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Abstract

Coherent di ractive imaging with X-ray free-electron lasers (X-FEL) promises
high-resolution structure determination of single microsopic particles without
the need for crystallization. The di raction signal of small samples can be very
weak, a di culty that can not be countered by merely increasing the number
of photons because the sample would be damaged by a high abbed radiation
dose. Traditional X-ray crystallography avoids this problem by bringing many
sample particles into a periodic arrangement, which ampli es the individual sig-
nals while distributing the absorbed dose. Depending on thesample, however,
crystallization can be very dicult or even impossible. Thi s thesis presents
algorithms for a new imaging approach using X-FEL radiationthat works with
single, non-crystalline sample particles.

X-FELs can deliver X-rays with a peak brilliance many ordersof magnitude
higher than conventional X-ray sources, compensating for heir weak interac-
tion cross sections. At the same time, FELs can produce ultreshort pulses
down to a few femtoseconds. In this way it is possible to perfon ultra-fast
imaging, essentially freezing the atomic positions in tme and terminating the
imaging process before the sample is destroyed by the absath radiation.

This thesis primarily focuses on the three-dimensional reanstruction of
single (and not necessarily crystalline) particles using cherent diractive
imaging at X-FELs: in order to extract three-dimensional information from
scattering data, two-dimensional diraction patterns fro m many dierent
viewing angles must be combined. Therefore, the diractionsignal of many
identical sample copies in random orientations is measuredThe main result
of this work is a globally optimal algorithm that can recover the sample ori-
entations solely based on the diraction signal, enabling tree-dimensional
imaging for arbitrary samples. The problem of nding three-dimensional ori-
entations is reduced to one-dimensional sub-problems by ainging di raction
patterns in geodesic similarity sequences. Relations bewen the one-dimen-
sional sub-problems are established by identifying rotatbns about the X-ray
axis and one-dimensional solutions are combined into a thre-dimensional ori-
entation recovery. The global optimization approach ensues that information
is extracted from the whole di raction dataset, not only ind ividual di raction
patterns. Therefore this method can cope with di raction data sets consisting
of individual di raction patterns with weak signals. The ge odesic approach can
handle datasets from inhomogeneous samples as well as sasgpWwith symme-
tries. A successful application to experimental X-FEL datais shown, resulting
in the rst three-dimensional reconstruction of a nanoparticle using X-FEL
coherent di ractive imaging.






Zusammenfassung

Kohéarente Abbildung mit Rontgenlasern (X-ray free-electron lasers, X-FEL)
ermoglicht die Strukturbestimmung von einzelnen mikroskgischen Teilchen
mit hoher Au 6sung, ohne dass ihre Kristallisation notwendig ist. Das gestreute
Signal von kleinen Proben kann jedoch sehr schwach sein. Bie Schwierig-
keit kann nicht einfach durch mehr einfallende Photonen umgngen werden,
da die Probe bei der Absorption einer hohen Strahlendosis $aden nimmt.
Herkdmmliche Kristallographie vermeidet dieses Problem drch das periodi-
sche Anordnen vieler Probenteilchen, wodurch das Signal vstarkt und die
Strahlendosis verteilt wird. Je nach Probe kann die Kristalisation jedoch sehr
aufwéandig oder gar unmaoglich sein. Diese Arbeit behandelt Ayorithmen fiir ein
neues bildgebendes Verfahren mit X-FEL Strahlung, das ohn&ristallisation
auskommt.

Mit X-FELs kénnen Réntgenstrahlen mit sehr viel hoherer Spizenbril-
lanz erzeugt werden als mit herkbmmlichen Réntgenquellensomit kénnen die
schwachen Wechselwirkungsquerschnitte von Roéntgenphoten mit Materie
kompensiert werden. Gleichzeitig kdnnen diese Rontgensthlen sehr kurz
gepulst werden, bis hin zu wenigen Femtosekunden. Dadurchakn eine Bild-
gebung erreicht werden, die so schnell ist, dass die Atompi®nen zeitlich
eingefroren werden und ein Abbild der Probe erzeugt wird,bevor diese durch
die absorbierte Strahlung zerstort wird.

Das Hauptaugenmerk dieser Arbeit liegt auf der dreidimensinalen Rekon-
struktion: Um dreidimensionale Information aus Streudaten zu gewinnen ist es
erforderlich viele zweidimensionale Streubilder aus vechiedenen Blickwinkeln
zusammenzufassen. Dazu werden Streubilder von vielen idéschen Kopien
der Probe sequentiell gesammelt, wobei jede Probenkopieras zuféllige Orien-
tierung hat. Das wichtigste Ergebnis dieser Arbeit ist ein dobal optimaler Algo-
rithmus, der die Orientierungen allein mit Hilfe der Streubilder rekonstruiert,
wodurch eine dreidimensionale Bildgebung fiir beliebige Raben mdglich wird.
Dazu wird das Problem dreidimensionale Orientierungen zu ekonstruieren
in eindimensionale Teilprobleme unterteilt, indem Streubilder aufgrund ihrer
Ahnlichkeit in geodatische Bildfolgen angeordnet werdenDie eindimensionalen
Teilprobleme werden dann miteinander in Bezug gebracht, idem gemeinsame
Drehungen um die Réntgenachse identi ziert werden. Somit Kknnen eindimen-
sionale L6sungen in eine dreidimensionale Rekonstruktiower Orientierungen
kombiniert werden. Die globale Optimierung stellt dabei sicher, dass die Infor-
mation des gesamten Datensatz genutzt wird, anstatt nur eirzelne Streubilder
zu berucksichtigen. Aus diesem Grund kann diese Methode ahcbei Daten-
satzen eingesetzt werden, bei denen einzelne Streubildeumein schwaches
Signal erhalten. Die auf Geodéaten beruhende Methode kann smhl Daten-
satze von inhomogenen Proben bewéltigen, als auch mit Objegkymmetrien
umgehen. In dieser Arbeit wird eine erfolgreiche Anwendunguf experimentelle
X-FEL Daten gezeigt, die die erste dreidimensionalen Rekastruktion eines
Nanopartikels mit Hilfe von koharenten Abbildungen mit X-F ELs ermdglichte.
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Introduction

Visualizing the microscopic world at the length scale of atos is a fascinating under-
taking that gives exciting insights to many scienti ¢ elds. The development of high
resolution imaging methods has boosted physics, materiatisnce, chemistry and
in particular biology. In biological systems, function andstructure are inseparably
intertwined. This holds for whole organisms as well as for It and for individual
molecules. One of the best known examples of the impact of wttural knowledge
on functional understanding is the structure of the DNA doule helix that was rst
proposed in 1953 by Watson and Crick. As Watson and Crick alaely recognized,
the base pairing in their model immediately suggests a paske copying mechanism
for the genetic material [l]. It is probably fair to say that the insight provided by
this single structure has revolutionized biology. Additioal examples of such high
impact results are the structures of RNA polymerase (for wboh a Nobel prize was
awarded in 2006), the ribosome (Nobel prize in 2009), enzyssuch as the ATP
synthase (Nobel prize in 1996) and several membrane proteifNobel prizes in 1988,
2003 and 2012). At the time this thesis was written, the proia data bank (PDB)
held over 99,000 structures of biological macromoleculéghis considerable body of
information has, over the last couple of decades, changecdettvay in which we view
the living world.

Currently used imaging techniques

The vast majority of these structures was determined by X-gacrystallography, a
technique that was pioneered 100 years ago by Sir William HgmBragg and his son
William Lawrence Bragg. Since then it has been successfully use to determine
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structures at or near atomic resolution. X-rays are an idegrobe for high-resolution
three-dimensional imaging because of their short wavelghg and their long pen-
etration depth. X-ray crystallography takes advantage ofhle ampli cation that is
achieved due to the scattering from many periodically arraged units, theunit cells,
that adds up constructively, causing sharp maxima, the so tbad Bragg re ections.
In this way, N identical copies of the sample arranged in a three-dimensal lattice
result in an ampli ed scattering signal with a Bragg re ection intensity | that grows
quadratically with N: | / N2. Thus, using crystals with many unit cells, the dose of
ionizing X-ray radiation can be reduced, mitigating the e ets of radiation damage.

Even though the experiments are performed on crystalline sgles which has
the potential to introduce artifacts, it has been shown thatbiological molecules
generally retain the same structure as in solution and ofteaven at least part of
their activity. This enables studies on biochemical mechams, for instance by
introducing reaction partners into protein crystals and oberving chemical reactions
using crystallography.

However, the method crucially relies on the ability to grow racroscopic, well-
ordered crystals, a requirement that is not always easily e Membrane pro-
teins and macromolecular complexes are di cult to crystaike. Even if a successful
crystallization can be obtained, it is not guaranteed that he native sample envi-
ronment is preserved. Moreover, while crystallographic gph cation reduces the
dose required to obtain su cient signal, a typical radiation dose used to deter-
mine a protein structure can be as much as 20 MGy][ a dose which is certain
to cause signi cant damage to the sample. Data collection aryogenic temperatures
normally enables the crystal to endure such harsh treatmentbut in several cases
the radiation causes signi cant alterations to the chemisy of the molecule, ren-
dering the resulting structure useless for biological intpretation. Examples include
metalloproteins containing atoms with high atomic numbersuch as the manganese
cluster in photosystem Il B] and heme proteins such as chloroperoxidas§.|

Nuclear magnetic resonance spectroscofMMR) enables structure determination
without ionizing radiation and without requiring crystals. NMR is a spectroscopic
method that can be applied to samples in solution or solid st which relies on the
spin properties of atomic nuclei.
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However, this method has disadvantages, too. NMR signalseatypically weak so
that many spectra need to be averaged to obtain a su ciently fgh signal to noise
ratio. This means that experiments often lasts for severakgs, requiring the sample
to be stable over the course of the experiment. Moreover, inMNR spectroscopy,
peak widths are inversely related to the speed with which thenolecules tumble
in solution. In general, this puts an upper limit of about 50 Ba on the molecular
weight of the molecules that can be investigated, as large taoules give rise to
broad, overlapping peaks, resulting in uninterpretable gxtra.

Electron microscopy(EM) is an imaging method like X-ray crystallography, but
uses electrons rather than X-rays. As these have a much highscattering cross
section, EM is capable of imagingingle moleculesso that crystals are not required
[5, 6]. In a typical EM experiment, the molecules under study arembedded in a
thin Im of vitreous ice and imaged using as low a radiation dee as possible to
minimize damage. This results in low signal-to-noise ratsoof the individual images,
so that several thousands of images need to be collected, tagming many two-
dimensional projections of di erent copies of the moleculdndividual molecules are
then identi ed in these images and grouped into classes, mgsenting di erent ori-
entations and conformations, carrying dynamic informatin. Special algorithms are
then employed to reconstruct three-dimensional structusefrom these projections.
Like NMR, this allows structure determination in a near natve environment without
requiring crystals. In addition, the identi cation of dynamic features is possible.

To a large extent, achievable resolution is limited by radigon damage; the large
cross sections that allow single particle imaging in the ttplace are also responsible
for rapid deterioration of the sample during imaging. Howear, as shown by recent
reports of near atomic resolution structures7], electron microscopy is currently
being revolutionized by new detectorsg|.

At the low doses typically employed to counter this and othee ects, identi -
cation of the molecules for reconstruction becomes di cultif not impossible for
small molecules, currently putting a lower size limit of arond 200-300 kDa on the
molecules that can be studied with EM. Given the mean free patof an electron
in biological materials, there is an upper limit to the thickiess of the sample, too,
precluding the investigation of e.g. the inside of intact laye viruses.
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Towards a new method

As shown above, the structural biologist's toolkit contais a variety of methods for
structure determination, each with its own advantages andidadvantages, with X-
ray crystallography being the principal technique. Howeve as also shown, there is
a need for methods that allow the study of molecules that ard dult to crystallize
and cannot be studied by EM or NMR, for instance because of sifimitations. Also,
the high-resolution information that X-ray crystallography can provide is sometimes
rendered useless by radiation damage, for instance in theseaof highly radiation-
sensitive cofactors. This provides the motivation for the wrk described in this
thesis, which presents important rst steps towards a new ieging method, three-
dimensionalultrafast X-ray Coherent Di ractive Imaging (CDI).

The small interaction cross sections of X-ray photons preae the imaging of
single biological macromolecules as in EM, unless a su ci#y high number of
photons is used. At such high doses however, radiation daneag/ould completely
destroy the molecule under study.

To counter this, it was proposed by Solem9] to combine this large number of
photons in a single pulse of ultra short duration, passing th sample before the
molecule is destroyed by radiation damage. This “outrunnih of radiation damage
is called the Di raction-before-Destruction ' approach.

