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Abstract

Muscle represents the means to move. This movement needs energy, which is generated
by the central carbon metabolism. Respective to function, different types of muscle have
developed. Two main categories exist: Red (TI) oxidative slow twitch muscles optimized
for long lasting contractions and white (TII) glycolytic fast twitch muscles, which are
differently affected by aging and disease. Metabolic profiles are altered in muscle disease,
by changed enzyme levels or regulation.

I generated detailed metabolic and proteomic profiles from different muscle fiber
types; Extensor digitorum longus, Tibialis anterior (both glycolytic), Quadriceps (gly-
colytic/oxidative) and Soleus (oxidative) of C57BL/6N mice.

I found a distinct molecular make up for each muscle. While current classification
holds expectedly true, my systems biology approach allows for a more detailed look at the
interplay between metabolites and proteins.

Dysferlinopathy, a hereditary muscular dystrophy, manifests in puberty, when glycolysis
becomes prominent.

In her thesis S. KeLLER [1] subjected a mouse dysferlinopathy model (BLA/J) and human
myotubes to MS-based metabolomics and proteomics and found a metabolic phenotype:
Enzyme levels were mostly unchanged between diseased and control samples. Glycolysis
intermediates including glucose-6-phosphate were reduced, polyol pathway members
sorbitol and fructose were increased.

Based on work by M. PieTzke and CH. Zasapa etal. [2] I established label tracing
methods including the glycogen pool in primary human myotubes.

This allowed to demonstrate function loss of hexokinase II in dysferlinopathy. Label
incorporation (LI) was slower in glycolytic intermediates and glycogen. LI into sorbitol
was unchanged.

Glycolysis impairment leads to more oxidative metabolism, causing oxidative stress,
reflected in elevated pentose phosphate pathway poolsizes.

In the cell the membrane repair protein Dysferlin is located in dysferlin vesicles. I
subjected fractions enriched for dysferlin vesicles by S. Kunz [3] to proteomics and found
well established interaction partners, but also glycolytic enzymes never discussed before in
the literature. This further establishes a metabolic role of dysferlin.

The techniques used in these studies require muscle tissue samples. Together with
H. Kuich [4] we performed a proof of principle study on a single human volunteer during
exercise to assess the reflection of muscle metabolism in easier obtainable blood. 10 uL
blood samples from the fingertip, similar to a diabetics blood glucose test, sufficed to
recapitulate well established knowledge of sports medicine and find a possible molecu-
lar explanation for the phenomenon “Hitting the Wall”. The samples show relatedness
according to “rate of perceived exhaustion” possibly reflecting energy availability in the
muscle. We could attribute the relations to nine key metabolites. This workflow might lead
to easier muscle disease diagnostics in health care.






Zusammenfassung

Muskel ist der Hauptverbraucher von Energie im Korper. Diese Energie wird mittels
des zentralen Kohlenstoff Metabolismus gewonnen. Zwei Hauptkategorien von Muskeln
existieren: oxidative, langsam kontrahierende (Typ 1) und glykolytische, schnell kon-
trahierende (Typ 2).

Die verschiedenen Fasertypen zeigen unterschiedliche Anfilligkeiten fiir Krankheiten
und den natiirlichen Alterungsprozess.

Dies macht die Unterschiede zwischen Muskeln auf molekularer Ebene interessant. Ich
generierte Metabolom- und Proteomdaten von Muskeln mit spezifischen Eigenschaften;
Extensor digitorum longus, Tibialis anterior (beide glykolytisch), Quadriceps (gemischt)
und Soleus (oxidativ) von Miusen.

Es zeigte sich, das jeder Muskel eine spezifische molekulare Zusammensetzung besitzt.
Die klassischen Kategorisierungsparameter bleiben bestehen, aber der systembiologische
Ansatz erlaubt einen diffenrenzierteren Blick auf das Zusammenspiel von Metaboliten und
Proteinen.

Dysferlinopathie ist eine Erbkrankheit, die sich wihrend der Pubertit manifestiert, wenn
sich der adulte glykolytische Stoffwechsel einstellt.

Meine Vorgingerin S. KeLLER [1] hatte Muskeln von BLA/J-Miusen (ein Dysferlinopathie-
Modell) und humane Myotuben analysiert und einen metabolischen Phinotyp der Krankheit
gefunden: Glykolytische Enzyme waren unverédndert, aber Glucose-6-phosphat und nach-
folgende Metabolite waren vermindert, Sorbitol und Fructose erhoht.

Basierend auf Arbeit von PIETZKE und ZAsapa et al. [2] etablierte ich eine Methode zur
Messung der Labelinkorporation inklusive Glycogen in primédren humanen Myotuben und
konnte zeigen, dass tatsdchlich die Funktion von Hexokinase II vermindert ist.

Verminderte Glykolyseaktivitit fiihrt zu einer Steigerung des oxidativen Metabolis-
mus und erhohtem oxidativen Stressniveau, was das beobachtete erhohte Niveau an
Pentosephosphatweg-Metaboliten zeigt.

In der Zelle liegt das Membranreparaturprotein Dysferlin in Dysferlinvesikeln vor. Diese
Vesikel wurden von S. Kunz [3] isoliert. Im Vesikelproteom konnte ich etablierte Inter-
aktionspartner und glykolytische Enzyme finden, die zwar z. T. in der Literatur bekannt
sind, aber nie diskutiert wurden.

Diese Techniken basieren alle auf Muskelbiopsien. Gemeinsam mit H. KuicH [4]
evaluierte ich im Rahmen einer Machbarkeitsstudie Blut als leichter erhiltliches Probenma-
terial, aus dem Muskelmetabolismus potentiell ablesbar ist. Aus 10 uL. groen Blutproben,
dhnlich einem Blutzuckertest, und gesammelt unter korperlicher Belastung, konnten wir
etabliertes Wissen der Sportmedizin nachvollziehen und eine Erkldrung fiir das Phanomen
,Hitting the Wall“ finden. Insbesondere zeigten die Proben groBte Ahnlichkeit gemiB der
selbst empfundenen Erschopfung, was potentiell Riickschliisse auf den Energiezustand
des Muskels zuldsst. Wir konnten 9 Schliisselmetabolite bestimmen, auf denen diese
Verwandtschaft beruht. Diese Analyse-Pipeline konnte eine Translation von Metabolomics
in den klinischen Alltag der Muskeldiagnostik ebnen.
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1 Muscle is the major site of metabolism

Muscle, as a kinetic organ is a major site for metabolism, especially for turnover of sugar
and fat. [5, and references therein|

The science of substrate interconversion, its educts and products, but also the enzymes
involved is part of the fields of metabolomics and proteomics. [6] Often mass spectrometry
based protocols are used to determine many species of molecules from a single sample. This
gives a simultaneous overview of metabolic pathways used to generate energy equivalents
in the form of ATP! as well as building blocks for cell maintenance. The combination
of pathways along which energy is generated, but also building blocks like nucleotides
or lipids are produced is called the central carbon metabolism (CCM). [7] The CCM is
mainly comprised of glycolysis, tricarboxylic acid cycle (TCA-cycle, adjacent to oxidative
phosphorylation), pentose phosphate pathway (PPP), urea cycle and [3-oxidation.

In the following I will first briefly introduce the main parts of CCM and then show how
muscle is specialized by performance these parts according to physical needs.

If parts of this network are adversely affected this can be cause and symptom of diseases.
I will also briefly outline how this is especially important in muscle, which relies in its
function on proper ATP supply.

Especially regarding fuel supply main muscle interactors in the body are liver and fat
tissue and I will briefly give an example how these major metabolic contributors and

storage depots work together via the bloodstream.

1.1 Central Carbon Metabolism

The central carbon metabolism (CCM) consists mainly of glycolysis, tricarboxylic acid
cycle (TCA-cycle), 3-oxidation, pentose phosphate pathway (PPP) and urea cycle.

Through these pathways the cell regulates overall anabolic or catabolic state, and it is
also the “place” in the cell, where oxygen is consumed by its reduction to water. This
regulation is instantaneous: Directly at the moment onset of muscular work , there is a so
called step in oxygen consumption. [8]

Glycolysis or EMBDEN-MEYERHOF-PARNAS pathway uses glucose to generate ATP. [9] It
starts with hexokinase phosphorylating glucose, thereby reducing glucose concentration
in the cell, favoring further import and also “trapping” it, because the much more polar
glucose-6-phosphate (G6P) cannot diffuse back trough the cell membrane. During the

reaction cascade to pyruvate, split into preparatory phase, where ATP is invested to drive

'adenosin tri-phosphate
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the reactions, and payoff phase, overall two NADH? and two ATP molecules are generated
per glucose molecule. [10]

NADH has to be reoxidized to NAD*, otherwise glycolysis would stop. This can be
achieved either trough an@robic fermentation of pyruvate to lactate, or by oxidation in the
mitochondria.

Of note is a subpathway of glycolysis, the RaApororT-LUEBERING [11] pathway, by which
2,3-bisphospho-glycerate (2,3-BPG) is formed. 2,3-BPG regulates the oxygen affinity in
erythrocytes. [12, 13]

Another alternative for the fate of glucose is to be reduced to Sorbitol, entering the
polyol pathway [14]. After conversion to fructose and subsequent phosphorylation, it
can then enter glycolyis at the level of fructose-1,6-bisphosphate (F1,6BP) or dihydroxy
acetone phosphate and glyceraldehyde.

The TCA-cycle, or SZENT-GYORGYI-KREBs cycle [15, 16], is located in the mitochondria
of the cell. In entry and inside this cycle, CO,; is generated from the carbon of nutrients.
It generates NADH and ubiquinol that are used in oxidative phosphorylation. Together
with oxidative phosphorylation, the tricarboxylic acid (TCA)-cycle is the main source of
adenosin tri-phosphate (ATP) in the cell.

Except from pyruvate, a major part of acetyl-CoA (AcCoA), that is fed into the TCA-
cycle, is generated from fatty acids by [3-oxidation (Knoop, 1904) [17, 18]. [3-oxidation
breaks down fatty acids in acetyl (C,) units that are coupled with coenzyme A (CoA) to
AcCoA. Per C, unit also reduction of one FAD? to FADH, and one NAD™ to NADH take
place, which are fed into oxidative phosphorylation.

The Urea-cycle (KreBs and HENseLEIT, 1932 [19]), represents the cells means to con-
vert excess of toxic ammonia from degradation of amino acids to urea. The binding of
carbamoyl phosphate to ornithine is located in the mitochondria. The formed citrulline
is exported to the cytosol, where subsequently fumarate and urea are formed. The cycle
is overall slightly exergonic, but the main amount of energy generated from amino acids
stems from anaplerosis of e. g. TCA-cycle intermediates.

The pentose phosphate pathway (PPP) (WarBURG and CHrisTiaN, 1931 [20, 21] is
mainly anabolic and uses glucose-6-phosphate (G6P) to generate ribose-5-phosphate (R5P),
a building block of nucleotides, and NADPH* that is used to regenerate glutathione
(GSH) [22, 23], and thus constitutes an important part in amelioration of oxidative stress.

NADPH is also used as reduction equivalent in anabolic processes like fatty acid synthesis.

Znicotinamide adenine dinucleotide
3Flavin adenine dinucleotide
“#Nicotinamide adenine dinucleotide phosphate
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The PPP is tightly interconnected with upper glycolysis and besides the entry via glucose-
6-phosphate an alternative pathway through gluconate formed by glucose oxidase and

glucono-lactonase exists.

All these pathways are highly interconnected as exemplified for the polyol pathway. For
example many TCA-cycle intermediates (TCAis) have pools in the mitochondria and the
cytosol but also the PPP has many shared metabolites with glycolysis. For the various
enzymes involved many tissue specific isoforms exist, that show different substrate affinities.
These isoforms constitute a basic tendency to activity of certain CCM subpathways.

Depending on insulin and substrate level, muscle uses fat and/or glucose for energy
homeostasis [24] but also to meet energy demands, which can vary from 0.015kg to
1.5kg ATP min~! in an average sized human [5].

At the start of movement, muscle must have the means to readily produce new ATP-
equivalents to ensure continuous function.

For this muscle has storage capacities for carbon sources.

1.2 In muscle, energy is stored in various Forms

It was once believed that during exercise, the substance of the muscle was used up and that
a large amount of meat should be eaten to replace the lost tissue. [25] This belief is long
overcome, but in muscle several energy pools with varying availability exist.

In the first seconds of movement, phosphocreatine (PCr) [26, 27] is used to re-phosphorylate
adenosin di-phosphate (ADP). [28-30] This reaction is catalyzed by creatine kinase (CK).
If muscle is injured CK leaks into the blood stream. This is used to monitor muscle break
down in general.

Glucose, fueling glycolysis is then provided from glycogen, which constitutes about
1-2 % of muscle wet weight. [31-35] Glycogen, first identified by CLAUDE BERNARD in
1857 [36], consists of polymerized glucose, with either x(1 — 4) glycosidic bonds, or
it can also branch by forming «(1 — 6) bonds. It has a very varying molecular weight,
of mostly 250 MDa, that can go up to as high as 2.5 GDa. At the core of every glycogen
particle, a glycogenin protein is situated. [10]

About 80 % of the glucose taken up into non contracting muscle is stored as glyco-

gen. [37] Unlike the liver, muscle is generally considered unable to excrete glucose derived

22



from glycogen breakdown into the blood stream: muscle expresses glucose-6-phosphatase
only at very low levels, and thus catabolises the glucose generated from glycogen break-
down exclusively by itself. [38, 39]

In terms of storage capacity, the most potent pool in the muscle is constituted of fat.
Three fatty acids, bound together by a molecule of glycerol constitute one lipid molecule.
Since lipids are not water soluble, they form so called liposomes and lipid droplets inside
the cell. Their breakdown into AcCoA by 3-oxidation is relatively slow. AcCoA can be
used for glucose synthesis, which can in theory then be broken down by glycolysis, but
since glucose synthesis and glycolysis do not run at the same time, fat can be used as
energy source only, if oxygen supply in the tissue is sufficient.

In general, the higher the energy density of a certain energy pool, the more cumbersome

and slower energy generation.

1.3 Muscle communicates with other organs via the blood stream

All the possibilities of energy supply mentioned above can only function, if the substrate
uptake is not impaired, but also only if the other organs —especially the liver and adipose
tissue— supply the substrates via the bloodstream.

During prolonged exercise the storage in muscle is depleted. The glycogen storage per
tissue weight in liver is about 10 fold higher than in muscle. [40—43] Also, liver expresses
glucose-6-phosphatase, [38, 39] which enables it to provide glucose, either generated from
glycogen or gluconeogenesis, to the blood stream. This can be taken up by the muscle and
used as fuel.

In certain metabolic conditions, like prolonged exercise or fasting, liver also provides
ketone bodies, derived from excess AcCoA generated by [3-oxidation of fatty acids, that
are sent to the liver from adipose tissue via the blood stream.

One very well established example for the interplay between muscle and liver is the
Cori-cycle. [10] Here excess lactate from an@robic fermentation of pyruvate in the muscle
is excreted into the bloodstream and taken up by the liver, where it serves as substrate for
gluconeogenesis. Glucose then is excreted by the liver to the blood stream and used by the

muscle. This shifts metabolic load from muscle to liver in times of need.

1.4 Different muscletypes show specialised metabolism

When regarding at muscle as an organ, a pattern of sub-types with a preference for certain

fuel storage pools and pathways emerges. Muscles themselves can be distinguished into
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fiber types that express different proteins (isoforms of myosin heavy chain, cytoskeleton,
calcium signaling, enzymes of the CCM) and show different levels of metabolites (e. g.
lactate, TCA-cycle intermediates). [44].

Usually two types of fibers are distinguished: primarily oxidative (type I) and glycolytic
(type II) fibers.

In humans types of fibers in a muscle spindle are mixed and thus difficult to separate for
analysis. In smaller animals (e. g. mice), specialization of certain muscles is very high and
some muscles have a highly dominant fiber type. [45, 46]

The fiber types have adapted to their primary functions. Type I fibers are used for long
lasting contractions, like maintenance of body position or in endurance running. Type 11
fibers are fast twitching and often referred to as flight muscles.

Their physical properties, stemming from various isoforms of motor unit proteins are
adapted to these functions. Type I muscles show a more rigid, less flexible structure, while
fast fibers are suited for fast changes in overall physical form of muscle spindles.

Also metabolism in these muscles is highly tailored to their specific needs. In general
no fiber type is capable of only one kind of metabolism, however they show a certain

preference for and differences in size of the respective energy pools.

Type | muscles rely on oxidative metabolism. These muscles are also called red
muscles, because of their higher levels of myoglobin, the oxygen transporter in muscle.
They possess more mitochondria and rely on use of fatty acids. [47] Fatty acids have a
very high energy density, about double the amount of carbohydrates (39 /g vs. 17.2k/g).
So storage regarding to volume ratio is much higher in fat storage. But this in principle
higher energy comes at the price, that supply of this energy through (3-oxidation is slower
than from carbohydrates through glycolysis and functions only in @robic conditions. Thus
these muscles can work at a relatively lower force level over longer periods of time, than
type II muscles.

Type Il muscles rely on glycolytic metabolism. They can produce higher force than
type I muscles, but for shorter periods of time. Energy for this is saved in two pools, that
are used during the first seconds or minutes of movement, the first being the phosphocrea-
tine [28, 29], the second the glycogen pool. [48-50]

Phosphocreatine can be seen as a buffer for ATP: it can phosphorylate ADP very quickly,
and thus provide ATP until energy becomes available by more sustainable means after the

first few seconds of exercise. Phosphocreatine also shuttles ATP out of the mitochondrion.
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When phosphocratine is used up, after seconds, another energy source needs to be
provided to replenish ATP.The glycogen storage in muscle is much greater. About 80 %
of the glucose taken up into non contracting muscle is stored as glycogen. [37] Unlike
the liver, muscle is generally considered to be unable to excrete glucose derived from
glycogen breakdown into the blood stream: muscle expresses glucose-6-phosphatase only
at very low levels, and thus catabolises the glucose generated from glycogen breakdown
exclusively by itself. [38, 39]

If oxygen supply is high enough, pyruvate is converted to AcCoA and fed into the
TCA-cycle, located in the mitochondria. In mitochondria the majority of ATP-equivalents
is generated while carbon of carbohydrates or fat is finally oxidized to CO,. Aminoacids
can also be used to generate energy, but do not comprise a major source of energy during
normal physiological conditions and nutrient supply.

Regarding these interrelations, it is clear, that expression profiles but also activities
of several proteins, especially enzymes have been used to characterize muscle fibers, or
muscles of a certain type. [44]

The ATP produced by these pathways is used for maintainance of the tissue and cell,
but predominantly it is used to facilitate movement: phosphorylation of myosin-heavy-
chain (MYH) causes a conformational change which causes detachment of the myosin
head from the thin filament. [51, 52]

1.5 Myosin isoforms characterize fiber types

Its physiological function —-movement— muscle exerts by connection and release between
myosin-heavy-chain (MYH) and the thin filament of the sarcomer, fueled by its ATPase
activity. Since muscle forms differ in metabolism and rigidity, it is not surprising, that the
constitutents of the sarcomer are also fiber type specific, especially MYH isoforms.

For fiber types further subclasses exist. Based on myosin heavy chain isoforms fiber-
types are separated into for main classes, sorted by increasing reliance on glycolysis: TI,
expressing predominantly MYH?7, TIIA, expressing MYH2, TIIX, expressing MYH1, and
TIIB, expressing MYH4. In the literature TIIX is also called TIID.

Also several other isoforms exist, but are predominantly expressed only in specialised
muscles or regenerating and developing fibers respectively.

The fiber type, and also the dominant isoform of MYH is not fixed, but can change
according to training [53-55].

Isoforms of MYH show variable ATPase activity at different pH. This is used in histology

to differentiate fiber types. There are also fibers that show intermediate stainings in
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histology, these are called mixed fibers. The mixed fibers can comprise a substantial
amount of the muscle (=30 %) [46], which shows that the normal classification is far from
complete.

Table 1 lists the properties used to classically characterize muscle fiber types.

Table 1: Properties of slow (Type I) and fast (Type II) muscles.

Parameter Type 1 Type I
subforms | ITA| IIX/IID| IIB
color red white
predominant energy source fat sugar
myoglobin more less

Myh -7 =2|-1|-4
mitochondria more less
contraction speed slow fast
durability higher lower
ATP consumption 1.5 mmol/y 7 mmol/y

1.6 Muscle diseases are fiber type specific

Also diseases of muscle are fiber type specific. Since the main function of muscle
metabolism is to provide the energy needed to move, a muscle disease is likely to af-
fect metabolism of muscle.

There is a whole class of so called metabolic myopathies, that fiber type specific are
just by their nature. [56—-60] But also other myopathies show a certain dominance in fiber
types. Type II fibers are more affected by cachexia, in sepsis or the normally observed
muscle loss in aging.

Since fiber type classification is mostly attributed to metabolic properties, it can also be
the case, that the metabolism of fibers is altered to resemble a different fiber type.

This has been also attributed to a loss of type II fibers in dysferlinopathy (see below). [61]

1.7 The onset of dysferlinopathy coincides with changes in
metabolism

Dysferlinopathy is an autosomal-recessive limb girdle muscular dystrophy, caused by

mutations in the dysferlin gene that lead to a general deficiency. The patients present with
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a wide range of disease phenotypes. [62, 63] The general prevalence is not known, but in

the Jewish population of Lybia it is at least 1:1300 with a carrier rate of 10 %. [64]

Typically after a childhood where the individuals exhibit a rather active and often athletic
inclined youth, coinciding with puberty the muscular strength deteriorates. [65] Typcial
age of onset is 16-25 [66]. This leads to conditions where patients loose ambulation and

are wheelchair bound 10-15 years after diagnosis. Until now no treatment exists.

Dysferlin is well recognized as involved in membrane repair [67, 68].

So one could argue that the reason for loss of muscle integrity in dysferlinopathy is
impaired membrane maintenance. But the reason for late onset is unknown, and peculiar

since during childhood the affected individuals often are highly athletic. [65]

The onset in late puberty coincides with a change in general metabolism: In childhood

metabolism is mostly oxidative, while adults are more reliant on glycolysis. [8, 69—73]

Implications in metabolism are not discussed in the literature so far, except for a type |

preponderance. [61]

In her thesis, SARAH KELLER [1] investigated the metabolome and proteome of BLA/J
mice —a model of dysferlinopathy [74]— and the metabolome of myotubes generated
from primary patient material. She found, that most enzymes are unchanged between

dysferlinopathy patients or mice and respective controls.

There was a slight increase of aldose reductase, that reduces glucose to sorbitol in
Tibialis anterior which is in agreement with the findings in metabolite data. There was
a strong decrease of isocitrate dehydrogenase 2 (IDH2), while other IDH isoforms were
not altered. Opposed to isocitrate dehydrogenase (IDH)3, which uses NADH and was not
altered, IDH2 uses NADPH as cofactor.

Changes in poolsizes can have several reasons. Since the enzyme levels in glycolysis
were not changed, we expected a change in enzymatic activity, especially at the level of
hexokinase II, the enzyme producing glucose-6-phosphate (G6P). To further investigate
the metabolic changes in dysferlinopathy behavior, I transferred pulsed stable isotope
resolved metabolomics (pSIRM), a mass spectrometry (MS) based technique invented in
the lab of Steran Kempa [2, 75-77] to function with primary human myotubes. (see also

section 1.9)
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1.8 Separation coupled mass spectrometry — a powerful tool in
systems biology

Omics revolution

Metabolomics
\\ System biology

T Integrative physiology

System medicine

System pharmacology
Proteomics

Regenerative medicine

Integrated biomarkers

Transcriptomics .

P Human disease
Prediction

Diagnostics
J Treatment efficacy

Genomics

Figure 1.8.1: Levels of omics datasets. All depicted layers can regulate one another. Reproduced from [78]

To understand a system means to quantify as many parts, their interconversions and also
the control, these parts exert on each other. In systems biology the goal is to understand the
relations starting from DNA over RNA and proteins to the metabolic functions of enzymes,
their production of metabolites and also the signaling exerted by phosphorylation and
hormones — all in all to eventually understand the complexity of biology.

Omics-techniques are developed to contain information about everything in one of the
layers of information mentioned above and shown in figure 1.8.1. [78] They normally

allow for quantification of hundreds to thousands of features from the same sample. [79-83]

The layers involving DNA or RNA are measured by PCR-based techniques. Here the
analytes are replicated until desirable signal strength is achieved.

For proteins and metabolites no such amplification techniques exist. Here often mass
spectrometry based techniques are employed. [84] In mass spectrometry the analyte in
question is ionized and subjected to a defined electric field® that allows to discern the
molecular mass per charge ratio (/: [Th®]), for example based on speed of linear motion
(time of flight, TOF-detectors) or angular motion (Orbitrap [85, 86]).

Salso magnetic fields or a combination of both electric and magnetic fields are employed.
The unit of 7/; is Thompson (Th)
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Mass spectrometers are often coupled to chromatography, usually liquid chromatography
(LC) or gas chromatography (GC). [87]

Chromatography separates the compounds contained in complex biological samples.
Based on their physico-chemical properties the compounds are differentially retained
by the chromatography column’s stationary phase, so that they are ideally completely
separated and can be injected into the mass spectrometer one after another.

Identification is then based on the mass spectrum and the time at which a compound is
observed, 1. e. the retention time.

The metabolomics data presented in this thesis were obtained by GC-MS, the proteomics
data by LC-MS.

Not only in sample preparation, but also identification strategies of the compounds differs

vastly between metabolites and proteins, thus they are presented separately in the following.

