be inserted also
in the adjacent triangle to provide a consistent triangulation struc-
ture. However, the degenerate tensor is not assigned to the new
vertex point in the adjacent triangle. Instead the tensor is linearly
interpolated using the tensors given in this triangle. If a new struc-
tural degenerate point lies at a vertex, the polyhedron structure is
unchanged, and only the vertex point of the triangle where the de-
generate point was detected is assigned the degenerate tensor.

Virtual degenerate points:
Here, the polyhedron structure remains unchanged.

7.3.2 Separatrix Computation and Classification

The integral topological graph contains separatrices for both major
and minor eigenvector fields. Thus, the following concepts are ap-
plied to both eigenvector fields, respectively. First start directions of
the separatrices are determined by finding radial tensor lines emerg-
ing from degenerate points. Then the separatrices are computed as
tensor lines, integrated along the eigenvector field until one of the
termination conditions presented below applies. The determination
of start directions differs for structural and virtual degenerate points.
Radial directions from structural degenerate points are calculated as
in Sec. 4.3.3. For virtual degenerate points two cases can occur. Either
the computation of a separatrix can be directly started in an adjacent
triangle or radial directions lie within an adjacent virtual edge cell.

Radial directions from virtual degenerate points:
Since virtual edges and vertices have no spatial extent the start direc-
tion of separatrices in their interior is irrelevant. Separatrices starting
in virtual degenerate points enter adjacent triangles at the projected
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degenerate point independently from the explicit start direction. As
these entering points not degenerate separatrices can be computed by
simply starting the integration in these locations (Fig. 46 (a),(b)).

Radial directions in virtual edges:
For both structural and virtual degenerate points radial directions
can also emerge in the virtual edges. If the partial angles ∆α1,∆α2
of eigenvectors v1, v2 on a common edge (Eq. 44) occur with different
sign, the radial direction is in the virtual edge cell. See Separatrix S1
in Fig. 46(b).

Integration of separatrices:
Within a triangle separtrices are computed by applying a Runge Kutta
of 4th order scheme. Eigenvectors are bidirectional, within triangles
the consistent interpolation is steered by the edge labels as described
in Sec. 4.2 and performed in two dimensional space. If the integration
of a separatrix passes a triangle boundary, the separatrix is cut at the
intersection point p with one of the triangle edges. Starting from this
point the integration has to be continued in the adjacent cell, which
also can be a virtual cell. Three cases can be discerned: the separatrix
leaves the triangle through an edge, it leaves through a vertex, or it
converges into an edge.
Case 1: A separatrix intersects the interior of an edge in point p
and eigenvector v ′. The directed angles ∆α ′,∆α ′′ of the eigenvec-
tors v ′, v ′′ with the common edge (Eq. 44) are computed, where v ′′

is the eigenvector at p in the adjacent triangle. If they have the same
sign the integration is continued in triangle Tf. The integration fol-
lows v ′′ pointing to the interior of the triangle.
Case 2: The separatrix leaves through a vertex p. Then all triangles
sharing p are potential follow up triangles. If the vertex contains a
degenerate point the separatrix is terminated. Otherwise the triangle
containing the "straightest" continuation of the separatrix is chosen.
Therefore the eigenvector in p of the last visited triangle is projected
onto the adjacent triangles. For each triangle the angle of the pro-
jected eigenvector is computed with the local eigenvector in p. The
minimal angle defines the follow up triangle.
Case 3: There is a special case for both edges and vertices. This
is if eigenvector behavior symmetrically converges towards an edge
(Fig. 47). Looking at the transition bridges the interpolation therein
suggests integration parallel to the concerned edge. Technically this
case is detected by comparing the directed angles of the edge and the
eigenvectors on the respective triangles in the point of intersection p
(Eq. 44). For different signs of the directed angle we can directly inte-
grate the separatrix along the edge. The vertex point of the half-edge
performing the smaller angle to the eigenvectors is chosen as next
point of the separatrix.
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Figure 47: Separatrix S converges into edge e due to different signs of angles
∆α1 and ∆α2.

Termination conditions are equal to those given in Sec. 4.3.5. A sep-
aratrix is terminated if it fulfills one of the following conditions: 1.
leaves the domain. 2. gets close to a degenerate point, line or trian-
gle. 3. describes a circle or spiral and passes itself closely in parallel
integration direction.

7.3.3 Piecewise Constant Tensor Fields

Piecewise constant tensor fields commonly occur if tensors are only
given per triangle. Another example is a tensor field derived from
a piecewise linear vector field with vectors defined in the vertices of
the manifold. The topology extraction for piecewise constant tensor
fields can be regarded as a special case of the approach proposed
above and derived in a straightforward manner.

Degenerate points – The calculation of degenerate points is naturally
reduced to virtual vertex cells and edge cells. This is done in anal-
ogy to Sec. 7.3.1, only that eigenvectors v are defined per triangle
and rotation angles ∆αi only have to be calculated across edges. This
implies that degenerate points in virtual edge cells are only found if
eigenvectors v ′, v ′′ of adjacent triangles are orthogonal, v ′ · v ′′ = 0.
In this case, the entire edge is degenerate.

Separatrices – Separatrix computation is also done as in Sec. 7.3.2 for
separatrices from virtual degenerate points: integration of the sepa-
ratrices starts in the location of the virtual degenerate point. Radial
start directions can be found for the surrounding triangles and in the
virtual edge cells applying the same conditions as given in Sec. 7.3.2.
The integration within a triangle is performed in one step, the ex-
pense of a Runge Kutta integration scheme can be omitted. Again
tensor lines can converge into virtual edge cells if the eigenvector be-
havior of adjacent triangles is symmetric to the edge. The termination
conditions for separatrices are also equal.
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7.4 results

7.4.1 Piecewise Continuous Tensor Fields

This section demonstrates how the complete topology is extracted –
degenerate points and separatrices are also found in the discontinu-
ous locations. First the results are exposed for piecewise linear tensor
fields, then for piecewise constant tensor fields. Degenerate points are
depicted as spheres and separatrices of the major eigenvector field as
red lines, separatrices of the minor eigenvector field as blue lines. For
a better evaluation the major eigenvectors are indicated by short red
lines in the triangles. However, they are not displayed, if the image
would be overloaded and cluttered.

(a) (b) (c)

Figure 48: Analytic one-point load data set cut with sphere given as piece-
wise linear tensor field (schematic illustration in (c)). Fig. (a) ren-
ders the topological graph without additional consideration of
locations of discontinuity. The red separatrix in the center seems
to be of incorrect behavior. Fig. (b) shows the missing degenerate
point (large sphere) and additional radial tensor lines (bold lines).

7.4.1.1 Analytic One-Point Load Cut with Sphere

The first example is the cut of a triangulated sphere with the analytic
data set of the one point load (see Sec. A.1.1 and schematic illustra-
tion in Fig. 48(c)). The data set is sampled at the vertices of the sphere
and projected onto the triangles.
This data serves as a simple but clarifying example why locations of
discontinuity have to be examined for degeneracies. Fig. 48(a) shows
the result of the topology extraction without and 48(b) with addi-
tional examination of the locations of discontinuity. The topological
graph in Fig. 48(a) is incomplete and the red separatrix in the middle
seems to perform an unmotivated turn. Fig. 48(b) exhibits the miss-
ing virtual degenerate point, found in the virtual vertex cell in the
center. For a clearer arrangement in Fig. 48(b) the additional virtual
degenerate point is depicted larger and only separatrices emerging
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from the virtual degenerate point are drawn as bold lines. Separatri-
ces from structural degenerate points are drawn as thin lines. Sep-
aratrices S2,S4 are found in the virtual edge cells. Comparing the
separatrices and the major eigenvector field illustrated by the short
red lines, it can be seen that starting the integration of tensor lines
in the location of a virtual degenerate point delivers radial start di-
rections (Sec. 7.3.2). Thus, the integrated separatrices partition the
domain into qualitatively homogeneous regions. S2,S3,S4 could be
omitted, as they show radial behavior within the bounding separatri-
ces S1,S5 and do not contribute to the structural partition the topo-
logical graph renders. They can be identified by a classification in
analogy to Sec. 4.3.4. Please note, separatrices are stopped if they
describe a spiral and pass themselves closely in parallel integration
direction.

Figure 49: Simulated two-point load cut with a sphere, schematic illustra-
tion in top right corner. Virtual degenerate points are depicted as
larger spheres and associated separatrices as bold lines.

7.4.1.2 Simulated Two-Point Load Cut with Sphere

The second example (Fig. 49) is the cut of a triangulated sphere and
with the finite element simulation of the two-point load (Sec. A.1.3).
Again for better clarity, topological elements from structural degener-
ate points are drawn smaller. Virtual degenerate points are shown as
large spheres and associated separatrices as bold lines. As this data
set is simulated it has a more complex topological structure. Point P0
is a virtual degenerate point found in a virtual vertex cell, P1,P2 and
P3 are found in a virtual edge cell. All of them are wedge points. The
blue separatrices below P1 demonstrate how our approach correctly
integrates tensor lines along the edges: due to symmetric eigenvec-
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(a) (b)

Figure 50: Topology computation for piecewise constant tensor field – (a)
trisector and(b) wedge point (depicted as spheres). Both found in
virtual vertex cells.

tor behavior in the adjacent triangles the tensor lines converge in the
edge (Sec. 7.3.2, Case3).

7.4.2 Piecewise Constant Tensor Fields

7.4.2.1 Analytic Trisector and Wedge data sets

Fig. 7.50(a) and 7.50(b) show two analytic data sets and present how
the topology extraction also works for constant tensor fields. In Fig-
ure 7.50(a) a degenerate point is in the center virtual vertex cell, which
is a trisector. Due to the piecewise constant tensor field the separa-
trices appear rather jagged, but correct. Separatrices S4,S6 are found
by starting the integration in the adjacent triangles. The separatrices
S1,S2,S3,S5 found in the virtual vertex cells are necessary to com-
plete the topological graph. Fig. 7.50(b) shows a wedge point. Sep-
aratrices S1,S2,S4,S6 are found in the virtual edge cells, S3,S5 by
integration in the triangles. Again the tensor lines S3,S4,S5 could be
omitted as they are radial tensor lines.