Neutze et al. [L(] performed theoretical calculations that supported thisdea. In
molecular dynamics simulations of a single lysozyme moléeuthe e ect of sudden,
massive ionization as caused by a femtosecond X-ray pulsesvanalyzed. It was
predicted that the structure remains largely intact duringan X-ray pulse of a few
femtoseconds duration and that the molecule is destroyed & Coulomb explosion
only after the pulse has passed.

Several authors have characterized the damage caused byhhigtensity fem-
tosecond X-ray pulses in more detaillfl, 12, 13, 14].

The dominant primary process is photoionization, whereby photon is absorbed
and an electron is ejected. The lifetimes of the initially geerated electron holes
relevant for radiation damage are on the order of femtoseads [L0]. Relaxation
occurs when an electron from a higher-lying shell lIs the \@ant orbital. The energy
of the relaxing electron can either result in uorescence on the ejection of another
electron in a process known as th&uger e ect. In heavier elements, uorescence is
the dominant process whereas in lighter elements such aslwam, nitrogen, oxygen
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and sulfur, the Auger e ect is more likely. The electrons thaare ejected by primary
processes such as photoelectric e ect, re-absorption ofettX-ray uorescences as
well Auger electrons lead to avalanches of free electronsigihdo even more damage
to the sample. The nal result is the Coulomb explosion: evenally, all atoms of
the sample are highly ionized, causing strong mutual eleostatic repulsion which
causes the sample to explode. However analysis of the timalss involved predicts
that signi cant radiation damage will only set in after the probing X-ray pulse
has left the sample. Moreover, imaging experiments indeedrcrm the feasibility
of "Di raction-before-Destruction' [15].

As in crystallography, CDI requires the retrieval of the phaes of the scattered
electromagnetic wave. In contrast to crystallography, whe the di raction signal
can only be sampled in Bragg re ections, in CDI the sample isom-periodic, giving
rise to a continuous di raction pattern. This enables a saming rate beyond the
Shannon limit [16]. As will be explained later on (see chaptei.1.]), this provides
a set of constraints that can be exploited in iterative phaseetrieval algorithms.

Free-electron lasers

Imaging with ultrashort pulses has now become possible witthe advent of X-
ray free-electron lasers(FEL). These novel light sources provide the high peak
peak brilliance (spectral brightness) and the short pulses required for th&olem
experiment. X-ray FELs are sometimes referred to as fourthegeration X-ray
sources which re ects their descent from synchrotron radi@n sources. Contrary
to synchrotrons, where electrons are kept in a circular stage ring, in FELs elec-
trons are accelerated to relativistic speed in a linear adeeator. The relativistic
electrons are then introduced into an undulator; a periodiarrangement of mag-
nets with alternating polarity, forcing the electrons on a musoidal path with a
xed phase relative to the electromagnetic wave. The resultg alternating accel-
eration causes the charged particles to emit radiation. These of a linear accelerator
allows to decrease the beammittance; the average spread of electrons in six-dimen-
sional phase space. If the emittance is su ciently low, inteaction occurs between
electrons emitted photons, resulting in a nonlinear couplg that groups the electrons
into microbuncheswith the periodicity of the generated radiation. This introduces
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a temporal correlation with the motion of the electrons. In he limit of perfect
microbunching with bunch sizes much smaller than the radian wavelength, allN¢
electrons of a bunch train radiate in phase. This leads to agsii cant ampli cation of
the radiation power ( NZ as opposed td N, in case of uncorrelated emission). The
light that is produced in this way is spatially and temporally coherent, like laser light.
Unlike conventional lasers, which use electrons in boundases as the gain medium,
FELs use free electrons as a lasing medium. Consequentlyge thesulting wave-
length can be tuned in a continuous fashion within a wide speal range, including
the X-ray region. The operating principle of FELs is similarto that of synchro-
trons, however, the resonance e ect leads to a much higheradebrilliance. In current
realizations, the peak brilliance exceeds that of synchmains by nine orders of magni-
tude. At present, two hard X-ray FELs are available worldwie, the Linac Coherent
Light Source (LCLS) LCLS which went operational for users in 20091[/] and the
Spring-8 Angstrom Compact free electron LAse(SACLA) which followed in 2011.
Since then, the construction and planning of many more fatties has progressed.

Serial coherent di ractive imaging

While di raction using FEL pulses yields di raction inform ation of the undamaged
sample in femtoseconds, the following Coulomb explosiorewitably results in the
complete destruction of the samplel[].

Because, as in electron microscopy, a large number of snapshis required
for a three-dimensional reconstruction and to improve theignal to noise ratio by
averaging, the sample must continuously be replenished dog the experiment.
Therefore, the imaging experiment is performed in a serialay, as shown in gurel.
Single objects have to be separated from the bulk and guided the interaction
region. An additional complication is that the imaging (induding scattering and
detection) is performed in high vacuum (10 7 mbar) to avoid absorption of the
incoming X-ray beam and absorption of the signal, and to supgss background
scattering. Three di erent, vacuum compatible techniquesor serial sample delivery
are currently used: aerosol injection, liquid jet injectin and pre-aligned objects
suspended on thin membranes.
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B e Ty 1

Nebulizer aerodynamic lens
stack

Fig. 1. Setup of coherent di raction imaging experiments: a particle stream is intercepted
by the pulsed X-ray beam. In this example, a nebulizer aerodizes the sample and an aerodynamic
lens stack is used to focus the particle stream. Di raction patterns are measured by means of CCD
pixel array sensors which are triggered with the X-ray pulss. The diraction pattern depicted
on the detector plane originates from a T4 bacteriophage vius.

Aerosol injection

The goal of aerosol injection is to introduce single samplegicles into the X-
ray beam without the use of substrates, conserving a liquicasiple environment,
reducing physical stress on the sample object and reducingdixground scattering
by removing as much of the solvent as possible. This is acheelvby aerosolizing the
solvated sample and forming a molecular beam guided by a lowrtsity carrier gas.
In order to increase the chance of hitting a single particle ith every X-ray pulse,
the particle beam is focused by means of gas-dynamic focysiig. The focusing
principle is illustrated in gure 2, gure 1 shows the setup of an aerodynamic lens
stack with di erential pumping: the pressure is decreasedleng the path of the
particle stream and excess gas is removed before particleteethe vacuum chamber.

This sample delivery method relies on evaporation of the seint shell around
sample particles during their ight into the interaction region. However, this evap-
oration is not necessarily uniform and sample particles maye left with di erent
amounts of residual solvent resulting in di erently sized tbplets. Moreover, the
drying process might leave a crust of dried bu er componentsn the surface of the
particles. In addition, multiple particles might reach theinteraction region at the
same time, complicating the analysis of the di raction patern. Thus, all parameters
a ecting the injection process such as gas ow, initial aesol droplet size, particle
density etc. need to be optimized such that the chance of hihg single particles
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is maximized. The substrate-free aerosol injection o ershe possibility to perform
imaging on samples in their native state. However, only vdi¢e bu ers can be used.

° ° e °e ° e ®¢ © 5=0 00 00 o
° ° N
e | | [ focused particle stream >
V
aerosol flow
Fig. 2. lllustration of the focusing principle of an aerodyn amic lens stack. At each

aperture, the gas is compressed, focusing the embedded pites. After it passes the aperture,
the gas can relax and expand, the particles however stay on # central line due to inertia. The
diameters of the apertures decrease along the lens stack.

Liquid jet injection

In liquid jet injection the goal is to inject the sample into the FEL vacuum
chamber while still in native aqueous solution, i.e. it bypsses the need for aerosoli-
sation and drying required for aerosol injection and elimates the need for volatile
bu ers. To generate a micro jet, the solution containing thesample particles is
extruded while surrounded by a sheath of convergent, co- aag gas. This gas sheath
forms a virtual nozzle L9 (see gure 3), focusing the jet into a micron-sized liquid
column. A virtual nozzle, i.e. one made of gas, rather than aeal , physical nozzle
is used since these are less prone to clogging, which is a mmrable problem when
producing microscopic jets of biological samples. In addn, the sheathing gas
prevents freezing of the sample when the liquid enters thea@um chamber. In order
not to compromise the high vacuum environment of the experiemtal chamber,
the co- owing focusing gas as well as the liquid are encase@hin a di erentially-
pumped shroud.

Gas dynamic virtual nozzles (GDVNSs) achieve much higher iegtion e ciencies
than aerosol injectors, resulting in a much higher hit rate the fraction of FEL
pulses that results in a successful diraction event. Howev, the solvent results
in a high background signal, and a strong di raction signatte which complicates
analysis is caused by the surface of the liquid column (seeue 3). Therefore, in
order to achieve su cient contrast between the solvent andhe sample particles, the
measurements have to be performed in the water window (atwavelength between
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2.3 nm and 4.4 nm) where the absorption contrast between canb (sample) and
oxygen (water) is high. Consequently, the achievable restibn is limited.

Fig. 3. Liquid jet . Left: cutaway drawing of a gas dynamic virtual nozzle.Right : di raction
pattern with horizontal (orthogonal to jet) streak signatu re from di raction of the jet's surface
(sample: Cro-virus). The vertical line is a gap between two @tector halves.

Fixed target

Both aerosol and liquid jet injection employ a continuous seam of particles
which is then intercepted by discrete X-ray pulses. The sartg material injected
between subsequent FEL pulses is wasted. This can be avoididdepositing single
sample particles onto thin membranes analogous to the sarepholders utilized in
EM. A disadvantage of this method is high background scatterg, also the orien-
tations of the sample objects may be biased because of pregdralignment to the
substrate in speci ¢ orientations. Fixed targets are nonételess useful to perform
two-dimensional imaging, providing a very stable mode of sgle delivery and every-
thing can be prepared and characterized beforehand.

Sorting di raction patterns

The serial sample delivery needed for three-dimensionahavent di ractive imaging
with FELs can introduce artifacts such assample aggregatesolvent droplets blank
shots diraction from multiple objects ( multi-hit ) and alien objects from impure
sample preparations (see gurd). To a large extent, such artifacts can be recognized
before a three-dimensional reconstruction is performedasng the reconstruction
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process and reducing the chance of such artifacts impairinige result. Statistical
sorting methods have been developed in this thesis to addsetis problem.

Fig. 4. Typical diraction patterns of di erent samples and injection artifacts. In addition
to the desired single sample particles, solvent droplets,ample aggregates and multiple particles
may be present in the interaction region at the time the X-ray pulse passes. (a) di raction pattern
of a large aggregate, (b) solvent droplet, (c,d) single T4 vius phage particles, (f) single nanorice
grain, (g) two grains of nanorice at the same time.

The orientation problem

A di raction pattern provides only two-dimensional information. For a three-dimen-
sional reconstruction, diraction snapshots in dierent aientations need to be
combined. In crystallography, this can be achieved by rotatg the macroscopic
crystal while measuring the di raction signal. Discrete Bagg re ections allow an
exact interpretation of the orientation of a given di raction pattern.

However, the single particle delivery methods employed f@DI described above
share one important limitation: the orientation of the samje object can neither be
controlled nor directly measured. Instead, su cient samphg of orientation space
is achieved because the sample objects are injected in ramdorientations. If the
orientations are known, two-dimensional snapshots can beranged into a three-
dimensional data set. The same problem occurs in electron aroscopy with the
important di erence that in EM, orientations can be recoveed from real space
projections of the object under study, whereas in CDI the cghtations need to
be recovered from diraction data. Another important di erence to orientation
recovery in EM is that the expected signal strength for CDI orindividual mol-
ecules is signi cantly lower than in EM. This also necessitas the development
of new approaches to sorting and orientation.

The orientation problem, the task of obtaining the orientationsa posteriori, can
be solved because a set of di raction patterns originatingdm the same object, with
di raction snapshots that only di er in the object orientat ions will show correlations
that can be identi ed and exploited to obtain relative oriertation information.
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Motivation and outline

The ultimate goal of CDI at X-ray FEL sources is the three-dirensional structure
determination of single molecules At present, many experimental and theoretical
obstacles still remain and this goal is not within reach. Hoewer, during the time
of this thesis, successful proof-of-principle experimenhave been performed using
larger particles, providing strong scattering signals. Té demonstration of a three-
dimensional reconstruction of such a nanoparticle by seti@DIl marks an important
milestone on the way towards single molecule imaging. Be#othis thesis, such a
reconstruction using experimental data had never been show

The main goal of this work was therefore the development andiccessful appli-
cation of data evaluation methods that combine the informabn of many weak two-
dimensional di raction signals into a reliable three-dimasional image of the sample
object. This includes the development of a new algorithm fasrientation recovery
as well as statistical methods to sort di raction patterns.