Proteins are usually enzymatically hydrolyzed and resulting peptides are subjected to
LC-MS. Here the peptides are separated chromatographically and subjected to MS. The
peptide ions can then be fragmented and their amino acid sequence is determined from the
fragmentation pattern at MS/MS level and the peptide mass. This identification process
is not definite but has some statistical error. Often a false discovery rate (FDR) of 1 % is
chosen. [88] In more sophisticated setups the fragments obtained can be refragmented, to
obtain deeper information levels.

Since peptides are quite defined in their composition by the proteinogenic amino acids,
compared to metabolomics this automated identification is relatively robust. Peptide
sequences obtained are then compared to a library of all proteins that the analyst deems to
be theoretically included in the sample.

For definite protein identification unique peptides are needed. These peptides only can
stem from one protein and allow for protein identification at gene or often even isoform
level. Peptides are not always defining a protein unambiguously, especially isoforms of
proteins share a high level of homologous sequences, thus a feature not always can be
identified at isoform level. Sometimes ambiguity is higher and multiple different proteins
constitute a protein group.

Based on the principle of Occam’s razor [89, 90] peptides that cannot be unambigu-
ously mapped to a single protein group in the data set are added the protein group that
contains most peptides at this step in the identification procedure. [91] A standard tool for
these identification and quantification procedures widely used in the field of proteomics is

MaxQuant [91] including the ANDROMEDA search engine [92].
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Metabolites are either measured by NMR’, LC-MS or GC-MS. All techniques have
certain advantages and disadvantages, especially in regards to the vast heterogeneity of the
class of “metabolites” that includes polar sugars and amino acids but also apolar lipids and
sterols.

While NMR is generally the least sensitive technique it does not destroy the sample,
which can still be subjected to other analysis techniques after data acquisition.

LC-MS shows superior sensitivity, but its separation power is not as high as in GC. For
example, it is normally not possible to delineate hexoses, i. e. fructose and glucose. [93].
Although as in NMR, no sample derivatization is required for LC, the technolgy in general
is less robust than NMR and GC-MS.

GC-MS is arobust technique, especially equipped to analyze central carbon metabolism
(CCM) metabolites, partly because of its strength to separate sugar species. GC-MS offers
important advantages over other metabolomics platforms: It is much more sensitive than
NMR, and although it detects fewer features than LC-MS approaches, its better separation
allows, for example, for the separate quantification of aldose and ketose sugars [93] that
have been shown to have distinct physiological effects of great importance in diseases [94—
96]. Furthermore, it allows for a more robust and reproducible quantification because of
the near absence of ion suppression effects [97].

As the name says, in GC compounds traverse the separation column in the gas phase.
Thus separation is mainly based on differences in boiling points. In order to reduce boling
points of compounds like glucose to below pyrolysis temperatures, they are derivatized:
chemical groups are added to compounds in a defined manner and for example reduce the
relative amount of polar groups. Although the molecular wheight is increased, hydrophylic
interactions are weakened, and thus the compounds evaporate more easily.

Compound identification in metabolomics is much more complex, than in proteomics.
While in proteomics essentially all observable features are formed by proteinogenic amino
acids, in metabolomics not only those amino acids but a multitude of sugars, carbonic acids,
further amino acids, fatty acids and sugar phosphates, often differing only in isomeric
arrangement are to be identified. For final identification manual visual inspection by highly
trained specialists is required. [98] After several preprocessing steps, mass spectra of peaks
are compared to mixtures of metabolites with defined composition that were measured
as a standard in the same sample batch, or they are compared to databases of compounds
measured using the same technical setup. [2, 75, 98, 99]

"Nuclear Magnetic resonance
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Often many peaks of a chromatogram cannot be identified. These peaks still are likely to
be valid signals of metabolites, they are simply not included in the available databases and
termed “unknowns”. Some general functional groups can be identified from the unknowns
fragmentation pattern in the mass spectrum. From those a subset of conceivable metabolite
candidates can be inferred, e. g. sugars, phosphates or amines. But since final identification
often hinges on isomeric differences, definite conclusions can only be made after a group
of possible compounds is synthesized and their retention time and mass spectrum after
derivatization is acquired.

The unknowns still can be included in databases® and compared to other samples if

desired. This tracking allows backward compatibility if an unknown is identified later on.

1.9 Label tracing allows for measurement of metabolite poolsizes
and formation rate at the same time

Not only the amount of a compound is of interest, but also its formation rate.

If the poolsize of a certain compound is high depending on treatment, this can have the
reason of a blockage in subsequent processing steps, or an overproduction, or a combination
of both.

The formation speed of a compound however allows to make statements about enzyme
activity. This is important, since the amount of an enzyme does not necessarily correlate to
product amount, as will be exemplified in section 4.3. Other factors as localization and
allosteric regulation play an important role regarding metabolic activity. [100]

Since mass spectrometry data also includes information about isotope distribution,
labeling of compounds is a possible means to infer production rate. Regarding effects
on biology, stable isotopes of carbon and nitrogen generally do not cause differences in
metabolism.

When substrates containing stable isotopes differing from naturally abundant isotopes
(i.e. 13C vs. naturally much higher abundant '>C) are introduced to the cell, these are
usually treated very similar to the naturally occurring variant.

The amount of a certain isotope species in a metabolite (or peptide) can be detected and
quantified by mass spectrometry.

Pulsed stable isotope resolved metabolomics (pSIRM), a technique developed by

MartHIAS PIETZE and CHRISTIN ZAsADA in the lab of STEFAN Kempa [2, 75, 76] allows to track

8Unknowns included in an unknown-database are called known unknowns, those not included new or
unknown unknowns.
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the formation rate at which new metabolites are formed. Contrary to classic approaches,
this is done in the biological context of the whole cell, meaning that all possible interactors
are present, simulating a relatively physiological context of the whole network.

The cells are introduced to a substrate made of stable isotopes, i.e. '*C,-glucose,
incubated for different intervals (labeling time) and subsequently harvested using ice-cold
aqueous methanol. This stops metabolism instantly and allows also for sub-minute time
resolution.

After separation of polar and apolar metabolites by liquid/liquid extraction with chloro-
form, the extracts are subjected to mass spectrometry.

Mass spectrometry allows to detect isotope incorporation in metabolites. Combined
with gas chromatography (GC), which is able to even separate hexose-species from one

another [93], this provides an extremely deep look into the dynamics of metabolism.

1.10 Inference of meaning from omics data by aggregation into
concepts

After data is obtained, the researcher is tasked with data interpretation. This can be
daunting, since an omics dataset normally is comprised of hundreds to thousands of
analytes or features. Often several proteins and/or metabolites exert their effect in concert
or belong to a certain signaling cascade that allows to infer certain subgroups of features as
lined out already above in the CCM subpathways [10] or for example the general answer
to a stimulus like insulin.

Besides the biochemical pathways as included in KEGG [101] or Reactome [102] also
other aggregations exist.

The most prominent example is the gene ontology (GO)-database [103, 104]. Here the
influences of certain genes on phenotype, regulation and interaction with other entities
are aggregated in a hierarchical manner. GOCC (GO cellular component, e. g. “mitochon-

2 (X3

drium”, “nucleus”), GOMF (GO metabolic function, e.g. , “phosphatase”, “fatty acid
binding””) and GOBP (GO biological process, e. g. “glycolysis”, “myelin assembly’) are
the three topmost categories of GO-terms.

Since GO-terms have been derived from genes, the respective proteins can be matched
accordingly. Metabolites however are not included in the GO-databases, although processes
like “glycolysis” are contained.

GO-terms are hierarchically ordered. For example, GOCCs “mitochondrium, inner

membrane” and “mitochondrium outer membrane” are part of GOCC “mitochondrium”.
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This allows to construct networks and treemaps to infer higher level agglomeration of
inferred concepts.

When the researcher is confronted with a dataset, he would usually extract all fea-
tures that show significant alteration and use FisHER’s exact test [105] to find concepts
significantly overepresented in the altered features compared to all features.

Since not only GO-terms but many more agglomeration databases exist, in this the-
sis the term concept aims to encompass other databases as above mentioned Reactome
pathways [102] or UniProt keywords [106].

The concepts obtained allow to direct further “diving” into the dataset, to find out what
parts of a certain pathway are dysregulated or which organelles are particularly involved

with proteins showing a difference between treatment groups.

1.11 Integration of different omics datasets gives another
information layer

Integration of different omics datasets is quite challenging, especially when multiple
layers of mutual regulation exist. Transcriptome and proteome are both strongly related
to one another but still upregulation of a certain RNA-species not necessarily results in
upregulation of respective protein expression. [107]

Similar relationships hold true for metabolites and metabolic enzymes. Among other
influences, enzymatic activity is regulated by metabolites themselves (e. g. product inhibi-
tion) and protein abundance does not always reflect pathway activity that can correlate to
metabolite poolsize.

Through integration of multi omics datasets, as presented in this thesis, also regulatory
relationships can be inferred. This allows to unravel possible mechanisms of regulation or

disease progression.

1.12 A detailed look at muscular dystrophies with mass
spectrometry

In light of the substantial amount of mixed fiber types even in small mammals, and the
overall fiber type specific phenotypes in muscle disease, it is interesting to know, how the
interrelations of proteins and metabolites are reflected in the molecular make up.

Not necessarily at single fiber level, but more globally, in different muscles, because

their physical form and use pattern are likely to be reflected in their specific composition.
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Muscle fiber type is variable, depending on many factors like genetic predisposition,
enervation, training state and age. [108—110]

In the literature only few omics studies comparing different muscles exist.

In 2012 DRexLER et al. [111] compared Extensor digitorum longus and Soleus muscles
of C57BL/6 mice and found 25 % of the quantified proteins to be significantly differentially
expressed. They found differences in sarcomeric proteins and many kinases and enzymes
in glutathione metabolism to be differentially expressed in the two muscle types compared.

In 2015 Raxkus etal. [112] compared Soleus and Tibialis anterior of mice and found,
besides the known differences in sarcomeric proteins, that enzymes comprising those
pathways that are predominantly used by the respective muscletypes differing in their
primary fuel source are differentially expressed. They also compared reaction rates of
the extracted enzymes and found good correlation to their relative amounts. Rakus et al.
concluded, that the upregulation in expression of a certain pathway is correlated with its
activity.

In 2015 DesamukH et al. [113] compared myotubes generated from C2C12 cells with M.
triceps of C57BL/6 mice. In their comparison of two often used model systems they found
44 % of the proteome to be significantly different. This reflects the difficulties in transfer
or research findings between different model systems.

Regarding metabolomics studies comparing different muscle types, after a thorough
literature search I am not aware of the existence of any studies.

This warrants another look using up to date mass spectrometry based techniques to
further characterize the molecular make up of muscle, and also, to my awareness for the
first time, integrate metabolomics and proteomics data comparing muscle.

I chose four different muscles, that had been partially already been investigated using
proteomics alone. Oxidative Soleus [111, 112], glycolytic Tibialis anterior [112], gly-
colytic Extensor digitorum longus [111] and Quadriceps, that has a mixed metabolism
and showed the strongest phenotype in the investigations of dysferlinopathy by SAran
KELLER [1].

Although for dysferlinopathy a type I fiber preponderance has been reported [61]
and thus a metabolic implication of dysferlin is likely, in the work of her thesis SARAH
KELLER [1] was the first to report a metabolic phenotype of dysferlinopathy. Open questions
remained, and with the novel technique of pSIRM, I wanted to further investigate this
disease phenotype.

As explained above, the glycogen pool in muscle is of high general importance for

muscle metabolism, as #80 % of glucose taken up into non-contracting muscle is routed
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through the glycogen pool. [37] Because of its physico-chemical properties glycogen
cannot be measured by the standard metabolomics workflow. I aimed to modify the method
in a way, that also label incorporation in glycogen can be measured.

Another question was how dysferlin might exert its effect on glycolysis, that was obvious
from SaraH KELLER’s data. During her thesis SEVERINE Kunz [3] developed a protocol to en-
rich dysferlin vesicles. We obtained proteome data from primary cells of dysferlin-normal
healthy individuals including a broad set of background controls, in order to possibly

elucidate implications of dysferlin on metabolic and especially glycolytic enzymes.

The techniques referred to are all based on muscle tissue, which is relatively hard to
obtain. Biopsies inherently require at least a small injury of potentially diseased muscle,
thus it is desirable to find less invasive techniques to investigate muscle. As all other organs,
muscle receives fuel and excretes metabolites from and to the blood stream. Together with
Henning KuicH [4] we performed an experiment with a single human volunteer performing
exercise. He ran around the campus and I obtained small blood samples, similar to a
diabetic’s blood glucose test. We wanted to see if and how the metabolic changes during
physical activity are reflected in the blood stream, which might possibly lead to new

diagnostic tools in clinical investigations of muscle disease.
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2 Methods

For this thesis, based on the work of especially CHRISTIN ZAsSADA and MATTHIAS PIETZKE,
an extraction protocol for stably labeled human myotubes had to be established. This
process will be described in detail in the results section (section 3.3.1), but parameters
for cell culture in general will be given here. The treatment of samples to compare label
incorporation into dysferlin deficient myotubes will be given here, as this constitutes the
finally established method. After extracts had been acquired in a manner as will be layed
out below, general metabolite and protein data acquisition was always performed similarly,
and will be described in this section.

Dysferlin vesicles were processed by SEVERINE Kunz, including in gel protein digestion.
A central part of her thesis was the devolopment of dysferlin vesicle enrichment, that shall
not be given here. For detailed methods, please refer to her thesis: Kunz, etal., 2015 [3].

After extraction of mouse muscles, metabolite extracts were analyzed by GC-MS using
the same parameters as the cells, and the blood samples. (section 2.8) The same holds true
for dysferlin-vesicle and mice muscle protein extracts, which were analyzed by LC-MS
(section 2.9).

2.1 Study approval

The local animal research committee approved all protocols (G0065/13, LaGeSo, Berlin,
Germany).

Human muscle biopsy specimens and myoblast cell lines were obtained after informed
consent prior to inclusion in the study (Ethical approval EA1/203/08, Charité Berlin,
Germany). The volunteer in the campus run is a scientist well aware of the risks associated

with human trials. He also gave written consent.

2.2 Solutions and chemicals used

PBS: Phosphate buffered saline, Gibco
Trypsin: 0.25 % trypsin-EDTA (1x), Gibco
FBS: Fetal bovine serum, Biochrom

GlutaMax: GlutaMAX™-T (100x), Gibco
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SKMGM: Skeletal Muscle Cell Growth Medium (Basal Medium), unless stated otherwise
supplemented with 10 % FBS, 1.5 GlutaMax and 40 #¢/mL gentamycin, proVitro

SKMGM knockout: SKMGM without glucose, pyruvate, glutamine, supplement (from

manufacturer, includes growth factors, insulin), proVitro

Krebs-Ringer-HEPES (KRH) buffer: 140 mm sodium chloride, 5 mm HEPES (4-(2-
hydroxyethyl)-1-piperazineethanesulfonic acid)

2.2.1 Solutions and chemicals used for metabolomics

Alcane mix: as retention index markers n-decane, n-dodecane, n-pentadecane, n-heptadecane,
n-nonadecane, n-docosane, n-octacosane, n-dotriacontane, and n-hexatriacontane,
are mixed to a final individual concentration of 2 mg/mL together comprising the
alcane-mix, were dissolved in hexane and combined to a final individual concentra-

tion of 2 % v/v.

Ident mix: the ident mix is a combination of 102 compounds combined in 4 combinations
(A-D) in such a mannner, that they are once measured without interfering compounds
at similar retention index, and once with interfering compounds. Please refer also
to [2, 98].

Quant(ification) mix: the quant mix is composed of 63 compounds (stock concentrations
1 mg/mr). They are combined in a empirically determined manner (master mix 1:1),
and then diluted in steps of 1:1, 1:2, 1:5, 1:10, 1:20, 1:50, 1:100 to 1:200. [2] For
each batch of samples an aliquot was extracted in parallel and measured at the

beginning of the sample set.
MCW: methanol|chloroform|water 5|2|1 v|v|v
MeOH,q: aqueous methanol in given percentage, always v/v
MeOX: methoxyamine hydrochloride in pyridine, ¢ = 40 mg/mL
MSTFA: (N-methyl-N-(trimethylsilyl)-trifluoroacetamide)
KOH: potassium hydroxide, 0.2 M
AcOH: 1w acetic acid

potassium-acetate-buffer: KOH|AcOH 230|70
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2.2.2 Solutions and chemicals used for proteomics

Urea buffer: 8 m urea in 100,mm Tris-HCI, pH 8.25
DTT: Dithiothreitol, reduction agent to reduce thioethers

IAA: lodoacetamide, as alkylating agent of thiols formed by reduction of thioethers

2.3 Glycogen precipitation and determination with anthrone
reaction

In one 10 cm dish of myoblasts, 150 ug of glycogen can be expected. [31, 33-35] To test
precipiation behaviour in methanol, 150 pg aliquots of glycogen standard (from oyster,
Sigma-Aldrich) were added to different concentrations of MeOH,q (0, 40, 50, 60, 70, 80,
90, 100 percent). Also 1 mL of chloroform was added to simulate extraction of cells.
Samples were treated as in cell extraction (see below, section 2.6.2). Phases were
separated and dried and glycogen content was measured using anthrone reaction, which
was modified to function in modern 96-well plate readers. This assay is very simple, and
only requires to add anthrone, dissolved in concentrated sulfuric acid to the dissolved
glycogen, followed by incubation at 100 °C for 10 min. This results in formation of a green
color in the solution, that can be photometrically determined at A = 620-630 nm. [42, 114—
118]. In the literature, reaction is carried out in bigger volumes, and requires manual filling
of cuvettes. I scaled the parameters down. Comparing to an external calibration curve, that
showed high linearity (R*> = 0.998 in a range between 2 and 420 pg), I could use this assay

directly in a 96-well format.

2.4 Test of linearity between signal and sample amount

Tibialis anterior and Quadriceps muscles of one C57BL/6N mouse were smashed by

biopulverizer treatment and extracted with MCW as follows:

e add MCW

e 15’ Ultrasound treatment

e add 25 % MeOH,qto induce phase separation

e 15’ Ultrasound treatment

e centrifuge 10’ at 20.000 g

e separate samples

e add 100 uL cinnamic acid in MCW (c = 5#¢/mL) as internal standard
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e dry in rotational vacuum concentrator

Volumes of extraction solvents can be found in table 2, the amounts of polar phase (PP)
dried in table 3.

Table 2: Extraction solutions used for linearity test. PP: polar phase

TA QUAD
MMuscle [mg] 91.53 102.9
Vmew [HL] 1830.6 2058
Vasameon,, (ML 9153 1029
Vpp [UL] 2288.25 25725

Table 3: Volumes of PP dried to assess linearity between signal and sample amount

Vpp [UL] 10 20 50 100 200 500 1000
MMuscle [mg] 04 08 2 4 8 20 40

The samples were derivatized, measured and annotated as described in section 2.8.

2.5 Collection and extraction of Extensor digitorum longus,
Quadriceps, Soleus and Tibialis anterior of C57BL/6N mice

With assistance from AprIENNE RotHE C57BL/6N male mice, 14 weeks of age (n = 8),
(Charles River) were sacrificed by cervical dislocation and the muscles immediately
extracted. We collected samples from 4 mice on two consecutive days, ensuring same time
of day, to ameliorate influences by circadian rhythm.

Muscles used for metabolomics analysis were obtained first, briefly rinsed in PBS to
remove eventual fur or other debris, weighed, photographed to document length and flash
frozen in liquid nitrogen within within 4-8 minutes after sacrifice and were already cooled
on an ice pack during imaging.

They were crushed via biopulverizer, and powder aliquots extracted by 20 min sonifi-
cation in 40 uLL/mg ice cold MCW containing 1.5 pg/mL cinnamic acid, in a cold room
(=7°C). 20 uL/mg 25 %MeOH,, were added, followed by another 20 min of sonification
to ensure phase equilibrium. Debris was centrifuged (10 min at 20.000 g, 4 °C), phases
separated and dried within 5 h using a rotational vacuum concentrator. Further processing

was carried out as lined out below (section 2.8).
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Muscles used for proteomics analysis were obtained second, cleaned, weighed, imaged
and stored on cold PBS filter paper (Whatman) during further processing. With new
razor blades, except from Quadriceps, six transversal sections were cut and mounted for
histological sectioning with gum tragacanth on cork plates. Muscle sections were first
frozen in iso-pentane at melting point, and then quickly transferred to liquid nitrogen. After
histological sections, for experiments not included in this thesis, were obtained with assis-
tance by ADRIENNE ROTHE, the remaining sections were cleaned of gum tragacanth. Proteins
were extracted with assistance by ALiNa EISENBERGER using a tissue lyser (Precellys™ 24,
Bertin Technologies, Montigny le Bretonneux, France) with yttrium stabilized zirconoxid
ceramic beads of 0.4-0.6 mm diameter (SiLibeads ceramic beads type ZY, Sigmund Lind-
ner, Warmensteinach, Germany) at a speed of 6200 Hz for 20 sec runtime for two cycles.
Protein content was determined using BCA-assay kit (Thermo Scientific) according to
manufacturers specifications.

Equal volumes of protein extract were combined to keep relative protein concentration
constant.

There might be a slight bias, introduced by different extraction efficiencies, since all
samples were extracted in the same buffer amount and thinner muscle parts could be
favored, but it is very unlikely, that the extraction solvent was oversaturated, often whole

mouse muscles are extracted in similar volumes. [1]

2.6 Labeling of myotubes
2.6.1 Cell culture

Myoblasts were purified from muscle biopsies using magnetic antibody sorting as described
in [68, 119]. Myoblast culture was carried out at 37 °C, 5 % CO, and 96 % relative humidity.
Times between splitting of cells varied from 1 to 3 days, according to variable growth of
primary cells determined by visual inspection.

For splitting, cells were washed with 5 mL PBS per 10 cm dish and detached by treatment
with 1 mL trypsin for ~2-3 minutes, diluted with fresh media and distributed onto new
plates.

Myoblasts were cultured in skeletal muscle cell growth medium (SKMGM) partially
in cooperation with VERENA SCHOWEL and assistance by STEFANIE MEYER-LIESENER and
SteraNiE BELz until 80 % confluence was reached in 10 cm petri dishes.

To stimulate fusion into myotubes, cells were serum deprived by switch of cell culture

media to Opti-MEM (Gibco). Myotube development was monitored visually, and was
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generally achieved after 5—7 days.

2.6.2 Labeling of myotubes

Cells used for test experiments providing only one carbon source were donated by a 20 year
old woman, biopsy was taken from M. vastus lateralis. Cells used for test experiments
with all carbon sources present, were donated by a 55 year old woman, biopsy was taken
from M. vastus lateralis. Muscle was diagnosed as non-pathological at the outpatient clinic
for muscle disease, Charité Berlin-Buch.

In general, harvest was conducted as described in [2]. 24 h before labeling start myotubes
were presented with the carbon source(s) present during the labeling, contained in re-
established '>C-SKMGM-knockout media (proVitro). Carbon source concentrations were
chosen to simulate postprandial phyisological conditions in blood (glucose 1 g/L, palmitate
1000 mm, 3-hydroxybutyrate at 4 mm, a concentration, that is typical for a fasting state).
Glutamine and pyruvate were replenished according to media specifications. I was asked by
the company not to reveal specific concentration values. Since most of the data presented
in this thesis, does not hinge on substrates except glucose and 3-hydroxybutyrate, I do not
think this is necessary for the recapitulation of the results.

4 h before labeling start, fresh media was provided.

At labeling start, cells were washed with PBS and time was started at the moment,
13C-labeling (or '?C-background) media was put into the dish.

About 30 seconds before envisaged labeling time was up, cells were washed with Krebs-
Ringer-HEPES bulffer, containing the respective carbon sources, to wash away exrected
metabolites, but not disrupt metabolism.

Table 4 gives the applied labeling times, see also figure 3.3.7.

Table 4: Labeling times used in tracing experiment of dysferlin defficient primary human myotubes. Time-
points and number of replicates per patient (n = 2 X 2) or control (n = 3 X 2) for labeling and
background-controls are given. Refer also to figure 3.3.7 OHB: 3-hydroxybutyrate

Media type Nindividuals ‘ Habeling [min] 3 7 15 300 60° 120° 10h

BC-Glucose 5 2 2 2 2 2 2
2C-Glucose 5 2 2
13C-OHB 5 2 2 2 2
I2C-OHB 5 2

When labeling time was over, washing buffer was discarded, cells were placed on ice

and immediately scratched with 5 mL 60 %MeOH,, containing 2 #¢/mL cinnamic acid into
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15 mL falcon tubes filled with 1 mL chloroform. They were vigorously shaken and flash
frozen in liquid nitrogen.

In further processing, samples were shaken for 30 min at ~4 °C to ensure phase equi-
librium. After centrifugation, the polar (upper) and apolar (lower) phase as well as the
glycogen containing interphase were separated. Extracts were dried in a rotational vacuum
concentrator. To transfer the samples to 1.5 mL sample tubes for derivatization, they were
dissolved in 20 % MeOH,q and dried again. The interphase was dissolved in water and

split into two aliquots. Polar phase was submitted to GC—MS analysis (section 2.8).

2.6.3 Glycogen hydrolysis

After drying in a rotational vacuum concentrator, to remove free glucose both interphase
aliquots were washed twice with 80 % ethanol (v/v). [120] One aliquot of each extract was
hydrolyzed first by heating in 230 uL. 0.2 KOH 1 h 95 °C. Samples were briefly allowed
to cool to ambient temperature, and neutralized by addition of 70 uLL 1 M acetic acid.
Amyloglucosidase and oc-Amylase were added and glycogen was further hydrolyzed for
24 h at 37 °C. [121] To account for possible residual background glucose, the other aliquot
was redissolved in potassium acetate buffer, dried together with its hydrolyzed counterpart,
and used as matched background for subsequent calculation of label incorporation after

GC-MS measurement (section 2.8).