7.4.2.2 Rate of Strain Tensor Field on Aneurysm data set

In the area of flow analysis and visualization an increasing interest
in the rate of strain tensor (Sec. 2.8.4) can be observed. For piece-
wise linear flow fields this results in piecewise constant tensor fields,
which are based on the derivative of the flow field. This motivated
the next example, which investigates the blood flow inside a cerebral
aneurysm (Sec. A.2.1). This example exposes the topology extraction
on the rate of strain tensor field. The tensor field is derived from the
original vector field and piecewise constant.

In Fig. 51, top right corner, the original vector field is illustrated
by streamlines [RPH+

09] on the surface. For better orientation the
streamlines are repeated in the central image, which shows the com-
plete surface topology of the rate of strain tensor field. In flow visu-
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Figure 51: Derived rate of strain tensor field on an aneurysm data set. Top
right corner: the streamlines on the surface render the initial ve-
locity gradient vector field.

alization the divergence of a flow is one of the interesting quantities.
Evaluating the rate of strain tensor by means of scalar quantities, like
the major eigenvalue, determinant (Eq. 32) or trace (Eq. 33) of the
tensor gives insight on the strength of the divergence in a field. The
topological graph of such a field additionally renders the directional-
ity of the divergence. The major and minor tensor lines indicate di-
rections of strongest divergence respective convergence. This allows
to distinguish regions where major flow separation occurs along or
across streamlines.

7.5 conclusion

We presented an approach to extract the complete surface topology
on piecewise continuous and piecewise constant two dimensional
symmetric tensor fields on two dimensional triangulations embedded
in three dimensional space. The core idea is to include the locations
of discontinuity into the topological analysis. For this purpose the
model of continuous transition bridges is introduced, which allows
to capture the entire topology on the discontinuous field. The con-
tinuous transition bridges close the discontinuous gaps of the tensor
field in the edges and vertices of the triangulation. The strength of
this work lies in its simplicity compared to previous work. Degen-
erate points and separatrices hidden in the edges and vertices are
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extracted and a complete surface topology is achieved. The existence
of hidden degenerate points is detected in an efficient and correct
way by computing the tensor index. While the position of degenerate
points in vertices is clear, the precise location for degenerate points
in edges can be computed. This is done by the model of the flat-
tened transition bridges. The values of the tensor index computation
are integral multiples of 1/2 independently from the curvature of the
manifold. Thus, no thresholding has to be applied for the detection of
degenerate points. Please note, we propose a numerical method with
inherent precision problems, such as rounding errors. For example
the separatrix integration is performed by a Runge-Kutta of 4th order
scheme; the result will always be affected by the chosen integration
step width for example.
This work also proposes results for piecewise constant rate of strain
tensor fields, which are of high interest in flow visualization. The di-
rectionality of flow divergence and convergence can strongly support
the analysis of complex flows. The surface topology of the rate of
strain tensor field yields a skeleton were all such directional charac-
teristics are illustrated.
The model of continuous transition bridges can be extended to the
extraction of the surface topology of vector fields as well. We hope
that this paper enriches work in that research area, as well.
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A U T O M AT I C , T E N S O R - G U I D E D I L L U S T R AT I V E
V E C T O R F I E L D V I S U A L I Z AT I O N

Visualization tries to embody much information of a data set within
a single image. This often results in complex depictions that cannot
be understood by domain experts without further knowledge of the
visualization methods. As a remedy, illustrative visualization tries to
mimic hand-drawn sketches [Dal83, SCK10] of schematic illustrations
as used by the domain experts themselves.
This chapter presents an automatic visualization tool similar to these
hand drawn sketches. In particular, it is concerned with the illus-
trative representation of properties in asymmetric tensor fields. In
this work we present the benefit of such an illustrative visualization
approach for the simplified depiction of properties in vector fields.
Hereby, the asymmetric tensors occur as the spatial derivatives of the
vector field. These derivatives contain valuable information that is
independent of the chosen frame of reference and that are hard to
deduct from vector only visualizations.
Our major motivation is a sketch drawn by domain experts on the ba-
sis of a complex visualization [CPL+

11] derived from an earthquake
simulation [Vin98]. Abstracting the complex original visualization re-
sults in a simple, easy-to-read image containing the most important
information (Fig. 52). The goal of this work is to use computers to au-
tomatically generate similar abstracted, highly simplified representa-
tions of vector data and its prevalent features, pursuing the idea that
showing less can sometimes be more. This can serve as a bridge to-
wards other elaborate and more complex visualization methods and
also eases the comparison of data sets, e.g. for different time steps.

Displaying less certainly requires a careful choice of what to show.
This also implies that the abstraction process should only depend on a
few intuitive parameters. Therefore, the design of our visualization is
guided by the following ideas: generate a visualization that is simple
in its concepts, intuitive in its single elements, conveys trends and
strongly expressed features in the data.

Visualization concept – The visualization consists of two major com-
ponents: (a) a background visualization that displays large scale trends,
and (b) a feature visualization that highlights locations of strongly ex-
pressed field characteristics. Both components are built from multiple
layers considering the vector field itself and the gradient tensor field,
an asymmetric tensor field. The derivative supplies valuable addi-
tional information about the vector field. The derivative, an asym-
metric tensor, is decomposed according to Zhang et al. [ZYLL09] into

105
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(a) (c)

Figure 52: Visualization of a vector field from a simulation of co-seismic dis-
placements [Vin98] (Sec. 8.3.2). The image (a) shows the result
of our automatically generated visualization including a rough
representation of the context as background and the strongly ex-
pressed features on top. Those occur mostly along the fault mov-
ing from top to down. The image (c) shows the detailed hybrid
visualization technique developed by Chen et al. [CPL+

11] con-
sisting of hyper-streamlines and elliptical glyphs. Image (b) is the
sketch drawn by domain experts on basis of (c) and motivated our
work.

three components expressing the strengths of isotropic scaling, the ro-
tation and the shear. In contrast to the work by Chen et al. [CPL+

11],
we do not display the entire tensor information but restrict ourselves
to the magnitude of the components, which are scalar fields describ-
ing the respective feature strength.

The idea of the background visualization is to cluster regions of
similar behavior. Thereby, only large scale clusters are considered for
the visualization. The clustering method depends on the respective
field. For vector fields, we introduce an efficient clustering approach,
which is almost parameter free. For the clustering, we adopted the
similarity measure proposed by Telea et al.[TvW99] adding a compo-
nent that considers the strength of the derived tensor field. As result,
we obtain large clusters in mostly homogeneous regions while clus-
ters are small in regions with high variations. For the scalar fields,
we propose two approaches: the first delivers a clear partition of the
domain into the dominant components of the scalar fields. However,
for its clarity it might loose important details. The second approach
conveys more details and builds on scalar field topology exploiting
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basins of the maxima. To complement this trend visualization, we
add a detailed feature visualization in the foreground. Local fea-
tures are defined as maxima of the respective scalar field and offer
the possibility to steer the level of detail for this representation via
homological persistence. Features as well as background trends are
represented by icons. The combination of these elements involves
few plausible parameters which can be used to move the focus from
global to detail or to specific features of interest.

In summary, the algorithm consists of the following components:

• Tensor decomposition

• Vector field clustering

• Scalar field topology extraction and persistence computation

• Cluster center computation for background glyph placement

• Rendering

The method is relevant for a multitude of strongly differing appli-
cation areas. We demonstrate its effectiveness using three data sets:
A two dimensional flow behind a cylinder, a wind vector field from
a multi-parameter weather simulation and the displacement fields of
an earthquake simulation.

8.1 basics and notation

In the following let v(x) : D → R2 be a vector field given on the do-
main D ∈ R2. T(x) denotes the asymmetric tensor field representing
the gradients of v(x), see also Eq. 2.

8.1.1 The Gradient Tensor Field

In this approach the gradient plays a fundamental role for the analy-
sis of the vector field. In the area of fluid dynamics it is often referred
to as a Galilean invariant entity which expresses shear, rotation, and
isotropic scaling of a fluid. In terms of a linear Taylor approximation
of the field it appears as coefficient of the second term:

v1(x) = v(a) +∇v(a)(x − a) (46)

Transferring this to the task of vector field analysis and visualization
leads to the two guiding ideas of our approach:

1. In locations with derivative ∇v(a) close to zero the field is al-
ready well represented by the given vectors only, Sec. 8.2.3.2.

2. Adding information given by the derivative helps to further/
deeper understanding of the field, Sec. 8.1.2, 8.2.2, 8.2.3.3.
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8.1.2 Decomposition of Derivative

To analyze and visualize the spatial derivative we pursue the decom-
position of asymmetric tensors proposed by Zhang et al. [ZYLL09]
into the uniquely defined tensor components: T = D + S + R which
we introduced in detail in Sec. 2.4.4.2, Eq. 12. Without explicitly spec-
ifying the application area of the vector field v(x) the components can
be classified as follows: D is the isotropic scaling, S the shear, and R
the rotational part of T. The derived scalars γd, γs, and γr (Eq. 14)
are measures for the strengths of D, S, and R and allow to classify
the vector field. In the following γd(x),γr(x), and γs(x) denote the
respective scalar fields.

Whilst the strength of the shear is always positive, γs > 0, the sign
of γr and γd distinguishes their quality. With respect to the sign of
γr and γd we can specify five deformation modes:

• Positive isotropic scaling for γd > 0

• Negative isotropic scaling for γd < 0

• Pure shear with γs > 0

• Counterclockwise rotation for γr > 0

• Clockwise rotation for γr < 0

The scalars γd, γr, and γs and the absolute tensor magnitude m =

γ2d + γ
2
s + γ

2
r will be used to guide and extend the vector field visual-

ization as proposed above (Sec. 8.1.1).

Figure 53: Critical points of a scalar function. The size of the spheres is
determined by homological persistence. There are 38000 criti-
cal points contained in the dataset, but homological persistence
classifies most of them as unimportant.
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(a) low persistence (b) high persistence

Figure 54: Simplified schematic illustration of the persistence concept. In
both images M1, M2 are the maxima of a 1-D scalar function. In
(a) M2 has a relatively low, whereas in (b) M2 has a high persis-
tence value. Filtering by homological persistence would induce
that for the function in (a) only at M1 an icon would be drawn
and the final depiction naturally cleaned up. In contrast, in (b)
at both extrema an icon would be placed due to their high per-
sistence. However, we are convinced that although this might in-
duce clutter both extrema are of such high importance that both
ought to be displayed.