First, the concepts of coherent diractive imaging are furher developed in
chapter 1. It is shown how a real-space reconstruction can be obtainém dif-
fraction data using oversampling-based phase retrievalgarithms. Speci cally, the
challenges of three-dimensional reconstructions are calesed.

Then, statistical classi cation methods for the sorting ofdi raction snapshots are
described in chapter2. These methods are not only useful to automate the sorting
of many thousands of di raction patterns, but also to provice useful feedback during
imaging experiments that aids in optimizing the injection @rameters highlighted
above.

After this, a novel orientation recovery algorithm, gipral , is introduced and
developed in chapter3. Finally, the classi cation methods developed in chapter
2 and the gipral method are successfully applied to real data collected at afr
ray FEL in chapter 5, resulting in the rst demonstration of the three-dimensimal
reconstruction of a nanoparticle from serial CDI data.
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The theory of coherent X-ray di ractive imaging

Simple transmission lenses like those used in light micrages are not available for
X-rays, since the refractive index of all materials is cloge 1 for such wavelengths.
Grazing incidence re ective optics 20 are used instead to build X-ray focusing
optics. However they can not withstand high intensities anthtroduce a considerable
amount of absorption and aberration, limiting their usefuhess in a high resolution
imaging system.

Therefore, the work presented here focuses dansless imagingwhere the image
is reconstructed computationally, making use of the coharee of the incident light
wave. Without lenses, the Fourier plane of the ray optics iistrated in gure 1.1is
placed at in nity and can approximately be detected by a detetor placed at a long
distance. The the inverse transformation back to real spadeas to be carried out
computationally.

Fig. 1.1. Fourier optics in the 4f geometry. The rst lens located at the focal length f
refracts the cone of rays that originates from each object pmt into a parallel beam. Every point
of the object is spread out into the Fourier plane where a supmosition of the waves is formed that
can be described by a Fourier transform (see eql.1). The same parallel superposition happens
without a lens on a detector that is placed at in nity. The second lens reverses the process which
can be described by the inverse Fourier transform. Without alens the rays keep diverging and
thus the forward transform continues to in nity, but still t he inverse process can be performed
computationally.
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When the light scatters forward from the sample object onto a@etector, each
point on the detector receives light from every point of the ample object, giving
rise to a superposed detector signal which will be calleti raction pattern . Only
elastic scattering will be considered in the following. Inrder to reconstruct the
object image by reversing the formation of the diraction p#étern, the far eld
approximation can be used. The assumption is that the detector is practidglplaced
at in nity when its distance is compared to the wavelength ad the size of the
sample object. Then, the rays that originate from arbitrarypoints of the object
can be considered to be parallel. The intensity that is regered at the detector is
the coherent sum over these rays. The addends of this sum ahe telectromagnetic
waves that originate from single pointg in the sample viaThomson scattering[21],
the elastic scattering by the electrons of the sample. In thiar eld approximation,
di raction can be modeled by Fraunhofer di raction which is the topic of many
textbooks (see e.g.42 21]). In the following, this model is introduced following
the notation of [23]. The amplitude dA of the scattered wave originating at a small
volume elementdV is proportional to the probability of encountering an eleaton
insidedV which can be expressed in terms of the electron densityr) asdV  (r).
The phased' of this wave relative to the wave originating from a refererec point
ro=(0; 0; 0)T (which, for convenience de nes the origin) and travels alanthe
direction of its wave vectork can be calculated asl' =(k ko) r because the
complete path di erence relative to the incident beam ik r/k ko r/k (see g
1.2) with ko and k being the wave vector of the incident wave and the di racted
wave, respectively, andkj = jkoj := k because the scattering is elastic. Assuming a
planar incident wavefront&<* 't the wave that leaves the volume elemerdV (r)
along the directionk can be expressed as the following plane wave at in nity:

dA(r,t) = JAO (r)ei[krdet (k ko) r 'tlqy

I det)

wherer 4 is the position of the detector relative torg and! is the angular frequency
of the incident radiation. In an exact formulation,r 4 would have to be replaced by
the position of the detector relative tor instead of r 4. Not doing so a ects both

the phase and intensity of the wave front at the detector. Hoewer the phase shift
is constant and so of no consequence in an intensity measuest) and the intensity

di erence is negligible given the mismatch in detector disince relative to object
size. Moreoverr g Kk, thereforek rget = jKj jraet) := K Fget.
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The total amplitude of the wave that is detected atr 4¢ can be calculated as the

sum of all amplitudes over all sample volume elements, or thetegral
Z

A(t: q) = rA_Oe it K ger) (r)e '@ dv (1.1)

det Vsample

with the scattering vectorq:= k ko de ning reciprocal space
The constant global phase factor of the incident beam that gends on the choice

of r o relative to the incoming wavefront can be neglected sincedbes not a ect the
intensity at the detector.

Ko

Fig. 1.2. path dierence  between incident wavek, and di racted wave k. Figure adapted from
(23]

In summary, the amplitude of the wave detected as a functionf éhe scattering
vector g is proportional to the Fourier transform of the electron desity (r), as can
be seen from eql.1

The amplitude factors that encode phase and intensity depdron the detector
distance and on the incident intensityA,. For imaging purposes, they are omitted
in the following, as their time-average is constant and onlyesults in a constant
intensity factor. Only the time independent part of eql.1that contains information

about the sample (r)is of interest, the so-calledscattering amplitudeA -:
Z

A(Q) = (r)e o gv: (1.2)

Vsample

1.1. A(q) and | are introduced for simplicity. The factors that are omitted compared to A(t; q) and
I do not change the concept, they are re ected in the actual meaurements, though.
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Note that A/ A. The inverse Fourier transform then takes the form
Z

1 A(g)édrdiq (1.3)

2 )3

Once the scattering amplitudesA (q) are sampled in three-dimensionaleciprocal

(r) =

space the imaging process can be completed by mapping back the daction signals
to the electron density (r) by means of the inverse Fourier transformi.3, which
reveals information about the structure of the sample.

The amplitude A(t; q) cannot be measured by the pixel array detectors used
for CDI which only detect the intensity averaged over timd (g)= h (t; q)i/j A(O;
0)j?/jA (q)j% Again, the proportionality constant that accounts for theintensity of
the incident wave and the decrease in signal with increasinigtector distance will be
omitted, and the intensity | that is invariant to these conditions will be de ned as
| (q):= jA(q)j%. The measured intensityl is proportional to | (see footnotel.l).
The scattering amplitude is complex-valued. The phase infmation is lost in the
time-averaged detection and has to be determined by other @& in order to infer
A(q) from jA (q)j*

Due to the relation of the elastic scatteringkj = jkoj, sampling the scattering
amplitudes from a single di raction pattern constrains thescattering vectorq= k
ko to lie on the two-dimensional surface of a sphere with radius= jkoj. This sphere
is called Ewald's sphere(see g. 1.3). Therefore in order to sampleA completely
in the three-dimensional reciprocal space, the imaging press needs to be repeated
with di erent directions of the incident beam relative to the sample, e.g. by rotating
the sample and measuring the intensities. Seen from the lalatory frame the Ewald
sphere is xed by the incident X-ray beam while the orientatbn of the scattering
volume is given by the sample orientation. Thus di erent sarple orientations sample
the scattering amplitude at the resulting intersections bveen the Ewald sphere
and the scattering volume, resulting in a three-dimensioha@ampling of | (q).

If the orientations of all di raction patterns are known, it is straightforward to
assemble the three-dimensionali raction volume 1 (q). Averaging the diraction
patterns of similar orientations increases the signal to me ratio. Next, the phase
information needs to be recovered and combined with(q) to obtain the amplitudes
A(q) and eventually it is possible to use edl.3to obtain the structure of the sample
object.
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Fig. 1.3. Ewald sphere : Due to the elastic nature of the scattering, the scatteringvector q is

constrained to the Ewald sphere as shown here in a coordinate frame that is rotated along wi

the sample object. The full three-dimensional scattering anplitude can be measured by sampling
reciprocal space ) with di erent incident beam orientations kJ relative to the object, leading to

rotated Ewald spheres, as suggested by the dashed lines. Albtated Ewald spheres intersect at
the origin of reciprocal spaceq=0.

1.1 Lensless imaging: the phase problem

The phase problem arises because the time-averaging nataféhe pixel array detec-
tors like CCDs prevents the phase information from being meared. The missing
phase information complicates the determination of the et&ron density distribution

because, without the phase information, eql.3 can not be used to invert the
di raction pattern formation process. Essentially the inbrmation content is cut in
half when the complex amplitudesA are transformed into real valued intensities
| = A A. Infact, the loss in information is re ected in a symmetry: The electron
density was introduced as a real function that describes the probdity dV to
nd an electron in the volumedV. It can be generalized to a complex function with
the imaginary part describing absorption. Without absorpton, = and it can be
seen from eq.l.2that A (q)= A( Qq), therefore

I a)= A(C aA( 9
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A(@A( a)
A( 9)A(q)
1 (9)

This result is known asFriedel's law [24] which states that, in the absence of absorp-
tion, the intensity is centrosymmetric. For very short wavéengths, at which the
Ewald sphere can be approximated by a plane, this symmetryvssible in individual
di raction patterns. The symmetry introduces an ambiguity that is directly related
to the phase problem.

Given that the strength of the di raction signal at a detector pixel is determined
by the interference of all elementary waves originating inhe sample and that the
interference is determined by the relative path di erence®f the waves, it is not
surprising that the di raction pattern contains informati on about relative distances
in the electron density. One way to eliminate the absolute @ition dependence
of the electron density is to introduce relative distanceg and integrate over the
correlations at all absolute positions , which leads to theautocorrelation function

? of the electron density . Here, thezcross-correlation functionf ? g is de ned as

f(x)?2g(x) = Rf( ) 9( +x)d:

For clarity the problem is restricted to one dimension whiclean easily be generalized

to three dimensions. Consider the Fourier transform of theutocorrelation of the
electron density:

Z Z
F(? ) = e o ()? ( +x)d dx

7R RZ

= el 2id ()? (2d dz with z:= +x
/R Z

= ( )ed (z) e '92dzd
7R RZ

= ()€l d (z) e 92 dz

= AR A )

= JA(9Q))?

= 1(0) (1.4)

Here, Fubini's theorem has been applied, which allows the double integral to be
separated. Generalized to three dimensions and with the Foer transform inverted,
this shows that the autocorrelation of the electron densitys equal to the inverse
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Fourier transform of the intensity (see 25, 26)):

(x)? (x) = F Y (a): (1.5)

This means that relative information about the structure ofthe sample object can be
revealed, even without measuring the phases of the scattdr@aves at the detector.
Figure 1.4 elucidates the geometric interpretation of the autocorration function
and explains that the support supp( ? )

supp(f):= fx2R3f(x)F0 g f:R3! C

of the autocorrelation covers twice the volume of the samplén other words its
extent extend'supp( ? )) is twice the size of the sample. Here, the extent is de ned
as the supremum of distances within a set:

extent(X):= sup kx yk X R?3

X;y2X
.
source signal autocorrelation
Fig. 1.4. Two-dimensional autocorrelation (right) of the source image (left). Because the

relative relations from one point to another point can also be found with reversed direction, the
support of the autocorrelation covers twice the area of the spport of the input signal.