2.7 Extraction of blood samples obtained from a single healthy
volunteer performing exercise

In a proof of principle study to assess possible reflection of muscle work in the blood
stream, HENNING KuicH ran around the MDC-Campus, and I collected blood samples from
the finger tip with my diabetics lancetting pen (BD OneTouch comfort, 0.2 mm, 33 G)
and stabilized them directly in ice-cold MCW. While he ran, I accompanied him by bike
and monitored his overall status, but also cheered him on, when he reached the point of
“Hitting the Wall”.”

He ran six laps of 2.2 km on the MDC-Campus. Because we wanted to monitor the
phenomenon of “Hitting the Wall”, which was experienced in lap 3, this lap was cut short

by 200 m (10 %) in fear of missing this crucial time point (see figure 3.5.3).

9We had a lot of fun that day, but even more so, when we realized the potential of the data obtained. I
still hope and believe, that someday we will bring the full potential of this to benefit humankind.
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Whole blood samples of 10 uL. were collected in 1 mL. MCW, shaken (1000 rpm) at
4 °C for 10 minutes to lyse all cells in the blood. Then 500 uLL water was added to induce
phase separation. After further 10 minutes of shaking at 4 °C, 1000 rpm, to ensure phase
equilibration, samples were centrifuged for 10 minutes at 4 °C, 20.000 g.

Two times 600 puL of polar phase and one time 200 uL of lipid phase were collected and

dried for derivatization in a rotational vacuum concentrator.

2.8 Derivatization, GC—MS measurement and annotation of
metabolites

2.8.1 Derivatization

In order to enhance the volatility of metabolites, they have to be derivatized by certain
chemical compounds, that react with specific functional groups of the metabolites, e. g.
hydroxyl or amine groups. Since minute amounts of water hinder the reaction, if the
samples had been frozen, they were equilibrated to room temperature in a rotational
vacuum concentrator for 15 min.

Derivatization was carried out as follows:

e add 10 uL MeOX (Ident/QuantMix: 20 uL.)

e incubate 90 min at 30 °C on shaker

e add 30 uL MSTFA (Ident/QuantMix: 80uL), including retention index markers
(alcane mix)

e incubate 60 min at 37 °C on shaker

e centrifuge 10 min at 20000 g

e transfer supernatant to GC vial, 217 uL to GC vial

e seal vial

The samples where directly measured by GC-MS.

2.8.2 GC-MS measurement

Metabolite analyses were performed with a Pegasus III mass-spectrometer (LECO, St.
Joseph, USA) equipped with an Agilent 6890N gas chromatograph and a VF-5ms column
with 30 m length and 250 pum inner diameter (Agilent, Santa Clara, USA). 1 uL of sample
was injected into a baffled liner (Gerstel, Miinchen, Germany) with a 1:5 split-ratio under
a helium-flow of 1.2 mL/min. The oven was heated from 70 °C to 350 °C with 5 °C/min to
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120 °C and 7 °C/min to 350 °C followed by 2 min hold time. Scan rates of 20 Hz and mass
ranges of 70-600 Th were used.

2.8.3 Annotation

The GC-MS chromatograms were initially processed with the ChromaTOF software
(LECO). The Ident mix and the Golm metabolome database (GMD) [99] were used to
identify substances with respect to spectra-similarity and retention index using Maui—
SILVIA [4, 98].

2.9 Protein digestion, LC-MS measurement, protein identification
2.9.1 Protein digestion of muscle tissue samples

Of the recombined extracts aliquots of 100 ug of proteins were reduced in 10 mm DTT
for 30 minutes at room temperature and successively free cysteines were alkylated in
55 mm iodoacetamide for 20 minutes at room temperature in darkness. LysC digestion was
performed by adding LysC (Wako) in a ratio 1:40 (w/w) to the sample and incubating it for
18 hours under gentle shaking at 30 °C. After LysC digestion, the samples were diluted 4
fold with 50 mM ammonium bicarbonate solution, 7 puL. of immobilized trypsin (Applied
Biosystems) were added and samples were incubated 4 h under rotation at 30 °C. Digestion
was stopped by acidification with 10 pL of trifluoroacetic acid and trypsin beads were
removed by centrifugation. A volume equal to 18 pg of digested protein were desalted on
STAGE Tips, dried and reconstituted to 20 puL. of 0.5 % acetic acid in water [122], to be
subsequently analyzed by LC-MS (see below, 2.9).

2.9.2 Protein digestion of dysferlin vesicles
2.9.3 LC-MS measurement

5 puL of tryptic digest were injected in an UPLC system (Eksigent, Framingham, USA),
using a 240 min gradient ranging from 5 % to 45 % of solvent B (80 % acetonitrile, 0.1 %
formic acid; solvent A (5 % acetonitrile, 0.1 % formic acid), coupled to a Q Exactive Plus
mass spectrometer analyzer (Thermo, San Jose, USA).

For the chromatographic separation a 30 cm long capillary (75 um inner diameter)
was packed with 3 pm C18 beads (Reprosil-AQ, Dr. Maisch) was used. On one end of
the capillary nanospray tip was generated using a laser puller, allowing fretless packing.

The nanospray source was operated with a spray voltage of 1.9kV and an ion transfer
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tube temperature of 260 °C. Data was acquired in data dependent mode, with one survey
MS scan (resolution 70000 at 200 Th) followed by up to 10 MS/MS (resolution 7500 at
2500 Th). Once selected for fragmentation, ions were excluded from further selection for

30 sec, in order to increase new sequencing events.

2.9.4 Protein annotation

For mouse muscle proteomes raw data was analyzed using the MaxQuant proteomics

pipeline version 1.5.3.30 [91] and the built in Andromeda search engine with the Uniprot

database of mouse proteins [123], release 2016_01 including splice variants. Carbamidomethy-

lation of cysteines was chosen as fixed modification, oxidation of methionine and acetyla-
tion of N-terminus were chosen as variable modifications. Two missed cleavage site were
allowed and peptide tolerance was set to 20 ppm. The search engine peptide assignments
were filtered at 1 % FDR at both the peptide and protein level, while other parameters were
left as default, mathing between runs was enabled. For data processing and visualization,
LFQ intensities [124] were used.

For dysferlin vesicle proteomes raw data was analyzed using the MaxQuant pro-
teomics pipeline version 1.5.1.2 [91] and the built in Andromeda search engine with
the Uniprot database of human proteins [123], release 2014 _04 including splice variants.
Carbamidomethylation of cysteines was chosen as fixed modification, oxidation of methio-
nine and acetylation of N-terminus were chosen as variable modifications. Two missed
cleavage site were allowed and peptide tolerance was set to S ppm. The search engine pep-
tide assignments were filtered at 1 % FDR at both the peptide and protein level, while other
parameters were left as default, mathing between runs was enabled. For data processing

and visualization, normalized intensities were used.

2.10 Statistics, plot preparation, software used

For data analysis, R [125] and the following packages were used:

adgenet a R package for the multivariate analysis of genetic markers [126, 127]
Bioconductor Orchestrating high-throughput genomic analysis with Bioconductor [128]
KEGGREST Client-side REST access to KEGG [129]

KEGGgraph KEGGgraph, a graph approach to KEGG PATHWAY in R and bioconduc-
tor. [130]
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RColorBrewer ColorBrewer Palettes [131]

Rcpp Seamless R and C++ Integration [132]

classInt Choose Univariate Class Intervals [133]

doBy Groupwise Statistics, LSmeans, Linear Contrasts, Utilities [134]
extrafont Tools for using fonts [135]

ggplot2 ggplot2 elegant graphics for data analysis [136]

ggrepel Repulsive Text and Label Geoms for "ggplot2’ [137]
gridExtra Miscellaneous Functions for ”Grid” Graphics [138]

limma Limma powers differential expression analyses for RNA-sequencing and microar-
ray studies [139]

plyr The Split-Apply-Combine Strategy for Data Analysis [140]

psych Procedures for Psychological, Psychometric, and Personality Research [141]
reshape Reshaping Data with the reshape Package [142]

scales Scale Functions for Visualization [143]

stringr Simple, Consistent Wrappers for Common String Operations [144]

svglite An’SVG’ Graphics Device [145]

treemap Treemap Visualization [146]

For general quality control of proteomics data, PTXQC was used. [147] Also Perseus
was used for data analysis. [148]. The network from blood metabolomics was generated
using Cytoscape [149], other networks were prepared using VANTED [150]. The circos
plot was generated using circos [151]. All artwork was produced in Gimp and mainly
inkscape [152] Some lists and tables were produced in Microsoft Excel 2013.
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3 Results

In the framework of this thesis, metabolomics and proteomics data, obtained either by
GC-MS or LC-MS was obtained from several different types of matrices originating from

mice and humans.

From mice different muscle types, representing different metabolic types (oxidative,
glycolytic, intermediate) were subjected to metabolic and proteomic analysis. Regard-
ing proteomics, some comparative studies have been made, always comparing only two
muscle types, either Soleus and Extensor digitorum longus [111] or Soleus and Tibialis
anterior [112], but never comparing more than two muscles at the same time. To my
knowledge, no comparative study, combining metabolomics and proteomics data of dif-
ferent muscle types exists. Since it is known, that often type II fibers are more prone
to disease and show more pronounced atrophy in healthy processes as aging, a deeper
understanding of the differences on a molecular level is of high interest. So far, muscle
types have been discerned primarily by few features in separate studies. Most often they are
described by the presence of certain myosin heavy chain isoforms, relying on a variation
of activity depending on pH-level. But also differences in the expression or activity of
certain glycolytic enzymes as lactate dehydrogynase or mitochondrial enzymes as malate-

or succinate dehydrogynase. [153, 154, and references therein]

Also many other features differing between muscle types have been researched, but not
on a systemic level, with data obtained from the same samples. This hinders comparability
of the differences found between the muscle types and the possibility to detect unexpected
relations, e. g. between different predominantly glycolytic muscles like Extensor digitorum
longus and Tibialis anterior. The systems biology approach presented here allows for
unbiased exploration of the feature space and possibly to draw unexpected conclusions in

decoding disease mechanisms or preventative medicine.

To gain deeper understanding of muscle metabolism in disease, GC-MS based metabolomics
was used to analyse samples obtained from patients suffering from dysferlinopathy. This
genetic disease shows a late onset, starting from puberty, when also the metabolism of

muscle starts to become more reliant on glycolytic metabolism. [8, 70—73]

The concurrence of disease onset and metabolic changes in muscle, as the organ of
highest absolute metabolic rate, warrants for an investigation of metabolism in this disease.
Based on work already conducted by SARAH KELLER [1] and VERENA SCHOWEL in the research
groups of SIMONE SpULER and STEFAN KEmpa, I transferred pSIRM, previously established

for cancer cells by CHRISTIN ZasapA and MarTHias PIETZKE [2, 75-77] to function with
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primary human muscle cells. I also modified the extraction procedure, in order to include
label tracing in the glycogen pool.

To take biopsies and cultivate primary muscle cells is cumbersome and challenging,

especially because the patients to be examined already have compromised muscles. Taking
a biopsy puts also high strain on muscle health and is to be considered a major intervention
in patients with muscular disorders. In order to circumvent this, tests with a less invasive
technique, like liquid biopsies would be favorable. Blood is easily obtainable, but also
reflects a mixture of the influences by the different metabolic organs. On the one side this
is an advantage, since in the end, we are interested in the patients overall status, however it
might complicate analysis, because the origin of metabolites can never be sure.
Overall, but especially during physical activity, muscle is the organ with highest absolute
metabolic turnover. Under this presumption during exercise muscle should be the major
contributor to changes in metabolite levels in the blood stream. In a proof of principle
study with a trained individual, we tested, if and how physiological activity is reflected in
blood during physical exercise. The sensitivity of modern mass spectrometry techniques
allows to use only single droplets of blood, taken from a finger or the earlobe, similar to a
blood glucose test and allows for longitudinal studies with high sampling frequency.

Gaining this deeper understanding starting from muscle types in mice, then looking at
activity of the major metabolic enzymes in human sample material and in the end observing
the physiological interplay of muscle in the body during activity allows for a very detailed

look at factors that may interfere with its function.

3.1 Establishment of measuring metabolites from muscle tissue

Muscle tissue is highly complex and relatively rigid, reflecting its physiological function
of force exertion. When analyzing tissue several imponderabilities have to be considered.
For one, the complex matrix of muscle is likely to have an impact on extraction efficiency.
Since I only wanted to compare muscle tissue with other muscle, this issue can be evaded
by using approximately the same amount of tissue from each muscle.

Since the muscles I examined are of very different shape and size (see figure 3.2.1) sample
homogeneity is certainly another important factor.

It has also to be kept in mind, that many metabolites are relatively unstable, so heating
the samples has to be avoided. Proteins are more stable and proteomics samples can be
subjected to a harsher treatment. When the samples were obtained with help of ADRIENNE
RotHE, we always extracted the muscles to be subjected to metabolomics analysis first, in

order to ensure sample integrity. From cervical dislocation till placing the muscle in liguid
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nitrogen it took 4-8 minutes for the metabolomics samples.

Most extraction techniques for tissue involve lysis using ceramic beads [155, 156].
During this treatment the samples become relatively warm, so that sample deterioration
could be an issue. As such a biopulverizer was used, which allows to obtain a powder of
frozen tissue, keeping the sample temperature at well below —80 °C. [157] This ensures

sample homogeneity and integrity during the preparation process.

For proteomics much less tissue is needed than for metabolomics. Since extraction with
a biopulveriser is relatively cumbersome, and the muscle samples obtained were to be
preserved for a different analysis not included in this thesis, except for Quadriceps the
proteomics samples were transversely cut into six equally thick sections and mounted
with gum tragacanth for histological sectioning. To ensure, that gum tragacanth was not
causing a background signal in the bradford assay used to determine protein content after
extraction, I extracted 100 mg of pure gum tragacanth, much more than could have been
accidentally included in the actual muscle protein extracts, and performed a bradford assay
of the extract. There was only negligible increase of signal, compared to pure extraction
buffer.

The quadriceps samples were subjected to homogenization by biopulverizer.

After specimen for histology were obtained, the sections were removed from the mount-
ing media and separately extracted using ceramic beads (also Quadriceps). These extracts
were then recombined, to represent the whole muscle, and subjected to trypsinization.

Extracts of sections were recombined by equal volume amounts, to keep relative protein
concentration at constant level. The central sections, where muscle diameter is higher, had
higher protein concentrations, as expected, but since equal volumes were combined, not
equal protein amounts, this effect was ameliorated in the recombined extracts.

Although obtaining metabolomics data was already established for many different
matrices in the group of STEFaAN KEwmpa, there was only sparse data on the linear correlation
of sample amount and measured intensity in muscle. Especially the tracking of unknowns
was quite new in the group, and knowledge of the behavior of these compounds regarding
linearity of signal strength had to be obtained.

Unknowns, or unidentified features, are features, that cannot be mapped to a database
entry. They still are valid metabolites, but either not included in the ident-mix or in the
external databases used for annotation. In theory compound identification is possible to
some extent from mass spectra, but for example hexose-species, differing only in very
similar isomeric arrangement. In metabolomics, for unidentified substances, the mass

spectra allow to infer certain functional groups, like amino or carboxyl groups. In the end,

49



doubtless identification is only possible if the compound is synthesized and retention index
and mass spectrum measured on the same machine are congruent.

In the test data most of the compounds, including unidentified features were found to
show linear behavior over a wide concentration range, as plotted in figure 3.1.1a. Here area
normalized to its maximum per compound is plotted against the amount of muscle in the
sample, color depicts R? of a linear fit, lactate, as a problematic case, is emphasized in red.

Some metabolites were only measurable at comparatively high concentrations, but
showed a linear incline from there on. So if they are detected, they can be deemed
quantifiable. The histogram in figure 3.1.1b shows the distribution of R* across all features
measured in this experiment. This also shows, that overall linearity is quite good.

The gray shaded box denotes the amount of muscle used in the actual study. The
limiting factor to consider was muscle mass of Soleus and Extensor digitorum longus, that
weigh about 8—10 mg, and thus yield little sample material, which limits detectability of
metabolites with low abundance, whereas some metabolites, e. g. lactate, quickly reach
saturation. Lactate, which is a borderline metabolite, shows already some saturation in the
range of muscle amount that was used in the main experiment. Since one whole muscle
of SOL and EDL need to be used for a measurement in order to achieve satisfactory
coverage of most metabolites, it seemed not reasonable to measure twice with different
concentrations. Results based on lactate have to be treated carefully, however, lactate levels
in different muscle type have already been extensively studied, and lactate amounts are not

the focus of interest in the present experiments.
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(a) To assess, if the metabolites especially the unidentified ones, show a
linear relationship of signal strength and sample amount, intensities of
features were normalized to their respective maximum and plotted ver-
sus the amount of sample extract. The lines are colored according to the
coefficient of determination for a linear relationship Intensity~Sample
amount. The grey bar indicates the amount of muscle tissue used in the
actual experiment.
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(b) Distribution of the coefficient of determination (R?) for a linear fit of
amount of sample used and normalized signal measured by GC-MS.
By far, most of the metabolites, including the unidentified features,
show a strong linear relationship reflected by R? = 1.

Figure 3.1.1: Analysis of linear correlation between sample amount and signal intensity.
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3.2 Comparing muscle fiber types

Muscle is the organ that facilitates movement of the body, but also allows to keep body
posture and facilitate vital functions like transporting blood through the body and bowel
movements. As such it is of no surprise, that it has diverse phenotypes, i. €. in the heart
and smooth or skeletal muscle. Skeletal muscle has been characterized as diverse at first
by color. The redder a muscle appears the more it relies on oxidative metabolism: the red
color stems from myoglobin, the oxygen transporting protein of muscle. [158]

Over time ever more modern techniques have been used to find differences in the
different fiber types of muscle. Today four major types of muscle fibers (I, IIA, IID/IIX,
IIB) have been established. They are mostly discerned by the respective isoform of myosin
heavy chain and their ATPas activity at different pH levels.

Type I fibers are also described as oxidative, I1IB as glycolytic, and I[ID/IIX and IIA as
oxidative-glycolytic. Various intermediate forms exist and make up a considerable fraction
(>20 %) of overall cross sectional area. (see also table 9) [46]

The classification in glycolytic and oxidative muscles emphasizes the major phenotypic
differences of muscles, besides differences in rigidity: their metabolism and major energy
source that is routed through the CCM.

In general, the larger the species, the more heterogeneous the fiber type distribution in a
specific muscle becomes. Whereas in humans most muscles are strongly intermixed, fiber
type distribution in e. g. rodents is more defined.

In the literature, Soleus has been often used as example for an oxidative muscle, whereas
Extensor digitorum longus and Tibialis anterior have been used as examples of glycolytic
muscles. [111, 112] In the group of SimonE SpuLER a difference in disease severity afffecting
the different muscles has been observed, with Quadriceps being most severely affected in
an animal model for dysferlinopathy (BLA/J-mice) [1, 159]. Data on systemic molecular
comparison for muscle is scarce in general, but even more so for quadriceps.

The predominant animal models for muscle studies are mice and rats. Whereas rat
Soleus consists almost only of type I fibers [160], in mice it is more heterogenous, with
40 % type I and type IIA each and 20 % type IIAX. It still has the highest percentage of
type I fibers of any mouse muscle, the vast majority of the rest are oxidative glycolytic
type IIA. Thus Soleus is the best choice, if conclusions about predominantly oxidative
metabolism are to be drawn. For these reasons I chose the four muscles Extensor digitorum
longus and Tibialis anterior as glycolytic, Soleus as oxidative and Quadriceps as mixed
glycolytic-oxidative (figure 3.2.1), but also because it reflects the most severe disease

phenotype in dysferlinopathy.
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M. Quadriceps femoris
(QUAD)
glycolytic/oxidative

M. Tibialis anterior
(TA)
glycolytic

M. Extensor
digitorum longus
(EDL)

glycolytic

> M. Soleus
(SOL)
oxidative

Figure 3.2.1: Picture of a mouse hindlimb. The four muscle types that were investigated are highlighted.
Extensor digitorum longus and Tibialis anterior represent glycolytic muscles, the Soleus was
chosen as oxidative muscle and has the highest proportin of type I fibers in mice, Quadriceps
represents an oxidative-glycolytic muscle and shows the strongest disease phenotype in
dysferlinopathy. The muscles vary in shape and size, which has to be considered when
choosing extraction methods. Image modified from [161]

It is known that for example lactate produced by glycolytic muscle is transported to
oxidative muscle via the blood stream, taken up and oxidized there. [162]
This shows in a striking manner, how specialized muscle can be, and warrants further
investigation as to how the respective fiber type distribution and different functions of the
muscles used in this study influence the molecular makeup of the muscle and how in turn
disease susceptibility is affected by this.

I will lay out in the following, how the different sample groups and data types have
been handled, ensued by the techniques used to gain further insights from this systemic

approach and the integration of both metabolomics and proteomics data.

3.2.1 Data handling

In big “omics” datasets, there is always missing data. If only features (analytes) were
kept, that show values for all samples, much information would be lost, especially since I
am looking for differences between sample groups. Features showing a strong difference
between sample groups, might be below limit of quantification (LOQ) in a certain sample

group.
For imputation of missing data different strategies have been suggested [163], however,
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a discussion of those strategies is beyond the scope of this thesis.

As mass spectrometry data is inherently count data, a log-normal-distribution of quantita-
tive data is to be expected. [164] As such, all calculations, statistical tests etc. performed to
arrive at the conclusions made in this thesis were made on log-transformed data. Generally
it has been suggested to use the lower tail of values of a normal distribution, based on the
means and standard deviations of the measured data. As an example, if for eight measured
samples of the same sample group, only six numerical values were obtained, one would
draw eight values from a normal distribution with the mean and standard deviation of the
six values measured. The two values imputed are represented by the two lowest values of
those eight values.

There are also features, that have no measured values for one or two sample groups.
In general, if there is no value, this is usually the case because of suppression effects (in
LC-MS) or too low concentration (GC-MS or LC-MS) [93]. Because the respective
feature could be measured in other samples, one can expect the main reason for missing
data to be low concentration in this particular sample.

Since I am looking for differences between sample groups (muscle types), especially
those features are of interest, and should not be filtered out. In general, signals are deemed
quantifiable, if they have a signal-to-noise ratio of N < 10. In order to be able to impute
values for features where no value was obtained for the whole sample group, I divided
the lowest measured value for a specific feature by 10 and used the standard deviation of
the sample group that had the lowest measured value. In this way, the most interesting
features are retained, but in a conservative manner. If I simply used a fixed value, I would
drastically reduce noise in the data (standard deviations = 0), which would be strongly

biased towards those features being “significantly regulated”.

Metabolomics Data

After aggregating derivatization products of the identified compounds and discarding
metabolites found in less than at least half the samples for at least two different muscle
types, a total of 167 metabolic features were annotated in the metabolomics data. Of those
167, 88 are unidentified features (unknowns), 79 could be identified.

Proteomics Data
In the proteomics samples 2457 protein groups were identified by MaxQuant [91]. Of
those 2229 were retained after discarding protein groups found in less than half the samples

for at least two muscle types.
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Samples Retained

Overall we obtained eight samples for each of the following muscle type: M. Extensor
digitorum longus (EDL), M. Quadriceps femoris (QUAD), M. Soleus (SOL), M. Tibialis
anterior (TA). Muscles of one leg was used for proteomics, the other for metabolomics.

Of the proteomics samples the data of all but one sample was kept for analysis. The
first sample of QUAD had to be discarded because of machine problems, resulting in
many weakly identified proteins. Transfer of measurements between different measure-
ment batches likely results in poor general data quality because of variances in machine
performance. Due to restrictions of machine time it seemed not necessary to repeat all
measurements for all samples.

Of the metabolomics samples the data of all but two samples was kept for analysis.
In two samples of EDL there was an injection error, as indicated by very low levels of
cinnamic acid (internal standard). Because of the small size of EDL in mice, no backups
could be produced.

Overall the following samples were kept for analysis.

omics technique EDL QUAD SOL TA

metabolomics 6
proteomics
combined 6 7

3.2.2 Data analysis

Essentially I have two datasets, one containing metabolites, the other proteins. Of the
metabolites several could be identified, however, there are about as many unidentified
features. From a chemical viewpoint metabolites are much more heterogeneous than
proteins. At the point of measurement protein samples consist only of peptides, while
metabolites encompass sugars, sugar phosphates, amino acids, and carbonic acids.

The lipid compounds are separated during sample processing, but still the sample
complexity is much higher. This hinders identification to some degree, and it is only
possible to identify features, than can be found in databases. Transferability of these
databases is only given to a certain extent, since using only the mass spectrum of the
feature in question is not sufficient. For example hexoses or monosaccharides in general
are quite similar to another and thus yield similar mass spectra. These compounds can
only be identified conclusively by combining their mass spectrum with their retention

index (RI). RIs offer only a limited comparability across machines. In order to identify
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unknown features unambiguously one would need to obtain the presumed compound and
measure it on the same machine.

In my study I used a set of compounds routinely measured with every sample batch. [2,
98] The features still not identified were compared to the Golm Metabolome Database
(GMD) [99].