8.1.3 Scalar Field Topology and Homological Persistence

For the background as well as the feature visualization we exploit
concepts of scalar field topology. The features are defined as local
extrema of the derived scalar fields γd(x), γs(x), and γr(x) and the
scalar field clustering uses basins of the extrema as fundamental struc-
ture (see also Fig. 62 (b). A basin of such a point is that part of the
domain for which all points are connected with the respective ex-
tremum when integrating gradient lines. For instance, all points of a
valley belong to the basin of its minimum. The basins of all minima
present a segmentation that covers the whole domain. The same is
true for the basins of all maxima.

To extract the scalar field topology we employ the combinatorial
framework by Reininghaus et al. [RGH+

10] which is robust and avoids
the computation of further derivatives. Within this framework, we
use homological persistence as introduced by Edelsbrunner [ELZ02].
Homological persistence measures the stability of an extremal point
against perturbation of the data values. It can be used to remove noise
induced extremal points, but it also serves as a natural importance
measure for critical points. Introducing homological persistence in its
full extent is beyond the scope of this thesis. Instead we will summa-
rize the basic ideas about this concept. For further reading we refer
the interested reader to [ELZ02]. An example is shown in Fig. 53,
where the importance of the extremal points is determined by ho-
mological persistence. In this image, there are outstanding extremal
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points – however, with very different persistence values. Selecting
these exponents by mere thresholding could not provide such a well
defined hierarchy like persistence filtering does (see also Fig. 54). Ho-
mological persistence therefore provides a natural and sensible hierar-
chy of the extremal points. For our application, we use homological
persistence to control the level of detail for the represented feature
points. We split the scalar fields γs(x), γr(x) which can also have neg-
ative values into two positive fields, respectively. Let γi(x), i ∈ {d, r}
be the original scalar field. Then the two fields γi+(x), γi−(x) are
defined as follows:

γi+(x) =

 γi(x), γi(x) > 0

0, else

γi−(x) =

 0, γi(x) >= 0

−γi(x), else

Like this only maxima are extracted by the topology and persistence
values unambiguously reflect their importance (see also Fig. 54).

8.2 visualization concepts

Figure 55: Top: Background icons for different deformation modes: posi-
tive, and negative isotropic scale, shear, counterclockwise rota-
tion, and clockwise rotation. Bottom: Respective extrema icons.

8.2.1 Icons

The essence of the visualization approach is to provide a composited
image, where the most prominent features are presented in the fore-
ground and in the background a context visualization is given.

The most prominent features are identified as the persistence filtered
extrema of the scalar fields γi(x), i ∈ {r+, r−, s,d+,d−} (see Sec. 8.2.2).
The background visualization comprises vector representation (see
Sec. 8.2.3.2) and a rough simplified visualization of the quantities in
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the scalar fields γi(x). To serve the different needs for understanding
vector fields, we provide multiple strategies (see Sec. 8.2.3). Essen-
tially they differ in their focus on either clarity of presentation or
completeness of information.

Both extrema and background information deduced by the scalar
fields are depicted by icons. The following goals were guiding their
design (Fig. 55): the icons should be simple to obtain a clear, harmo-
nious image. Also the colors of the icons should be well discriminable,
whilst avoiding too many colors in the image which might distract
the user from the actual content. All icons are bounded by a circle,
the base size of all icons is equal. The icons themselves only encode
qualitative properties, the type of deformation mode. The isotropic
scaling and rotation icons are rather self-explanatory. The shear icon
qualitatively illustrates the deformation of a unit square under shear.
The major arrow inside is oriented according to direction of the ma-
jor eigenvector at the current location. The icons used for extrema are
bounded by a bold circle to differentiate them from the background
icons. Please note that the icons were designed that they could also
work for color blind people.

8.2.2 Extrema and Foreground Visualization

Features defined by the scalar fields γi(x), i ∈ {r+, r−, s,d+,d−} are
extracted as maxima of the scalar field topology (Sec. 8.1.3). Filtering
them by homological persistence allows to extract the most promi-
nent features on a sound mathematical basis without corrupting the
data (see also Fig. 56). Maxima due to topological noise are removed
in a pre-processing step. The persistence value of the remaining ex-
trema can be used to interactively determine the granularity of the
representation. Note that the feature strength itself cannot be de-
duced from the persistence value.

To display the extracted features extremal-icons (Fig. 55) are placed
at the location of the extrema. They are scaled according to their
magnitude to encode the feature strength. Icons that fall below a
predefined size (in our implementation one twentieth of the domain
size) are depicted as colored dots.

8.2.3 Background Visualization

For the background visualization of the vector data and the scalar
data a clustering is performed. The resulting clusters are given as
a region bounded by a polyline and are visualized using representa-
tive icons. The respective clustering algorithms, the definition and
placement of the representatives are described in the following.
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Figure 56: Earthquake data set (Sec. 8.3.2) (a) Height field of shear scalar
field. (b) All extrema of scalar field displayed as spheres scaled
by their persistence value. (c) Persistence filtered extrema.

8.2.3.1 Segment Voronoi Diagram

For the placement of the icons (arrows and background icons for the
scalar fields) the segment Voronoi diagram by CGAL [cga, Kar04] is
employed which extracts the medial axis of the clusters. It takes line
segments as input and supports non convex polygons and polygons
with holes. Further it provides the minimum distance to the bound-
ing polylines for each point on the medial axis. The use of the medial
axis for the placement of the representatives is described in the re-
spective sections.

8.2.3.2 Vector Field Clustering and Visualization

For the purpose of generating a vector field clustering we decided
to follow an approach similar to Telea et al. [TvW99]. But in con-
trast to [TvW99] we do not perform a hierarchical clustering of the
complete field. Instead can we employ an efficient region growing
method. The method detailed below.

Choice of cluster region The aim of the vector clusters is to con-
vey trends in the background. Therefore we restrict the clustering to
regions where the tensor magnitude falls below a predefined thresh-
old τ and the field is sufficiently represented by its vector values
(Sec. 8.1.1). To respect the data set specific variations we set τ to
a multiple of the maximal value mmax that the tensor magnitude
reaches. In our implementation it is set to τ = 0.01 ·mmax.

Similarity measure We adopt the anisotropic similarity measure for
vectors of Telea et al. [TvW99] which offers the option to trade-off
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Figure 57: (a) Isocontour errors as defined by [TvW99].

between exact parallelism of vectors in the final clusters or clustering
that follows streamlines.
We will shortly summarize the essential properties of the similarity
measure. For more detail please refer to the original paper [TvW99].
In this paper an error space is introduced which combines feature and
spatial space. Elliptically shaped iso-contours define similarity func-
tions for vector directions and vector positions, see Fig. 8.57(a), 8.57(b).
The eccentricity of a reference ellipse and its total size define the
“strictness” of the similarity measure. The direction similarity com-
pares the directions of two vectors which for extreme values of the
reference ellipse eccentricity would return clusters of parallel vectors.
The position similarity reflects how much the positions of the vectors
is aligned with the vector field. For extreme ellipse eccentricity this
would return clusters that are integrated streamlines. The final sim-
ilarity function e allows to trade-off between directional or position
clustering the two error values ed and ep:

e = (1− a) · ed + a · ep, a ∈ [0, 1] (47)

All results in Sec. 8.3 where generated with an aspect ratio of the el-
lipses of 1:2 and a = 0.9. A further variation compared to the method
by Telea is that the size s of the reference ellipse for the position error
is set in relation to the mean magnitude of the tensor mmean (Eq. 48)
inside the cluster, see Fig. 61 (c). This generically allows that large
homogeneous regions are clustered even though the actual position
distance becomes large.

Region growing As vectors are close to constant in the considered
regions the clustering can be performed by a simple cell-based region
growing algorithm. The clusters are stored as a list of cells and a
bounding polyline. For the region growing a maximum error for the
similarity measure (Eq. 47). is set to 0.01. On demand this value can
be changed by the user but was not necessary for all results in Sec. 8.3.
The region growing starts in the cell with minimum tensor magnitude
m0, which is the location with the most homogeneous neighborhood.
For the evaluation of the similarity function each cluster holds its
mean vector, its center and the mean tensor magnitude mmean. The
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(a) (b) (c)

Figure 58: (a) Eigenvalue manifold of 2× 2 tensors. Extremal configurations
are indicated by colored dots explained in (c). The small hemi-
sphere in the center excludes the undefined case of a zero unit
tensor. (b) Eigenvalue manifold (top-down view along axis of
pure shear). Colored regions depict the Voronoi diagram for the
classification into dominant components.

size s of the reference ellipse in the similarity function is set in relation
to the mean magnitude of the cluster:

s = max(1, log(1/mmean + 1)) (48)

The clustering continues until adding a new cell would exceed the
maximum error. In this case the clustering process recursively starts
for a new cluster again in the (unclustered) cell with the minimum
value of m. Cells with vectors close to zero are left out to avoid the
clustering of singularities.

Visualization The extracted clusters are represented by a curved ar-
row icon. The arrow’s tail is constituted by a streamline integrated
within the cluster and the head represents the direction of the vector
field in that location. The start point for the streamline integration is
located in the center of the medial axis (Sec. 8.2.3.1) of the clusters. It
is defined as the center point on the longest path of the medial axis.
From the start point an exact streamline integration [NJ99] is per-
formed in both directions (on v and −v). For the display the arrows
are shortened by 80%.

8.2.3.3 Scalar Quantities

The background visualization of the scalar quantities is also based
on clustering of regions of similar behavior. Thereby we offer two
different approaches.

• The first is a fully automatic classification of the field character-
istics with the advantage of a clear distribution of the represen-
tative icons in the image.

• The second approach supports the depiction of the full informa-
tion by considering the absolute strength of the scalar values.
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Classification – visualizing the dominant component
To provide a first overview on the overall behavior in the field the
classification into dominant components is performed according to
see Chen et al. [CPL+

11]. Here the relative ratios among the strengths
γs, γd, and γr are compared. By normalizing the strengths γ2s +γ2d+
γ2r = 1 all possible configurations can be modeled as a unit hemi-
sphere (see Fig. 58). A Voronoi diagram on this hemisphere allows to
classify the possible configurations to

• Isotropic scaling dominant D+ (positive), D− (negative),

• Shear dominant S,

• Rotation dominant R+ (positive), R− (negative).