1.1.1 Phase retrieval

A suitable way of looking at the phase problem is provided byhte Nyquist-Shannon
sampling theorem[27] which is usually formulated in terms of signal processing:a
signal is band limited in the frequency domain wittB being the highest frequency,
then it is completely determined by equispaced samples thate % apart in the
time domain (when the sampling frequency is twice the maxinm frequency). Sayre
[16] realized that this has implications for the sampling of diraction patterns: the
domains of interest in coherent diractive imaging are not ime and frequency,
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but the real space positions of scatterers on one hand and tepatial frequencies
of the object which give rise to the diraction pattern on the other hand. Sample
objects usually have a nite sized and therefore the electron density is band

limited in the real space domain, with exten{supp( ))= d. Then the full di raction
1. 2.

information can be obtained by sampling reciprocal space #te points0; 5; 5t

which can be understood in the following way:
For a real-valued signalf (x) and a real-valued sampling functiong(x), the
convolutionf g 7

fg=f()o xd
R

is the same as the correlatioh ? g( x) and, following equationl.4, the convolution
theoremF (f g)= F(f) F(g) can be found P8 26]. With the intensity | as the
signal and with a sampling function that consists of a grid oévenly spaced delta
peaks with a distanceh, resembling the pixel array of a detector, the measurement
of the di raction signal is a multiplication of the sampling function and the intensity
(see gurel.5). In Fourier space, this means a convolution of the intensgitspectrum
with the Fourier transform of the sampling grid, which is stil a grid after the
Fourier transform has been made. If the spacinty h of the convolution grid is larger
than (or equal to) the sized of the support of the intensity spectrum, then the
convolution does not lead to overlaps and the intensity spgam can be separated
(or deconvoluted) by multiplying with a step function (see gure 1.5). The Fourier
transform of this step function gives rise to an interpolatin function sindx) and it
su ces to sample the di raction pattern at points 0; %; %; :::to gain the maximum
extractable information about the object when the phases are known. Without
noise, oversampling of a factor of 2 provides enough addit@ constraints to recover
the phase information P9). This increases the measured bandwidth of. One can
think of that as including the empty space around the objectito the measurement.
Prior knowledge about the sample can be used to constrain tip@sition and size of
this empty space, and constraints like this along with oveanpling can be used to
solve the phase problem which is otherwise under-constrath

In crystallography, oversampling would require measuremts between Bragg
re ections. For in nitely-extended crystals (and, in a rst approximation, macro-
scopic crystals used in crystallography), however, the dtared intensity is rigorously
zero between the Bragg re ections (which become delta-funans), and phase
retrieval by over-sampling is precluded. The diraction inensities of samples with
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nite size are not constrained to Bragg re ections but are ditributed in a con-
tinuous fashion, facilitating oversampling (eq.1.7 describes how object size and

oversampling are related).

m

S(x)

s(x),, f(x)
'N\/\/\/;\/ri:(i()

s(x) f(x) sinox)

A

=

|==
|==
B=

F[f 1(a)

Flsl(a)

Fls] F[f](a)

rect(q)

F[f] F[s](q) rect(q)

Fig. 1.5. Sampling theorem:  a band limited signal f (x) can be fully recovered if the sampling
rate is higher than the Nyquist rate - in this case the replicaed spectra in the Fourier transform
of the sampled signal do not overlap and they can be separatetb reconstruct the original signal..
Figure adapted from [30]. Only the real part (cosine waves) is plotted.
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The complex scattering amplitudeA can be decomposed into amplitudg\j and
phase (q) in the following way:

A(q) = jA(aq)j € @ (1.6)

(sinceje*j = 1). Prior knowledge puts constraints on the phase and these con-
straints can be used in an optimization approach to nd the faction which agrees
best with the measurements and constraints. The most populzonstraint is the

support constraint. It is a real space constraint which makes assumptions abatiie

support supg (r)). As explained in g. 1.4, the autocorrelation can be usedto nd a
loose constraint of the support, but also a rough size estingaof the sample obtained
by other means can be used. A uni ed evaluation of phase rettial algorithms can
be found in B1].

1.1.2 Iterative phase retrieval algorithms

Image reconstruction by phase retrieval can be described #se search for an
image that satis es both the constraints of the measuremerdand the constraints
imposed by prior knowledge. According to eql.6, the scattering amplitude can
be decomposed into amplitudgAj and phase. The amplitude is constrained by
the measurement of the intensities byl jAj 2. Due to eq. 1.3, the search for
the image of is equivalent to the search for the scattering amplituded. Since
jé j =1, the intensity constraint is ful lled by lling in the inten sities into A =
jAj € = | € andthe search is limited to the phase which satis es the additional
constraint imposed by prior knowledge, such as the aforentemed support con-
straint. It has been shown 32 that the result of this search is unique given that the
oversampling is su cient. Since noise is always present ireal di raction patterns,
as well as other impairments caused by the detection, thisaeh comes down to
an optimization: the search for the phases that ful Il the castraints best. The search
space for this optimization is huge, too large for an exhaugé search. Therefore,
iterative algorithms [33, 34] have been proposed to nd a solution in acceptable time.

The following is a description of the error reduction algothm [32] which makes
use of the support constraint:

Initial phases ( are chosen and, after combination with the amplitudegA]
(and as such ensuring compliance with the intensity constirat), the resulting
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preliminary scattering amplitude A, is inversely Fourier transformed into real
space.

Here, the real-space constraint can be enforced, in this easy forcing the values
of the preliminary image , to be zero outside of the assumed support.

Taking the Fourier transform takes the image o back to scattering amplitudes
A1, which do not necessarily ful Il the intensity constraint anymore.

The iterative enforcement of the intensity constraint and eal space constraint
eventually converges to an imagey which ful lls both constraints and therefore
constitutes a valid reconstruction, or the convergence eadn a local minimum
which cannot be escaped in further iterations.

= A=jAj €'
T |
1 :x 2 support . :
x)= : PP Intensity constraint
0 :x2 support
A="1 ¢
Fig. 1.6. iterative phase retrieval . error reduction algorithm with support and modulus

constraint

The use of iterative phase retrieval algorithms requires #hdi raction patterns to
be sampled ner than the Nyquist frequency. The missing phasinformation cuts
the information content in half and thus an two-fold oversarmling su ces in theory
[29], but in practice it can not be guaranteed that the phase reteval algorithm nds
the correct phases. Increasing the oversampling ratio ireases the chances that the
iterative phase retrieval converges to the correct solutio An oversampling ratio
>10 per dimension has been used to obtain the di raction datgresented here.

The Nyquist frequency corresponds to the size of the Shanngixel on the
detector (see sectionl.3) while the sampling frequency corresponds to the pixel
size p on the detector. Thus the oversampling ratio is determined by the object
sized, the detector distanceL and the wavelength :

L

a5 (1.7)
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In real space, this ratio can be seen as the maximum sample wole that can be
described by a Fourier synthesis of all discrete frequensieepresented by detector
pixels (this volume is governed by the lowest spatial frequey) divided by the
volume of the sample object. Increasing the detector distae or decreasing the
wavelength increases the oversampling ratio but decreagég® maximum possible
resolution.

Another factor that determines the chance to obtain the coect solution from
iterative phase retrieval methods is the location of missgninformation within the
detector region. A signi cant part in the center of the diraction pattern can not
be recorded because it is overlayed by the direct beam whiclashto be blocked.
The a ected pixels correspond to low spatial frequencies wih are important in
determining the coarse structure of the sample. Simulatienn [35, 36] suggest that
10 missingspecklescan be tolerated. In di raction patterns, speckles are corected
regions of high intensity surrounded by low intensity, the igze s of speckless = ZT
is determined by the sample sizd.

1.2 The orientation problem

As described earlier, the parts of the di raction volume tha can be measured are
constrained to lie the two-dimensional surface of the Ewaldphere and thus the
information content of a diraction pattern is only two-dim ensional. In the con-
siderations that led to eq. 1.2 the incident beam directionk, served as a reference
orientation and a look at g. 1.2reveals that rotating the incident beam results in
a equally rotated di raction signal. The same happens wherhe sample object is
rotated. Mathematically, since both a rotation R and the Fourier transform are
linear operations and since the integration of the Fourieransform covers the whole
space and as such is independent of rotations which presetgagth and volume,
rotations and the Fourierztransform commute:

F[ (Rx)](a)

(Rx)e 2! ¥dv
Z

(z)e 2T9R 'zdy  withz:=x= R 1x
Z

(z)e 2i Raz qy/

FIf ()I(Ra):

becausd isanisometry and
preserves the dot product
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Generalizing the rotationR to an operator with Rf := f (R x ), the commutation
of R and F can be stated as

RF()=F(R ): (1.8)

Therefore, rotations in reciprocal di raction space and rtations in object space can
be treated equally and a rotation of the sample object resdtin an equal rotation
of the scattering amplitudesA in reciprocal space. A diraction snapshot samples
the scattering amplitudes on the surface of the Ewald sphexehich is xed in the
laboratory frame. Rotating the sample object rotates the sttering amplitudes A
through this sphere and hencé can be sampled three-dimensionally in reciprocal
space. Consequently di raction snapshots of di erent orietations can be combined
into a three-dimensional di raction volume. This merge carbe carried out if the rel-
ative orientations of the sample objects between the di er¢ snapshots are known.
Because of the equivalence of rotations in real space and miction space, it is
su cient to know the relative orientations between the di r action patterns.

Intuitively, the formation of a single diraction pattern ¢ an be recognized as a
projection from the three-dimensional object to a two-dimasional di raction pat-
tern. And indeed, in the at Ewald sphere approximation thisprojection turns out
to be the orthographic projection of the sample object alontpe X-ray beam, as the
following considerations show:

Provided the wavelength is small compared to the distance of the detector,
the radius of the Ewald sphergkgj = Z s large and the detected part of the
Ewald sphere becomes almost at. In this approximation, a diaction pattern is
a planar slice through the three-dimensional di raction veume | (q) instead of a
spherical slice. For clarity, consider only the case of a tadimensional di raction
volume | (o; o) originating from the two-dimensional electron density (x;y) and
a linear slices(q) thereof. Without loss of generality, the slice can be desbed in
a coordinate system which is aligned to the slice:

s(q) = A(a;q=0)
7 i qu+|3@¥

(x;y)e < dxdy
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727 3

8 (xy)dyle Xax dx
1 {Z t
=p(x)

F (p(x))

This result is known as theprojection-slice theorem[25]. It can be seen that the
function p(x) is a projection of the electron density along the y-directio and, after
generalizing to three dimensions, we can note that a slicertugh the di raction
volume is the same as the di raction of the projection of thelectron density on the
slicing plane. In other words, every di raction pattern corains information about
the projection of the sample along the X-ray beam. The thredimensional image
can be assembled from two-dimensional projections of dient orientation if their
relative orientations are known. In the general case wherba Ewald sphere is not
at, the principle remains the same although the curved pojections do not have
a simple geometric interpretation.

AN

AY

Fig. 1.7. 3D Merge : The diraction Intensities sampled at multiple Ewald sphe res are combined
into the 3D di raction volume

1.3 Resolution and the number of required di raction snapsh ots

The number of di raction snapshots that are required for a gien resolution can be
obtained from the Nyquist-Shannon sampling theorem (sek1), which states that
for an object of sized the full di raction information can be obtained by sampling
reciprocal space at the point%; %;
of sp= LT of a detector placed at distancé. when the di racted photons have the

%; ::: This leads to the Shannon pixel size

wavelength .
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To resolve sample object features down to the size the reciprocal space has to
be measured in the rangg 1/r; 1/r] along each dimension. For the two dimensions
that can be covered by a single diraction pattern, the detetr pixels have to be
smaller than (or equal to) the Shannon pixel to obey the samiplg theorem. For the
third dimension, namely that out of the detector plane, the ampling theorem con-
strains the orientational sampling. At the reciprocal detetor edgel/r, the closest
pixel along the third dimension lies on another di raction attern. This pixel can not
be further away than 1/d without disobeying the sampling theorem. Therefore, the
angle ni, between closest (in an angular sense, see guted) di raction patterns
has to obey min tan ( min) < % = % in order to ful ll the sampling condition.
The following considerations are based or87]. Assuming uniformly distributed
orientations that can be represented as points on the hype@isere S3, the average
volume that a snapshot orientation takes on the three-dimesional surface ofS3
is 3 % because every point or§® represents the same orientation as its antipode
(inverting the angle is the same as inverting the rotation ais). The full area of S®
is 2 2 but again, because of the antipodes, the area of all orientans is only 2.
Consequently, the minimum number of di raction patterns that are necessary to
obtain the resolutionr is (see B7))

8 2

e

If the sample object is symmetric, this number is reduced byhe cardinality S of
the symmetry group.

N =

hmni =2 /N

hypersphereS3: U=2 2

Fig. 1.8. Mean nearest neighbor angular distance between two di raction snapshots used to
estimate the number of required snapshots. Drawn are the oentations of the sample object (eft :
one degree of freedonright : three degrees of freedom, a pair of closest neighbors is higghted in
dark blue, i, is visualized in red). Only the 2-sphereS? can be visualized. The third dimension
is encoded in the orientation of the blue arrows. The curved étrahedral grid is projected onto a
curved triangular grid.
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Digital image analysis and pattern recognition

Three-dimensional coherent diractive imaging is based othe measurement of
many thousands of discrete di raction snapshots, namely @w+dimensional di rac-
tion patterns. This chapter borrows ideas from the elds of emputer vision and
pattern recognition to categorize and manage these pattesnn an automated way.

2.1 Classi cation

In order to obtain enough di raction snapshots of good qualy to obtain a three-

dimensional image of the sample object with the desired régtion, data acquisi-

tion is performed in a serial manner with subsequent X-ray pses that intercept
a stream of identical sample objects. It is inevitable to atsrecord snapshots that
are either undesired or have to be treated in a special way,esa 4 for examples.
These special snapshots fall into di erent classes:

i. empty snapshots where the X-ray pulse did not coincide with the presence of
a sample object in the interaction region

ii. multiple hits  where an X-ray pulses coincides with the presence of moreath
one particle in the interaction zone

iii. clusters or big aggregates of the sample object
iv. alien sample objects from impure sample preparations

v. in case of aerosol injectionempty droplets of the solvent in which the sample
objects are immersed before aerosolization



32 2 Digital image analysis and pattern recognition

These di erent classes of di raction snapshots make it desible to nd a way to
automatically sort the data before continuing with the dataanalysis. Automating
this task is possible by borrowing ideas frorstatistical classi cation which is a vivid
eld in statistics and machine learning.