After this, still about half of the features in the data were not identified. It was not the
scope of this thesis to try to identify unknown features or to enlarge the inhouse database
of the Kempa group. These unidentified features are still of high value to analysis. Since I
was able to determine general linearity between signal intensity and sample amount, they
are to be deemed quantifiable and thus changes in their relative amount are biologically
meaningful.

In order to distill new insights from any omics set, it is not feasible to inspect every
feature on its own, but to first get more general ideas about features that behave similar or
to find out if general concepts of knowledge, as GO-terms [103] or pathways (e. g. KEGG-
terms [101] or pathways from Reactome [102]) are enriched among the differentially
expressed features.

In order to find those differentially expressed features that discern the sample groups,
dimension reduction techniques are applied.

I used two different techniques, principal component analysis (PCA) [165] and principal
component-discriminant function analysis (principal component—discriminant function
analysis (PC-DFA)) [166]. Both methods show certain characteristics of the data. Whereas
PCA does not separate intra group variability (biological variation of the mice, variation
stemming from sample handling etc) from inter group variability (inherent differences
between the muscles), PC-DFA separates these, by application of a two step procedure.
First the groups of samples are determined by classical PCA. In a second step, the liniar
discriminants between these predefined groups are found.

As such the principal components (PCs) resulting from PCA do not necessarily have
inherent meaning, whereas the liniar discriminants (LDs) obtained from PC-DFA inherently
show concepts that separate the groups defined by PCA.

When the vectors that separate the sample groups have been obtained, it is possible to
find those features that have the strongest influence along the direction of this vector.

There will be a group of features that exert much stronger influence on a specific vector
(PC or LD), since not all features will be significantly different between all sample groups.
Thus, the values for the features can be subjected to clustering algorithms, separating

“important” from “unimportant” features for each discriminating vector.
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These “important” features can then be finally subjected to term-enrichment analysis.

Since there are several sub-datasets in the data obtained, I also wanted to see, if any
hidden concepts might be revealed, when the aforementioned techniques are applied to
those subsets only, or if a certain feature set might show a different similarity of the muscle
types. For the unknown features of course, no term enrichment analysis was performed.

Different subsets of the data are of interest:

e proteomics data alone

e metabolomics data alone, of this

— identified metabolites alone

— unidentified features alone

e all data combined
e all data combined, without the unidentified features,

for maximal inferabillity of knowledge

3.2.2.1 PCA separates the muscle types within the first three components

In PCA for all subsets the same general picture emerged:

In every subset samples generated from the same muscle show the highest degree of
kinship. Of all subsets, proteomics data splits the sample groups with the greatest distance,
while the datasets with a smaller feature space show lower confidence.

The screeplot of a PCA (see figure 3.2.2) is a representation of separation power for the
principal components inherent in the dataset. For the different subsets of the data we see
the same progression in general:

The first component (PC1), separating the predominantly oxidative muscle Soleus from
the other, more glycolytic muscle types, contains most of explained variance (~25 %). This
is followed by PC2 and PC3 with eigenvalues of about the same size (=8—12%). These
two components separate the other three muscle types (Quadriceps,Tibialis anterior and
Extensor digitorum longus). (see figure 3.2.3) In general, the degree of separation declines
with the size of the featurespace used; the separation achieved by using the identified
metabolites is slightly greater than by the unidentified metabolites.

The different principal components and factors are loaded by the differentially expressed
proteins and metabolites. For principal components, the loadings can be used directly, for

the factors importance is inferred from the loadings.
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Screeplot of respective PCA
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Figure 3.2.2: Screeplot of the different subsets used in the analysis. The first principal component (PC1)
contains most of explained variance (=25 %), followed by PC2 and PC3 with eigenvalues of
about the same size (=8-12%). PC1-PC3 combined separate the muscle types completely for
nearly all sample sizes (see also figure 3.2.3.

The bar shows the number of features in the feature spaces used. Fyroreins 1S much larger than
Fknowns aNd Funknowns,» Which are of approximately equal size among themselves.

In order to get a deeper understanding of the underlying concepts the following strategy

was applied:
< order the loadings by absolute values
< calculate the cumulative sum along the ordered absolute values

< perform hierarchical clustering, cutting at two clusters and thus separate the less

influential features from the most influential features = Fi,ayential

The plot of the features loading a specific component ordered by their values results in
a sigmoid-shaped curve, with the most influential features at the tails. (see figure 7.1.1
on page 152 in the appendix). The end at which a feature lies is random, thus one cannot
determine a direction of regulation between muscle fiber types from this value. Often the
absolute values of the loadings are used to classify the importance of features. They are
simply cut at the value of variance a single feature would give by chance, i.e. if there
are 10 features, the features explaining more than 10 % of the variance in this particular
component are deemed important. For datasets using few features, this has proved to be

sufficient.
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Figure 3.2.3: Overview of the separation of samples by the first 3 principal components. The samples

are colored according to muscle type, letters refer to the respective animal. The ellipses
around the sample groups depict a confidence area at a level of 95 %. In most subsets the
muscle types are completely separated. PC1 separates SOL from the other muscletypes (left
column), which are split by the combination of PC2 and PC3 (right column). To point this out
more clearly in PC3 vs. PC2 samples from SOL where painted with less opacity. Separation
power declines with size of the featurespace; using metabolites alone, QUAD and TA are not
completely separated



In systems biology, this approach is not sufficient, since the feature space contains
usually hundreds to thousands of features and gives too many false positives. In the present
case this would mean almost half of all features to be influential on separation.

For separation of more influential features from less influential features I explored
several strategies (cut by percentage of total loadings including FDR for multiple testing
correction, hierarchical clustering, Otsu’s method [167]). Hierarchical clustering using
complete linkage of the absolute values of the loadings prooved to be the technique giving
the most reasonable results.

In PC1, separating Soleus from the other muscles, the values of the different features
showed almost uniform distribution. This means, that almost all features separate SOL
from the other muscles. This does not allow to infer meaning, so a more strict cutoff strategy
was chosen. By squaring the absolute values, the distribution is transformed to emphasize
the higher values, 1. e. forcing it to become more right-skewed. This transformation reduces
the size of the space of important features (Fiyfuenia) from 1229 to 83, when applied to the
full dataset.

3.2.2.2 The terms that are enriched in the regulated features show a focus on
metabolic and muscle specific concepts Features, that have been found to be highly
regulated between muscle types (Finguenia) Which are separated by a specific principal
component, can be subjected to term enrichment analysis, in order to find out, if general
predefined concepts like GO-terms or pathways are differentially regulated between the
muscle types. Overall the feature space of the influential features (proteins or metabolites)
Finfluential Was checked for enrichments of ontology concepts, using all features of the
respective subset of data as background, e. g. if only metabolites were used in the PCA,
the differentially regulated metabolites were tested for enrichment, with all metabolites as
background dataset.

When the proteins are analysed separately, the ontology from GO [103, 104] can be
used, since there are no GO-terms assigned to metabolites.

For combined features or metabolites alone the KEGG database [101], Reactome [102]
and WikiPathways [168] as well as SMPDB [169] can be used.

These databases generally provide the possibility to either map protein identifiers (e. g.
UniProt-IDs) or metabolite identifiers (e. g. KEGG-compound-IDs) but not at the same
time.

KEGG can be considered the most widely used database of ontologies of metabolism.

As such I performed the most detailed analysis using the KEGG database. I retrieved
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all pathways the features in the respective dataset could be mapped to and performed
an enrichment analysis using FisHER’s exact test [105], to determine the enrichment of
terms in a specific principal component. The returned p-values were corrected using the
Beniamini-HocuBerG-method (FDR). [170]

For the other databases mentioned I used IMPalLA [171] with the ConsensusPathDB [172]
which offer the functionality to map both metabolites and proteins simultaneously. For
proteins or genes, this tool only allows to map human identifiers. As such I used the
UniProt database [106] to translate the UniProt-IDs for mouse proteins to their human
orthologs.

It should be mentioned, that IMPalLA does not include multiple testing correction. The
length of the whole results table was used to estimate overall background size for multiple

testing correction.

3.2.2.2.1 GO-term enrichment in PCs from proteins

For the analysis of the regulated features of the proteins I used GOrilla [173], which
also conserves hierarchy of GO-terms. After FDR correction for PC1 92, for PC2 none
and for PC3 51 significantly enriched terms were found at a p-value <0.05). As GO-terms
often are closely related to one another (e. g. TCA-cycle, mitochondrium and 3-oxidation)
it makes sense to aggregate these terms, to get a more general overview. For this I used
REViGO [174]. In figures 3.2.4 and 3.2.5 the GO-terms found in PC1 and PC3 are shown.

In PC1, separating Soleus from the other muscles, the dominant theme is energy: “ADP
metabolism”, “carbohydrate metabolism™ and “generation of precursor metabolites and
energy”’. Also muscle contraction and muscle development are different between Soleus
and the other muscles. Another theme is the response to ions (“calcium mediated signaling”

and “ion membrane transport”).

In PC2, separating EDL from QUAD and TA, no enrichment of any term was found at a
p-value < 0.05. However a few pathways could be found enriched, with p-values slightly

above the cutoff. See below.

In PC3, separating TA from QUAD and EDL and also QUAD from EDL for the most
part, oxidative metabolism has the highest influece (“TCA-cycle”, “acyl-CoA metabolism”).

But also processes involving interaction with DNA seem to distinguish these muscle types.

The pathways enriched in the PCs of Fpins are outlined below in combination with

metabolites.
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Figure 3.2.4: Treemap showing the significantly enriched GO-terms for PC1, which separates SOL from
the other muscle types. Major themes are energy metabolism (CCM)-related, centering
on carbohydrates, but also muscle contraction and ion transport through the membrane are
different between SOL and the other muscle types.

62



GO terms of PC3
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Figure 3.2.5: Treemap showing the significantly enriched GO-terms for PC3, which separates QUAD, EDL
and TA with TA being most different from the other muscle types. Major themes are energy
metabolism (CCM)-related, centering on mitochondrial (oxidative) metabolism but also DNA
regulation is an important theme.
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3.2.2.2.2 Metabolites
For the identified metabolites alone, there was no significant enrichment of any term

found.

3.2.2.2.3 Enrichment in PCs when metabolites and proteins are combined

In order to not only simply give p-values for significantly enriched terms, but also to see,
if selection criteria of “important” features Fiquenia Was stable, and also to see if and which
additional insights can be obtained by combination of both proteomics and metabolomics
data, p-values obtained from the respective subsets were plotted against each other. This
is comparable to the 2D-annotation enrichment proposed by Cox and Mann. [175] The
results from this analysis are outlined below.

Combining proteins and metabolites for pathway enrichment analysis gives some re-
dundant pathways, enriched both in the feature space of proteins alone (Fyroteins) and the
combined feature space (Fcompined) but also some, that are only significant if metabolites
are included in the analysis. Of the redundant pathways no significant pathways are less
significantly regulated in Feompinea (1- €. have a higher p-value), but many, if not most are
more significantly enriched.

In PC1 (see figure 3.2.6), separating Soleus from the other muscles, as for the proteins
alone the most dominant pathway is “Glycolysis/Gluconeogenesis”. But also other path-
ways involving carbohydrate metabolism are differentially regulated comparing Soleus to
the other muscles (“Starch and sucrose metabolism”, “Galactose metabolism™, “Pentose
Phosphate Pathway” (PPP), “Insulin resistance”, “Phosphotransferase system” (used by
bacteria [176—178]) and others). Again also “Calcium signaling” is a significant term.
There are no additional significantly enriched terms in the complete ConsensusPathDB,
searched with IMPaLLA.

The only term significantly enriched in PC2 (see figure 3.2.7), separating Extensor
digitorum longus from Quadriceps and Tibialis anterior is “Metabolism” (from Reactome),

b

N Feombined a8 Well @8 1N Fproeins. “Alzheimer’s disease” and “Electron transport Chain’
(from WikiPathways) are slightly above the cutoff, as well as “Glucosinolate biosynthesis”
and “2-Oxocarboxylic acid metabolism” for Feompined-

In PC3 (see figure 3.2.8), as for the GO-term analysis, TCA-cycle is the most signifi-
cantly enriched term. Again also other terms related to conversion of oxygen are enriched
(“Electron transport chain”, “Oxidative phosphorylation”, “Fumarase deficiency”, and
others). Also the terms for some neurological diseases emerge, but this is explainable by

the fact that also in those terms, mitochondrial metabolism is included as well. “Glyoxylate
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PC1, separates Soleus from other muscle types

Glycolysis / Gluconeogenesis
- Phosphotransferase system (PTS)
Starch and sucrose metabolism
Galactose metabolism
Metabolic pathways
Microbial metabolism in diverse environments
Methane metabolism
- Pentose phosphate pathway
- Carbohydrate digestion and absorption
- Calcium signaling pathway
— Carbon fixation in photosynthetic organisms
~ Biosynthesis of antibiotics
- Insulin resistance
- Pathways in cancer
— Streptomycin biosynthesis
ABC transporters
— Thyroid cancer
- Carbon metabolism
Tight junction
Biosynthesis of secondary metabolites
Pyruvate metabolism
— Butanoate metabolism

1107

1x072

p-value(combined features), FDR-adjusted
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p-value(proteins), FDR-adjusted

Source AKEGG @IMPaLA Significance «none ®@both @only in combined features

Figure 3.2.6: Plot of p-values for enrichment of metabolic ontologies retrieved from KEGG and IMPaLA
in PC1, separating SOL from other muscle types. The emerging themes are revolving around
carbohydrate metabolism (glycolysis, PPP, galactose, starch/sucrose metabolism). When
metabolites are included, additionally “Insulin resistance” and interestingly the phospho-
transferase system (PTS) are found. In the term PTS, which is of importance in microbial
carbohydrate metabolism and its adaption to nutrient availability in the environment [176—
178], many sugars but also sugar alcohols are included.

Dashed lines indicate a cutoff at p = 0.05 .
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PC2, separates Extensor digitorum longus from Tibialis anterior and Quadriceps

- Metabolism
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Figure 3.2.7: Plot of p-values for enrichment of metabolic ontologies retrieved from KEGG and IMPaL.A in
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PC2, separating EDL not significantly from the other muscle types. The only concept found
significantly enriched was the very general term “Metabolism” in general, also when only the
proteins (Fproteins) Were searched. Using also metabolites raises significance for some terms,
but not to a significant level.

Dashed lines indicate a cutoff at p = 0.05 .



PC3, separates Quadriceps and Tibialis anterior
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Figure 3.2.8: Plot of p-values for enrichment of metabolic ontologies retrieved from KEGG and IMPaLLA
in PC3, separating mostly QUAD and TA. Most concepts here revolve around oxidative
metabolism, TCA-cycle being the most significant. The other terms are included, because
they generally contain elements of mitochondrial metabolism.

Dashed lines indicate a cutoff at p = 0.05 .

and dicarboxylate metabolism” is introduced by Feompinea ONly.
Overall the principle components separating the muscles are found to be formed by
features that can be condensed under the general concepts of either oxidative or glycolytic

metabolism, but also general muscular function.
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3.2.2.3 Principal component-discriminant function analysis (PC-DFA)

Principal component-discriminant function analysis (PC-DFA) gives a less comparable
picture among the data subsets than PCA. In most subsets the muscle types are fully
discerned by either discriminants LD1 and LD2, latest in combination with LD3, but also
LD2 and LD3 alone are mostly able to separate the sample groups from each other.

However, in PCA the splitting was comparable and discernable. In PC-DFA it is only
comparable between the datasets that include either all features and the proteins in LD1
and LD3, with LD3 being reversed for proteins compared to all features combined.

In the following I will give a general description of the linear discriminants obtained and
then determine, as which concepts are enriched in the features that cause the respective

separation.

General description of the linear discriminants

Figure 3.2.9 shows the linear discriminants 1-3. This type of plot is generally compara-
ble to the plot of the principal components (figure 3.2.3).

For the subsets consiting of proteins (Fyroweins) and all features combined (Feompinea) the

following situation is found:

LD1 separates SOL from EDL, QUAD, and TA as did the first principal component in
PCA.

LD2 separates QUAD from the other muscles, with EDL and TA being most similar.

LD3 separates EDL and TA, with LD3 being reversed when all features are combined

compared to the proteins alone.

For subsets containing only metabolites we see a different separation.

LD1 here separates TA from SOL and also from EDL and QUAD, to different extent and
order if the identified metabolites (Fiyowns), OF unidentified (Fuuknowns) are used. In Fiowns
SOL is more similar to EDL and QUAD than TA is, while in Fyknowns @ pattern similar to

Fproteins 18 Visible.

LD2 separates EDL from the other muscles, with almost no variance for TA in Fypowns-
EDL shows close to no variance among its replicates in all other LDs but LD2. For Fy,owns

TA shows no variance among its replicates in LD2.

LD3 In Fyyowns, similar to LD1, LD3 separates TA from the other muscles, but to lesser

extent, while in Fyuknowns QUAD is moderately separated from the other groups.
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Figure 3.2.9: Plot of linear discriminants of the respective data-subsets. The insets show the relative
eigenvalues of the linear discriminants (LDs) (similar to the screeplot of a PCA), shaded bars
representing the LDs of the respective plot. For proteins and all features combined, there is a
comparability, on how factors split the sample groups, even similar to PCA (figure 3.2.3). For
metabolites the overall separation is less congruent.



GO terms of LD1

monocarboxylic acid muscle system
metabolism process

. . negative regulation of
multicellular lipid potassium ion
organismal process , nangtasis  transmembrane
transporter activity

Figure 3.2.10: Treemap showing the significantly enriched GO-terms for LD1, separating SOL from the
other muscle types. Major themes are carboxylic acid metabolism, that involves [3-oxidation
and overall lipid metabolism, as well as general processes revolving around muscle activity,
-loss, -development and -adaption.

Overall, for Feombined and Fprogeins @ pattern similiar to PCA emerges, while the picture for
metabolites is less clear and shows a completely different separation, comparing Funknowns
and Fynowns-

In light of the given results, it seems not warranted to combine “interesting” features from
Fproteins ANd Finowns. AS such only the GO-term-enrichment for Fyoeins and the significantly
enriched KEGG-terms in Fprogeins and Feombinea Will be inspected.

3.2.2.3.1 Proteins

The same analysis pipeline (GOrilla—REViGO) as for Fygeins from the PCA was used.
(see page 61)

The biggest themes emerging for LD1 (figure 3.2.10), that separates SOL from the
other muscles, are carboxylic acid metabolism, that involves (3-oxidation and overall
lipid metabolism, as well as general processes revolving around muscle activity, -loss,
-development and -adaption.

In LD2, that separates QUAD from EDL and TA, no significantly enriched GO-terms
could be found.
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Figure 3.2.11: Treemap showing the significantly enriched GO-terms for LD3, separating EDL and TA
from each other. The main themes include localization and transport, of mitochondria and,
similar to LD1 carboxylic acid transport.
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In LD3 (figure 3.2.11), separating EDL and TA from each other and to some degree
from QUAD and SOL, the main themes are localization and transport, of mitochondria

and, similar to LD1 carboxylic acid transport.
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Figure 3.2.12: Plot of p-values for enrichment of metabolic ontologies retrieved from KEGG in LDI,
separating SOL from other muscle types. Fatty acid degradation, elongation and oxidation
(“Peroxisome” in Feombined) and short chain organic acid metabolism dominate. “Glyco-
lysis/Gluconeogenesis™ is only significantly enriched in Feompined, While “Synthesis and
degradation of ketone bodies” is enriched only in Fyroteins-
Dashed lines indicate a cutoff at p = 0.05 .

3.2.2.3.2 KEGG-terms As in PCA for the metabolites alone, there was no significant

term to be found at or close to the p-value-threshold of 0.05.

LD1 The KEGG terms associated with LD1 (figure 3.2.12), are similar to the themes found
in GO-term analysis. Fatty acid degradation, elongation and oxidation (‘“Peroxisome” in
Feombined) @S Well as short chain organic acid metabolism dominate. Also MAPK signaling
(Feombinea) and PPAR signaling in both feature spaces are found to be different between SOL
and the other muscle types. “Glycolysis/Gluconeogenesis” is only significantly enriched
1N Feombined-

While there was no such case in PCA, in PC-DFA we see a term enriched only in Fyroeins:

“Synthesis and degradation of ketone bodies”.

LD2 In contrast to GO-term analysis and PCA overall, LD2 (figure 3.2.13) shows two
significant KEGG-terms:“TCA-cycle” and “Fatty acid biosynthesis”, diverging between
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Figure 3.2.13: Plot of p-values for enrichment of metabolic ontologies retrieved from KEGG in LD2,
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separating between QUAD and the other muscles, with SOL being closest to QUAD. “TCA-
cycle” and “Fatty acid biosynthesis” are the only terms significantly enriched, the latter only

in Fcombined -
Dashed lines indicate a cutoff at p = 0.05 .
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Figure 3.2.14: Plot of p-values for enrichment of metabolic ontologies retrieved from KEGG in LD3,
separating mostly EDL and TA. No overlapping terms significantly enriched in both feature
spaces compared were found. In Feompineq “‘Cardiac muscle contraction” was found to be
enriched in this comparison, relating to the general theme of muscle. In Fyroeins pathways
—relating to, or because they include elements of— oxidative phosphorylation are enriched.
Dashed lines indicate a cutoff at p = 0.05 .
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QUAD and the other muscles, with SOL being closest to QUAD. “Fatty acid biosynthesis”
is only enriched in Feompinea- AS in PC2 some other terms, likely due to their general theme

“mitochondrial metabolism™ are close to the selected p-value-threshold of 0.05 (20.07) in

Feombined-

LD3 LD3 (figure 3.2.14), separating mostly EDL and TA no overlapping terms signif-
icantly enriched in both feature spaces compared were found. In Fpyeins mitochondrial
metabolism and also the “MAPK signaling pathway” were found to be regulated. In
Feombined — Cardiac muscle contraction” was found to be enriched in this comparison, re-
lating to the general theme of muscle. This last finding is especially peculiar, since this
pathway involves no “classical metabolites” in the sense of small molecules, measured
in this study, but only proteins and ions (Ca**, H*, K* and Na*). In Fproteins Pathways
—relating to, or because they include elements of— oxidative phosphorylation have been

found.

Overall the themes separating the different muscle types are mostly CCM-related (TCA-
cycle, PPP, Glycolysis), or muscle specific, the latter especially revealed by PC-DFA.

3.2.2.4 Each muscletype has its own molecular makeup From the analysis of the
dataset using dimension reduction techniques, it is clear, that the major differences between
the muscles lie in their fuel selection and differences in the build up of the motor units.
Figure 3.2.15 shows metabolites and proteins mapped to the central carbon metabolism. It
is immediately obvious, that also the presumably similar glycolytic muscles EDL and TA
have their own phenotype. Every aspect of the metabolism is tightly regulated in order to
achieve maximal performance towards the specific roles all of these muscles have. This
also shows, that the severity of muscle disease will likely affect each muscle in a different

way.
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Figure 3.2.15: Network of the central carbon metabolism (CCM), with mapped metabolites and proteins.
The distinct fine tuned differences of partly only small parts of pathways is immediately
evident. The presumably similar glycolytic muscles TA and EDL are very distinct on a
molecular level.




3.3 Label incorporation in myotubes from dysferlinopathy
patients

Dysferlinopathy, or limb girdle muscular dystrophy 2B (LGMD2B) is an autosomal
recessive genetic disease with a typical onset in early adulthood. [179] During childhood
and their teenage years, the patients are typically quite active, many very athletic. [65] With
disease progression they loose more and more strength and become non-ambulant after
10-20 years of diagnosis. In later stages they are typically wheelchair-bound and often

dependent on respirators. Except for symptomatic care, there is no treatment available.

On a molecular level, the disease is characterized by a loss of function mutation of
dysferlin. Dysferlin itself is highly important for membrane repair after injury of the
muscle. [67, 68, 180]

Dysterlinopathy is a major research topic in the group of SimoNE SpuLER. In data obtained
from dysferlin deficient mice and primary human muscle cells from patients diagnosed
with dysferlinopathy obtained by Saran KELLER [1], a metabolic phenotype was found, that
points towards an impairment of hexokinase II function in dysferlinopathy. [1] The levels
of Sorbitol and Fructose as members of the polyol pathway [14] were increased, while
metabolites of glycolysis, downstream of hexokinase were decreased. A possible reason
for this might have been a lower expression of hexokinase II (HK2), the enzyme, that
phosphorylates glucose and forms G6P at the first step of glycolysis. However, proteomics
analysis showed, that glycolytic enzyme levels are unaffected, in mouse and patient sample

material.

Another reason for the low levels of G6P might be a higher uptake of G6P into the
glycogen pool. It was also not clear, if the higher poolsizes of sorbitol and fructose are
due to higher build-up rates or if this increase is observed because further processing of

sorbitol is reduced.

In the Kempa group, a method to use pulsed stable isotope resolved metabolomics
(pSIRM) in cancer cells had already been developed and established, when I started my
work in the group. [2, 75]

pSIRM involves treatment of the cells with a substrate, that contains stable isotopes,
usually 13C. The cells take up the substrate and after a certain time, metabolism is quenched
by extracting the cells with cold 50 % methanol,,. The extract is added to a prepared
amount of chloroform, and after phase equilibration and separation, lipid and polar phase
are analyzed separately by GC—-MS. The natural amount of '*C makes up ~1.1 % of total
carbon. [181] Since it cannot be known, how much '*C there is in a certain sample, or if
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there is overlap in mass peaks with a (partially) co-eluting compound also some samples
are treated the same, only that a '2C substrate is used. This can be subtracted in the
subsequent data analysis and allows for background correction.