In our approach we exclude tensor magnitude values m close to
zero from the derivative visualization, to avoid the undefined case,
where the unit tensor is zero. Cells are labeled according to the dom-
inant strength type and depicted according to the background visu-
alization described below. The strongest advantage of this method
is that the final image has a clean arrangement. However, the draw-
back is that this classification does not consider the absolute feature
strength. Further it is not possible to display regions where two char-
acteristics play an important role.

Basin visualization
To offer a visualization that overcomes the limitations of an absolute
classification this approach treats each scalar field separately. It uses
the concept of topological basins as described in Sec. 8.1.3 which can
be directly used as clusters for the icon placement. All icons are
assigned the scalar value of their position which determines their
transparency value in the final visualization. By moving a slider for
a magnitude threshold the user can interactively blend in and out the
icons of the regarded scalar field. The shear icons are additionally ori-
ented in the direction of the major eigenvector. Please note that with
the basin visualization background icons of different scalar fields may
overlap, which is not the case for the classification approach.

Icon placement
All approaches for the background visualization are technically treated
equal. In a preprocessing step the boundaries of the extracted clus-
ters are strongly simplified according to an angle criterion. For the
simplified boundaries the medial axis is computed (Sec. 8.2.3.1). and
the points on the medial axis are processed recursively. For the back-
ground icons of the scalar fields the placement starts in the point
with the maximal distance to the boundary. Recursively we place the
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icons along the medial axis, by interpolating their optimal size by the
distance values given at each point of the medial axis, see Figure 59.

Figure 59: Placement of icons along medial axis of a cluster. The light gray
polyline indicates the boundary of the cluster, the dark gray lines
depict information by the segment Voronoi diagram (medial axis
and distances to the boundary).

8.3 results

To verify the automatic generation of the sketch based visualization
we use three data sets with very different characteristics. All three
data sets are inherently two-dimensional. For the two time-dependent
data sets the analysis is performed on single time slices. For all data
sets the same parameters are used.
Performance – our code basis has not been optimized towards perfor-
mance yet. The most costly step is the persistence computation that
is done for each scalar field [RGH+

10]. For the data sets used in the
results we denote the resolution and the processing time required for
the persistence computation for a single scalar field on a QuadCore
i7 processor with 2,6 GHz. The computation time for the scalar fields
is similar.

8.3.1 Cylinder Data Set

Data set – Incompressible flow behind a cylinder with no isotropic
scaling in the field (Sec. A.3.1). We use two versions of this data set:
the original data and a version with changed reference frame with
subtracted the average velocity.
(Resolution: 242× 242, Timing for scalar field topology: 0.47 sec)

Analysis – Figure 60 and 61(a), show all locations of strongest shear
and rotation forces defined by the scalar field extrema. This is com-
bined with the result of the classification into dominant components
in the background. The image is further composited with the results
of the vector clustering and a LIC visualization as context information.
Traditional continuous vector visualization (e.g. LIC, or streamlines)
does not encode direction nor velocity of the vectors. Thus important
qualities like shear or vorticity might not be perceivable. They are
made visible in a suggestive manner within our visualization frame-
work. Further, a change in frame of reference might give a very dif-
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ferent impression of the same vector field. This is demonstrated by
Fig. 61(a) which could imitate the change of an observer’s position.
The LIC visualization in the background of Fig. 61(a) clearly differs
from the one in Fig. 60. In contrast, the schematic illustrations de-
duced by the tensor decomposition remain independent of the frame
of reference. In Fig. 61(a) the LIC might suggest strong vortical be-
havior throughout the flow from left to right. However, the size of the
extremal icons (or dots) clarifies that the magnitude of rotation at the
right end is rather low. We consider it as an extension for the vector
clustering methods described in Chap. 3 that the level of abstraction
for the extrema has a clear mathematical reference and interpretation.
This also supports the reproducibility of simplified and abstracted
view on different data sets.
The close-up in Fig. 61(b) illustrates the results of the vector cluster-
ing, clustered regions are represented by arrows. This image demon-
strates how the clustering approach supports the generation of large
clusters in homogeneous regions while still providing the necessary
granularity in regions with higher variation. This sensitivity is a
consequence of the adaptation of the position error of the similar-

Figure 60: Cylinder data set – Information about shear and vorticity made
visible in the sketch-like representation (in combination with the
vector field visualization method LIC [CL93] as context informa-
tion). The extrema of the scalar fields show the locations of high-
est strengths. If the size of extrema is below the fixed threshold
they are rendered as colored dots. The background visualization
depicts the dominant components according to the classification:
regions of dominant rotation are distinguished against dominant
shear. Regions of low tensor magnitude are illustrated by arrows.
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(a) (c)

Figure 61: Cylinder data set – (a) Same data set as in Fig. 60 but with change
of reference frame. Result shows the independence of the infor-
mation given by the scalar fields from the chosen frame of refer-
ence. (b) Schematic depiction of the vector field clustering pro-
cess with respect to magnitude of derivative (resulting clusters
randomly color coded). White denotes regions with magnitude
m > τ, which are excluded from the clustering. (c) Close-up:
schematic illustration of the size adaption of the reference ellipse
for the position error.

ity function to the underlying tensor magnitudes (Sec. 8.2.3.2) (see
Fig. 61(c). This would not be possible with a uniform measure as
proposed in [TvW99].
In context with flow analysis the mixing of flow is an interesting qual-
ity. For this purpose flow data sets are also inspected towards their
shear properties. After giving a first overview by the classified back-
ground visualization (Fig. 60) the user can switch in the background
to the basin visualization to inspect the overall behavior of the shear
properties, see Fig. 62(a). In Fig. 62(b) the extrema (dots with size
scaled by persistence value) of the shear field and their respective
basin regions are shown exemplarily.

8.3.2 Earthquake Data Set

Data set – Displacement field encoding the ground deformation asso-
ciated with a simulation of the Landers, CA earthquake (Sec. A.3.2).
(Resolution: 450× 450, Timing for scalar field topology: 1.19 sec)

Analysis – Figure 52(a) shows all extrema filtered by persistence (0.3)
and scaled by magnitude. Among the extrema the location of the
strongest forces can be distinguished by their size. The most promi-
nent extrema align with the fault, where clockwise rotation and shear
are dominant. The extrema of the isotropic scale only appear as col-
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(a) (b)

Figure 62: Cylinder data set – (a) Close-up: background visualization of shear
basins (transparency of shear icons adjusted to strength, orienta-
tion to major eigenvector) for a more detailed inspection. The
background visualization reveals properties of the shear which
could not be deduced from the LIC visualization only. (b) Ex-
trema (spheres with size adjusted to persistence value) and basins
of shear scalar field. The gray rectangle is the close-up area in (a).

ored dots. For the background visualization, the classification into
dominant components according to Sec. 8.2.3 is done. This gives a
very clear non overlapping image of the overall behavior in the field.
The vector clustering captures the main directional features in the
data set, additionally sparsely seeded streamlines are displayed in
the background.
As one can see in the shear height field in Fig. 56(a), the shear forces
are very high in the vicinity of the fault, whereas they are compar-
atively small in the remainder of the data set. With the foreground
visualization of the extrema icons, the attention is clearly drawn to the
fault. Amongst these extrema the locations of strongest forces can be
determined by the absolut size of the icons. The background visual-
ization displays the trends in the surroundings which corresponds to
a rather homogeneous but still relevant shear respectively rotational
movement. This highly simplified depiction of strongest forces gives
a clear first orientation, which can then be used in combination with
a highly detailed visualization as in Fig. 52(c). This visualization by
Chen et al. focuses more on the directional information of the ten-
sor components based on a classification and does not offer such a
clear and simple distinction of strong and weekly expressed features.
Our resulting visualization nicely resembles the hand drawn sketch
by the domain experts [CPL+

11]. They felt the urge to deduce such a
strongly simplified schematic depiction of the most relevant features
from the detailed visualization in Fig. 52(c) to attain a first under-
standing. Please note, in contrast to the hand drawn sketch, we also
encode shear in the final visualization. Also the color coding of the
icons differs.
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Figure 63: Climate data set – Time dependent simulation of wind. Top and
bottom image display two consecutive time steps. Due to the
high feature density the visualization is extremely simplified –
only the most persistent extrema are displayed. Additionally the
arrow icons of the vector clustering, contours of the continents,
and sparsely seeded streamlines can be seen.

8.3.3 Climate Data Set

Data set – Time dependent simulation of wind in a multi-model en-
semble forecast system (Sec. A.3.3). The simulation aggregates dif-
ferent climate models with varying parameters. In our results, we in-
spect two consecutive time steps; the images are computed separately.
The data set is of low resolution with high variance and feature den-
sity.
(Resolution: 144× 73, Timing for scalar field topology: 0.15 sec)

Analysis – Due to the low resolution we chose to compare the evolu-
tion of the wind data field and its associated characteristics by only
inspecting the persistence filtered extrema (filtering factor: 0.3) and
the vector clustering. As further context information sparsely seeded
streamlines and the contours of the continents are provided. In the
two time steps, related extrema can be visually well correlated due
to the high level of abstraction by filtering and the simplicity of the
icons (see shear icon in Fig. 63 gray square). Filtering by homological
persistence does not avoid overlaps, but within a region of neigh-
boring extrema the most persistent extremum serves as well defined
representative. It provides a sound basis for stable and reproducible
exponents in form of extrema to compare data over time, or according
to varying models or parameters.
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(a) (b)

(c) (d)

Figure 64: Climate data set – Close-ups of Fig. 63 (top row) combined with
vector visualization. (a) Isotropic scaling extremum at location
where the stream fronts converge from two sides which might
indicate an up- or down-stream. (b) Shear extremum where the
flow follows to opposing directions. (c+d) The depicted scalar
quantities are independent of the chosen frame of reference. In
contrast to the extremum in (d) the rotation extremum in (c) is
not in a location which the vector visualization would suggest.

A detailed inspection of the climate data sets in combination with
simple vector depiction demonstrates that the analysis of the extrema
adds new information that cannot directly be deduced from the vec-
tor field. Figure 64 shows some close-ups of strong features, which
revealed interesting patterns in the climate data set.