2.2 Feature extraction

In principle, each pixel of a diraction snapshot can be seeas an independent
variable that can help to classify the snapshot. Thus, an oliwus solution to the

classi cation would be to feed all pixel values to a statistial classi cation algorithm.

In practice however, performing the classi cation in such &igh-dimensional space
is problematic: With increasing dimensionality, individwal observations get more
and more isolated unless a vast amount of observations aredad. This is due to

the rapid increase of volume with increased dimensionalitgnd is known as the
curse of dimensionality It is therefore worthwhile to base the classi cation on a
small number of explanatory variables, calledeatures, that carry enough decisive
information. Such features can be extracted from the diraton snapshots. The
following sections describe di erent types of features théave turned out to be a
good choice for the classi cation of di raction patterns:

section2.2.1 Intensity variations (Viola-Jones Features 39))

The spatial distribution of intensity variations in single-particle di raction
patterns contains information on the size of the sample spewen
section2.2.2 Maxima of the rotational auto-correlation function and maima of
the angular distribution function

Extracts information about rotational symmetries
section2.2.3 Eigenpatterns , the score (see below) of eigenvectors obtained from
PCA (Principal Components Analysig [39

Eigenpatterns are special directions in the high-dimensial vector space of
di raction snapshots, the directions that have the largeswariance and thus carry
a large amount of information. For example, Eigenpatternsisentangle signal
from background signal. Also, variations in the signal stregth are encoded in
separate Eigenpatterns.

In detail, these features are described in the following d&ms.
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Fig. 2.1. Feature analysis of a di raction pattern. This illustration shows a di racti on pattern
decomposed into the rst six principal components of a di raction dataset. Their scores (graph
in the background) are used to extract descriptors containing discriminative information from the
di raction pattern, reducing the dimensionality of the dat a that is fed into statistical classi ers.

2.2.1 Intensity variations

The idea is to capture thespecklesizes (see sectioh.7) and their spatial distribution
by analyzing intensity variations within the di raction pa tterns. Large objects will
lead to smaller speckles in the diraction pattern than smdér objects, while the
spatial distribution is determined by the internal structure of the sample objects.
Extracted from the di raction patterns, this information w ill provide features that
can be used for classi cation.

The implementation is based on the successful face recogmtscheme developed
by Paul Viola and Michael Jones in 20013f]. In the original formulation, di erences
in brightness between facial regions like eyes, nose and rtioare estimated by calcu-
lating the di erence of integrated intensities of rectanglar templates. In the context
of diraction patterns the signi cant regions with di eren t intensities correspond
to diraction speckles. These features have the advantagéat their computation
requires only a few look-ups in théntegral imagel (X;y)= " ¢, % p(x%y9 which
can be precomputed in a single pass over the diraction patte p and reused for
several di erently shaped or sized Viola-Jones featuresndtead of integrating the
rectangular patches, the computation can be performed by $tiadding/subtracting
the corners of the rectangular regions in the correspondingtegral image (see g.
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2.2):
X
POX;Y)=1(X21y2)  1(X1;¥1)
X16 X6 X2
y16 y6y2
- (X15¥1)  (X25y1)
Bt St S (X1 y2)  (X23Y2)
Fig. 2.2. lllustration of di erent Viola-Jones Features. The integrals over the intensities

in the rectangular regions can be looked up in the integral inagel: A =1(X2;y2) | (X1;Vy1)-

2.2.2 Rotation symmetry

Since rotational symmetry can often be found in nature and see of the samples
that were used for this thesis display icosahedral and dihed symmetries which are
re ected in symmetries of the diraction patterns, an analysis of the two-dimen-
sional rotational symmetries reveals discriminative infonation that can be used for
classi cation purposes. As a fuzzy measure for symmetrigle positions of the rst
few maxima of the angular autocorrelation function are used

2.2.3 Eigenpatterns

The goal of feature extraction is to combine the discriminate information of many

pixels into a few numbers that build the basis for classi cabn. This can be done
using prior information about the structure of the informaton that is hidden in the

pixels, such as the size and angle based features describd@ala, or it can be done by
statistically analyzing the relations between pixels andelarning about their relations
from examples. Here, this is performed by forming groups obrcelated pixels and
treating them as basis vectors. When a single diraction paérn is represented
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in such a basis, the corresponding coe cients can be interpted as features that
carry discriminative information. It turns out that a linear analysis of inter-pixel
correlations is su cient for this task and therefore the wellestablished Principal
Component Analysis(PCA) [39] can be used.
The following matrix representation ofn snapshots consisting o pixels will be

assumed:

intensity measured

X 2RM™ ™ with X, = at the j™ pixel in the
i snapshot

P
The mean ; of the j™ pixel is de ned as | := % . Xi;j and the centered data
matrix is the data matrix with the mean ; subtracted from thej™ column: X7 :=
Xij

In this representation, the covariance between tha" and the B" pixel is given by

1 xn
cov@ah) = —5  (Xia ) Xip 1)
i=0
1
= n 1 xh—i;a x“i;b
i=0
1
= o1 Xai Xib

i=0
which means that the covariance matrixC with C,.,:= cov(a; b can be written in
terms of a matrix multiplication:
c=_-1x"x
n 1

The covariance matrix is symmetric and can thus be diagonak&d. The coordinate
system in whichC is a diagonal matrix consists of the eigenvectors & which have
no crossed variance< iag i;j =0 for i £ j. The eigenvalue<C 4g i;; Of the covariance
matrix re ect the degree of variance that the correspondigi™ eigenvector encodes.
A large variance along an eigenvector means that many di emedi raction patterns
in uence this eigenvector. The variance is therefore a maa® of the importance of
that particular eigenvector and we can use it to reduce the vdte training data set
to just a few very discriminative coe cients: the coe cient s of the eigenvectors with
the highest eigenvalues.

In the case where the number of pixelsn > n is larger than the number of
snapshots, the eigenvalue problem can be simpli ed sincelpra few eigenvectors
with the highest eigenvalues are of interest:
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let v be the eigenvector and be the eigenvalue that solves the eigenvalue problem
XX Tv= v
then a left multiplication with X yields
XX xT= XTv
which means thatX " v is an eigenvector of the original eigenvalue problem for
X TX. SinceX’ X" T isann n matrix, the eigenvalue problem is easier to solve
than for the largerm m matrix X TX" .

It turns out that for real data collected with pnCCD detectors at the LCLS (see
chapter 5), the rst 120 eigenvectors with the highest eigenvalues pture enough
information for a successful classi cation. Fig.2.3 shows a di raction pattern in
the severely compressed PCA representation. The originahdis consists of 1048576
base vectors (each representing a single detector pixelh the basis of just 120
eigenpatterns the structure of the signal is preserved and the di ractiorfringes are

still visible. For classi cation, the scores the components of the reduced basis of
eigenpatterns, are used as features.

c

Fig. 2.3. (a) Detail of a di raction pattern (sample: Cro-virus). (b) the same di raction pattern

expressed in a basis of only the rst 120 principal componerd. (c) the six most important

principal components or eigenpatterns for the entire training dataset of 1000 di raction images.

Note that these di raction patterns consist of two halves separated by a horizontal gap which has
been removed in this representation.
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2.3 Supervised classi cation

The features described in sectior2.2 provide enough discriminative information
for sorting and classifying di raction patterns. The classcation process has to be
automated in a reliable and exible way. A supervised classiation scheme was
chosen in which the system learns the optimal classi catiobased on a training
data set that consists of diraction images with known clagscation results. This
eliminates the need to carefully optimize the parameters tiie classi cation system
every time the experimental conditions change. If parameate like the wavelength,
detector settings or detector geometry change, all that nds to be done is to provide
the system with a valid training data set. Of course this is &b true when switching
to a di erent sample object. The training data set can easilyoe created manually,
de ning the classes based on visual inspection of the di réion patterns. It turns
out that a training set with the surprisingly low number of 20 di raction patterns
per class is enough to create accurate classi ers that arelalio sort thousands of
di raction patterns automatically.

2.3.1 Partitioning the feature space

The features introduced in sectior?.2 constitute a feature space A general approach
to the classi cation problem is to nd a partitioning of the feature space into disjoint
regions. The class a liation of a given feature vector can ten be predicted based
on what region it falls into. In the case of supervised classations, the partitioning
can be found by looking at the training data set where for eacfeature vector, a
valid class label is known. A decision boundary can be repessed by a binary space
partitioning; the result is a decision tree Note that the resulting decision tree can
perfectly resemble the class a liations of the training dat set provided the depth of
the tree is large enough. Perfect resemblance may seem likead goal, but in the
presence of noise there is a risk of over- tting. In case of @v tting, the decision
tree provides insu cient generalization to new data that isnot part of the training
data set because a particular instance of noise in the tramg set is included into
the model and the added complexity can amplify small variatins in the data.

with f being the true classi cation function and a statistical eror " with Ef"g=0,
the mean squared error(MSE) of the classi cation model y(x) that approximates
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f (x) can be estimated by validating the predictions of the traimg data:

1 X
MSE = & (t ¥)?

i=1
The error MSE states how well the classi cation model can e¥gn a speci c real-
ization of the training data. Since the training data underiles randomness, so does
the MSE and a better estimate of the classi cation error is th expectation value
1 X
EfMSEg = N Ef(ti vyi)%
i=1
The analysis of the expectation value of just one test datuns ienough to establish
a decomposition of the MSE into di erent error classes:

Ef(ti ¥i)?g
= Ef(ti fi)zg+ Ef(f, yi)Zg+2 Ef(ti f,)(f, y,)g

= Ef"?g+ Ef(f; yi)29+2(Ef&fig+ Effiyig Effig
1 t 1 {Z t

:fiz _f2

Ef(ti yi)%g

Eftiyig)
= Ef"2g+ Ef(f; vy)%g+2(Eff,yig Ef(fi+")vi0)

= Ef"2g+ Ef(f; vy)%g+2(Effiyig Effiyig+Ef{"Zyig)
1 T
=0

= Ef"%g+Ef(fi vyi)%

= Ef"?g+ Ef(f; vi)%g
= Ef"?g+ Ef(f; Efyig)29+Ef(Efy§ yi)’g+2 Ef(Efyig
1 {Z to1 { t
:= bias? = Var (i)
yi)(fi Efyig)g
= Ef"?%g + bias? + Var(y;) +
I2(f|Efy|g Efy,gz{z f,Efy,g+ Efy|922

=0
= Ef"?g+ bias+ Var(y;)

Thus, the classi cation error can be decomposed into the viance of the noise, the
modelbias and the variance. The biasdescribes the error introduced by a systematic
classi cation error due to an unt model. The variance describes the dependence
of the prediction on a given realization of the training data A low bias means that
on average the predictions are accurate, a low variance meaahat the predictions
do not change much as the training set varies.
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The variance of the errorE f "?g can not be reduced, but it is clear that in order
to construct an optimal classi er, both bias and variance hae to be minimized.
However, they cannot be minimized independently as a simpéxample shows: a
classi er that always gives the same prediction (ignoringhte features) has perfect
variance Var=0. On the other hand the bias of this classi er would be tremeralsly
large. Another classi er that perfectly resembles the traiing data would lead to a
vanishing bias term for the training data set; in contrast tle variance will become
equal to the variance of the noise, this classi er su ers fim over- tting .

Xy

A
OOO
@)
(]
o 0O O
o 0O

X

(a) samples of di erent classes (blue and green)
in two-dimensional feature space

x,>d x,=d _

»

@) 1 b c x
(b) decision tree (c) partitioned feature space

Fig. 2.4. lllustration of the feature space partitioning by means of decision trees. This
example shows a two-dimensional feature space and severatd points belonging to two di erent
classes (blue and green). The partitioning is performed by tiding the feature space recursively
in a binary fashion along the feature dimensions<; and X5, resulting in decision boundariesa; b;
c;d. This method can be easily generalized to higher dimensionas well as more classes.

2.3.2 Random forest classi er

The simultaneous minimization of bias and variance can be accomplished by
ensemble learning Here, the classi cation is not based on a single model, bunho
an ensemble of classi ers whose results can be combined, &g a weighted sum.
This is an improvement over single classi ers like the deams tree described above,
because the risk of learning a wrong model is distributed aveeveral hypothesis
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and therefore alleviated. At the same time, combining di eent classi ers adds more
exibility to the model that is used to t the data and therefo re the bias can
be reduced. Seed[] for an empirical study.