The entire process is tailored to the end, that the influence on the cells is to be kept
as small as possible. If, after some growth period there would be simply a switch of
media including the '*C-substrate, also a strong change in nutrient concentration might
be introduced. Because of that, a media exchange some hours before labeling start, using
12C-containing media is performed. This allows the cells to settle on the conditions applied
by fresh media; at the same time substrates will not be depleted too much until the start of
the labeling.

In general it is sufficient to produce a background control with >C only for one time
point, somewhat in the middle of all labeling times used in a certain setup. If the times start
to get stretched out too long (over several hours), obtaining more than one background
time point can be advisable.

The application of this method has the potential to answer the question on activity of the
enzymes involved in this observed increase of polyol pathway level metabolites on the one
hand, and at the same time the decrease of G6P and further downstream metabolites of
glycolysis.

In order to get a deeper understanding of this phenotype, I established pSIRM in primary

human muscle cells, including a means to also trace label incorporation into glycogen.

3.3.1 Establishment of pSIRM in muscle cells

Primary human muscle cells require quite special conditions in order to grow in cultivation.
Usually SKMGM (provitro), supplemented with foetal calf serum (FCS) and several
growth factors is used in the group to grow muscle cells. The media innately contains
5 % FCS, another 10 % FCS are added shortly before usage.

As we wanted to see whether there is a prevalence for utilization of glucose, fatty acids
or ketone bodies, the standard media could not be used, since it contains 1 &1 glucose and
the usually used supplements, namely FCS contains fatty acids. If this medium had been
used in pSIRM experiments, the label had been diluted, and great interference would have
to be expected, when monitoring the fate of a single carbon source, since also intracellular
label intensity would have been influenced by other carbon sources.

To overcome this a custom made SKMGM-knock-out-version that contained no glucose
and no FCS was developed in cooperation with proVitro, .

This media could then be supplemented with the desired '*C-Source; as serum compo-

79



Differentiation media, 7d

&5 &5 &5 &

12C-GIn 12C-Gln, 12C-GIn, 12C-GIn,
12C-Glc 12C-Pyr 12C-Pal

18h before labeling, renewed 4 h before labeling

S S S &S

12C-GIn, 12C-GIn, 12C-GIn, 12C-GIn, 12C-GlIn, 12C-Gin,
12C-Gln 13C-GIn 12C-Glc 13C-Glc  12C-Pyr 13C-Pyr  12C-Pal 13C-Pal

30 min labeling, no supplement — no insulin

Figure 3.3.1: Experimental setup to show principal uptake of substrates into myotubes in cell culture.
Glutamine was always present, because at that time the components of the supplement of
SKMGM was only available in pre-mixed form at that time.

nent, dialyzed FCS was used, which contains no free fatty acids (FFAs) and no free amino
acids.

I labeled myotubes derived from primary muscle cells of normal healthy controls
(2 plates per condition) with two carbon sources only (glutamine was always present) for
30 min (see fig. 3.3.1) in order to test if the substrate is taken up at all. Before labeling, the
myotubes were accustomed to the carbon sources for 18 h.

The data show, that all the carbon sources used (glucose, glutamine, palmitate, pyruvate)
are taken up and metabolized by myotubes (see figure 3.3.3). Thus the myotubes can be

somewhat forced to use the carbon source present.

3.3.2 Uptake of substrate, with all carbon sources present

In order to test substrate uptake of myotubes in cell culture under normal conditions (with
all carbon sources present) I labeled myotubes (see figure 3.3.2) with complete media,
using 3C-glucose, '*C-glutamine, '*C-palmitate and '*C-pyruvate for 30 min (3 plates
each) and with 3C-glucose also for 24 h (2 plates each), using 60 % methanol for the
extraction, in order to be able to trace label-incorporation in glycogen (see below and
figures 3.3.3, 3.3.6).

The data from this experiment show, what one would expect: looking at citrate, as a
converging point of all carbon sources, we see that as soon as glucose (and insulin, which
was always in the media) are present, predominantly glucose is taken up and metabolized,
whereas from the other substrates label from pyruvate, that is metabolically very near to

citrate, is higher. (see fig. 3.3.3)
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Figure 3.3.2: Experimental setup to show principal uptake of substrates into myotubes in cell culture.
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30%

20%

10%

label incorporation after 30min

0%

Glucose
Glutamine
Palmitate
Pyruvate

Citrate

- n.d. n.d.

13C-Glucose  13C-Glutamine 13C-Palmitate  13C-Pyruvate

+ + - + - + -
- + o+ o+ - o+ -
- + - o+ o+ o+ -
- + - + - + +

+
+
+
+

Figure 3.3.3: Labeling of myotubes for 30 min. When only one carbon source is present in preconditioning
and during labeling, this carbon source is metabolized. (Glutamine was always in the media,
however its impact can be considered of minor concern.) If all carbon sources are present,
predominantly glucose is metabolized, as can be seen by the decrease in label in citrate
originating from palmitate and pyruvate. Whereas a little amount of label-incorporation from
pyruvate can be found, no label from palmitate was detected. It can be assumed, that the
reduction in label-incorporation from glucose is due to the pyruvate still being used as a

carbon source.

Gln: glutamine, Glc: glucose, Pyr: pyruvate, Pal: palmitate
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Fig. 2. The solubility of glycogen in aqueous alcohol.

(@) Alcohol+0-6 % KCL () Alcohol +4 9 CCl,COOH.
(¢) Alcohol +21 9%, CH; COOK. (d) Alcohol +42 9, CCl; COOK.
(e) Alcohol +15 % KCL (f) Alcohol +15 % KOH.

Figure 3.3.4: Solubility of glycogen in different solvents. Reproduced from Kerry, 1930 [182]

3.3.3 Including glycogen into the pSIRM-Workflow

Besides the free metabolites another interesting aspect regarding CCM is the glycogen
pool. So I tried to find a method that could be integrated in our current metabolomics
workflow, which involves phase separation between 50 % MeOH (PP) and chlorofom (lipid
phase (LP)).

When glycogen is isolated from biological matrices, the workflows found in the literature
usually involve relatively harsh treatment of the matrix. Often it is boiled for >1h in
solutions containing either 30 % potassium hydroxyde or 3 m perchloric acid, and then
precipitated with alcohol.

This is not compatible with metabolomics of the CCM, since there are several relatively
unstable compounds among those of pivotal interest (e. g. sugar phosphates).

The methods for glycogen extraction normally used in the literature focus only on the
extraction of glycogen from a certain sample, and often on its extraction from animal
matrices. In the present context, we wanted to extract it from cultured cells, which are
likely extractable using much milder conditions.

It would be ideal, if the glycogen could be precipitated quantitatively, hydrolyzed, and
then be submitted to analysis like the polar phase of the extract. This way all metabolites

of interest could be directly measured for each sample.

The protocols used today mostly rely on work by Kerry [182] published in 1930,
who researched solubility properties in different concentrations of ethanol using several
additions (see also figure 3.3.4).

Unlike starch (its equivalent in plants), glycogen is soluble in water but very little in
alcohol. [182]



According to KerLy after phase separation a part of the glycogen will be in the polar
phase (50 % MeOH), 1. e. not fully precipitated) and a part will be at the interface during
the phase separation step.

From KEerLy’s work it can be estimated, that precipitation using methanol instead of
ethanol will yield lower efficiency. However, if the alcohol concentration is too high, the
solubility of other compounds of interest will be affected, and also there will be no phase
separation from choloroform.

Precipitation of a compound means essentially to shift its solubility equilibrium. So, the
absolute amount of the substance, and the volume of the extraction system have to be taken
into account. Since no reliable absolute value on glycogen content in myotubes could be
obtained from the literature, the expected amount of glycogen per dish has to be estimated.

According to the literature, the glycogen content in muscle is about 1-2 % of wet
weight. [31-35]

A cell pellet of myotubes obtained from a 10 cm culture dish as typically used in the
experiments to be conducted, weighs about 15 mg. If the rate of glycogen synthesis is
comparable to the rate in vivo, about 150 ug of glycogen per culture dish can be expected.

The data on solubility available in the literature was determined using ethanol as alcohol.
So the solubility in the two phase-system methanol,q) | chloroform was tested for different
methanol concentrations. Sample processing was done according to the current method,
using 150 pug of glycogen standard per sample, and solvent amounts equivalent to the
currently established method. [2]

The glycogen content was determined by photometric assay with anthrone. [42, 114,
115] In the recent literature, this assay is laid out with relatively high sample-volumes. [118]
The volume was reduced, so that eppendorf-tubes and 96-well-plates could be used. In
this “small volume version” linear range of the assay was found to be considerably larger,
than stated by RoeLaNDT efal. Except for sample volume and heating time (10 min, not
20 min, as stated by SEIFTER et al. [114]), the protocol of ROELANDT was used.

The distribution of glycogen found is presented in figure 3.3.5.

As can be seen, if the current standard sample preparation with 50 % methanol is used,
most of the glycogen will be in the polar phase. With 70 % methanol no phase separation
could be observed. With 60 % methanol content in the polar phase, the envisaged analysis
was feasible.

In order to check, if the higher methanol concentration would influence especially the
measurability of sugar phosphates, three dishes of HeLa cells were harvested with 50 %

and 60 % methanol each. No differences between the samples were observed (not shown).
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Figure 3.3.5: Distribution of glycogen in variations of standard metabolomics extraction method. Only half
of the extract was used, as such, the overall amount sums up to 75 ug.
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Figure 3.3.6: Label-incorporation in glycogen. After 30 min there is no label to be found, but after 24 h
about 50 % of the glucose derived from glycogen is labeled. “Complete” media, with all
carbon sources present was used.

As stated above, to test the method, and to see whether labelled glucose is incorporated
into glycogen I treated myotubes derived from primary muscle cells of normal human
controls with 3C,-glucose for 30 min and for 24 h in media with all carbon sources present.
Controls from the same individuum were treated the same way, using '>?C-glucose. The

results are presented in figure 3.3.6.

After 30 min no labeling could be observed; however after 24 h the glycogen was labeled
at a level of 50 %. (see fig. 3.3.6) This is interesting, since the myotubes were supplied with

glucose and insulin. Thus one would expect no glycogen turnover under these conditions.
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3.3.4 pSIRM applied to primary human muscle cells of dysferlinopathy patients

Previous work in the groups of SiMoNE SPULER and STeraN Kempa performed by VERENA
ScHOWEL and SArRAH KELLER [1], showed in mice and samples from patients suffering from
dysferlinopathy, that there is not only an impairment in membrane repair [67, 68] —as
widely accepted in the field—, but also that dysferlinopathy seems to have a direct impact
on glycolysis.

The data showed, that in dysferlinopathy the poolsizes of members of the polyol-
pathway [14] —sorbitol and fructose— are increased, while the poolsizes of glucose-6-
phosphate (G6P) and further downstream metabolites of G6P are decreased.

Together with VERENA ScHOWEL we performed a pSIRM experiment to further delineate
the metabolic changes in patients suffering from dysferlinopathy, using 3C,-glucose or
13C,-3-hydroxybutyrate as substrates.

We chose material of two patients, one male, one female and a set of 3 age (except one),
sex and sampling location matched patients. The characteristics of these patients are given

in table 5, a graphical representation of the experimental setup is given in figure 3.3.7.

Table 5: Characterization of individuals who donated their tissue to the pSIRM experiment.

Patient ID sex age' location disease causing mutations dysferlin expression

c.1448 C>A heterozygous (Ex16)
DYSF_A Q2 36 p-S483X No dysferlin on protein level

§ ¢.*107T>A heterozygous
~
<
g ¢.2516 C>T homozygous (Ex25)
DYSF_B g 25 -§ p-P839L No dysferlin on protein level
&~
S ¢.4167+1 G>T homozygous (Ex38)
Control A & 22 %) Normal
Control B o 51 %) Normal
ControlC ¢ 40 %) Normal

! age in years at sampling

3.3.4.1 Poolsizes in myotubes from dysferlinopathy patients show a conserved
metabolic phenotype regardless of carbon source

When poolsizes from a pSIRM-experiment are interpreted, it has to be considered, that
these poolsizes reflect the sum of labeled and unlabeled intensities. The goal is to track the
reaction rate, i. e. the speed at which label is incorporated into newly formed metabolites.

Thus the cells are disturbed as little as possible. When exchanging media, usually this
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Differentiation (7d)

Figure 3.3.7:
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Scheme of the experimental setup for labeltracing in myotubes from patients that suffer from
dysferlinopathy. After expansion, cells were serum starved and differentiated into myotubes
for 7d. 24 h before labeling start, they were accustomed to the carbon source to be present
during the labeling time. 4 h before labeling time all cell media were renewed, in order to
minimize metabolic perturbation from changes in substrate and product concentration. For
controls at “labelling” start, another media exchange with '?C-substrate containing media
was performed. For the other experiments, they were labeled with the indicated '3C-substrate
at nearly logarithmic intervals. For illustrative purposes, the time axis below the scheme is
highly irregular. Time is given in minutes or hours as indicated.



provides the cell with a much higher nutrient concentration and at the same time excreted
compounds are removed from the cells surroundings. When working with myotubes, the
switch is even more dramatic. Since the cultivated myoblasts need to fuse into myotubes,
to give a model system more related to actual muscle, they are kept in differentiation media,
that contains less FCS and thus different amounts of growths factors than normal SKMGM.
This is why two media exchanges are performed before the begin of labeling: One switch
24 h before start of the labeling from differentiation media to SKMGM, containing the
12C-isotopomers of carbon source(s) present during the labeling, and one switch 4 h before
the actual labeling start — to dampen the metabolic pertubation caused by concentration
change in substrate and excreted compounds, when labeling of the cells is started (see also
figure 3.3.7).

In the current case the metabolite poolsizes changed very little among the early time-
points (3 min to 60 min), whereas some metabolite poolsizes had changed after 10 h (not
shown). This is why the poolsizes discussed in the following are the means of the earlier
timepoints (3 min to 60 min).

In figure 3.3.8 the fold changes of the metabolite poolsizes versus the controls have
been plotted onto the network representation of the CCM, whereas in figure 7.2.1 in the
appendix, the fold changes and respective p-values for metabolites measured in myotubes,
presented with either glucose or 3-hydroxybutyrate (30HB) are plotted as a volcano plot.

Overall for the metabolites that were detectable under both conditions applied, relative
poolsizes were quite comparable across carbon sources. The major findings of poolsizes
of metabolites mentioned above could be reproduced: in the pSIRM experiment, sorbitol
and fructose are both upregulated, while G6P was downregulated (only detectable under
glucose conditions).

Further analysis also revealed additional findings. The point were the sorbitol-pathway
reconnects with glycolysis is at the level of F1,6BP, which is also significantly upregulated.

Several metabolites of the pentose-phosphate-pathway were also increased (6-phosphogluconate,
2-deoxyribose, ribose, ribulose-5-phosphate, xylose). This overall change is more pro-
nounced when 30HB is used as carbon source.

For the two treatment conditions applied, ornithine (both), urea (in 30HB) (at pye, =
3.48 X 107, fcyrea = 1.48) and fumarate (in glucose) are upregulated (pormithine = 1.13 X 1073,
Prumarate = 4.45 x 107!2). Since urea shows a fold change of 1.48, thus it is not included in
the significant metabolites. (see figure 7.2.1)

Under glucose conditions the ketone-bodies 2-amino-butyrate paaga = 2.14 X 1078,

fcaaga = 2.08 and 3-hydroxy-butyrate psogg = 2.79 X 1073, fcsopg = 1.36 are also
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Figure 3.3.8: Network representation of foldchange(poolsize/poolsizec,,) in myotubes, incubated with 13C,-
glucose or 13C,-3-hydroxybutyrate. For a volcano plot of the same data, also including p-
values, please refer to figure 7.2.1. If a metabolite was changed significantly in both treatment
conditions, orientation of the regulation stayed the same. As found in the initial experiments by
Sarah Keller [1] sorbitol and fructose as members of the polyol pathway are upregulated, while
glucose-1/6-phosphate is downregulated. Additionally members of the pentose phosphate
pathway (PPP) (xylose, gluconate-6-phosphate, ribulose-5-phosphate, ribose), and the sugars
lactose and maltose (shown in figure 7.2.1) are also upregulated. Whereas, except fumarate and
isocitrate, no intermediates of the TCA-cycle were found significantly changed under glucose
conditions, a-ketoglutarate, 2-hydroxy-glutarate, succinate and malate were all found to be
enriched in myotubes of dysferlinopathy patients when presented with 3-hydroxybutyrate as
carbon source. The upregulation of the PPP is overall more pronounced in 3-hydroxybutyrate
conditions. Creatinine which is spontaneously formed from creatine was only measured in the
control myotubes, while ornithine is upregulated. glutamate (Glu) is strongly downregulated,
which might also points to a higher running TCA-cycle. No glutamine was included in the
media from 24 h before begin of the labeling experiments. The high demand for Glu could be
the cause for the upregulation of the urea-cycle: Glu is replenished by increased proteolysis.



upregulated.

The creatin = creatin-P system provides muscle with energy during the first moments
of exercise. [5]. Creatin and creatin-P are quite unstable substances and spontaneously
form creatinine, when treated as during a typical sample treatment protocol for GC-MS
based metabolomics.

Creatinine was only detectable in samples of the controls. As such, it can be considered
as downregulated in samples from patients with dysferlinopathy. The p-value and fold

change stem from imputed values.

3.3.4.2 Label incorporation is not changed in sorbitol but in glycogen and glucose-
6-phosphate

The poolsizes of metabolites give only an indication regarding enzymatic activity. How-
ever, not only the mere amount of a metabolite is of interest, but also the speed at which
it is produced or undergoes further metabolism. It depends on the combination of two
influences, if an enrichment in poolsize of a certain metabolite is observed: (i) the enzyme
producing the metabolite is more active and/or (ii) the enzyme, that uses the metabolite as
a substrate is less active than in the control.

In order to discern this, one can look at adjacent metabolites. Enyzmatic reactions only
occur if the overall GiBBs free energy is negative (AG < 0). Often metabolic reaction
cascades can be reversed, but this is usually only the case, if the overall balance of substrates
and products is shifted, for example if the overall ATP content of a cell is high (low energy
demand), and at the same time the educt concentration for gluconeogenesis (e. g. acetyl-
CoA) is high, glycolysis is reversed, glucose is produced and stored for example in the
glycogen pool. If we take care, that a pathway does not become oversaturated or that
external stimuli, like insulin, do not change considerably during the experiment, we can
expect a consistent direction for a certain reaction cascade or pathway.

That means, if an increase of adjacent metabolites is observed, but other metabolites at a
fork in the overall reaction cascade is reduced, this is a strong indication, that the enzyme
positioned at the bifurcation point is less active.

The information of the label incorporation from pSIRM can help to investigate these
complex relationships even further.

If we see faster label incorporation in a certain metabolite than in the control and at
the same time a similar or greater poolsize of this metabolite, one can conclude, that the
enzyme, producing the metabolite in question is more active in this sample.

The data on label incorporation in the key metabolites sorbitol, glucose-6-phosphate
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Figure 3.3.9: Label incorporation into glucose-6-phosphate (G6P), fructose-6-phosphate (F6P), sorbitol,
lactate and hydrolyzed glycogen in myotubes from patients with dysferlinopathy, compared
to normal healthy controls. (Same samples as described above for the poolsizes (figures3.3.8
and 7.2.1 in the appendix). Shaded areas show 95 % confidence interval based on #-test.
There is no difference between patients and cotrols in sorbitol, whereas in G6P, label was
almost at saturation in controls already at the first timepoint 3 min. Samples from patients
reach saturation only after ~30 min. Also for lactate, further downstream in glycolysis, we
see slower label incorporation, being leveled after 10 h.

In glycogen, label incorporation was only observed in the last timepoint (10 h). Here control
samples show a higher label incorporation than samples generated from patients.

(G6P), fructose-6-phosphate (F6P) and lactate as well as the glycogen pool will be given
in the following.

Label incorporation in samples treated with 30HB was not detectable at levels to warrant
any conclusions (data not shown). The possible reasons for this are discussed in section 4.4
on page 117.

Figure 3.3.9 shows the label incorporation into metabolites measured in myotubes
labeled with '*C,-glucose for up to 10 h.

There is no difference between patients and cotrols in sorbitol, whereas in G6P, label
was almost at saturation in controls already at the first timepoint (3 min). Samples from

patients reach saturation only after ~30 min. Also for lactate, further downstream of
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glycolysis, we see slower label incorporation, being leveled after 10 h.

In glycogen, label incorporation at all was only observed in the last timepoint (10 h). Here
control samples show a higher label incorporation than samples generated from muscle
biopsies of patients with dysferlinopathy.

Overall metabolite levels are relatively low in all samples (patients and controls). This
might be due to the fact, that no glutamine was contained in the media. This is discussed
in section 4.4 on page 117ff.

However, the data shows, that in patients sorbitol and its subsequent metabolites are
enriched in poolsize, but at the same time relative label incorporation is as fast as in
controls, whereas label incorporation is slower in G6P and subsequently lactate and the
glycogen pool. The enzyme in muscle, that is located at the bifurcation point in question
is hexokinase II. An influence on hexokinase II activity has never been shown thus far in
the literature on dysferlinopathy; dysferlin is mainly seen as a membrane repair protein.
However the disease phenotype may not only result from impaired injury repair, but overall
lower energy availability. Also the poolsize data of the TCA-cycle intermediates (TCAis)
shows a higher capacity for oxidative metabolism, and also the poolsize of the pentose
phosphate pathway (PPP) intermediates highlights this. Higher TCA-cycle activity leads
to higher levels in reactive oxygen species (ROS). In order to ameliorate this, more
GSH reduction equivalents are needed; these are produced from the reactions of the PPP.
Since the overall enzyme levels of the CCM are not changed in patients suffering from
dysferlinopathy, it can be concluded, that dysferlin must have an influence on hexokinase II
activity. This was investigated using a proteomics approach on dysferlin vesicles as laid

out in the following section.

3.4 Dysferlin interacts with membranous, mitochondrial and
glycolytic proteins

The data obtained from the pulsed stable isotope resolved metabolomics (pSIRM) experi-
ment described above underpins that hexokinase II might be an (intermediate) interactor of
dysferlin.

Dysferlin exerts its membrane repair potential by the formation of so called dysferlin
vesicles. [67, 68, 183] These represent membrane patches, that are routed to the location
of injury, where they fuse with the cell membrane [67, 68].

There have been some studies conducted on the overall makeup of dysferlin vesicles

or dysferlin interactors [183—193], none of which showed interaction with glycolytic
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enzymes.

Different clean up strategies have been used, some using milder, some harsher detergents
to extract membranous proteins.

In the framework of her PhD-thesis SEVErRINE Kunz [3] developed a procedure, that
allows to separate intact dysferlin-vesicles from other organelles of the cell, especially the
outer membrane. She could show this by electron microscopy and and also showed, that a
dominant marker of cell membrane, sodium-potassium ATPase was absent in the dysferlin
vesicle containing fraction. She purified dysferlin vesicles from samples of healthy controls
in order to find proteins, that are integrated in these vesicles, but not necessarily direct
interactors of dysferlin. This secondary interaction might hold some insights as to how
dysferlin exerts other functions, also inside the cell, additionally to its well recognized
function in membrane repair. [67, 68, 180] Since patients with dysferlinopathy show
a changed metabolic phenotype, especially proteins involved in those processes are of
interest.

In order to find the proteins that directly interact with dysferlin, SEVERINE Kunz also per-
formed a standard immuno-precipitation (IP) of the whole-cell lysate, giving the potential
to several potential false positives, serving as a relatively strict control.

The anti-dysferlin antibody rAB (JAI-1-49-3, Abcam) was coupled to protein A-coated
magnetic beads, that facilitate the pulldown. Also, to filter out unspecific interactors even
more stringently, both protocols (vesicle-fractionation and classic IP) were performed
using rabbit IgG coupled to the beads. Every cleanup protocol was performed on 3 patients
in 3 technical replicates each. (mgampies per group = 9)

After proteomics data was obtained, I analyzed the data.

3.4.1 Description of the dataset

In total 1182 proteins were found. After proteins, not measured in at least %3 of the
samples of any group, or identified as reverse hits, I manually removed proteins marked as
contaminants. In removal of contaminants I took care not to remove them unsupervised,
since, for example, several structural proteins that are included in the standard list of
contaminants in MaxQuant are of special interest in this experiment. I manually inspected
the candidates of contaminants and removed only those, that showed the behaviour of
a contanimant (only present in few samples with high standard deviation inside sample
groups).
After filtering for the described criteria, I retained 752 proteins.

The proteins retained are shown as heat map in figure 3.4.1.
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Figure 3.4.1: Heatmap of the samples including imputed values. The first two blocks represent background
samples: the magnetic beads were coupled with IgG and show unspecific interactors. In
the third block “direct interactors” samples from a pulldown after lysis with SDS buffer
potentially including proteins of the whole cell lysate. The relatively harsh conditions applied
lyse membranes; only direct interactors are pulled down. Since whole cell lysates are used,
many proteins that are interacting at the cell membrane only might be pulled down. On the
right side samples of the vesicular fraction are shown. In general those proteins in clusters 1
through 5 are of interest. They are much more enriched when dysferlin is used as bait protein
compaired to IgG. Dysferlin itself is located in cluster 2, that contains proteins most highly
enriched in both the total lysate and the vesicular fraction; these are the most likely candidates
of direct interactors of dysferlin.
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Figure 3.4.2: Volcanoplot of pulldowns with anti-dysferlin rAB vs. rabbit IgG. The bait protein, dysferlin is
marked. The proteins in red separate themselves nicely from the rest and are thus deemed
strong interaction partners of dysferlin. There are also some proteins stronger interacting with
IgG than dysferlin. (left side of the plot) Those are not of interest for the analysis. Table 6
gives p-values and fold changes for the “strong” interaction partners of dysferlin.