8.4 conclusion

We proposed an illustrative visualization of two-dimensional vector
fields consisting of two components: a background visualization that
serves as an overview of large scale trends and a depiction of details
in the foreground. The approach is based on the vector field and
its gradient. We decomposed the gradient into shear, isotropic scal-
ing and rotation and analyzed these individual fields. The strengths
given by these fields serve as one major component of our visualiza-
tion approach. In contrast to the approach of Chen et al. [CPL+

11]
we look at the absolute values of these scalar fields. Our visualization
pipeline therefore combines scalar field topology with tensor analysis.
The highly abstracted view locates the foreground icons at positions
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with clear mathematical interpretation, the extrema of the scalar fields
filtered by homological persistence. Homological persistence defines
a hierarchy of importance for the extrema. This allows to aggregate
features on a solid mathematical basis without the need to employ
any heuristics. This could not be accomplished by filtering the ex-
trema by their magnitude only. The visualization is automatic. Only
a few easy-to-handle parameters are used. In most cases, they can
be set quite similar to default values as shown in the results. The fi-
nal visualization incorporates quantities that might be hidden in pure
vector visualization methods. In addition, it represents information
that is independent of the chosen frame of reference. Therefore, it
overcomes possible mis-interpretations by only analyzing visualiza-
tions based on vectors. The icons are easy to interpret. The aim of
this sketch-based visualization is not to provide all possible informa-
tion in the vector field but rather to give an overview depiction. The
resulting sketches are rather sparse and can be composited with more
specific visualization methods for in-depth analysis. As future work,
we plan to analyze time-dependent fields. The present approach di-
rectly allows the application of tracking methods for scalar field topol-
ogy. This should result in smooth illustrative visualizations of these
fields.
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D I S C U S S I O N A N D C O N C L U S I O N

We will conclude this thesis with a brief discussion on questions of
general content which cannot be associated explicitly with one of the
previous chapters. Finally, the conclusion will summarize the central
topics and contributions of this thesis.

9.1 discussion

In the following we will discuss central aspects that arose during the
advancement of this thesis. We present them here hoping that future
research can profit from those superordinate aspects we have learned
in the vein of this thesis.

9.1.1 Tensors in Visualization

As mentioned in the beginning using second order tensors in visu-
alization has evident benefits but it comes with the challenge that
the wealth of information encoded in these tensors needs to be han-
dled. Visualizing scientific results in terms of scalars and vectors is
attractive as their interpretation is more intuitive than that of second
order tensors. Especially the visualization of indefinite symmetric as
well as asymmetric tensors is still underrepresented. In the previous
chapters we followed the idea to enhance the understanding of tensor
data by analyzing them in terms of decompositions. Indefinite sym-
metric tensor fields are visualized on basis of their eigenvector and
eigenvalue fields and asymmetric tensor fields are split into a shear, a
rotation, and isotropic scaling tensor field. Hereby, these decomposi-
tions uniquely represent the original tensor data but split the tensors
into easier to perceive components.

We proposed our approaches to also support the understanding
of tensors themselves as the decomposed fields allowed us to pro-
vide simplification strategies and easy to read depictions whilst pre-
serving essential tensor characteristics. We presented visualization
methods which process a variety of tensor types from different appli-
cation areas. Yet, we are convinced that there is no universal tensor
field visualization method as such, that covers all possible types of
tensors and their relevant properties. For the further advancement
of tensor fields visualization the users play an important role – they
need to become familiar with depictions for tensor data. Thus, we
believe the tensor field visualizations should not be overcharged with
a maximum of information but rather assist the user in focusing on
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the relevant characteristics. We believe topology based segmentations
allow to inspect the data at a higher level of abstraction. However, we
consider them rather unsuitable for users new to tensor field analysis.
As a remedy, we found textures surprisingly powerful to give a intu-
itive continuous impression of the tensor fields and to display many
parameters without overwhelming the user.

9.1.2 Topology of Symmetric Tensor Fields in Visualization

As mentioned before topology in general has a long tradition in vi-
sualization. Although it might seem quite abstract to someone un-
familiar with this concept it has proven to be beneficial from var-
ious perspectives. Topology can be used for indefinite symmetric
tensors and represent all key directional features in the field in a con-
tinuous manner. Then topology is a mean to achieve a significant
data compression without corrupting the initial data or introducing
heuristics to achieve a simplification. Further, topology provides a
consistent framework for subsequent processing and advanced visu-
alization. Respecting the extracted degenerate points in tensor fields
assures that no inconsistencies are introduced in a subsequent pro-
cessing step. For flow fields the topology of derived symmetric tensor
fields (e.g. rate of strain tensors) is independent of the chosen frame
of reference. With vector field topology the problem can arise that
the critical points and separating lines seem to give a straightforward
intuition about the behavior in the field. But changing the frame of
reference, e.g. changing the point of view can completely change the
key topological features in a vector field. The derived tensor fields
are not affected by such a change of reference frame and thus, they
provide superordinate information content.
However, the degenerate points of symmetric tensor fields do not
have a comparable intuition like the critical points of a vector field
(source, sink, etc.). In visualization for the application areas of me-
chanics and engineering the interpretation of the degenerate points
in a symmetric tensor field is limited to the fact that these are the
locations where the eigenvectors degenerate and by definition eigen-
values are equal. For asymmetric tensor fields derived from flow
vector fields the attempt has been made and it has been showed that
topological elements, the circular points, can be directly associated
with purely circular flow in the original vector field. It would be a
very interesting option for the future to conduct further research if
and to what extent topological features can be associated with phys-
ical properties. We believe, this would highly add to the usability of
topological methods for symmetric tensor fields.

Numerical Issues
One important issue which has to be mentioned with respect to the
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proposed topology extraction method here and in previous literature
is that all methods are numerical approaches. This induces several
effects. As described in Chap. 4 for linear interpolation degenerate
points of higher order decay into multiple linear degenerate points.
We have presented a method to alleviate this effect by extracting
degenerate elements of higher dimensionality, e.g. degenerate lines,
or triangles. This approach reduces the complexity of the field as
also separatrices can be classified on a higher level and accordingly
strongly reduced. Compared to previous approaches this simplifica-
tion is done without the necessity of user defined parameters. With
the extension to detect degenerate points and separatrices in piece-
wise continuous and piecewise constant tensor fields we can claim
that our topology is complete. However, the separatrix computation
is performed by a numerical integration scheme which implies it de-
pends on the chosen numerical precision and further parameters (e.g.
step width). Here, it would be a highly interesting but challenging
option for the future to develop a combinatorial approach for the
extraction of the tensor field topology. Especially the fact that separa-
trices in tensor fields hardly connect degenerate points for numerical
integration schemes would be highly interesting to investigate with
respect to combinatorial approaches. This would induce a desirable
additional simplification of the graph structure and enrich the com-
prised adjacency information. To the best of our knowledge up to
now there has been no attempt towards this aim.
A related topic is that of noise which particularly arises for measured
data, but which is inherently given on any computational system due
to the representation of numbers and round-off errors during compu-
tation. This issue is apparent for every type of visualization. How-
ever, topological methods tend to be more sensitive to noise than
other methods. Their aim is to generate a strongly reduced view on
the initial data set. Thus, newly generated degenerate points and
consequently separatrices are more grave if they occur due to noise.
In dense visualizations like the texture mapping in Chap. 6 these ad-
ditional features occur as well, however, they are not as prominent.
Here, research would be beneficial towards a filtering strategy based
on a clear mathematical foundation to clean up the resulting topolog-
ical graph.

9.1.3 Dimension Reduction

Three dimensional tensor data sets naturally suffer of occlusion if the
full tensor information ought to be depicted. Only a strong filtering
allows to display such three dimensional tensor fields as reduced sets
in their original object space. Approaches like integrated views sup-
port the exploration of three dimensional tensor data sets in terms
of spaces based on derived attributes (e.g. the eigenvalue space) and



126 discussion and conclusion

facilitate the choice of relevant filtering attributes (see e.g. [KKH11]).
Still, any continuous depiction of tensor fields soon reaches its lim-
its when attempted in three dimensional space. Even the strong re-
duction attained by the topology computation for three dimensional
tensors cannot prevent the problem of occlusion as the regions of
homogeneous directions are bounded by separating surfaces which
naturally occlude other structures.
We present our methods also to be suitable for three dimensional
tensor fields that are investigated in terms of extracted slices or iso-
surfaces. Hereby, the data is projected onto a planar or curved surface
geometry and two dimensional tensors are processed and visualized.

Figure 65: Three dimensional
anisotropic tensor (blue
ellipsoid) may become an
isotropic two dimensional
tensor (turquoise ellipse) if
projected on surface E.

Investigating tensor fields in
form of two dimensional data
sets is a feasible approach to give
a continuous view of any indefi-
nite tensor field which preserves
the anisotropic properties of the
tensors. However, it has to be
stressed out that the user needs
to keep in mind that observa-
tions in two dimensional space
cannot be directly conducted to
three dimensional space. A sim-
ple example is that of a pro-
jected two dimensional isotropic
tensor which might be highly
anisotropic in three dimensional
space (see Fig. 65). Hereby, taking reassurance from the original three
dimensional data, for example by probing, can provide a way to gain
continuous insight at first and demanding full detail at locations of
interest.