The ensemble learning method random forest developed byed Breiman and
Adele Cutler [41] was used as the main classi er in this work. This method uses
ensemble ofdecision trees and injects two sources of randomness into each tree to
introduce diversi cation in the ensemble of trees, hence ¢hname random forest.
The rst source of randomness is that in each node of the trethe feature-dimension
that de nes that node's decision hyperplane is chosen from @ndom subset of
features instead of searching for the best split among allafieires. This limits the
generalization ability of a single tree and therefore makeise average of all trees less
prone to over- tting. The second source of randomness is ththe training data set
for each tree is limited to a random subset of the whole avab& training data. This
limits the variance error term described above because thanance of the individual
trees is averaged at the end. Moreover, the available tramg data that is not used
for a given tree can be used to estimate the generalizationrer of that tree ( out
of bag error) and therefore the generalization can be optimized.

In this work the generic computer vision libraryVigra [42] was used, which
provides an implementation of the random forest algorithm.

With this tools at hand, the enormous amount of diraction paterns can be
presorted. As will be shown in chapte5.1.5 false positives can be tolerated by
the following orientation recovery step, but the e ciency d the presorting is very
important since the orientation recovery treats the diradion dataset as a whole
ensemble and diraction patterns can not be treated indepatently, resulting in
an unfavorable non-linear scaling of the computational copfexity. The statistical
classi cation however treats diraction patterns indeperdently from each other,
resulting in a computational complexity that scales linedy with the number of
di raction patterns. Reducing the number of unusable diraction patterns that
are fed into the orientation recovery stage represents an eient way to reduce
the overall computing time. Only a split second is needed fdhe classi cation of
each diraction pattern and in addition the tasks can easilybe parallelized and
distributed among di erent computers.
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Results
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Geodesic orientation recovery

The assembly of many di raction patterns with di erent orientation into a three-
dimensional scattering volume is straightforward once theelative angles between
the di raction patterns are known. Finding a method that recvers the orientation
solely based on the di raction signals is bene cial for the ersatility of this imaging
scheme. This chapter describes a solution to this problemahhas been developed
as the main result of this thesis.

3.1 Establishing and interpreting similarities among di r action patterns

The approach to the orientation problem that is proposed heris to assemble
many local angular estimates into a robust global angular nasure while reducing
the three-dimensional orientation problem to many one-diensional sub-problems.
Therefore, pairs of measured di raction patterns are compad and a global sim-
ilarity measure is found by global optimization over all sut pairs. The underlying
principle is that objects of incrementally di erent orientation will yield di raction
patterns that also di er only incrementally. Given a large @ough number of mea-
sured di raction patterns, it becomes possible - via pairvéie comparisons - to arrange
the entire ensemble of measured di raction patterns in whammight be called sim-
ilarity sequences In orientation space, such sequences can be interpretetlitively:
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the most direct transition between two di erent orientations is a rotation about
one single rotation axis. In other words, ajeodesiocon the special orthogonal group
SO(3) with respect to the angular distance measuré, is a rotation about a single
axis, generally called theEuler axis. Relating these geodesics to the aforemen-
tioned similarity sequences allows this specic axis to bedéntied and thereby
the angular relationships between the 2D di raction pattens can be established.

The formation of the di raction pattern can be seen as a mappig from the space
of object orientations to the space of di raction patterns.According to eq. 1.2, this
mapping is described by the Fourier transform

Z
A(Q;R) = (Rr)e ' dv
Vsample
whereR is the rotation of the sample object. Using relation eql.8 this becomes
the rotation R A(q) of A(qg;1)= A(q). This means that the mapping from orien-
tations to di raction patterns is continuous in the sense that a slight rotation of
the object induces only a correspondingly slight change imé¢ di raction pattern.
Consequently, a measur@ss(P1; P2) of the dissimilarity between two di erent
di raction patterns P; and P, provides a local measure of the angular separation
between the two corresponding objects. One can think of mamyethods to capture
the dissimilarity, the simplest would be the Euclidean disince between the vectors
containing the pixel values as components (so each detecfoxel is a basis vector).
Here the Pearson correlation coe cient is used to estimate the dissimilaritydyss,
because this coe cient is invariant to o set (varying backgound signal) and scale
(varying signal strength). In order to extend this local estnate of angular distances
(slight changes in diraction patterns corresponding to sght object rotations) to
global quantities (arbitrary changes in di raction patterns corresponding to possibly
large rotations), the geodesic dissimilaritydge, between two patternsP, and P; is
de ned to be the shortest accumulated dissimilarity of all pssible sequences g
of di raction patterns starting from P; and ending atP5:
i 1

dyeo(P1; P2) = ZIEnPi?'Pz) Qaiss( 5 i+1):
’ i=0
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To cope with the local nature ofdgss, the optimization is limited to a subset of
sequences with similar consecutive elements based on a sinad ":

f (PyP)="f kd=0j( 0=P)" ( n=P2)" (dgss( i; i+1)<"8i=0;N 1g:

The optimal sequence (P1; P,) is named the geodesic sequencer shortest path
betweenP; and P,. Because of the close connection between rotations in rephse
and rotations in di raction space, it is useful to associatéhe shortest similarity path
between two di raction patterns with a geodesic trajectorythat can be interpreted
as a rotation about an Euler axis. This correspondence is extdf the true angular
distanced, is used, which is unknown in general. Sinajss locally (for small angles)
correlates with d, it can be used to approximated, locally, which is all that is
needed in order to nd geodesics. In this thesis, the validitof this approximation
has been tested by numerical simulations (see gurésl and 3.4). It turns out
that the correlation betweendgss and d, is strong enough to nd geodesics for a
wide range of object shapes and quite generally the shortesimilarity sequence
that smoothly connects two di raction patterns (i.e., the path through di raction-
pattern space having minimal cumulative dissimilarity) coresponds to the smallest
real space rotation of the object.

This mapping of similarity geodesics onto real space geomssnust be considered
very carefully. In general, the distance measure de ned byhé dissimilarity can
be distorted by any anisotropy of the experimental geometrgr of the object itself
and thus deviates from the round metric ofS3. One obvious anisotropy, as pointed
out in Ref. [43), is that due to the unidirectional nature of the x-ray beam which,
as a rst approximation, results in a projection. However, his distortion is easily
treated by simply distinguishing rotations about the x-raybeam axis (which will be
termed in-plane rotations) from rotations about axes orthogonal to the x-ray beam
axis (out-of-plane rotations see below). The consequences of anisotropies in object
shape are dicult to characterize in a general fashion. Howeer, in simulations
with parameters typical for coherent di raction imaging experiments and reasonable
sample object shapes ( nite size and thickness), the e ectdistortions due to object
shape is negligible. A result of such simulations is shown igs. 3.1and 3.4. It can
be seen that even under severe distortion the geodesics do deviate much from
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great circles onS® and thus they correspond to single axis rotations. Accordity,

this mapping of similarity geodesics (within di raction patterns) onto real space
geodesics (of object orientation) can be considered to bengeally valid and in the

following, either will be referred to as simply a geodesic

A B

Fig. 3.1. Simulating the e ect of distortions on geodesics. The similarity metric of dif-
fraction snapshots can be distorted, deviating from the round metric induced by S3. (A) shows a
3D slice through the heavily distorted three-sphereS? (only its projection S? can be shown here)
and a geodesic line (red). B) shows that even under heavy geometric distortion the geodsc
connecting two poles is approximately preserved in a topolgical sense, i.e., it is a great circle
when mapped back toS2. Figure taken from [44].

The topological information on geodesic sequences can banslated into geo-
metric information on the orientations by comparison with dstinct angles such as
the maximum geodesic angle. Provided that the number of diaction patterns is
Su cient to approximate a complete sampling of the orientaton space, the longest
geodesic sequence found in the data corresponds to the maximgeodesic angular
separation, which depends on the sample symmetry (18@r asymmetric objects).
The object symmetry can be assessed from the di raction patns, assisted by the
observation that the geodesic sequences end on symmetrygsolsince beyond these
the di raction patterns increasingly resemble the startirg di raction pattern.

3.2 Identifying in-plane and out-of-plane rotations and co mbining them
to span the orientation space

Two steps are required to successfully recover the orientans of all collected dif-
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fraction patterns of given sample objects via geodesic apsis: First, each pattern
has to be assigned to a geodesic sequence and then the relatibetween their
respective Euler axes need to be established. The formerahxes an optimization
that can be carried out e ciently by dynamic programming algorithms like Dijk-
stra’s shortest path algorithm 5] while the latter can be realized by adding another
source of angular information with the aid ofin-plane rotations. Typical setups for
di raction experiments are symmetric with respect to the xray beam axis. Due to
this symmetry, rotating the specimen about the x-ray beam ag corresponds to a
rotation of the di raction pattern in the detector plane by t hat same angle (see g.
3.2). Starting from a diraction pattern P we can therefore identify or generate
a synthetic diraction pattern P( ) that is rotated in-plane through an angle .
Given two di raction patterns P; and P, whose orientations are related by the Euler
axis E .o, introducing synthetic in-plane rotationsP;! Py( ) and P,! Py( ) will
lead to the Euler axisE . of a geodesic sequencgPy( );P2( )). The fraction of
di raction patterns that can be assigned to such sequencegplends on the angular
separation and on the orientation of the Euler axisE ., relative to the X-ray axis
€ (the in-plane axis). The second dependence can be understas follows: in-plane
rotations are also geodesic rotations and in the extreme eawhereE = ¢, there
is no di erence between in-plane rotations and the geodesiotation that rotates
P, to P, and thus the in-plane rotations do not provide additional iformation. To
maximize the information gain that can be obtained from in-f@ne rotations the
overlap between in-plane rotations and the geodesic rotati has to be minimized by
choosingP, such that the geodesic rotation that rotated?; to P is orthogonal to the
in-plane rotations. These orthogonal rotations will be nam®d out-of-planerotations.
This suggests that the maximum number of di raction patterrs can be assigned
to geodesic sequencegPi( ); P»(b) if P, and P, are separated by the maximum
geodesic angle = 180 and if the corresponding Euler axisE., is orthogonal
to the X-ray axis €. In fact, as shown below (also see formal proof in appendix
C.1), and illustrated in Figs. 3.2(b) and 3.2(c), this covers all di raction patterns
and all orientations. In-plane and out-of-plane rotationsan be orthogonalized by
arti cially setting dgiss(P1; P1( )) to zero for all values of . Then, initial in-plane
rotations will be preferred in the search for the shortest gh because they are cost-
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free. In this way, the in-plane component is only containedhithe selection step
betweenP; and the next di raction pattern in the geodesic sequence andan easily
be removed, leading to out-of-plane geodesic sequencesctviaire orthogonal to the
in-plane rotations.

A

X-ray

in-plane
rotation

Fig. 3.2. lllustration of geodesic and in-plane rotations. (A) Geometry of diraction
experiment. The triad (red) denotes the object and its oriertation. In-plane rotations correspond
to a rotation of both object and di raction pattern around th e X-ray axis. (B+C) lllustration of
combined geodesic and in-plane rotations. For clarity, ony the red object O(P;) corresponding
to diraction pattern P; is rotated in-plane around the X-ray beam (yellow line). The geo-
desic sequences connecting the orientations of each in-pla rotation of O(P;) (red) to O(P,)
(blue) are shown in light green. (B) In-plane rotations of O(P;) with arbitrary orientation (see
www.gipral.org for an interactive illustration). (C) Maxi mum separation between the object ori-
entations O(P;) and O(P,) leads to full coverage of S@). The orientations of the red and the
blue arrows constitute the poles onS2. Note that only its projection S? can be shown here.
Figure taken from [44].

In order to calculate the e ect of combining in-plane and oubf-plane rotations,
consider a di raction pattern P. .. which is part of the geodesic sequencéP,( );
P,( )) with the geodesic anglé (see Fig.3.3). The following is a derivation of the
orientation of P..  relative to the orientation of P, under the condition that P, is
related to P; by a true out-of-plane rotation (without in-plane componets) through
the angle . The coordinate system is chosen such that theaxis coincides with the
rotation axis & of the out-of-plane rotations and thez axis coincides with the X-
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ray axis € (= in-plane axis). Orientations are described as rotationsf a reference
orientation so they can be expressed in quaternions
!

sin(#/2) e

e = cos(#/2)

where e ;# is the Euler axis/angle representation. In this orientatio represen-
tation, the unit quaternion q = 1 stands for the reference orientation which, for
convenience, is de ned as the orientation of the di ractiorpattern P;.