I imputed missing data of the log-scaled values, using a Gaussian distribution with 30 %

of standard deviation and a downshift of 1.8 of the mean of the whole data set.

3.4.2 Dysferlin directly interacts with proteins involved in RNA-processing

To determine direct interactors of dysferlin, I computed fold change of the measurements
of direct interactors vs. their background as well as FDR-adjusted p-values of the fold
changes. The log-transformed values were plotted against each other, resulting in the
volcanoplot shown in figure 3.4.2.

This showed a particular cloud of proteins, separating themselves from the continuum
of further points in the plot. Usually interaction is defined at a more or less arbitrary cutoff
combination of fold change and p-value. Based on the volcano plot it seems reasonsable,
that members of this cloud are the most important direct interactors of dysferlin. These
proteins and their enrichment statistics can be found in table 6.

Of course it is still the case, that those proteins appearing more closely to the origin
represent potentially valid interaction partners of dysferlin, however these interactions
appear to be much weaker. Irrespective, if this cloud, or a much more lenient cutoff at
so = 2, FDR = 0.05 is chosen, the general themes found by GO-enrichment analysis using
GOirilla [173] and REViGO [174] show a strong enrichment for terms revolving around
RNA-processing. The respective treemaps are included in the appendix as figure 7.3.1.

These proteins include many known interactors recently reported, which shows in
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general good agreement with the current literature. [183, 184] A comparison is given in
table 7.

3.4.3 Dysferlin vesicles are transport organelles within the cell

When comparing the vesicular fraction to the background, RNA-processes are not present,
as they were dominant in the whole cell lysate. Vesicle mediated transport is the most
dominant theme, either, when a relatively lenient (sy = 2, FDR = 0.05) or the lowest fold
change, and the highest p-value from the separate group of proteins found in the total
lysate (figure 3.4.2) was used. Using the latter, more strict cutoff, leads expectedly to much
less enriched GO-terms, but the overall theme of transport stays nevertheless dominant.

The respective treemaps are shown in figure 7.3.2 in the appendix.

3.4.4 Glycolytic proteins are enriched in the vesicular fraction

To find proteins particularly enriched in the vesicular fraction, I averaged the background
(IgG) values per patient and enrichment strategy (n = 3) and subtracted them from the
respective sample values. If a value from a pulldown-sample was smaller than that of the
corresponding average background, it was set as ‘NA’ due to the logarithmic properties of
the data. From the values that remained in the pulldown-samples, I removed those, that
were introduced by imputation, but still larger than their corresponding background value.

All replicates from the samples, which are not only replicate measurements of the same
extract, but included every step including cell culture, carried out on different days, were
then used to find proteins significantly changed (sy = 2, FDR = 0.05) between vesicular
fraction and direct pulldown, without using imputed values. This approach puts emphasis
on proteins reliably measured, by reducing the sample size used to calculate p-values,
yielding high (less significant) values for proteins quantified in fewer samples. It might
however also lead to discarding proteins, that are simply not found in one sample group,
due to big enrichment differences between vesicular fraction and total cell lysate.

Perseus [148] was used to find enriched GO-terms. Only terms from the sub-ontology
cellular component (GOCC) were found to be enriched.

The concepts found to be enriched are listed in table 8. The adjusted p-values given in
the table, were not calculated with Perseus, since the algorithm of the FisHer-exact-test is
faulty. Instead R was used.

The general themes to be found in the GO-terms are “membrane” and mitochondrium.

Since these terms overlap for many proteins —members of “mitochondrial membrane” are
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Figure 3.4.3: Volcanoplot of protein amounts in vescicular fraction vs. direct IP. The dashed lines depict
a cutoff at fc = 2, p < 0.05. Mitochondrium associated proteins are shown in orange,
membranous proteins in blue. The amount of dysferlin as the bait protein is not expected to
change between the two preparation strategies used.

also in the term “plasma membrane”— for visualization purposes, I chose to highlight
members of the term “mitochondrial inner membrane” as “mitochondrial” and proteins not
in this category but still in “intrinsic component of plasma membrane” as “membrane”.

The proteins found in different amounts in the vesicular fraction and as direct interactors
(after respective background correction) are plotted in figure 3.4.3. Many membranous
proteins are enriched (caveolin 1, mannose-6-phosphate-receptor and others), but also
proteins usually only found in mitochondria (VDAC1, VDAC2, ATP-synthase). Also
proteins implicated in intracellular membrane trafficking (Ras-related protein Rab-1A,
Rab-6A, Reticulon-4) are enriched in the vesicular fraction.

Also several proteins involved in glycolysis are found to be enriched higher in the
vesicular fraction than in the total lysate: Aldolase A (ALDOA), lactate dehydrogenase
A&B (LDHA, LDHB), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), phospho-
glycerate mutase (PGAM2 or 1 or 4) and pyruvate kinase (PKM). (see figure 3.4.4) Some
are similarly enriched in both vesicular and total lysate fractions, like LDHA, but most

are only significantly enriched in the vesicular fraction, and reach significant enrichment
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Figure 3.4.4: Significance values for glycolytic enzymes detected in samples enriched by different ex-
traction protocols. Compared to their respective controls, enrichment statistics are much
more significant in the vesicular fraction, and PKM is significantly higher enriched in direct
comparison between proteins in vesicular fraction and total lysate.

levels. PKM shows the biggest difference between the glycolytic enymes, being signif-
icantly higher enriched in the direct comparison of vesicular fraction and total lysate
pulldowns. (see figure 3.4.4. Although hexokinase II is not among them, several of them
have also been found as potential interactors of dysferlin. Most peculiar is the presence
of 6-phosphofructokinase (PFKM) in the work by pE MoRRrEE, et al., 2010 [183] and Fuix,
etal.,2013 [184], since PFKM is the key-regulator of glycolysis. Although in the work of
DE MORREE, et al., 2010 the TCA-cycle is a representative concept in their cluster analysis,
metabolic implications of dysferlin where not discussed in the literature so far.

Very recently, L1, etal., 2016 [190] reported an implication of dysferlin in lipid droplets
in the heart. To my knowledge this is the first implication of dysferlin in metabolic

processes in the literature.
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Table 6: Proteins found to be direct interaction partners of dysferlin.

Protein name Gene name —log,o(p) log,(fold change)
Dysferlin DYSF 11.79 10.72
Ryanodine receptor 1 RYRI 11.35 10.55
Hypoxia up-regulated protein 1 HYOU1 10.46 6.63
Midkine MDK 11.37 6.21
408 ribosomal protein S6 RPS6 9.13 5.88
60S ribosomal protein L4 RPL4 8.30 5.86
Multifunctional protein ADE2 PAICS 9.53 5.86
40S ribosomal protein S8 RPS8 7.75 5.72
408 ribosomal protein S2 RPS2 5.95 5.49
408 ribosomal protein S3a RPS3A 7.05 5.40
60S ribosomal protein L29 RPL29 12.70 5.38
Focal adhesion kinase 1 PTK2 3.56 5.19
Nucleophosmin NPM1 8.49 5.14
60S ribosomal protein L6 RPL6 6.32 5.04
T-complex protein 1 subunit beta CCT2 4.71 4.96
60S ribosomal protein L8 RPLS 6.14 4.82
60S ribosomal protein L10 or L10-like RPL10, RPL10L 7.69 4.60
60S ribosomal protein L7a RPL7A 5.99 4.56
60S ribosomal protein L15 RPLI15 5.57 4.54
L-lactate dehydrogenase A chain LDHA 5.19 4.50
Adenylosuccinate lyase ADSL 4.98 4.45
60S ribosomal protein L3 RPL3 7.83 4.40
40S ribosomal protein S9 RPS9 4.64 4.36
T-complex protein 1 subunit epsilon CCT5 5.27 433
Serpin H1 SERPINH1 7.35 4.31
Myoferlin MYOF 4.02 4.29
Calreticulin CALR 9.01 4.27
T-complex protein 1 subunit gamma CCT3 5.00 4.23
60S ribosomal protein L13 RPL13 7.52 4.17
408 ribosomal protein S4, X isoform RPS4X 4.52 4.16
408 ribosomal protein S13 RPS13 4.90 4.15
60S ribosomal protein L.14 RPL14 4.82 4.13
40S ribosomal protein S16 RPS16 4.84 4.11
Protein disulfide-isomerase A4 PDIA4 6.89 4.11
60S ribosomal protein L.19 RPL19 5.04 4.02
60S ribosomal protein L23a RPL23A 6.36 3.87
BAG family molecular chaperone regulator 2 BAG2 6.02 3.85
T-complex protein 1 subunit zeta CCT6A 5.01 3.77
Filamin-C FLNC 5.00 3.71
T-complex protein 1 subunit alpha TCP1 5.06 3.63
L-lactate dehydrogenase B chain LDHB 491 3.54
Endoplasmin HSP90B1 5.71 3.33
Probable ATP-dependent RNA helicase DDX17 or 5 DDX17, DDX5 5.31 3.30
Polyadenylate-binding protein 1 or 3 PABPC1, PABPC3 5.64 3.18
78 kDa glucose-regulated protein HSPAS 5.48 3.08
Clathrin heavy chain 1 CLTC 5.10 3.06
Ribose-phosphate pyrophosphokinase 1, 3 or 2 PRPS1, PRPS1L1, PRPS2 5.19 3.02
BRISC complex subunit Abrol FAM175B 5.17 2.96
Protein RCC2 RCC2 5.25 2.77
Fragile X mental retardation syndrome-related protein 1 ~ FXR1 5.73 2.72
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Table 7: Proteins quantified in the current study, that are also mentioned by FLix, etal., 2013 or bE
MORREE, etal., 2010

. . vesicle, lysate, vesicular, lysate, ves. vs lys.,
Accession'  Name in Fuix, et al., 2013 measured ¥ y v

strict* strict* lenient®  lenient® lenient’
P68133 Actin;alpha skeletal muscle + + + +
P30566 Adenylosuccinate lyase + + + + +
P61163 Alpha-centractin + + + +
014958 Calsequestrin-2 + + +
P12277 Creatine kinase B-type + + +
075923 Desmin + + + + +
075923 Dysferlin + + + + +
P21333 Filamin-A + +
Q14315 Filamin-C + + + + +
P04075 Fructose-bisphosphate aldolase A + + + + +
P04406 Glyceraldehyde-3-phosphate + +
dehydrogenase
Q14974 Importin subunit beta-1 + + +
P11055 Myosin-3 + + + +
P35579 Myosin-9 + + +
Q09666 Neuroblast differentiation-associated +
protein AHNAK
P14618 Pyruvate kinase isozymes M1/M2 + + +
P00558 Phosphoglycerate kinase 1 +
QO6NZI2 Polymerase I and transcript + + + +
release factor (PTRF)
Q13885 Protein S100-A1 +
P68371 Ryanodine receptor 1 + +
P08670 Stress-70 protein;mitochondrial + +
Q09666 Tubulin beta chain +
014958 Vimentin + + +
P21817 Vinculin isoform 1 + + + + + +
Q6ZMU5  Trim72/MG53? + + + +
Q03135 Caveolin 12 + + + +
P07355 Anexin A23 +
P47756 F-actin-capping protein subunit beta’ + + + +
P55884 Eukaryotic translation initiation + + + +
factor 3 subunit B3
P14625 Endoplasmin® + + + + +
P11021 78 kDa glucose-regulated protein’ + + + + + +
P02545 Prelamin-A/C3 + +
QI9NZMI1  Myoferlin’ + + + + + +

UniProtID from FLix, etal., 2013.

accession not explicitly stated, only mentioned in the text in FLIX, e al., 2013 and matched to UniProtID by gene name
taken directly from b MORREE, et al., 2010

cutoff refers here to the proteins marked in red in figure 3.4.2, the smallest fold change and biggest p-value from these are
taken and used as cutoff

T

as more lenient cutoff 5o = 2 and pppr < 0.05 have been chosen



and mitochondrial proteins are highlighted. see also figure 3.4.3.

Table 8: GO-terms found to be enriched (cutoff: fc = 2, p < 0.05) in proteins enriched in vesicular fraction
vs. direct IP, ordered by significance. Two terms, used to demonstrate interaction with membranous

Term ID Description Padiust

GO0:0044446 intracellular organelle part 1.80 x 10~
GO0:0044422 organelle part 2.30x 107
GO0:0044444  cytoplasmic part 1.45x 1073
GO:0043231 intracellular membrane-bounded organelle 3.11x 1073
GO:0031090 organelle membrane 4.89 x 1073
GO0:0043229 intracellular organelle 499 x 1073
GO0:0042645 mitochondrial nucleoid 5.35x 1073
G0:0009295 nucleoid 5.35x 1073
G0:0044459 plasma membrane part 6.45x 1073
G0:0044424  intracellular part 7.63 x 1073
GO0:0042470 melanosome 7.63 x 1073
GO:0048770 pigment granule 7.63 x 1073
GO0:0005925 focal adhesion 1.56 x 1072
GO:0005887 integral component of plasma membrane 2.14 x 1072
GO0:0016020 membrane 2.14x 1072
GO0:0005886 plasma membrane 2.14 x 1072
G0:0005743 mitochondrial inner membrane 242 %1072
GO0:0031226 intrinsic component of plasma membrane 3.16 x 1072
GO0:0045259 proton-transporting ATP synthase complex 4.77 x 1072
GO:0016529 sarcoplasmic reticulum 5.07 x 1072
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3.5 Metabolomic profiles from single drops of capillary blood

The experiment described in the following was devised and carried out together with
HenninGg KuicH [4] to fully equal parts in close collaboration. The findings presented here
were all derived from intense discussion among each other and our advisor STEFAN KEMPA.

When we profiled blood samples of a single volunteer performing exercise, we were
able to cover a major portion of the central carbon metabolism, comprised of glycoloysis,
tricarboxylic acid (TCA) cycle, fatty acid metabolism, ketone body metabolism, pentose
phosphate pathway, and amino acid metabolism.

Figure 3.5.1 illustrates the four crucial elements of our methodology:
i The possibility of a high sampling frequency,
1 the great number of identified metabolites quantitatively measured by GC-MS,
iii the inclusion of erythrocytes, and

iv the extensive identification of metabolites of the central carbon metabolism (CCM)
that lie at the junction of the interconnected pathways crucial to energy production

and homeostatic maintenance.

A total of 277 metabolic features were detected in eight sampling time points of which
169 were quantified and 93 of which were identified (Figure 3.5.1), counting different
derivatization products of the same compound as one compound. We calculated the
coefficient of variation (COV) of the relative quantities of the metabolites and found that
85 % of the quantified metabolites displayed a COV between 0 and 0.1 (figure 3.5.2). The
detection and quantification of the metabolites was found in a linear range of detection to a

large extend (not shown).

3.5.1 Subjective feeling throughout exercise

At each sampling time point, the volunteer reported his perception of energy availability
on a qualitative scale (Figure 3.5.4A), similar to the rate of perceived exertion (RPE) [195].
Progressive tiring in the first two laps culminated in “Hitting the Wall” in lap 3 (L3, crisis),
which was the slowest lap despite being the shortest (see figure 3.5.3). L4 was the fastest
lap characterized by a sensation of renewed energy and motivation (“runner’s high”).
Subsequently, energy availability appeared stationary and comparable to that experienced
during exercise initiation, although muscle fatigue became apparent, late in L5 and in L6.

After a rest, the subject felt recovered despite muscle fatigue.
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Figure 3.5.1: Network of all metabolites identified, shading depicts the metabolic pathways considered.

Nightingale plots [194] for each metabolite depict poolsizes at each timepoint.
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Figure 3.5.2: Covariances for all metabolites measured, including unknowns. The majority (85 %) shows a
covariance between 0 and 0.1.
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@ L1 10 22
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100 m

1:4319

Map data © OpenStreetMap contributors \

Figure 3.5.3: A) Running track (orange) on the campus of the Max-Delbriick-Center for Molecular
Medicine, Berlin-Buch. B) overview of running time and and distance. Lap 3 despite being
shortened in distance slightly (light orange part) took the longest time to complete.
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Figure 3.5.4:
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Plots of the metabolites used to assess credibility of the experiment. log,-foldchange relative
to the initial sample, errorbars show variability of two technical replicates.

A) feeling of the subject throughout the run according to RPE-scale [195], B) glucose, free
fatty acids (represented by glycerol) and lactate, C) ketone bodies showing a drastic increase
post run, D) TCAis represented by succinate (see also figure 3.5.6): citrate increases much
later than the other TCAis, E) metabolites involved in oxygen transfer to the tissue



| |
| |
| |
1.0+ |
(=) | |
- | |
o 05- | | —e— Glycerol
+ | I .
o \ Linoleate
p= I -o— Ol
© 0.0- | eate
— I Palmitate
%D 05- : : —o— Stearate
| |
| |
104 | }

L0 L1 L2 L3 L4 L5 L6 PR
sampling timepoint

Figure 3.5.5: Plots of FFAs and glycerol, log,-foldchange relative to the initial sample, errorbars show
variability of two technical replicates, FFAs were measured only once. The major fatty acids
in the human body [199] are shown. For the saturated fatty acids palmitate (C4.o) and stearate
(Cy3.0) two release phases are observed, one before the “crisis” in L3, one after, correspoding
to glycerol levels (blue). For the unsaturated fatty acids oleate (Cs.;) and linoleate (Cs.,) a
more or less steady increase is observed with a higher release in the time after the crisis.

3.5.2 Fuel source availability throughout exercise

Exercise is primarily an energetic challenge. Our personalized approach inherently allows
for only a low subject number, so we sought for a way to confirm our findings, and if
our data from a single subject allows for interpretation at all. Changes in fuel source
availability and their metabolic end products have been investigated before [196] and were
used to assess the validity of our platform.

The initial phase of exercise appeared to be fueled primarily by glucose and its con-
version to lactate (figure 3.5.4B). Glucose recovered to its original level by L3 (“crisis”
while lactate levels declined, indicating the mobilization of glycogen stores from liver
and an active Cori cycle [197]. After the crisis, glucose levels stabilized while lactate
rose in L5 and L6, before being cleared to pre-exercise levels. The stable blood glucose
levels concurrent with lactate production in laps 4 through 6 indicated a second stable
phase of exercise. Glycerol, an indicator for fatty acid mobilization [198], and two of
the most abundant FFAs, palmitate and stearate [199], similarly suggested two distinct
phases during exercise. In response to exercise initiation, a first wave of glycerol and FFAs
were released (figures 3.5.4B and 3.5.5). Their abundance was lowest during the crisis and
subsequent high feeling, whereafter a second release was observed in LS and L6.

Ketone bodies, which are commonly considered to serve as fuel only during starvation

and to be pathological in high concentrations, increased in response to exercise initiation
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Figure 3.5.6: Plots of TCAis, log,-foldchange relative to the initial sample, errorbars show variability of
two technical replicates. All TCAis rise well above their initial level, except for citrate (see
arrow).

but appeared more clearly and stably elevated in the second phase of exercise, before

accumulating vastly after exercise completion (Figure 3.5.4).

3.5.3 Metabolic insights when “Hitting the Wall”

“Hitting the wall” is thought to occur when glycogen reserves are depleted and the energy
requirement of the ongoing exercise can no longer be met [30, 200]. Our initial motiva-
tion was to determine the mechanistic basis for this presumed energy deficit previously
experienced by our subject; therefore we sought to provoke its occurrence by exercising
in a fasted state (in contrast to the carbohydrate loading strategy commonly employed by
endurance runners).

All detectable TCA-cycle intermediates (TCAis) most likely reflect muscle tissue, since
during exercise it represents the by far largest and most active tissue regarding energy
turnover. Also, during endurance running about 50 % of the energy is generated from
fat, being oxidized in the TCA. By L2 all of the detectable TCA intermediates except
for citrate at the entrypoint of the TCA had risen well above baseline levels, indicating
that its capacity for activity had been primed prior to the crisis in L3 (Figure 3.5.4D,
Figure 3.5.6), but not a running TCA-cycle as citrate levels had comparatively not yet
increased. Concordantly, the erythrocyte-specific metabolite 2,3—bisphosphoglycerate
(2,3-BPG) [13] appeared and was at its highest level during the crisis (Figure 3.5.4).
2,3-BPG specifically binds to hemoglobin and lowers its oxygen affinity, causing oxygen
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Figure 3.5.7: Unsupervised hierarchical clustering of all features measured. The samples show strongest
kinship according to RPE.).

release in demanding tissue. [12] Simultaneously, the pentose phosphate pathway (PPP)
intermediates ribose—5—phosphate (R5P) and ribulose—5—phosphate (Ru5P) were detected
exclusively during the crisis (L3) (figure 3.5.4E).

3.5.4 Metabolic states are reflected in subjective perceptions

To investigate the global metabolic relationships of sampling time points, all polar metabo-
lites were used for hierarchical clustering analysis (figure 3.5.7). This basic systems
biology technique allows for interpretation of the data without being influenced from
existing knowledge of metabolic networks and might lead to a gain of metabolic insights
towards specific phenotypes in patients or other study subjects. The technical replicates
of pre-exercise, post-exercise, and the high feeling were most related. The second major
branch was composed of groupings of L1 and L2, as well as L5 and L6, respectively.
Furthest from the cluster of sampling timepoints when the subject felt most “energetic”
was the crisis (L3).

Astonishingly, metabolic states and their transitions as defined by the clustering of the
metabolome of a single drop of blood appeared to be reflected in the volunteer’s subjective
feeling throughout the exercise, and not, as one might expect for instance, the time course
of the samples taken.

We then attempted to confirm the occurrence of these distinct metabolic states and
transitions as suggested by the combination of sample clustering (representing biochemical

measurements) and energy availability (representing subjective perception of exertion) by
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figure 3.5.9.

identifying explanatory metabolites and relationships.

The two stable states during exercise (L1/L2 and L5/L.6) were hypothesized to be mainly
glycolytic and oxidative, respectively. The crisis during 1.3 had been mechanistically
defined to be characterized by oxygen release and oxidative stress in erythrocytes (fig-
ure 3.5.4E). In order to identify the molecular basis for the “energetic” cluster composed of
L0 and PR (stable), as well as L4 (part of a transition), we performed a factor analysis on a
Pearson correlation matrix of all identified and unidentified metabolites. Several unidenti-
fied metabolites, triethanolamine, and creatinine were among the “energetic” metabolites,
the latter of which potentially indicating energy availability in muscle cells due to its close
relation to creatine and creatine-phosphate. [201]

Three essential elements seemed to define metabolic states and transitions in the subject:

1 Metabolites correlating with a low rate of perceived exertion (RPE) (feeling “ener-
getic”),

i1 markers of oxygen release and oxidative stress,
iii the relative activity of fermentative glycolysis and the oxidative TCA-cycle.

When including only these parameters and relationships, principle component analysis (not
shown) and hierarchical clustering successfully recapitulated the principle relationships as
observed with all metabolites (figure 3.5.8).

These explanatory components of the metabolic response to exercise in the volunteer

are summarily visualized in figure 3.5.9.
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Figure 3.5.9: Top: Circos plot [151] of the selected metabolites characterizing the metabolic states described;
below: Nightingale plots [194] of the metabolites separating the metabolic states.
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4 Discussion

4.1 The established concepts of fiber types are reflected in the
data

Since the first descriptions by RaNvVIER in the 1870’s [202] muscles have been grouped
into different categories, regarding their function and specialization, which reflects their
morphological, molecular and biochemical properties.

ATPase-staining is a well established technique, but also determination of MYH iso-
forms on translational or transcriptional level has been used.

The concepts found to be enriched in the features separating the muscle types, compo-
sition of muscle types reflect their function: muscle needs energy to perform its primary
task, facilitation of movement. This energy is primarily derived either through oxidative
metabolism, with fatty acids as major fuel source, or an@rob metabolism, using glucose
with either lactate as output, if pyruvate is not shuttled into the TCA-cycle. [24]

Another important difference is rigidity of muscle. Oxidative muscle, which is primarily
used in endurance movement and maintaining body position, is also physically more rigid,
than normally less active fast twitching glycolytic muscle. This difference in physical
rigidity stems from specific isoforms of those proteins that compose sarcomer and cy-
toskeleton. The sarcomer can be further divided into z-disc, m-band and thin- and thick
filament. The proteins that finally use the vast amount of ATP muscle consumes [5, and
references therein] can be found in the thick filament: the myosin heavy chain proteins.

In histology, their different performance at varying pH-level and since technological
advancement allows for it, the amount of their isoforms at RNA-level are used to discern
fiber types. There are over ten isoforms of myosin heavy chain, but mostly the genes
MYHI, MYH2, MYH4 and MYH7, showing highest abundance in skeletal muscle in
general, are described. Many are deemed specialised and only expressed in e. g. extra
ocular muscles or during muscle development [203]. In the proteins of the dataset also
several of those isoforms, deemed less ubiquitous expressed, have been quantified at
isoform level besides all of those proteins that form the sarcromer.

So far, when studying muscle fiber types, either only few characteristics [46] or only
two different kinds of muscle [111, 112] were compared. As far as omics-approaches com-
paring muscle fiber types exist, there is none, that integrates metabolomics and proteomics
data.

In 2012 DREXLER et al. [111] compared Extensor digitorum longus and Soleus muscles

of C57BL/6 mice and found 25 % of the quantified proteins to be significantly differentially
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expressed. They found differences in sarcomeric proteins, many kinases and enzymes in

glutathione metabolism to be differentially expressed in the two muscle types compared.