9.2 conclusion

Second order tensors provide a versatile mathematical formalism to
elegantly define and describe complex phenomena. However, they
bring about a certain inhibition threshold as a direct interpretation
of the encoded information is mostly not given. They encode multi-
linear transformations and capture anisotropic properties which makes
them extremely flexible but in turn also prevents users to investigate
them directly. In this work, the focus is on the visualization of ten-
sors occurring in the application areas of mechanics and engineering,
which are strongly underrepresented in scientific visualization. Our
work comprises indefinite symmetric tensors as well as asymmetric
tensors. We chose to design our concepts for two dimensional fields
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that are defined on planar or curved surfaces. The visualization of
second order tensors on surfaces allows to depict those fields as a
whole and discover coherences. But also inconsistencies and other
unexpected actualities can be detected which is an important benefit
of scientific visualization.
To condense the wealth of information in symmetric tensor fields we
provide segmentation algorithms that reflect essential properties in
a graph structure. Chap. 4 presents the computation of the integral
topological graph which allows the immediate inspection of all di-
rectional features. Based on a sound mathematical basis this graph
partitions the field into cells of homogeneous eigenvector behavior
without introducing any heuristics in the simplification process. Com-
pared to previous approaches the key topological structures are nat-
urally reduced by the extraction of topological features of higher di-
mensionality. In Chap. 5 this topological basis is refined towards a
segmentation that also respects the eigenvalue fields. The segmenta-
tion workflow is designed to be flexible and can be adapted to reflect
also other scalar quantities or visualization aims. Due to the adaptive
character of the segmentation workflow a focus and context visual-
ization can be immediately deduced. This gives the user the freedom
to inspect an individual data set on demand at the desired level of
detail.
Both segmentations give a strongly simplified view on the initial field.
The user can inspect the tensor field as a whole and distinguish re-
sembling regions from regions of strong variation. Additionally, the
segmentation results are returned as explicit geometric structures that
can be enriched with further information, used for statistical inquiry,
and tracking over time.
We attached high importance to broaden the applicability of our meth-
ods. In Chap. 7 the necessary extensions are given to conduct this
segmentation approaches also for piecewise continuous and piece-
wise constant tensor fields. This facilitates the investigation of data
on curved surfaces, e.g. boundary surfaces or extracted isosurfaces of
initially three dimensional tensor data.
The segmentation framework of Chap. 5 is used as a consistent frame-
work to map textures for a rich visualization of tensor fields. The mul-
titude of parameters given by textures and glyphs are used in Chap. 6

to encode further quantities and physical properties of the tensors in
the visualization. Important characteristics like compression or ex-
pansion can be intuitively perceived by the pattern frequency of the
used textures. Further, any type of glyph can be placed in the center
of the homogeneous segmentation cells for explicit investigation of
the tensor field at distinct locations.
For asymmetric tensor fields we propose an illustrative visualiza-
tion in Chap. 8 which is based on a decomposition into a rotation,
isotropic scaling, and shear tensor component. These components al-
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leviate the understanding of the encoded transformation in an asym-
metric tensor and can be represented with strongly simplified icons.
This facilitates to depict dominant features of the tensor field in the
foreground and to subsume large scale trends in the background in
a sketch-like manner. The visualization method supports the need of
domain experts to have simplified, easy to read depictions for a first
understanding and overview of such a highly complex field.

We have presented visualization concepts to further enhance the
understanding of second order tensors. A variety of methods has
been proposed aimed at domain experts but also at users only becom-
ing acquainted with the tensor concept. Strong simplifications but
also highly rich visualizations were developed for a comprehensive
depiction of tensors. The concepts are applicable to a multitude of ten-
sor types from different application areas which we have proven by
applying them to strongly differing data sets. All our methods build
on topology which serves as profound mathematical basis to achieve
a reproducible simplification which we consider constitutional for the
visualization of scientific data.
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A
D ATA S E T S

a.1 stress tensor data

Here, three data sets from structural engineering are presented which
are simulations of forces acting upon solid blocks resulting in stress
tensor data (see also Sec. 2.8). The One- and two-point load are well
studied data sets which are especially beneficial to demonstrate basic
proof of concepts for new visualization methods.

a.1.1 One-point load – analytic data set

The one-point load is a model of a solid block on which a pushing
force acts upon resulting in stress tensor data (Fig. A.66(a)). The
analytic formula is given in [SD03].

a.1.2 One-point load – simulation

Same data set as in Sec. A.1.1 however given as finite element simula-
tions (FEM) which results in more complex structures (Fig. A.66(a)).

a.1.3 Two-point load

Data set generated similar to the one-point load. Here two opposing
forces are acting upon a solid block – one pushing and one pulling
force (Fig. A.66(b)).

(a) (b)

Figure 66: Schematic depictions of the one- and two-point load data sets. (a)
One-point load data set. A pushing force is acting upon a solid
block. (b) Two-point load data set. A pushing and a pulling force
act upon a solid block.
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a.1.4 Notched block

Simulation of multiple forces applied to a notched block, using hp-
adaptive finite elements.

Figure 67: Notched block data set.

a.2 rate of strain tensor data

a.2.1 Aneurysm

Computational fluid dynamics (CFD) simulation performed on a tetra-
hedral mesh. For the rupture risk analysis the wall shear vector field
is of special relevance [BRM+

08], which is given as three-dimensional
vector field defined on the surface vertices. The vector field is pro-

Figure 68: Aneurysm data set: Wall shear vector field depicted as stream-
lines.

jected onto the triangles. The constant rate of strain tensor field is
derived locally per triangle. Let u = (u1,u2) ∈ R2 be a vector in the
local coordinate system. The components of the rate of strain tensor
are derived as given in Eq. 11.

a.3 vector data

a.3.1 Cylinder data set

Time-dependent (32 time steps) two-dimensional CFD simulation of
the von-Kármán vortex street [NSA+

08, Wil96], the flow behind a
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cylinder with Reynolds number = 100. The flow is incompressible,
so by definition there is no isotropic scaling in the field. We use two
versions of this data set: the original data (Fig. A.69(a)) and a version
with changed reference frame with subtracted average velocity.

a.3.2 Earthquake data set

Displacement field encoding the ground deformation associated with
a simulation of the June, 1992 Mw=7.3 Landers, CA earthquake [Vin98]
(Fig. A.69(b)).

(a) (b)

Figure 69: Vector fields depicted as LIC texture and sparse streamlines. (a)
Original cylinder data set. (b) Earthquake data set.

a.3.3 Climate data set

Time dependent simulation of wind in a multi-model ensemble fore-
cast system for reliable seasonal to inter-annual prediction [PAA+

04].
This simulation is freely available by the DEMETER project and ag-
gregates different climate models with varying parameters. The data
set is of low resolution with high variance and feature density.

Figure 70: Climate data set: Vector field depicted as LIC texture and sparse
streamlines.
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Figure 1 Early Visualizations. (a) Ancient map illus-
trating the orbits of the planets dated around
10. century. (b) Visualization of Dr. John Snow
of the cholera outbreak in London, 1854. Bars
plotted in the street map of London indicate
the number of deaths in a household and where
used to detect sources of the epidemic. Image
courtesy: E.Tufte [Tuf86]. 1

Figure 2 Schematic illustration of anisotropy. (a) No
anisotropy: the reflection of a ray of light in
an idealized world causes no anisotropic be-
havior. (emergent angle equals incident an-
gle). (b) Anisotropy: in reality the ray of light
is scattered as it is reflected. The light inten-
sity (yellow distribution function) of the emer-
gent rays is anisotropic. (c) Central topic in
the area of mechanics: anisotropic directions
and strengths of forces. Pushing (blue arrows)
and pulling (red arrows) forces acting in one
location can lead to material failure such as
cracks. 3

Figure 3 The topological problem of the seven bridges
in Koenigsberg: find a walk through the city
without traversing a bridge twice. This ques-
tion can be represented by an abstract graph
structure. 5

Figure 4 Tensor field topology for fingerprints. a) Key
topological locations can be observed in the
blue squares. b) Specific separating lines (red)
deliver a segmentation of the domain into qual-
itatively equal directional behavior. c) Sur-
rounding directions (light red) can be recon-
structed from the separating topological lines. 6

Figure 5 Topology of a scalar field (represented as height
field). Critical points are given as small spheres
– maxima in red, minima in blue and saddle
points in yellow. Separatrices are depicted as
connecting lines. Image courtesy: Jens Kas-
ten [Kas12]. 12
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Figure 6 Two examples of a discrete vector field given as
arrow plots – orientation and magnitude illus-
trated by direction and length of arrows. 13

Figure 7 Representatives of first order critical points in
a linear vector fields: (a) saddle point, (b) node,
(c) focus point, (d) center, (e) spiral, and (f) im-
proper node. 15

Figure 8 Illustration of the tensor concept: result (el-
lipse) of applying a tensor to an isotropic el-
ement (circle). The resulting eigenvectors are
depicted as arrows and the eigenvalues are re-
flected by the scaling of the arrows. For the iso-
topic element the eigenvectors are not uniquely
defined and every vector is an eigenvector. 18

Figure 9 Schematic illustration of the asymmetric tensor
decomposition into isotropic scaling, rotation,
and shear components. In the image the indi-
vidual components are applied to the isotropic
element on the left side. 19

Figure 10 Joint visualization of vectors and derived eigen-
vector types (example vectors depicted as black
(curved) arrows). Evolution of eigenvectors,
dual eigenvectors, and pseudoeigenvectors for
the exemplary case of θ = 0 (see Eq. 18). Circu-
lar point (Eq. 28) at ϕ = π/2 indicating purely
circular behavior of the vectors. For ϕ = 3π/8

dual eigenvectors and pseudoeigenvectors de-
pict the elliptical flow behavior. In ϕ = π/4 the
eigenvectors coalesce, for ϕ = π/8 the eigen-
vectors are not orthogonal, and in ϕ = 0 the
tensor is symmetric and eigenvectors are or-
thogonal. 21

Figure 11 (a) Euler integration of first order (three inte-
gration steps). (b) Runge Kutta 4th order in-
tegration with evaluation of the vector field at
four sample points (one integration step). 24

Figure 12 Basic first order degenerate points for 2D ten-
sor fields: (a) trisector, and (b) wedge. Sepa-
ratrices for both eigenvector fields are drawn
as bold red or blue lines, respectively. Exem-
plary integrated tensor lines (thin lines) em-
phasize how the eigenvector behavior within
can be reconstructed by the bounding separa-
trices. 26
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Figure 13 Forces (red arrows) acting on a deformable body.
(a) Components of the resulting stress tensor
defined on an infinitesimal small volumetric
element. (b) Stress vector tn on specific cutting
plane with surface normal n. The stress vec-
tor can be further decomposed into the shear
and normal stresses τn and σn, respectively.
29

Figure 14 (a) Plot of the original fractional anisotropy def-
inition over the λ1, λ2 plane as height func-
tions with highlighted isolines. The function
is undefined in (0, 0), else the values for the
isotropic case λ2 = λ1 are zero. Plots in (b)
and (c) show the generalized fractional anisotropy
measure FA∗ where the discontinuity in the
origin is removed with two different values for
the parameter A. The values for isotropic case
are still zero. 31

Figure 15 Image illustrating the effect of a Delaunay tri-
angulation for interpolation. (a) Random tri-
angulation ignoring inner angles. (b) Delau-
nay triangulation maximizing minimal inner
angles. 33

Figure 16 Comparison of interpolation methods : (left
images) eigenvector-based (shape preserving),
(right images) component-based. Top row: the
eigenvector-based interpolation (a) of two strongly
anisotropic tensors delivers anisotropic tensors
again, thus it preserves the shape. In contrast,
for this example the component-wise interpo-
lation (b) induces the swelling-effect, meaning
that it passes through a highly isotropic tensor
(center ellipse in (b)). The interpolation of an
anisotropic and an isotropic tensor however is
very similar (c,d). 48