R(e; )
P, P2( )
N
I
|
|
R(a; ) :
|
P;
0
'R(e ;")
Py P.( )
Fig. 3.3. Relations between diraction patterns and rotati on operators R. Vertical

operators describe geodesic out-of-plane operations (rations about &), horizontal operators
describe in-plane operations (rotations aboute). Note that in the special case = 180 the dashed
arrows are out-of-plane rotations, too.

Thus the orientation of Py( ) is the in-plane rotated reference orientation and

can be written as
0 1

0
Gpsc) = %sin(OIZ) §:

cos( /2)

The orientation of P, is related to that of P; by an out-of-plane rotation through

the angle and can be written as
0 1

o, = %sin(Z/Z) §:

cos( /2)
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The orientation of P,( ) can be obtained by adding an in-plane rotation through

the angle to gp,:
1

0
Py = %sm( 2) ko
0

cos( /2)
sin( /2) sin( /2)
_ % sin( /2) cos( /2)
- cos( /2) sin( /2)
cos( /2) cos( /2)

The geodesic rotationq from Py( ) to P,( ) is given by
0

1
sin( /2) sin( 12+ /2)

% sin( /2) cos( 12+ [2)
cos( /2) sin( /2 /12)
cos( /2) cos( /2 12)

_ 1 _
d =0,y ) Qpy () =

The rotation axis e of all rotations that are part of the geodesic connecting,( )
and P,( ) can be extracted from the vector part ofq

1
1 sin( /12) sin( 12+ [2)

e = — @ sin(/2)cos( 2+ [2) A
4 cos( /2) sin( 12 [2)
with
S
— i ein2 4+ in2 4 _ siiéd — —
g = st 5 s’ S+ o +sint S cog 5t + cog 5 S 5 5

After introducing the angle ' to parametrize rotations along this geodesic the ori-
entations of the geodesic sequence are given by
|

sin(* /12) e

P.. = \ P
GP: cos(' /2) P )
and thus
0 1
L sin = sin = sin -
iq] 2
1 sin - sin - cos -
~ iq] 2 2 _
%o 7B sin - cos - + L cos- sin - cos. sin & o (3.-1)
2 2 T 2 2 2 2

|
2
5

. 1. o
Cos 0 Ccos 5 — SINn 0 Sin 0 Cos >
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In the special case =180 ) j q'j=1, and

1

sin >
Op.. =180 =sin 3 % €oS 3 §1 (3.2)
2 sin( /2)/ tan (' /2)
cos( /2)/ tan (' /12)

As can be seen from equatiol.2, in this case the orientationsgp.. cover the

whole orientation space and thus every possible di ractiopattern can be assigned
to the sequence® ... . A proof using the Rodrigues formalism46] can be found

in appendix C.1.

3.3 gipral - an orientation recovery algorithm in ten steps

The description of any orientation in terms of ; and' motivates an algorithm for
orientation recovery which will be referred to ageodesic in-plane rotation algorithm
(gipral ). It can be outlined as follows:

1. Calculate di raction pattern cross correlationsC(P1; P») between all pairg(P;; P;)
of di raction patterns. Normalize and invert in order to obtain the dissimilarity
measure as follows:

Gass(Pi; Py) = 1 C(Pi; Py)/ n?(?-XC(Pk;PI):

2. Threshold nearest neighbors to enforce the local rangevalidity of dgiss:

(
. —_ ai (Pi;P') :daiss(Pi;P')<" .
dass(Pi;Py) = Gaiss(Pii P Pi)<"
aiss( i) 1 - otherwise

3. Select the initial di raction pattern P; random or by visual inspection to guar-
antee that the desired object is chosen (as opposed to a blaskot or a shot
containing artifacts as described in RefsA4[/, 4§ like solvent droplets or clusters
of the specimen object, see gurd).
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. Use Dijkstra's algorithm §5] to nd the sequences with minimum accumulated

dissimilarity from P; to every other di raction pattern that is connected to P,
(directly or indirectly through a sequence of other di racton patterns in between,
without disobeying "). The threshold " should be chosen to be high enough so
that all diraction patterns are indirectly connected to P, and low enough so
that only very similar di raction patterns are directly connected to each other.
In order to remove in-plane components from the sequence daith-plane rotated
copiesP;( ) of P; to the pool of di raction patterns and set their dissimilarities
dgiss(P1; P1( ) to zero before running Dijkstra's algorithm.

. Identify the end pattern P, as the one that maximizestyes(P1; P2). Provided

that the dataset covers a complete sampling of the orientatn space this is the
antipode to P; on S3, the three-sphere representing the orientations of $8).
Because in-plane components have been suppressed in theviptes stepP; and
P, are related by a true out-of-plane rotation.

. In case of object symmetries, start again, this time choeshe previousP; as the

new initial image P This avoids premature termination of the geodesic sequenc
due to symmetry (see appendix.4).

. Generate in-plane rotated di raction patternsP;( ;) of P, and P,( ;) of P, and

keep track of their in-plane angles ; and ;. Add them to the pool of di raction
patterns and repeat step 1 and 2. At this stage it is not necemy to calculate
every correlation anewpgss(Pi; Pj) has to be updated only for the new di raction
patterns.

. Similar to step 4 but without in-plane component suppressn: Find geodesic

sequences between all pai®.( i);P2( ;)).

. Determine the anglée ..« betweenP,( ;) and the k™ di raction pattern Pi.j: in

the geodesic sequence betweBq( ;) and Py( ;) by interpreting the dissimilarity
value betweenP; and P, as a single axis rotation of 180(adapt in case of object
symmetries).

Relate the di erent rotation axes of di erent geodesic4o each other using the
known in-plane angles and ;;j.x . The quaternion corresponding to the orienta-
tion of di raction pattern P;.;.x with respect to P, is given by Eq. 3.2
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di erent geodesic sequences corresponding to di erent plane rotations
represented in orientation space
(left : side view,right : top view along the X-ray beam)

all orientations (ground truth) of the simulated di ractio n snapshots,
with a geodesic sequence (based on di raction patterns) Hitighted in red

geodesic sequence in real-space, showing a single-axiagtiart of the sample object.

Fig. 3.4. Geodesic sequences of simulated di raction data . Di raction snapshots of an object
were simulated in 10000 random orientations. Next, diraction geodesics were found and related
to each other by in-plane rotations as outlined above. In thetop row, the resulting geodesics are
represented based on the ground truth of orientations whichare known for the simulated object.
It can be seen that the diraction geodesics (similarity sequences of diraction patterns) clearly
correspond to orientation geodesics (single axis rotatiog). This result was observed for di erent
object shapes as well.



54 3 Geodesic orientation recovery

3.4 Computational complexity

The computational bottleneck of the proposed geodesic aligom is the compu-
tation of pairwise dissimilarities between all pairs of diraction patterns with a
computational complexity of O(N ?) for N di raction patterns. This can be sped up
by parallelization, since the individual pairs are indepestent of each other. More-
over, the threshold" sparsi es the dissimilarity matrix that is needed. Under tle
assumption that the triangle inequality holds for the estinate of dgss, then a table of
upper and lower bounds can be updated falyss iteratively while adding entries to
the dissimilarity matrix. These bounds can guide the compation of the next matrix
elements, since elements with a lower bound" can be rejected while elements
with a small upper bound will be preferred. This way, only a fiction of all pairs of
di raction patterns needs to be taken into account.

Parallelization and other low level optimization techniqes (see appendixB)
make the search for geodesics feasible for datasets comgysbf 100.000 dirac-
tion patterns. The computing time for such datasets amountt 2-3 days. For larger
datasets, another idea for optimization - which has not beeimplemented in this
work - is the use of hierarchical search trees in which largegmbers of comparisons
between pairs of diraction patterns are avoided on the basiof a few inexpen-
sive features which are only computed once per diraction pgern as opposed to
every possible pair of two di raction patterns. For exampledi raction patterns with
big speckles do not need to be compared to di raction pattesiwith small speckles.

3.5 Generalization to symmetric objects

Object symmetries complicate matters since symmetry opdmas can be applied to
any orientation without altering the di raction pattern di ssimilarity. This leads to
shortcuts on geodesic paths that act as wormholes in orition space. A portion
of the orientation space that consists of symmetrically igducible orientations and
therefore does not contain any wormholes can be constructieg applying symmetry
operators to map every orientation to a symmetrically equadent orientation such
that the angular distance to a given reference orientatiorsiminimized. These fun-
damental zones take very convenient shapes when expressedRbdrigues-Frank
(RF) parametrization [46]: For nite symmetry groups they are polytopes with
planar boundaries. Moreover, geodesic paths are straighhds in RF space 46]
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(see appendixC.1 for an illustration), which makes RF space a natural choiceof
the formal treatment of rotational geodesics. The maximum rggular separation
that is possible under a given symmetry can be calculated frothe shapes of all
nite symmetry group classes 49]. These angles (see Ref5(] for a complete list)
correspond to the longest Euclidean distances between cers of the fundamental
zone and can be used to relate geodesic paths of maximum léngbd angles in
the case of symmetric objects. In Appendix.2, it is shown how this can be used
to navigate in the orientation space of symmetric objects ahwhich part of the
fundamental zone can be covered. With this extension, the gagesic method can
be used to recover the 3D diraction volume using an ensembtd 2D di raction
snapshots irrespective of the underlying object symmetry.
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On-line analysis

Current FEL X-ray light sources are used for many di erent eperiments which
leaves only limited beam-time for imaging experiments as rceed out in the course
of this thesis. Thus, most of the experiment has to be set upgtfor a few days and
can not be carefully optimized over a longer period of time ia continuously running
experiment. This short-lived nature of the experiments ragres perfect preparation.
But since almost every aspect of this new imaging method isibg developed from
scratch, many experimental and technical uncertainties &t which can only be
resolved during the experiment, when the X-ray beam is avalble. Therefore, it is
crucial to get instant feedback about the quality of the di raction data to be able
to optimize all accessible parameters.

4.1 On-line hit rate estimation

An example of such feedback is thkit rate: Maximal overlap between the injected
particle stream and the X-ray beam is required in order to mimize the number of
X-ray pulses that do not intercept any sample object which wste precious beam-
time and sample material. The injected particle beam or ligd jet containing the
sample is not always stable and has to be adjusted constantlfhe feedback for
the continuous optimization of the injection parameters aa be obtained from the
di raction signal. It is helpful to automate the distinctio n between empty shots and
hits in order to estimate the hit rate which can then be maxinged. To keep up with
the rate of the data acquisition, which currently clocks at 20 Hz, computational
speed is crucial. Therefore, using the o ine classi catiorscheme described in section
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2.1is not an option. It turns out that a simple median based outkr detection can
be used instead. A hit detection system is needed the most itusitions where the
hit rate is low. Then, empty shots occur frequently enough sh that hits can be
considered as statistical outliers. An obvious feature spa for the hit detection is the
total scattered intensity. However it is possible that the mgnitude of background
uctuations is in the same range as the intensity of very weakli raction signals.

Thus, additional features need to be considered. As descibbefore (se€.2.]) the

Viola-Jones features can be calculated very e ciently anddd useful discriminative
information.

After calculating n features for each snapshot, on-line hit detection is perfoed
by updating a running av(()eragef a9 of the current feature vector for each snapshot.

curr 1

f
The feature vectorf ¢ = @ A of the current snapshot is then compared to the

fcurr n

average feature vector by means of thielahalanobis distancg51]

P

dMahalanobis = ( f curr f avg)T ! (f curr f avg)

where is the covariance matrix which contains the covariance beeen di erent
featuresf ey i, feur j Within the last N snapshots:

ij = COV(fcurri;fcurrj): EL(f cur i 1:avgi)(fcurrj 1:avgj)]:

Here, E denotes the expected value estimated by calculating the spfe mean over
N snapshots. The Mahalanobis distance can be thought as a geadigation of the
Euclidean distance

deuclidean = ( f curr f avg)T (f curr f avg)

which takes into account the correlations of the data set. H feature varies a lot in a
speci c direction in the n-dimensional feature space, then the weight of this directn
is reduced in the Mahalanobis distance. If, on the other hané speci c direction
is very stable, then its weight is increased. That way, manyi@rent features with
di erent statistics can be combined, while their statisti@l di erences are normalized.
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°

Fig. 4.1. Mahalanobis distance : instead of considering di erent features individually, the

Mahalanobis distance can be used to determine a distance fro the average that combines all
features, normalizing their covariance. The resulting sigal is stable enough to recognize hits
with a simple threshold. The plot shows di erent four feature values as a function of snapshot
number as well as the Mahalanobis distance from average in th four-dimensional feature space.
A snapshot containing a hit is marked (red ellipse).