In 2015 Raxkus etal. [112] compared Soleus and Tibialis anterior of mice and found,
besides the known differences in sarcomeric proteins, that enzymes comprising those
pathways that are predominantly used by the respective muscletypes differing in their
primary fuel source are differentially expressed. They also compared reaction rates of
the extracted enzymes and found good correlation to their relative amounts. Rakus et al.
concluded, that the upregulation in expression of a certain pathway is correlated with its
activity.

In regard to sarcomer composition, and amount of metabolic enzymes I found similar

results as described by DREXLER efal. [111] and Rakus efal. [112].

In 2015 DesamukH et al. [113] compared myotubes generated from C2C12 cells with M.
triceps of C57BL/6 mice. They compared the two often used model systems and found
44 % of the proteome to be significantly different.

Mauri, et al., 2015 [204] isolated single muscle fibers and performed proteomics anal-
ysis of single fibers of Extensor digitorum longus and Soleus from CD1-mice. They
found differences in MYH distribution along the muscle fiber, as had been described
for extraocular muscles before. [205] They also found distinct isoform-patterns in mi-
tochondrial enzymes, that is likely to reflect metabolic regulation. This constitutes a
very insteresting approach. However at the current state of technology, an integrative
metabolomics and proteomics approach based on this technique is not possible, because of
overall too low metabolite concentration and several hindrances regarding fiber preparation

in a metabolomics conform manner.

These studies gave novel insights, but alike there are three “fast” muscle fiber types
known in the literature (ITA, IIX, I1IB), also mixed forms exist [45, 46, 160, 206-208]
and there is no prototype of especially the fast muscle in mice. As prototype of slow
muscle always Soleus is used, since it has the highest percentage of type I fibers in mice.
Whereas in rats, Soleus is almost entirely composed of type I fibers, in mice only ~42 %
of the fibers of Soleus are characterized as type 1. [45] It has been suggested, that mice
show a lower percentage of type I fibers than bigger rodents, because of their lower body
weight and thus lower effort to keep body posture. [207] Also intermediate forms of the
“classic” fiber types, I (Mhc7), 1A (Mhc2), IX (also known as IID, Mhcl), [IB (Mhc4),
constitute a considerable part of the muscle which reflects also the findings in this study:
although general characteristics validate the separation into the four “classic’ types, this

generalization leaves out the pontential interaction between neighbouring fibers and the
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Clustering based on myosin heavy chain alone

EGBCHDAFDECGHADBF HBEFCG
@ M. Extensor digitorum longus @ M. Quadriceps @ M. Soleus M. Tibialis anterior

Figure 4.2.1: Hierarchical clustering of the samples only based on isoforms of myosin heavy chain. It is
nearly possible to discern the muscle types only on this small feature set.

resulting molecular phenotype adapted to function, training and surrounding tissue. Table 9
gives the fiber type composition of muscles of C57BL/6 mice, as used in the present study,

including mixed fiber types, that express more than one myosin isoform [45, 46, 207].

Table 9: Fiber type distribution in mouse muscle as obtained by ATPase-staining and distribution of MHC-
isoforms as determined by western blot. Reproduced from [46]

Fiber type Muscle
(ATPase-staining) SOL EDL TA
I 37.42 £8.20 0.44 £1.27 0.17+£1.25
IC/MIC 0.00 +0.00 3.55+3.49 0.008 = 1.04
1A 38.62 £ 6.81 0.46 £ 0.68 1.12+2.17
IIAD 18.74 £ 6.95 7.56 £4.51 34214387
11D 5.69 £3.09 0.46 £ 1.34 225+ 1.64
IIDB 0.00 £ 0.00 21.48 £7.33 33.83 £ 15.85
1IB 0.00 +0.00 66.01 £ 8.51 59.68 £9.95
MHC Muscle
(Western blot) SOL EDL TA
I 41.50 £ 12.21 0.00 £ 0.68 0.00 £ 0.0
IIa 57.56 £ 13.32 10.82 £ 6.6 25.52£15.15
I1d 0.15+2.82 0.00 £ 0.0 0.00 £ 0.0
IIb 0.00+£0.0 88.30 £ 6.6 74.48 £ 15.15

4.2 Myosin heavy chain isoforms separate oxidative and
predominantly glycolytic muscles

Using only the myosin isoforms alone, it is nearly possible to separate the samples obtained

from the different muscles by their origin (see figure 4.2.1).
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Figure 4.2.2 shows the amount of each MYH found in the sample set. Although those
isoforms usually used to describe fiber types, are by far the most predominant isoforms,
also other isoforms like MYH3 (associated with muscle development and regeneration)
or MyhS8 (predominantly expressed in extraocular muscles) were found to be expressed
at significantly different levels. This does not mean, that these differences are necessarily
of biological relevance, but it shows the power of the omics approach: proteins and
metabolites of relatively high similarity can be reliably quantified at isoform level over

several orders of magnitude. DREXLER et al. [111] found similar results.

4.3 Metabolite and enzyme levels do not always correlate —
examples with focus on mitochondrial metabolism

It is well known, that the long standing “paradigm” of biology, transcription leads to RNA,
translation leads to proteins, proteins produce metabolites might hold generally true, but
also many different ways of regulation and interaction are known.

Although I only measured poolsizes of proteins and metabolites, and not their formation
rates or the overall phosphorylation status of proteins, that would reflect the intracellular
signaling, often general agreement is expected as for example in the work by Rakus
etal. [112].

I was able to discern all muscle types based on proteins and metabolites alone (fig-
ures 3.2.3 and 3.2.9, and infer concepts differentially regulated in the respective muscle
groups figures 3.2.4 to 3.2.14).

In the following some remarks about peculiar differences between metabolite and protein
levels will be given, mostly relating to parts of the CCM and overall energy levels, and the
power an unbiased systems biology approach might hold over other methods.

If a fast muscle needs to be able to put out bursts of energy in a short period of time, this
energy must be available at the time of need and thus stored in a different form, than in
a slow contracting muscle that works continuously over longer periods of time. This is
for example facilitated by the creatine-phosphate system in fast muscles and reflected in
figure 3.2.15 with creatinine highly enriched in EDL. These different energy levels need
different tuning of the energy sensors.

Although the results I receive agree in general with the findings by Rakus etal. [112],
it should not be concluded that higher amounts of enzyme necessarily lead to congruent
metabolite levels. As with the relation between RNA and proteins, this may hold true in

many cases, but not all of them, especially since reaction rates depend stronly on substrate
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and product concentrations. [209, 210] Since the TCA-cycle is of major importance in
(muscle) metabolism, I will discuss an example revolving around 2-hydroxyglutarate
(20HG), a metabolite that has received much attention recently. It was known for some
time, that the p-stereoisomer was produced by mutant IDH1 and IDH2 functions as
oncometabolite that can inhibit enzymes that use o-ketoglutarate [211-214]. The -
stereoisomer, that is produced by both the cellular and the mitochondrial isoform of malate

dehydrogynase (MDH), has recently been shown to be a marker for hypoxia. [214-216].

Even though it is not possible to discern p-20HG and L-20HG by the GC-MS approach
used in this study, it is very likely, that the majority of 20HG is in fact L-20HG, since this
is the form usually produced under hypoxic conditions. 20HG is highly enriched in SOL
compared to the other muscles (see figure 3.2.15. Starting from iso-citrate (iCit), IDH1
(slightly) and IDH2 (strongly) are enriched in Soleus. According to Rakus etal. [112]
this should mean, that o-ketoglutarate («KG) is to be enriched in SOL as well. However,
this is not the case, the metabolite levels are about the same. Efflux from aKG can go to

different pools: glutamate, (indirectly) succinate and 20HG.

The abundance index of MDHI1 is about 1.5-fold higher in SOL than in the other muscles,
whereas MDH2 is enriched both for TA and SOL. So according to Rakus et al. [112] both
in TA and SOL 20HG should be upregulated. However, 20HG is strongly enriched only
in SOL, but not in TA. This demonstrates, that the assumption by Rakus et al. [112] holds
true for some cases, but has to be treated with extreme care. If however the knowledge, that
20HG is upregulated in hypoxia, is included in these considerations, the upregulation in
the highly oxidation-active Soleus makes sense. These comments do not intend to dismiss
or discredit the general idea of importance inferred by upregulated enzyme levels, but want
to emphasize the importance of inclusion of metabolites into reasoning about cell states
and metabolic activity. In the light of whole pathways combined, this is even more likely
to be true, however, if the goal is to understand individual steps that may be influenced by

diseases, the metabolite levels may give much deeper insight, than the proteome alone.

As mentioned above, the concepts, that split the muscle types are mostly metabolic.
Even for the second principal component or discriminant, where only few concepts were
found at all, the general theme of “Metabolism” shows the dominance of muscle as a tissue
that uses up nutrients sent by the liver and adipose tissue, generating ATP through the

CCM to facilitate movement.

It could be expected, that because of their strong reliance on oxidative metabolism
and general higher mitochondrial content [47] SOL simply has the highest expression in
all proteins related to mitochondria or amelioration of oxidative stress,e. g. glutathione
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transferases.

This holds true for most proteins in these categories by far, but this is not always the case.
There are certain isoforms that are signficantly higher expressed in glycolytic muscles
(GSTMS), and a high number are expressed evenly. For “mitochondrial” proteins, there
are even more drastic examples, as GPD2!° (genral: fcgppy = 8, pgppr <1072, the calcium
carrier CMC1"! (for TA: feomer = 2.25, pemer <1077) or SQRDL!? (general: fesqrpr = 12,
DPSQRDL <107'). The mentioned examples are the most extreme cases of 18 out of 274
“mitochondrial” proteins.

But not only mitochondrial metabolism is highly different among the muscles investi-
gated here. The appearance of the phospho transferase system (PTS) as significant term in
PC1, that separates SOL from the other muscles reflects also the importance of sugars and
sugar-alcohols.

It should be mentioned, that the results from IMPalLA have been obtained for protein
IDs that were mapped to their human orthologs, and do not always necessarily reflect the
same functions across species. However, most of the features that discern the muscles are
members of the CCM which is highly conserved among species. The other big part, the
sarcomer constituents can be regarded as highly conserved as well, at least in mammals or
more general vertebrates.

In general muscles each seem to possess a metabolic phenotype tailored to their specific
function, like movement or simply keeping a body posture that allows the other organs to
function properly.

It is known, that the mere existence of lean body mass allows a person to lead a healthier
and longer life and has positive influence on inclination towards disease in general.

Since type II fibers are much more susceptible to dysferlinopathy it is of special impor-
tance to gain a deeper understanding of the mechanism and specific properties of those
muscles. An example on how this can be achieved through systems biology will be given
below in combination with the discussion of the results obtained from application of
pSIRM to myotubes generated from patients suffering from dysferlinopathy.

19Glycerol-3-phosphate dehydrogenase, mitochondrial
Calcium-binding mitochondrial carrier protein Aralarl
12Sulfide:quinone oxidoreductase, mitochondrial
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4.4 Changes in poolsizes in dysferlinopathy are stable,
irrespective of the fuel source

Despite the levels of all proteins involved were similar between samples from mice or
humans with dysferlinopathy, my predecessor Sarah Keller [1] had found a block of
glycolysis at the level of hexokinase II. This was inferred from the result, that the poolsize
of G6P and the downstream metabolites was reduced in disease, whereas the metabolites of
an alternative pathway through sorbitol showed higher levels. Metabolite poolsize however
does not allow to infer speed of a reaction, since every reaction can be reversed, and it is
never clear, if accumulation occurs through blockade of the following reaction step, or by
higher activity of the preceding step.

Another issue to be investigated was glucose uptake and possible routing through
the glycogen pool. About 80 % of the glucose taken up into non contracting muscle is
temporarily stored as glycogen. [37] As such it was of major importance to see if glycogen
build up is impaired in dysferlinopathy. For this the method established by MATTHIAS
PieTzkE and CHRISTIN ZAsADA was extended to also include precipitation and hydrolysis of
glycogen, enabling us to trace label incorporation into glycogen.

After I successfully tested several '*C-substrates, I tried to label myotubes generated
from samples of patients suffering from dysferlinopathy with '*C,-glucose or *C,-3-
hydroxybutyrate.

Using glucose, label was detectable normally. For 30HB no conclusive results regarding
label incorporation could be obtained. This might be due to several reasons: In the body
ketone-body levels rise in states of increased turnover of fatty acids in the liver, when
insulin levels are low. However, the cell culture media SKMGM contains high levels of
insulin, more than 10 fold higher, than physiological level.'® This high level is needed to
keep the primary muscle cells growing.

It was not the aim of this thesis to define a cell culture model mimicking a ketogenic
nutrition state. Also, it is hard to know, at what point cells would stop to grow, if insulin
levels are reduced, since it is likely, that this varies strongly with the respective patient.

The media was also deprived of glutamine, which is used to replenish TCA-cycle
intermediates (TCAis). The absence of glutamine may have hindered his. When labeling
with 30HB, the myotubes were confronted with an unphysiological situation: high insulin
levels, no glucose but 30HB and no glutamine. This might have led to an extreme

retardation of metabolism.

3The exact level is known to me, however I was asked by the manufacturer to keep it confidential.
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If only poolsizes are regarded, interesting similarities, despite the change in fuel source,
have been found. The occurrence of higher sorbitol and fructose levels are rather stable;
in general, if a certain metabolite was up or down regulated in both carbon-sources, the
direction of fold-change always stayed the same. This points towards an underlying stable
adaptation to the metabolic situation, where glyoclysis seems to be impaired.

If glycolysis is impaired, the cell has to use other carbon sources. Oil-red-O-staining
of cells of patients suffering from dysferlinopathy shows high levels of lipids'#. This led
to the assumption, that these cells predominantly thrive on lipids as carbon source. This
theory is underpinned by the upregulation of TCAi and members of the pentose phosphate
pathway (PPP). The PPP because this pathway provides reduction equivalents used to
replenish glutathione, which in turn is used to ameliorate oxidative stress provoked by
hightened TCA-activity.

Creatinine, as a marker for general energy availability in the cell is extremely down-
regulated if 30HB is provided as fuel source. This is not the case, if glucose is provided
as fuel source. This points toward decreased energy availability in the unphysiological
state, whereas under glucose treatment, the observed rerouting through the polyol-pathway
seems to at least partially compensate for impaired glycolysis.

The upregulation of ornithine and urea shows heightened protein breakdown through
proteolsysis, likely to compensate for lower energy availablity. This increased protein
breakdown likely contributes to the overall disease symptoms.

The metabolite poolsizes overall substantiate the hypothesis, that in dysferlinopathy,

there is an incomplete loss of function of hexokinase II.

4.5 Labeling experiments confirm an impairment of hexokinase Il
in dysferlinopathy

As mentioned above, regarding label incorporation, no conclusive results could be obtained
from labeling with '*C,-3-hydroxybutyrate. There was only very little label incorporation
in general and a high unspecific background in the '>C-3-hydroxybutyrate treated controls.
General tendencies favor the hypothesis, that myotubes derived from patients that that
suffer from dysferlinopathy show a faster running TCA-cycle, but overall the quality of the
data does not warrant to draw this conclusion.

The data from labeling with!3C,-glucose, fits the hypothesis of a loss of efficiency of
hexokinase II. While there is no difference in label incorporation in sorbitol, G6P and

14in mice [217], but also in humans SPULER group, unpublished
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downstream metabolites as lactate but also glyocgen show slower label incorporation.
After a longer period of time, the same level of label incorporation is reached. Although
for glycogen this has not been shown, because the overall poolsize of glycogen is rather
big and labeling to saturation would take longer than experimentally feasible. This means
that hexokinase II is in principle functional, but through the impairment of dysferlin it
cannot function as efficient as in healthy individuals.

In this framework several factors can have an influence on the glycolytic flow through
hexokinase II (HKII). The substrate of HKII, glucose, has to be taken up into the cell. In
muscle this is predominantly achieved by use of either the insulin independent transporter
GLUTTI or the insulin dependent uptake by GLUT4.

It was shown, for C2C12-derived myotubes, that they express far more GLUT1 than

GLUT4. This contrasts the situation in muscle tissue, where by far GLUT4 is the more
dominant means of glucose import into the muscle cell. [113].
If GLUT1 or GLUTH4 is responsible for the uptake of glucose in our cell culture model is
however of secondary relevance, since the label incorporation into sorbitol is not different
between patients and healthy individuals. Also, as mentioned above, availability of insulin
signal is certainly not the limiting factor.

Any metabolic cascade functions more efficiently if its members are in close vicinity, so
that diffusion paths of intermediate products are short, and if the respective substrates are at
high enough concentration. [209, 210] When glucose is inside the cell, it is phosphorylated
by hexokinase II. This lowers the concentration of glucose itself and shifts the dynamic
equilibrium to facilitate further import of glucose.

For the G6P formed by hexokinase II two main routes exist. Either it can pass through
glyocolysis with glucose-6-phospate isomerase forming fructose-6-phosphate as the next
step, or it can be funneled into the glycogen pool by means of phosphoglucomutase, that
forms glucose-1-phosphate which is then polymerized as glycogen.

The downstream products of both these pathways show slower label incorporation. This
allows for the conclusion, that the flow through hexokinase II is impaired in patients
suffering from dysferlinopathy.

In her thesis, SARaH KELLER [1] could show, that Quadriceps is the most affected muscle
in dysferlinopathy.

Figure 4.5.1 shows all the enzymes mentioned above, except for GLUT1, which was not
quantified in the muscles. The latter is not surprising, given its generally low abundance in
tissue. [113]

Except for hexokinase II, the enzymes involved in glycolysis and glycogen formation
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Figure 4.5.1: Upper part of glycolysis in different muscle types, relative abundance. Errorbars show 95 %
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confidence intervals based on logarithmic values. Hexokinase II is higher expressed in Tibialis
anterior (TA) while dysferlin is similar expressed in Quadriceps (QUAD). In her thesis,
SaraH KeLLER [1] found, that in BLA/J mice, a well recognized model of dysferlinopathy [74],
QUAD shows a more pronounced metabolic phenotype than TA, whereas there were no
differences in amounts of glycolytic enzymes compared to the respective wild type muscles.
This could mean, that in dysferlinopathy the generally higher expression level of hexokinase II
in TA might ameliorate the lesser efficiency of hexokinase II in dysferlinopathy.

Glycogen figure adapted from HAEGGSTROEM, et al., 2014 [218].



are higher expressed in glycolytic muscle (EDL, QUAD, TA). This reflects their general
reliance on glucose as fuel source. Interestingly GLUT4 is expressed more strongly
in QUAD and TA than SOL and EDL. This is peculiar in itself, when EDL is used as
representative for glycolytic muscle and SOL as representative of an oxidative muscle.
Nothing about this is mentioned by DREXLER et al. [111], who compared EDL and SOL,
and highlights again the particular phenotypes of different muscle phenotypes. Compared
to QUAD and TA EDL has a much higer surface-to-volume ratio and thus EDL simply
might need less GLUT4 in order to ensure adequate glucose import, or insulin signaling
has a different potency on these muscles.

Hexokinase II is comparatively enriched in TA. This could be interpreted as a higher
demand for this enzyme to ensure proper function of glycolysis. Dysferlin, which, accord-
ing to the data presented here, has an influence on efficiency of hexokinase II is highly
expressed in TA which has also a high level of hexokinase II, but also in QUAD which
shows no enrichment for hexokinase II and is more prone to the symptoms of dysferlinopa-
thy. This could be interpreted as follows:

TA shows lower symptoms of dysferlinopathy, since its higher levels of hexokinase II can
ameliorate the lower efficiency of hexokinase II induced through dysferlinopathy, while
QUAD loses its ability to perform glycolysis in a sufficient manner, because it already has
lower levels of hexokinase II being more dependent on efficient performance of the first

step in glycolysis.

4.6 The proteome of dysferlin vesicles reveals secondary
interactions with metabolic enzymes

When regarding the proteomes of dysferlin vesicles (section 3.4) the major concepts among
the proteins found in there are not surprising and reflect the widely accepted function of
dysferlin as a membrane repair and vesicle forming protein. But also new, partly vesicle
mediated interactions have been found, not recognized in the literature thus far. Very
recently L1, etal., 2016 [190] found a role for dysferlin in lipid droplets in heart tissue.
This fits the observation in our data, that several mitochondrial proteins have been identified
as interactors of dysferlin and underlines its obvious involvement in the central carbon
metabolism (CCM) (see figure 3.4.3).

Not only an involvement with mitochondria could be found, but also several glycolytic
enzymes are enriched among the —not exclusively vesicle mediated— dysferlin inter-
actors, namely Aldolase A (ALDOA), lactate dehydrogenase A&B (LDHA, LDHB),
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glyceraldehyde-3-phosphate dehydrogenase (GAPDH), phosphoglycerate mutase (PGAM?2
or 1 or 4) and pyruvate kinase (PKM), as shown in figure 3.4.4 on page 97.

Although hexokinase II was not found as interactor of dysferlin, other glycolytic en-
zymes have been found to be enriched with dysferlin, which reflects an involvement of
dysferlin in glycolysis.

Even though the direct comparison of pulldown-studies contains many pitfalls, since
for example lysis parameters or detergents can have an extreme impact on the results,
our data is in general good agreement with work by bE MoRREE, et al., 2010, [183] and
FuLix, etal., 2013 [184]. In these studies also several of the aforementioned glycolytic and
mitochondrial enzymes have been found, but an involvement in glycolysis has not been
discussed so far. DE MORREE, et al., 2010 attributed the enrichment of metabolic enzymes
in general and mitochondrial enzymes in particular to “the high content of metabolic
enzymes in muscle”. While this is undebated here, thanks to the vast effort to have reliable
controls, it can be stated already from the proteomics data alone, that dysferlin shows an
involvement in central carbon metabolism.

This also reflects that dysferlin is significantly higher expressed in all glycolytic muscles
than in Soleus, as had been found for Extensor digitorum longus also by DREXLER, et al.,
2012 [111], but left undiscussed.

In both bE MORREE, et al., 2010 [183] and Fuix, et al., 2013 [184] also 6-phosphofructokinase
(PFK) has been identified as interactor of dysferlin, also verified by blue native gel elec-
trophoresis. Although it was not present in our dataset, in these studies also muscle tissue
was used, which might explain this. This shows an even greater role for an effect of
dysferlin on glycolysis activity, since PFK is the key regulator of glycolysis. [10]

In regard to the overall changes in metabolism demonstrated by the label incorporation
experiments described above (3.3.4), the dysferlin vesicles proteome nicely reflects the
overall changes in metabolism in dysferlinopathy patients.

In muscle hexokinase is located at the outer mitochondrial compartment [100, 219, 220],
while other glycolytic enzymes have been located in the I-band of the sarcomer. [100, 221,
222] It has been speculated by OHLENDIECK, et al., 2010 [100], that this distinct localization
has an impact on regulation of glycolysis. At harvest, the myotubes enriched for dysferlin-
vesicles by SEVERINE Kunz were in a standard unstimulated state. It might be worthwhile,
to repeat these experiments for starved and insulin stimulated cells.

Dysferlinopathy has been attributed with either a loss of type II fibers or a fiber type
switch of type II to type I fibers. [61] Given the normal fiber classification, that is mainly

based on metabolism, this observation might simply reflect a means by the muscle cell
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to cope with the effects of diminished glycolytic efficiency. In her proteomics data of
dysferlin deficient mice, SARAH KELLER [1] found only very few alterations in overall
protein expression between BLLA/J and wild type muscle. There is a slight increase of
aldose reductase in TA muscles of BLA/J mice. Aldose reductase reduces glucose to
sorbitol, so this observation is congruent with the data presented here.

Regarding proteins, the striking observation was a strong decrease in specifically isoc-
itrate dehydrogenase 2 (IDH2), that uses NADPH as cofactor, opposed to IDH3, which
uses NADH and was not altered.

This again reflects the importance of the PPP in dysferlinopathy. Overall dysferlinopathy
might simulate a phenotype of type I fibers, that could finally force the muscle into a more

type I conform expression profile.

4.7 Possible pseudo-fiber type switch dysregulates overall
metabolism in dysferlinopathy — Reflections of oxygen
availability

To function properly, muscle needs enough oxygen, that is provided by means of myoglobin
mediated diffusion in the long stretched multinucleated cell. Of course glycolytic muscles
show less mitochondria than oxidative muscles, but they still also perform oxidative
metabolism. [47]

Given the structural peculiarities of muscle cells, myoglobin mediated diffusion in these
remarkably shaped cells has been vastly researched. [223] In healthy muscle, diffusion
is not the per se limiting factor for any metabolic activity, but many fibers operate near
diffusion limitation, especially in adults. [224] That means, if there are small pertubations
in this delicate balance, the outcome may be dramatic.

Fiber diameters increase with potential for glycolysis which can function in an@robic
state, given efficient lactate clearance. [225] In dysferlinopathy type I fiber preponderance
has been observed [61], meaning, that type II fibers may switch to type I.

The surface of a fiber, thus the amount of membrane, increases in quadratic proportion
to its diameter. Thicker glycolytic fibers need more membrane, whose repair is impaired in
dysferlinopathy.

If repair is compromised, a first reaction might be overall reduction of membrane. Addi-
tionally production of sorbitol, as observed in dysferlinopathy consumes NADPH, which
leads to production of glycation end-products (AGEs) and reactive oxygen species [226,

227]. AGEs themselves induce a membrane repair defect in muscle fibers similar to the
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one seen in dysferlin-deficiency. [228]

The defect in membrane repair might lead to a shrinkage in fiber diameter, which in turn
heightens oxygen concentration and availability. Higher oxygen levels shift the metabolic
equilibrium to more oxidative metabolism and increase again oxidative stress, and in
turn upregulate PPP. This was also found in the metabolite profiles of dysferlin deficient
myotubes, shown in figure 3.3.8 on page 88.