Figure 17 Triangle (a) without and (b) with degenerate
point, edge labels indicate whether two adja-
cent eigendirections match. 49

Figure 18 Higher order features: (a) shows a degener-
ate line; (b) shows a degenerate triangle, with
three degenerate vertices. In the interior of
the neighboring triangles the vectors are set to
constant. 50
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Figure 19 (a) The location of a D is well-defined if the
three lines connecting the vertices and their
opposite points intersect in one point. (b) Ra-
dial tensor line entering degenerate point D.
51

Figure 20 Comparison of interpolation models and re-
sulting topological elements in one triangle: De-
generate points D1 from component-wise, D2
from eigenvector-based interpolation, in the case
of (a) trisector, and (b) wedge point. 51
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(d) the result with subsequent Delaunay re-
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arise. This degenerate elements of higher di-
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eigenvectors, with (top) and without (bottom)
subsequent Delaunay re-triangulation. Shaded
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non-hyperbolic and hyperbolic, respectively. Red
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Figure 25 Close-up from one-point load data set: (a) ten-
sor line runs into a degenerate line (black line);
circulating tensor line (light blue) (b) before
and (c) after clean up; (d,e) separatrix inte-
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based interpolation. 56

Figure 26 Full segmentation of two-point load data set. 57
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ments, right: slice of strain simulation of forces
on notched block. 57

Figure 28 Slice of one-point load – complete eigenvec-
tor based segmentation represented by the in-
tegral topological graph with (a) component-
wise interpolation (b): eigenvector-based in-
terpolation. Blue dots int the images indicate
points in cleaned up circulating separatrices
(according to termination conditions in Sec. 4.3.5) 60

Figure 29 Schematic illustration of the segmentation pro-
cess. (a) Step 1: Integral topological graph
with degenerate points as black dots, separa-
trices as bold lines (major in red, minor in blue).
The light red lines depict tensor lines within
the segmented regions and exemplary illustrate
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vector behavior. (b) Step 2: Definition of scalar
field reflecting the eigenvalue fields. (c) Step 3:
Refinement of topological graph according to
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Figure 30 Cells defined by the topological skeleton: (a)
regular cells without any degenerate points,
(b) hyperbolic sector, (c) parabolic sector, and
(d) elliptic sector. 62

Figure 31 (a) T-junction or hanging node, where neigh-
boring twins in half-edge structure have an n:m
relation. Adaptive refinement operations: Re-
cursive strategy for avoiding hanging nodes in
(b) coarsening of cells, and (c) subdivision of
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65

Figure 32 Focus and context visualization. The orange
rectangle in the right image is the chosen fo-
cus region On the right, the focus region is
displayed. As the minimum edge length is
adapted according to the current resolution the
cells are further refined. 70

Figure 33 Adaptive segmentation of a slice in the one-
point load data set. (a) Superimposition of
scalar field with adaptive segmentation of ten-
sor field. Choice of threshold for edge-weight
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73
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Figure 34 Image representation of error for a specific slice
of two-point load data set. Here the error is
plotted against the initial segmentation of ten-
sor field (integral topological graph). 74

Figure 35 Image representation of error for a specific slice
of two-point load data set. (a) Adaptive seg-
mentation usingwd (absolute difference of scalar
values along the edge) as edge-weight. (b) Adap-
tive segmentation using double threshold for
minimum edge length. 75
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77
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Figure 46 Calculation of tensor index around (a) edge
with wedge (b) vertex with trisector. Separatri-
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determination of rotation angle across transi-
tion bridge. 95
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100
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M. Morzyński, P. Comte, and G. Tadmor. A Finite-
time Thermodynamics of Unsteady Fluid Flows. J.
Non-Equilibr. Thermodyn., 33(2):103–148, 2008.

[PAA+
04] T.N. Palmer, A. Alessandri, U. Andersen, P. Cante-

laube, M. Davey, P. DÃ©lÃ©cluse, M. DÃ©quÃ©,
E. DÃez, F.J. Doblas-Reyes, and H. Feddersen. De-
velopment of a European multi-model ensemble sys-
tem for seasonal to inter-annual prediction (DEME-
TER). Bulletin of the American Meteorological Society,
85(6):853–872, 2004.

[PFA06] Xavier Pennec, Pierre Fillard, and Nicholas Ayache.
A riemannian framework for tensor computing. Int.
J. Comput. Vision, 66:41–66, January 2006.

[PP03] Konrad Polthier and Eike Preuss. Identifying vector
field singularities using a discrete hodge decomposi-
tion. In Hans-Christian Hege, editor, Visualization and
Mathematics III, volume III of Visualization and Mathe-
matics, pages 113–134. Springer Verlag, June 2003.

[RGH+
10] Jan Reininghaus, David Günther, Ingrid Hotz, Steffen

Prohaska, and Hans-Christian Hege. TADD: A com-
putational framework for data analysis using discrete
morse theory. In Proc. ICMS 2010, 2010.

[RLF09] R. M. Rustamov, Y. Lipman, and T. Funkhouser. "Inte-
rior Distance Using Barycentric Coordinates". In SGP
’09: Proceedings of the Symposium on Geometry Process-
ing, pages 1279–1288, Aire-la-Ville, Switzerland, 2009.
Eurographics Association.

[RPH+
09] Olufemi Rosanwo, Christiph Petz, Ingrid Hotz, Stef-

fen Prohaska, and Hans-Christian Hege. Dual stream-
line seeding. In IEEE Pacific Visualization Symposium
’09, 2009.

[SCK10] David Schroeder, Dane Coffey, and Daniel F. Keefe.
Drawing with the flow: a sketch-based interface for
illustrative visualization of 2D vector fields. In Proc of
ACM SIGGRAPH/EG Sketch-Based Interfaces and Mod-
eling, pages 49–56, 2010.

[SD03] N. N. Som and S. C. Das. Theory And Practice Of Foun-
dation Design. Prentice-Hall, India, 2003.

[SH87] Lee A. Segel and G. H. Handelman. Mathematics
applied to continuum mechanics. Dover Publications,
1987.



156 bibliography

[SHB+
99] Christopher D. Shaw, James A. Hall, Christine Blahut,

David S. Ebert, and D. Aaron Roberts. Using shape
to visualize multivariate data. In NPIVM ’99: Pro-
ceedings of the 1999 workshop on new paradigms in in-
formation visualization and manipulation in conjunction
with the eighth ACM internation conference on Informa-
tion and knowledge management, pages 17–20. ACM,
1999.

[SJWS08] Tobias Salzbrunn, Heike Jänicke, Thomas Wischgoll,
and Gerik Scheuermann. The state of the art in flow
visualization: Partition-based techniques. In Simula-
tion and Visualization 2008 Proceedings, 2008.

[SK10] Thomas Schultz and Gordon Kindlmann. Su-
perquadric glyphs for symmetric second-order ten-
sors. IEEE Transactions on Visualization and Computer
Graphics (to appear), 2010.

[SNAHH11] Jaya Sreevalsan-Nair, Cornelia Auer, Bernd Hamann,
and Ingrid Hotz. Eigenvector-based interpolation
and segmentation of 2d tensor fields. In Topological
Methods in Data Analysis and Visualization, pages 139–
150. Springer, 2011.

[SPP04] Filip Sadlo, Ronald Peikert, and Etienne Parkinson.
Vorticity Based Flow Analysis and Visualization for
Pelton Turbine Design Optimization. In VIS ’04: Pro-
ceedings of the conference on Visualization ’04, pages 179–
186, 2004.

[SWC+
08] D. Schneider, A. Wiebel, H. Carr, M. Hlawitschka,

and G. Scheuermann. Interactive Comparison of
Scalar Fields Based on Largest Contours with Appli-
cations to Flow Visualization. IEEE Transactions on
Visualization and Computer Graphics, 14(6):1475–1482,
2008.

[SWTH07] J. Sahner, T. Weinkauf, N. Teuber, and H.-C. Hege.
Vortex and strain skeletons in eulerian and la-
grangian frames. IEEE Transactions on Visualization
and Computer Graphics (Vis07), 13(5):980–990, Septem-
ber - October 2007.

[SYI96] Kenji Shimada, Atsushi Yamada, and Takayuki Itoh.
Anisotropic triangular meshing of parametric sur-
faces via close packing of ellipsoidal bubbles. In In
6th International Meshing Roundtable, pages 375–390,
1996.



bibliography 157

[Tel08] Alexandru C. Telea. Data Visualization: Principles and
Practice. AK Peters, Ltd., 2008.

[TGS05] Xavier Tricoche, Christoph Garth, and Gerik Scheuer-
mann. A fast and robust method for visualizing sep-
aration line features. In G.P. Bonneau, T. Ertl, and
G.M. Nielson, editors, Scientific Visualization: The Vi-
sual Extraction of Knowledge from Data, pages 249–264.
Springer Berlin, 2005.

[TKW08] Xavier Tricoche, Gordon L. Kindlmann, and Carl-
Fredrik Westin. Invariant crease lines for topolog-
ical and structural analysis of tensor fields. IEEE
Transactions on Visualization and Computer Graphics,
14(6):1627–1634, 2008.

[TLHD03] Yiying Tong, Santiago Lombeyda, Anil N. Hirani, and
Mathieu Desbrun. Discrete Multiscale Vector Field
Decomposition. ACM Transactions on Graphics (TOG)
(Siggraph’03), 22(3):445–452, 2003.

[Tri02] Xavier Tricoche. Vector and Tensor Field Topology Sim-
plification, Tracking and Visualization. PhD thesis, Uni-
versity of Kaiserslautern, April 2002.

[TSH01] Xavier Tricoche, Gerik Scheuermann, and Hans Ha-
gen. Continuous topology simplification of planar
vector fields. In VIS ’01: Proceedings of the conference
on Visualization ’01, pages 159–166, Washington, DC,
USA, 2001. IEEE Computer Society.

[TSHC01] Xavier Tricoche, Gerik Scheuermann, Hans Hagen,
and Stefan Clauss. Vector and tensor field topology
simplification on irregular grids. In D. Ebert, J. M.
Favre, and R. Peikert, editors, VisSym ’01: Proceedings
of the symposium on Data Visualization 2001, pages 107–
116. Springer-Verlag, May 28–30 2001.