Oxidative metabolism induces type 1 fiber characteristics in glycolytic muscle [229].

Also upregulated oxidative metabolism blocks glycolysis, albeit most prominent not
at hexokinase-level but at 6-phosphofructokinase (PFK) level [10, 230], the latter be-
ing detected as interactor of dysferlin by bpE MoORREE, et al., 2010 [183] and Frix, etal.,
2013 [184]. Also pyruvate kinase regulates glycolysis. As in both pE MoRREE, efal.,
2010 [183] and Fuix, et al., 2013, its muscle specific isoform was detected in both subsets
of dysferlin interactors (direct interaction and vesicular fraction). It was the only glycolytic
enzyme significantly higher enriched in the vesicular fraction versus the complete lysate,
as shown in figure 3.4.4. It is activated by rise in fructose-1,6-bisphosphate (F1,6BP) levels
and inhibited by rise in alanine levels [10]. Interestingly F1,6BP, a metabolite normally
produced by glycolysis, represents also a connection point of the polyol pathway, which is
upregulated in dysferlinopathy. Consequently F1,6BP is also upregulated, which would
activate pyruvate kinase. On the other hand also alanine is upregulated in dysferlinopathy,

which would downregulate glycolysis.

As a result there are two different metabolic regulators of the same enzyme possibly
producing conflicting signals.

The overall molecular makeup of fast glycolytic muscle is not suited to function under
ATP-availability or at ATP-production speed at the level of an oxidative muscle (table 1)
especially if regulation is overall inconsistent.

Given the novel insights presented here, and that many different characteristics are
tailored to the specific molecular makeup of the muscle, the observed type I fiber prepon-
derance [61] might actually be a “pseudo-switch” resulting from a multitude of failed or
contradictory regulation states. These might lead to the observed disease phenotype of
reduction in type II fibers or an incomplete “pseudo-switch” to type I fibers. Since still the
muscle is partially equipped to import glucose at a high rate, but flux trough glycolysis is
downregulated, glucose is rerouted through the polyol pathway which likely diminishes
energy availability and results in membrane reduction and in turn further oxygen concen-
tration. Given the overall pronounced molecular makeups at isoform level, the overall

isoform equipment of the fiber does not fit anymore to its physical properties, leading to
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many dysregolatory effects, finally manifesting in the phenotype of dysferlinopathy.

Over time epigenetics might adapt to the new metabolic profile, but since dysferlin
also shows high interaction with RNA-processing 7.3.1, there are likely influences on this
adaption.

SaraH KELLER [1] found only very small differences between proteomes of dysferlinopa-
thy deficient mice and wild type. But regulatory effects can also be exerted directly by
(micro)-RNA. [231]

Overall in dysferlinopathy molecular makeup and physical properties do not fit anymore,
which leads to disease.

This also fits to the onset of dysferlinopathy in puberty. Especially in adolescent males,
when muscles grow, their volume increases, also at fiber type level. [232] Perhaps in
childhood the aformentioned effects can be compensated but when this balance is tilted
further, the clinical phenotype manifests.

This hypothesis could be possibly tested by a longitudinal study of children and young
adults, using an exercise protocol, similar to the one employed in our proof-of-concept
study, where we were able to show influences of oxygen availability and its consequences

on metabolism wich will be discussed in section 4.8.

4.8 Exercise and self-reported energy state are reflected in the
metabolome of blood

The data obtained from a single human volunteer performing endurance exercise enabled
us to recapitulate well established knowledge but also to gain novel insights regarding the
mechanism behind the phenomenon described as “Hitting the Wall”.

During exercise, an initial glycolytic phase was followed by a second phase in which
free fatty acids (FFAs) and ketone bodies were abundant, while glycolysis contributed less
strongly to meet the energetic demand. These two phases were separated by the “crisis”
and subsequent “high” feeling.

All this might not represent novel findings, but we wanted to see, whether our findings
in a single individual correspond to established knowledge, which is the case. Thus we can
say, that our findings seem to be valid and might allow for deeper interpretation, especially
regarding the fact, that the findings we reproduced here stem from multiple separate studies,
while our method allows for similar results, but from a single experiment. This encouraged
us to further study our dataset in order to gain a deeper understanding of the metabolic

crisis when our subject was “Hitting the Wall”.
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As erythrocytes lack mitochondria, the pentose phosphate pathway (PPP) is the only
means of efficient NADPH regeneration, which is required for the regeneration of the
antioxidant and main radical scavenger glutathione. [233] This points towards an increase
in oxygen turnover by the erythrocytes. Taken together, while the TCA-cycle, most likely
in muscle, appeared primed for activity by L2, the body of our subject suffered an acute
oxygen shortage during the crisis. This has already been shown by BowTELL et al., however
only for measurements of the combined TCAi. [234, 235] Our approach enabled us to
separate those and to find the lagging behavior of citrate compared to the other TCAI (fig-
ure 3.5.6).

Oxygen release mediated by 2,3-BPG caused a short pulse of oxidative stress in erythro-
cytes, and only after the establishment of sufficient oxygen distribution did citrate levels
rise, indicating a fully active TCA-cycle and the resolution of the crisis (figure 3.5.4).
The TCA-cycle activity remained elevated after the crisis in accordance with increased

availability of both FFAs and ketone bodies during the second phase of exercise.

4.9 The minimal invasive sampling of blood from the fingertip
might provide a tool in muscle disease diagnostics

This study was made possible by a reliable, informative, minimally invasive, and GC-MS
based metabolomics approach adapted to minimal sample size using an optimized sample
preparation and measurement procedure. The data obtained albeit from one experiment
performed with a single individual, as is usually the case in personalized medicine, not
only allows for the recapitulation of many known facts in exercise physiology in one single
experiment, but its application in a longitudinal study provided a possible mechanistic
explanation for an exercise-induced metabolic crisis in our subject.

It could therefore be sufficient to obtain real-time mechanistic assessments of many
pathophysiological conditions and medical interventions that affect the metabolism of
an individual subject and whose detailed mechanisms are unknown, especially since our
method is untargeted and thus does not require early assumptions about the metabolites to
be characterized. Assessing metabolism is of particular interest, because it represents both
genetic predispositions and acute lifestyle influences. [236]

The sampling procedure, similar to a diabetic’s blood glucose test, is minimally invasive
and can be repeated frequently and easily without ill effect, encouraging the investigation
of dynamic physiological responses to homeostatic challenges, diseases, or treatments.

Specifically, the liquid-liquid sampling strategy preserves the metabolic homeostasis in
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the analyzed specimen and favors a realistic perspective of metabolism. However, each
method has limitations and sources of errors must always carefully be evaluated. Sampling
capillary blood may be a source of variation by itself, but also the thickness of the blood
and impurities due to the sampling procedure might affect the results. We tried to account
for that by our normalization strategy, where we assumed, that not all metabolites would
shift in the same direction from sampling point to sampling point, but that the overall AUC
of the chromatogram would not change. Since we were able to reproduce well established

knowledge our sample handling and analysis seems to be generally sound.

Opposite to such error is the easiness of the procedure allowing the sampling at nearly
every place and condition. In case of exercise monitoring the obtained biological variation
may clearly exceed the variation introduced by the procedure. For other conditions this
has to be tested as prerequisite for the study design and choice of the method. The
analysis of whole blood does not complicate the interpretation of the data, but rather both
simplifies sampling and sample processing. At the same time it allows for novel insights by
capitalizing on the diagnostic potential of erythrocytes that regulate oxygen homeostasis
and are discarded in most diagnostic assays. This crucial metabolic parameter would

usually require complementary methods.

The identification and quantification of key metabolites that serve as the branching
points of interconnected, but often separately considered, metabolic pathways allows for a
true systems interpretation and understanding (figure 3.5.1). We observed known metabolic
changes throughout exercise, such as an initial reliance on glucose as the main fuel source,
the subsequent activity of the Cori cycle, as well as fatty acid mobilization as indicated by

increases in glycerol, palmitate, and stearate [162, 198].

In conservative methods, the investigator or clinician has to select for a comparatively
small panel of metabolites. The potentially novel mechanism for the metabolic crisis
of “Hitting the Wall” was identified by combining known facts about single metabolites
and pathways, such as 2,3-bisphospho-glycerate (2,3-BPG) and ribose-5-phosphate (R5P)
and ribulose-5-phosphate (Ru5P) as regulators and indicators of oxygen homeostasis [12,
13, 233]. Thus, by summarily considering the orchestrated interplay of different tissues
reflected in the blood metabolome, new insights might arise from truly novel relationships
or metabolites, but also the integration of previously separately considered and reported
phenomena (figure 3.5.4).

This has allowed us to find indications of why the volunteer “feels bad” when “Hitting the
wall” during exercise. The advance of research technology into its meaningful application

in systems medicine is often particularly difficult with omics technologies. They require
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extensive time consuming data analysis and the ability of experts to distill the vast datasets
into their fathomable essentials that represent the explanatory components. Also, because
of the high variablility of humans, due to nature and nurture often very big cohorts are
averaged in (metabol-)omics studies. This is actually the opposite of personalized medicine
and might in the end lead to a loss of information. In our case, the explanatory components
were sufficient to replicate the relationships of sampling time points, indicating that it is
possible to identify and elementarily understand systemic metabolic states in a humans or
patient, respectively, just based on this individual alone, that serves as its own baseline.
This condensation of the entire dataset into its essentials facilitated understanding and
allows its efficient communication (see figure 3.5.9) to clinicians.

The advance of metabolomics from an explorative to a robust, reliable, and reproducible
method that provides a consistent quantification over large sample batches is required for
the transition into an applied, medically relevant technology. We suggest that GC-MS,
coupled with our liquid-liquid sampling method that facilitates high time resolution and
assessment of oxygen homeostasis, provides sufficient information for the transition from
large cohort studies to personalized medicine and analysis.

The key to this transition is not to consider only whether observations in single individ-
uals must generalize to whole populations while asking the question why and if cohort
study findings are frequently not meaningful for individual patients. The demonstration
that mechanistic observations can be made and metabolic states rationally defined in single
individuals shows that studies on single individuals might deliver further insight in a
patient’s disease state. We have here presented a systems medicine platform that may
soon allow clinicians to obtain biologically meaningful insights within days from sample
collection from single individuals. Its focus lies on the personalized monitoring of dynamic
responses to stimuli and longitudinal preventative monitoring and offers the possibility of
personalized diagnosis and research. Unlike common cohort studies, this method is there-
fore aimed at identifying potential metabolic mechanisms instead of statistical differences

of averages of large, heterogeneous populations (i. . common biomarkers).

4.10 An individual could serve as its own control

Heterogeneity especially influences metabolomes as lifestyle and diet affect it more strongly
on short time scales than proteomes, genomes, and epigenetic settings. Paired sample
series are essential for comparability but simultaneously offer more meaningful information
about the acute physiological states and responses than other technologies that produce

snapshots.
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In the envisaged setup the individual would serve as its own control. Given the fast
responses and high dynamic of metabolism, it seems imperative, that the individuals
physiology is challenged, e. g. by exercise or ingestion of certain food, which might briefly
enlarge underlying deregulations of metabolic control.

Personalized monitoring will reduce issues of comparability between people of different
ages, lifestyles, diets, and gender through paired controls, and might provide an alternative
route to biological understanding of diseases by allowing for targeted n = 1 analyses,
instead of the more common large » studies [237]. This could lead to a bench-at-bedside
technology that might bring a wealth of n = 1 experiments analogous to studies of
individuals with rare accidents or genetic mutations that have proven invaluable for a
variety of medical fields. We therefore believe that this platform, from a single drop
of capillary blood to the identification of mechanistic metabolic insight in humans, is a
significant advance towards omics-based systems medicine and could be of great value to
clinical research and diagnostics.

Given the central role of muscle in nutrient and energy turnover, especially in muscle
disease perturbations of metabolism are to be expected. Similar to protein biomarkers of
muscle damage, like creatine kinase and myoglobin [238, 239], especially under exercise
conditions muscle is likely to be a main contributor to metabolic changes. The extent of
this could be verified by microdialysis, that samples interstitial fluid. Comparing dialysates
of muscle and fat tissue to blood samples obtained in various conditions could expand the

current strategies in metabolic assessment by calorimetry in a metabolic chamber.

4.11 The combination of omics techniques allows to find more
holistic insights into diseases

The adaption of physiology happens at various speeds on different layers of control. While
the genetic makeup changes over (many) generations, transcription and translation can
change in days to hours. However the fastest observable shifts are on metabolic and
hormonal levels: in the instance we decide to move —or not to— metabolism adapts to the
particular needs, given an overall healthy body. [240]

In minutes to hours also the proteomic makeup of the body changes, the body adapts to
external challenges. If this is prolonged, fundamental physiological changes ensue, as for
example in exercise training. [223] Muscles can change their molecular makeup so far on
a molecular level, that they change their former classification type. [61, 108—110]

I could show, that muscles have a unique molecular makeup. Normally fibers are
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classified in slow (type I) vs. fast (type II) with three subgroups of type II (IIA, IID or X
and IIB). However, many mixed forms exist, and with novel techniques more and more
subclasses might be revealed. I did not discern the muscles on single fiber level as was
done by MuRaIa, et al., 2015 [204], which is also interesting and suggests, that there might
even be differences between and along fibers that would be classified into one of the four
classic types mentioned, since the molecular makeup is highly adaptable and changes
during training or in disease are perhaps even more subtle than can be detected by MYH
isoform.

This is interesting for basic research, but in a clinical focus, the phenotype of muscle as
a whole has to be addressed.

Dysferlinopathy starts to manifest during puberty, when glycolysis becomes a more
important source of energy. [8, 70-73] The disease phenotype of dysferlinopathy is much
more pronounced in glycolytic muscles than in oxidative muscles in animals [74] and a
decrease in type Il fibers is observed in humans. [61, 241]

This is attributed not only to a loss of type Il fibers, but also a switch of fiber type
towards type I fibers. [61]

With the data presented here, I could show that the point of regulatory impact in
glycolysis is at the level of hexokinase. Not only are poolsizes of metabolites further
downstream the glycolysis decreased and the polyol pathway increased, but also the
formation rate of the glycolytic metabolites is altered in dysferlinopathy. The differences in
poolsizes of glycolysis and TCA-cycle had also been found by SarRAH KELLER [1], on whose
work this experiment is primarily based. I could additionally show, that there are differences
in the poolsizes of PPP and TCA-cycle, interestingly also in 2-hydroxyglutarate (20HG),
a marker for oxidative stress, that also has a regulatory effect on glycolysis. [211, 214-216]

The change in poolsize can have many reasons since metabolites are normally substrates
and products at the same time. pSIRM allows to infer the speed at which these metabolites
are formed. I could show, that the rate at which glycolytic intermediates and glycogen are
formed i1s altered in dysferlinopathy. Starting from glucose-6-phosphate (G6P) through
lactate, label incorporation is slower in glycolysis, while it is not altered in the polyol
pathway.

Dysferlinopathy seems to be caused by two different changes in the cell: on the one
hand, membrane repair is slowed [67, 68], but also glycolysis, in fibers that are very reliant
on this energy source is slowed down. Not only cell repair itself is compromised, but also
energy for overall proper function is low.

The delineation of dysferlinopathy as metabolic disease, was only possible, because biop-
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sies from patients had been taken, which always means to further traumatize a potentially

diseased tissue of a patient.

If we could infer metabolism also from more easily obtainable material like blood, this

would mean a great deal for clinical investigations.

In the study of the changes of the blood-metabolome of a single human volunteer, we
were able to find known interrelations, but through the systemic and systems biology based
approach of our technique, we could also find a possible explanation for the phenomenon
of “Hitting the Wall”. We were also surprised to find, that the state of self reported rate of
perceived exertion (RPE) [195] is also highly reflected in the metabolome. This reflection
is also based on many metabolites, that were not included in databases used for annotation
and are thus “unknown”. The revelations that can be expected, when databases will grow

more and more in the future are surely exciting.

Except for the study on human blood, where we included the free fatty acids (FFAs), I
only regarded those metabolites that are classified as “polar” (e. g. sugars, sugar-phosphates,
amino-acids, carboxylic acids). Especially since dysferlin seems also to have an influence
on lipid droplets [190] and because of its general involvement in membranous exchanges,
analyzing lipid composition from the samples obtained is surely of interest for the future.
Several interesting tendencies in the profiles of FFAs were observed, as periodic oscillation
or distinct separation between the early and late phase of relase (figure 3.5.5). General
pathways of lipid formation are known and for some species also some of their influences
on biological systems, but overall lipidomics is a relatively young field and knowledge is
mostly based on comparison of abundance in comparison to treatment. There are efforts on
the way to aggregate this knowledge [242—-244] but because of lack of general knowledge,
and only one technical replicate of measurements is available we did not dare to interpret

the possible mechanisms behind these patterns.

Another point to investigate will be the need for and kind of challenges that provoke the
emergence of certain metabolic phenotypes. The power of our model of n = 1 studies is
based on the absence of need for a control group, if challenges are applied, or if lifelong
monitoring at regular intervals is used to monitor overall health status. Because our
technique causes minimal harm, a combination of both is conceivable: a challenge regimen
every few months, where frequent samples are obtained while external stimuli are applied.
This would not only allow for high resolution in time, as is needed in metabolomics, but

also the individual investigated served as its own, best matched, control.
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5 Conclusions—Towards a more holistic medicine

Regarding the results from the experiments presented above, it can be said, that certain
conclusions might only be drawn from the completeness of the data, a systems biology

approach offers.

Only thanks to a metabolomic and proteomic dataset obtained from whole muscle of
the same animals, I could unambiguously show that metabolite levels do not necessarily
reflect protein levels and vice versa, similar to the relation between transcriptome and
proteome [107]. This might be trivial, but it will be crucial to understand which direct
relations between metabolites and proteins exist, since both regulate each other. Of course,
there are other layers involved, still not discussed here, as hormonal regulation [245] or
general cell signaling through phosphorylation cascades, but for this kind of data systems-
or omics techniques are just starting to mature to a level, that allows for a complete
integration. Also for metabolomics, let alone its integration with proteomics data, data
analysis pipelines are far less standardized than for transcriptomic or proteomic data and

their integration.

However interpretability of metabolomics data might even be superior to that of pro-
teomics data, since many pathways of the more abundant (polar) metabolites are available,
whereas, except for metabolic enzymes, for proteins in general only few established path-
ways exist. These are more aggregations of interaction partners, but general concepts are
hard to discern. GO-terms, of course, provide a feasible classification of the proteins found
in a certain subset of data, but this allows seldom for a direct inference of knowledge,
i.e. the direction of regulation is not given by the simple membership of a protein to a
GO-term.

This lack of interconnectedness of knowledge also is a hindrance in analyzing lipid

species, because very little knowledge on regulation, influences or even pathways exists.

In the study of metabolites in blood during exercise, we were not only able to find known
mechanisms, that had been established through decades of scientific work on cells, animals
and large cohort studies, but through the systemic approach of our technique, we could

also find a possible explanation for the phenomenon of “Hitting the Wall”.

Of course, we would not have been able to understand these interrelations if their building
blocks, found by decades of scientific work on cells, animals and large cohort studies
would not be available in the literature. But it seems that we are now able to interconnect
this fragmented knowledge generated by ever more detailed fragmentation of biological

systems to a more holistic systems understanding; especially in metabolism, which reflects
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not only nature from the long standing predicament of nature vs nurture [236] but also the
daily, or even minute-by-second influences on and in the human body opening the field to
an even deeper understanding of those influences even in regards to the microbiome.

As often in the history of biology, having new techniques at our disposal, taking a new
look grants new and more differentiated insights. Naturally the current classification of
fiber types is valid, useful and merited, but at the end physiological makeup escapes from
classification with increase in detail resolution offered by current mass spectrometry based
techniques.

I only interpreted the results obtained from studying different muscle fiber types in the
light of dysferlinopathy and its connection to glycolysis, but there is no telling in what
insights an application of these techniques to patient tissues or regarding other diseases
might yield. Also, as with every systems biology approach, data mining depends a lot on
the interest of the investigator. With omics techniques, many different questions can be
asked to the same dataset. This can lead to over interpretation of results, but for hypothesis
generation, these techniques and the integration of the data is of unprecedented worth.

We were not only able to pinpoint the disturbance in metabolism of dysferlinopathy, but
also, through further analysis of compartments of the cell formed by dysferlin, to give a
possible mode of action for our observations. Also the data in the literature corroborates
this, but the conclusions we found could not have been drawn from proteomics data alone
and were not discussed thus far.

This again highlights the power of integration of multiple omics techniques, and I am
looking forward as to where future advancements in technology and data integration might
lead. In our proof of principle study of human exercise, we were able to delineate the
sample relations to nine key metabolites. If this turns out to be a general applicable strategy,
such a reduced dataset could be easily communicated to clinicians.

In order to make this advancement in technology feasible and accessible to medical
personnel and scientists from other fields, a lot of development is still needed, especially
regarding data analysis.

But also standardized sample handling is a major issue, especially in metabolomics.
Since metabolites are often highly reactive, data quality hinges paramount on proper
pre-analysis handling.

Because of the chemical diversity of metabolite classes, e. g. sugars, amino-acids, FFAs,
lipids or nucleotide species, sample handling in metabolomics is quite laborious. Unlike
DNA, RNA or proteins metabolites can not be precipitated to separate them from other

components of a sample, but a liquid-liquid extraction is needed.
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To truly bring the analysis of blood samples from the lab into the clinic, the aforemen-
tioned standardization is indispensible and also, if high frequent sampling techniques are
applied the number of samples will surely increase dramatically compared to a research
setting.

As a first step toward this goal, in collaboration with an industry partner, I was able
to design a robot, that not only is capable of sample handling, but also can prepare the
laborious control mixtures, that are used to verify identification of metabolites as well

ensure comparable quantification over long periods of time.

“Impossible!” said the present.

—“Try it...”, whispered the future.
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6 Publications

Publication of the integrated metabolome and proteome data of mouse muscles will be

pursued and the manuscript soon ready for publication.

The manuscript regarding dysferlins new role in glucose metabolism has recently been

submitted in the following form:

Dysferlin guards glycolysis in skeletal muscle
Verena Schoewel*, Tobias Opialla*, Séverine Kunz*, Sarah Keller*, Anja Maehler, Fabio
E. Rojas Rusak, Helena Escobar, Eric Metzler, Matthias Pietzke, Christian Herrmann,
Michael Boschmann, Guido Mastrobuoni, Andreas L. Birkenfeld, Hadi Al-Hasani, Mathias
Treier, Stefan Kempa*, Simone Spuler*

*contributed equally

The manuscript of the proof of principle study about reflection of muscle metabolism
in the blood during exercise is very close to be ready for submission and will be sent out

within a few days after submission of this thesis.
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7 Appendix

7.1 Example of a typical dotplot

7.2 Volcanoplot of the changes in poolsizes depicted in
figure 3.3.8

7.3 Treemaps for GO-term enrichment in dysferlin pulldowns with
different cutoffs
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Figure 7.1.1: Exemplary CLEVELAND plot of the loadings of principal component 2, when all features (metablites and proteins) are used in a principal component
analysis (PCA). The features deemed as “important” or strongly influencing the separation along the respective component, as determined by

hierarchical clustering are marked in red.
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Figure 7.2.1: Volcanoplot of foldchange in poolsize of the respective metabolites and corresponding p-
P g p P p gp

values, normal controls vs. patients with dysferlinopathy. The dashed lines indicate cutofts at
p < 0.05 and absolute fold change of > 1.5 .

Myotubes were incubated with 13C,-3-hydroxybutyrate (top) or 13C,-glucose (bottom).
Metabolites found significantly changed in both experiments are labeled with black text.
If a metabolite was changed significantly in both treatment conditions, orientation of the
regulation stayed the same. As found in the initial experiments by Sarah Keller [1] sorbitol
and fructose as members of the polyol pathway are upregulated, while glucose-1/6-phosphate
is downregulated. Additionally members of the pentose phosphate pathway (PPP) (xylose,
gluconate-6-phosphate, ribulose-5-phosphate, ribose), and the sugars lactose and maltose are
also upregulated. Whereas, except fumarate and isocitrate, no intermediates of the TCA-cycle
were found significantly changed under glucose conditions, o-ketoglutarate, 2-hydroxy-
glutarate, succinate and malate were all found to be enriched in myotubes of dysferlinopathy
patients when presented with 3-hydroxybutyrate as carbon source. The upregulation of
the PPP is overall more pronounced in 3-hydroxybutyrate conditions. Creatinine Wiﬁg
is spontaneously formed from creatine was only measured in the control myotubes, while
ornithine is upregulated.
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Figure 7.3.1: Treemaps generated with REViGO [174]. Top: GO-terms found enriched in the separate
“cloud” from figure 3.4.2 with GOrilla [173]. Bottom: GO-terms found enriched when a much
more relaxed cutoff (5o = 2, FDR = 0.05) is used. In both subsets, GO-terms enriched are
mostly RNA-related. As a second major theme, vesicle formation/protein transport emerge.
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Figure 7.3.2: Treemaps generated with GOrilla [173] and REViGO [174]. Top: GO-terms found enriched
when the lowest fold change and highest p-value of those proteins in the “cloud” from
figure 3.4.2 were chosen as cutoff. Bottom: GO-terms found enriched when a much more
relaxed cutoff (so = 2, FDR = 0.05) is used. In both subsets, GO-terms enriched are mostly
vesicle transport related. Under the more lenient cutoff (bottom) also the response to outsided
stimuli is an important theme.
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