[Tuf86] Edward R. Tufte. The visual display of quantitative in-
formation. Graphics Press, Cheshire, CT, USA, 1986.

[TvW99] Alexandru Telea and Jarke J. van Wijk. Simplified
representation of vector fields. In VIS ’99: Proceed-
ings of the conference on Visualization ’99, pages 35–42,
Los Alamitos, CA, USA, 1999. IEEE Computer Soci-
ety Press.

[Vin98] P. Vincent. Application of SAR Interferometry to Low-
rate Crustal Deformation Fields. PhD thesis, University
of Colorado, 1998.



158 bibliography

[Wan04] Zhizhou Wang. Diffusion Tensor Field Restoration and
Segmentation. PhD thesis, University of Florida, 2004.

[WB05] Andrew Wilson and Rebecca Brannon. Exploring 2d
tensor fields using stress nets. In VIS ’05: Proceedings
of the conference on Visualization ’05. IEEE Computer
Society Press, 2005.

[WH07] Y. Weldeselassie and G. Hamarneh. DT-MRI segmen-
tation using graph cuts. In Medical Imaging 2007: Im-
age Processing. SPIE, 2007.

[Wil96] C.H.K. Williamson. Vortex Dynamics in the Cylinder
Wake. Annu. Rev. Fluid Mech., 28:477–539, 1996.

[WTS+
07] Alexander Wiebel, Xavier Tricoche, Dominic Schnei-

der, Heike Jänicke, and Gerik Scheuermann. Gen-
eralized streak lines: Analysis and visualization of
boundary induced vortices. IEEE Transactions on Visu-
alization and Computer Graphics, 13(6):735–1742, 2007.

[WW05] Joachim Weickert and Martin Welk. Tensor field
interpolation with pdes. In Joachim Weickert and
Hans Hagen, editors, Visualization and Processing of
Tensor Fields, Mathematics and Visualization, chap-
ter 19, pages 315–324. Springer, 2005.

[ZHT07] Eugene Zhang, James Hays, and Greg Turk. Interac-
tive tensor field design and visualization on surfaces.
IEEE Transactions on Visualization and Computer Graph-
ics, 13(1):94–107, 2007.

[ZMB+
03] Leonid Zhukov, K. Museth, D. Breen, Ross Whitaker,

and Alan Barr. Level set modeling and segmenta-
tion of DT-MRI brain data. Journal Electronic Imaging,
12(1):125–133, 2003.

[ZMT06] Eugene Zhang, Konstantin Mischaikow, and Greg
Turk. Vector field design on surfaces. ACM Trans.
Graph., 25(4):1294–1326, 2006.

[ZP03] Xiaoqiang Zheng and Alex Pang. "HyperLIC". In
Proceedings of the 14th IEEE Visualization 2003 (VIS’03),
VIS ’03, pages 33–, Washington, DC, USA, 2003. IEEE
Computer Society.

[ZP04] Xiaoqiang Zheng and Alex Pang. Topological lines in
3d tensor fields. In VIS ’04: Proceedings of the confer-
ence on Visualization ’04. IEEE Computer Society Press,
2004.



bibliography 159

[ZPP05] Xiaoqiang Zheng, Beresford N. Parlett, and Alex
Pang. Topological lines in 3d tensor fields and dis-
criminant hessian factorization. IEEE Transactions
on Visualization and Computer Graphics, 11(4):395–407,
2005.

[ZTW06] Ulas Ziyan, David Tuch, and Carl-Fredrik Westin.
Segmentation of thalamic nuclei from dti using spec-
tral clustering. In Ninth International Conference on
Medical Image Computing and Computer-Assisted Inter-
vention (MICCAI’06), pages 807–814, 2006.

[ZYLL09] Eugene Zhang, Harry Yeh, Zhongzang Lin, and
Robert S. Laramee. Asymmetric tensor analysis for
flow visualization. IEEE Transactions on Visualization
and Computer Graphics, 15(1):106–122, 2009.





S E L B S T S TÄ N D I G K E I T S E R K L Ä R U N G

Ich erkläre hiermit, dass ich die vorliegende Arbeit ohne unzulässige
Hilfe Dritter und ohne Benutzung anderer als der angegebenen Hilfs-
mittel angefertigt habe; die aus fremden Quellen direkt oder indirekt
übernommenen Gedanken sind als solche kenntlich gemacht. Ins-
besondere habe ich nicht die Hilfe eines kommerziellen Promotions-
beraters in Anspruch genommen. Dritte haben von mir weder un-
mittelbar noch mittelbar geldwerte Leistungen für Arbeiten erhalten,
die im Zusammenhang mit dem Inhalt der vorgelegten Dissertation
stehen. Die Arbeit wurde bisher weder im Inland noch im Ausland
in gleicher oder ähnlicher Form als Dissertation eingereicht und ist
als Ganzes auch noch nicht veröffentlicht.

Berlin, March 2013

Cornelia Auer


	Abstract
	Zusammenfassung
	Danksagung
	Contents

	1 Introduction
	1.1 Tensors and Tensor Field Visualization
	1.2 Objectives and Basic Visualization Principles 
	1.3 Accomplishment of Visualization Principles
	1.3.1 Dimension Reduction
	1.3.2 Topological Analysis
	1.3.3 Complete Segmentation
	1.3.4 Texture and Glyph Mapping
	1.3.5 Illustrative Visualization

	1.4 Outline of this Thesis
	1.5 Publications

	2 Basics
	2.1 Notation
	2.2 Scalar Fields
	2.3 Vectors and Vector Fields
	2.4 Tensors and Tensor Fields
	2.4.1 Definition of Tensors
	2.4.2 Symmetry of a Tensor
	2.4.3 Definiteness of a Tensor
	2.4.4 Decomposition of Tensors
	2.4.5 Eigenvalues and Eigenvectors

	2.5 Tensor Interpolation
	2.6 Tensor Lines and Integration Methods
	2.7 Topology of Two Dimensional Tensor Fields
	2.7.1 Symmetric Tensor Fields
	2.7.2 Asymmetric Tensor Fields

	2.8 Areas of Application and Types of Tensors
	2.8.1 Stress Tensor
	2.8.2 Strain Tensor
	2.8.3 The Vector Gradient Tensor
	2.8.4 Rate of Strain Tensor

	2.9 Derived Scalar Quantities
	2.9.1 Fractional Anisotropy
	2.9.2 Maximum Shear Stress
	2.9.3 Determinant
	2.9.4 Trace

	2.10 Used Grid Types

	3 Related Work
	3.1 Tensor Interpolation
	3.2 Tensor Field Visualization 
	3.2.1 Structure Focused Approaches
	3.2.2 Image Focused Approaches

	3.3 Vector Field Visualization: Simplification
	3.3.1 Simplification via Vector Clustering
	3.3.2 Simplification via Streamlines
	3.3.3 Feature Extraction for Vector Fields


	4 Eigenvector-based Segmentation
	4.1 Notation
	4.2 Eigenvector-based Interpolation
	4.3 Eigenvector-based Segmentation 
	4.3.1 Location of Degenerate Points
	4.3.2 Non-isolated Degenerate Points
	4.3.3 Determination of Radial Directions
	4.3.4 Half-sector Classification
	4.3.5 Separatrix Computation

	4.4 Segmentation
	4.5 Results 
	4.5.1 Discussion
	4.5.2 Conclusion


	5 Tensor Field Segmentation 
	5.1 Initial Cell Generation
	5.1.1 Half-edge Data Structure
	5.1.2 Cell Extraction

	5.2 Adaptive Segmentation Workflow
	5.2.1 Choice of Scalar Field
	5.2.2 Edge-weight Definition
	5.2.3 Refinement Operations
	5.2.4 Customizable Adaptive Refinement
	5.2.5 Workflow: Basic Segmentation
	5.2.6 Workflow: Degenerate Regions

	5.3 Results and Discussion
	5.4 Conclusions

	6 Glyph- and Texture- Based Visualization
	6.1 Method
	6.1.1 Segmentation-based Glyph Placement
	6.1.2 Segmentation-based Texture Mapping

	6.2 Results
	6.2.1 Glyph-based Visualization
	6.2.2 Texture-based Visualization

	6.3 Conclusion

	7 Complete Topology Extraction
	7.1 Basics and Notation
	7.1.1 Tensor Field on Polyhedron Structure
	7.1.2 Definition of Local Coordinate System

	7.2 Continuous Model
	7.2.1 Continuous Transition Bridges
	7.2.2 Virtual Edge and Vertex Cells
	7.2.3 Interpolation in Virtual Edge Cells 
	7.2.4 Eigenvector Rotation Across Transition Bridges

	7.3 Topology Extraction
	7.3.1 Degenerate Points – Structural and Virtual
	7.3.2 Separatrix Computation and Classification
	7.3.3 Piecewise Constant Tensor Fields

	7.4 Results
	7.4.1 Piecewise Continuous Tensor Fields
	7.4.2 Piecewise Constant Tensor Fields

	7.5 Conclusion

	8 Tensor-Guided Illustrative Vector Field Visualization
	8.1 Basics and Notation
	8.1.1 The Gradient Tensor Field
	8.1.2 Decomposition of Derivative
	8.1.3 Topology and Persistence

	8.2 Visualization Concepts
	8.2.1 Icons
	8.2.2 Foreground Visualization
	8.2.3 Background Visualization

	8.3 Results
	8.3.1 Cylinder Data Set
	8.3.2 Earthquake Data Set
	8.3.3 Climate Data Set

	8.4 Conclusion

	9 Discussion and Conclusion
	9.1 Discussion
	9.1.1 Tensors in Visualization
	9.1.2 Topology of Symmetric Tensor Fields
	9.1.3 Dimension Reduction

	9.2 Conclusion
	Appendix
	A Data sets
	A.1 Stress tensor data
	A.1.1 One-point load – analytic data set
	A.1.2 One-point load – simulation
	A.1.3 Two-point load
	A.1.4 Notched block

	A.2 Rate of strain tensor data
	A.2.1 Aneurysm

	A.3 Vector data
	A.3.1 Cylinder data set
	A.3.2 Earthquake data set
	A.3.3 Climate data set

	List of Figures
	List of Tables

	Bibliography
	Selbstständigkeitserklärung