As can be seen in g.4.1, the peak indicating a hit is more pronounced when
multiple features are combined using the Mahalanobis distae. This on-line hit-
nding scheme was used successfully in combination with aesol sample injection
the hit-rate of which never exceeded 30%. During the experant, a graph of the
hit-rate was displayed on a monitor next to the person stearg the injection system.
This proved to be a very useful feedback to optimize the sangpbelivery.

4.2 On-line size estimation

As will be shown in chapter5.2, the apparent sample size of biological objects as
estimated from di raction patterns varied strongly, in cortrast of what was expected
from the biological properties of the samples con rmed by rcharacterization using
transmission electron microscopy. This apparent size digiution most likely is
an artifact caused by the injection system and needs to be mitared. Continued
injection of a sample with huge size instabilities is a wastef beam-time and has
to be avoided. In order to estimate the sample size, di raabn fringes of simpli ed
model-objects are tted to the observed di raction fringes A spherical model was
used to approximate the biological objects (viruses) withcbsahedral shape that
were used in this thesis. The twas performed semi-automaally: per mouse-click,
a few positions of a single di raction fringe were submittedo a least-squares tting
algorithm [52] to obtain the parameters of the circular approximation of e fringe.
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From the radiusrg of a spherical di raction fringe and the di raction order ng of
the fringe, the radiusry, of the object is given by

Jz#ndi ) i

L1 -
4 sin Eatan“’—'
Idet

Mob =

wherer 4 is the detector distance, Jgn) is the n-th zero of the Bessel function of
the rst kind.

Another tool that has been used to analyze the sample size fsetautocorrelation
function obtained by eq.1.5. The size can be estimated as half of the extent of the
autocorrelation support, see g.1.4.

Fig. 4.2. Semi-automatic t of airy rings (red) to the di raction pattern of a spherical object.

4.3 On-line feedback on sample concentration

For the reconstruction methods described in this thesis, daction patterns of single
sample particles are required. If the concentration of thejected sample is too high,
it can happen that two or more particles reside in the intera@n region during
the arrival of an X-ray pulse. In principle, di raction patt erns of single objects can
be extracted from di raction patterns of multiple object copies by analyzing well-
separated cross-correlation terms within the autocorreian function [53 (see g.
4.3), but a higher resolution can be achieved when single-paske di raction patterns
are used to begin with. Therefore, the occurrence of multiglparticle di raction
patterns needs to be monitored during the experiment and th@ample concentration
needs to be reduced should they occur. This was done based mual inspection of
the autocorrelation function, which shows cross-correliain terms once more than
one patrticle is present (see g4.3).
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a

Fig. 4.3. Multi particle hit . (a) : diraction pattern of multiple Cro-virus particles injec ted
with liquid jet. (b,c) : the autocorrelation shows 6 cross-correlation parts. Sioe identical particles
have been injected, this can be interpreted as cross-cori@ions of 3 particles, each pair (a,b)
results in two cross-correlation terms c(a,b) and c(b,a).

4.4 CASS - a framework for on-line analysis

All on-line analysis tools have been implemented as modulpackages for the CFEL
ASG Software Suite (CASS)$4]. CASS can easily be customized to hook into the
live data streams of FEL experiments carried out at LCLS, SACA and FLASH.
CASS can access the data of di erent detectors (e.g. CCD pixarray detectors,
reaction microscopes) as well as beam-line data (e.g. photGnergy, pulse length).
It is a very modular system that can easily be adapted to work ith other data
sources as well. Computation tasks are split into elementaunits and a dependency
graph is used to manage the order in which they are computed.his way, the
elementary units can be sent to di erent worker threads, resting in a huge speed-
up by parallelization. Analysis tasks can be de ned in a sqgrting language so that
modi cations to the on-line analysis chains can be perforndevery fast, without the
need of recompiling software. In the course of this thesis &% was extended to read
and write di erent detector data-streams (frms6 pnCCD [55], cbf. PILATUS [56,
57], MarCCD [58], xtc: CSPAD [59)) and a client software was developed that can
connect to CASS and request analysis results which can thea Hisplayed as images
or graphs in a graphical user interface. The software of thgraphical user interface
has been added to the main CASS software repository which cae obtained as
open-source fromgqQ].

Fig. 4.4shows a screen-shot of the graphical user interface whichshHzeen set up
to show a time-average of the estimated hit-rate as well asdhdi raction pattern
of the last found hit.
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Fig. 4.4. graphical user interface used for tuning sample injection on-line. A time-average of
the hit-rate is displayed (bottom ) as well as the last di raction pattern classi ed as hit ( top ).
Sample: PBC virus. Photon energy: 1.8 keV. Injection: aerognamic lens stack.
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Application

Despite the attractive prospects of X-ray single particlennaging, so far, no complete
three-dimensional reconstruction has been demonstrate@ihe main reason is that
almost every aspect of this imaging method is currently at aparly stage of devel-
opment. This includes the development of the light sourceself, which can be quite
unstable at times, the injection and handling of the single articles in vacuum, the
detection of the diraction patterns and the development ofalgorithms that can
analyze the resulting data. The work presented here focusas the algorithmic side
of the problems. Most of the published algorithmsdl, 37, 62, 63] have been shown
to work with simulated data, where all parameters that a ectthe formation of the
di raction signal can be controlled. Real data, however, #t contain many artifacts
that have yet to be understood. Therefore, it is inevitabled use a model system
for development, for which most of the uncertainties can bdiminated. The model
system that is presented here is an iron-oxide nanoparticballed nanorice, which is
chemically stable, can be produced in huge quantities, isramercially available and
scatters strongly, providing a very good diraction signal The nanorice particles
were inhomogeneous in size and shape which re ects the stina expected for bio-
logical objects. The application of the algorithms descréxd in chapter3 to real data
is presented in the following, including the rst three-dimensional reconstruction of
serial CDI data.

5.1 nanorice - an ellipsoidal iron oxide nanoparticle

Nanorice is a nanoparticle with a strongly scattering atongicomposition. It consists
of an ellipsoidal iron oxide core (FgD3) with principal axes of 200 nm and 50 nm
and it is coated with silicon oxide (SiQ). See gure 5.1 for transmission electron
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micrographs. It was purchased from Corpuscular, Inc. (Col8pring Harbour, NY,
USA).

Nanorice is an excellent model system for the development afientation clas-
si cation algorithms since its symmetry axisC, reduces the rotational degrees of
freedom from three to two and the orientations can, in pringile, be recovered man-
ually from individual diraction patterns, making this sa mple an ideal test case
for general methods of orientation recovery. In sectiof.1.6 this nice property of
nanorice will be used as a control.

"'54 «-
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Fig. 5.1. TEM images of nanorice particles . All TEM images reproduced in this thesis are
used with the kind permission of Thomas Barends.

5.1.1 Data acquisition

Di raction patterns were obtained during imaging experimats at the AMO beam-
line at LCLS. These experiments were conducted in the vacuuohamber of the
CAMP end station [55] which has been installed into the AMO hutch in 2009 and
was available for three years. The CAMP instrument was desigd by the Max-
Planck Advanced Study Group (ASG) for various types of expéanents, including
coherent di ractive imaging experiments. It is equipped vith ion and electron spec-
trometers as well as two large-area, one megapixel pnCCD detors. The pnCCD
detectors can detect single photons and they can also be ogted in a spectroscopy
mode where the deposited energy can be resolved to within 4200 eV in the energy
range between 100 eV and 25 keV. The X-ray beam is focused top@tsof 10 m ?
using a pair of Kirkpatrick-Baez (KB) mirrors. The nominal X-ray pulse length
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(determined from the electron pulse length) was 150 fs anddtphoton energy was
1.2 keV with a pulse energy of 3.2 mJ. The FEL repetition rate as 60 Hz.

The sample was injected into the X-ray beam using aerosol agtion (see page
6). The aerosol was generated from a liquid solution contaimg the sample objects
by a gas dynamic virtual nozzle 19 and by a commercial nebulizer (Burgener Mira
Mist CE nebulizer, AHF Analysetechnik, Tubingen, Germany) While the FEL
focus was 10m ?, the diameter of the particle beam was approximately 440n at
the X-ray interaction region (22 mm from the aerodynamic les stack exit). The
particle speed was estimated to be on the order of 100 m/&4]. These parameters
allow a maximal achievable hit rate of 2.6%4/].

Di raction patterns were recorded using a pnCCD detectord5| placed at a dis-
tance of 738 mm from the interaction region. The detector caists of 1024 1024
pixels (each sized 75n  75m ) with detector-halves that can be positioned such
that the direct X-ray beam passes through the gap between thevo halves. In
addition to the gap, a circular central region with a radius 630 pixels is cut out
for the direct beam. The detector area was shielded by a 3m thick polymide
Iter to prevent the contamination by sample particles. The detector readout was
synchronized with the repetition rate of the X-ray pulses o060 Hz. The pnCCD
detector was operated in a gain mode that allows each pixel $tore charges created
by 10° photons per pixel (measured at 2.0 ke\6p]). A postprocessing was performed
to make use of calibration methods described i (.

5.1.2 Classi cation results

The classi cation scheme described in chapte?.1 was used without any specic
adjustment to the nanorice diraction data apart from providing a training set
consisting of three di erent classes of nanorice di ractio patterns:

Class 1: diraction patterns of single nanorice particles g¢ingle hits)
Class 2: diraction patterns of two nanorice particles ( dable hits)
Class 3: the remaining diraction patterns, containing di raction patterns of

multiple nanorice particles, empty shots and saturated sl®.
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The training dataset consists of 20 di raction patterns perclass that were selected
based on visual inspection. A random-forest classi er wasulit for this training
dataset and the size-, symmetry- and PCA features describ@tdchapter 2.1 proved
powerful enough to classify the whole nanorice data set, asswal inspection of
random images showed that 99% of the di raction patterns wercorrectly classi ed.
Figure 5.2 shows a random subset of automatically classi ed di ractio patterns.

Fig. 5.2. Automatic classi cation results . Only a random subset of all 4248 di raction
patterns is shown and only a central detail is shown for each idraction pattern, the di raction
extends beyond the borders shown here.
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The nanorice diraction dataset consists of a total of half amillion snapshots
that were collected with 1.2-keV photons at the LCLS. After emoving most of
the empty shots by applying a pre-processing hit- nding lter (see chaptert) 4248
patterns remained of which 1389 were recognized as singletshby the automated
classi cation employing the random-forest classi er.

5.1.3 Orientation recovery results

The single nanorice patterns that were identi ed by the stastical classi cation
method (see chapteP.3) were used as the input for the geodesic orientation recoyer
algorithm described in chapte3. Figure 5.3shows howP; and P,, the two di raction
patterns between which all geodesic sequences will be spaghrio nd orientation
relationships, were found following steps 1-6 outlined irestion 3.3.

P1: randomly picked P,: out-of-plane P,: out-of-plane
di raction pattern antipode of P, antipode of P,

Fig. 5.3. Finding P; and P, the two di raction patterns between which all geodesic segiences
will be spanned to nd orientation relationships. Pj is picked randomly, then P, is found as the
di raction pattern with maximum geodesic out-of-plane distance to P;. In order to overcome
stops in the geodesic sequences that are caused by object symatry, the initial pattern P73 is then
replaced by P;, the di raction pattern with maximum geodesic out-of-plan e distance toP.

After the di raction patterns P; and P, are chosen, geodesic sequences between
the in-plane rotated diraction patterns Py( ) and P,( ) are searched for. The
rotational symmetry of the nanorice particle is re ected inthe di raction pattern
P,, therefore all resulting geodesic sequences can be viseiin two dimensions
as shown in gure5.4. Not all of the 1389 single-particle di raction patterns cald
be assigned to geodesic sequences in betw®efi ) and P,( ). Importantly, the
resulting orientation map covers only a subset of 128 di ramn patterns. As will be
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shown in section5.1.5 the reason for this is a drastic inhomogeneity of the datase
as the remainder of the diraction patterns belong to nanopdicles with di erent
sizes and shapes.

Fig. 5.4. orientational alignment of XFEL nanorice di raction snapshots using the geodesic
orientation recovery algorithm. This orientation map shows only a subset of the 128 aligned
di raction patterns that were collected at LCLS. Figure tak en from [44].

The angular orientation map shown in gure5.4 can be used to interpret the
orientations of the individual di raction patterns. The bottom row shows di raction
patterns of the rice grain hit head-on, while the top row shog/di raction patterns
of the particles hit on their broadside. Thus the geodesic geences in between
describe a rotation through an angle of 90 degrees. This isline with the symmetry
of the particle: without symmetry the angle would be 180 deges but it is reduced
by a factor of two by the two-fold symmetry axis of the nanopaticle. The geodesic
distance of these sequences is linearly mapped to angleswasetn 0 and 90 degrees
and eq. 3.1 can be used with' = 90 to calculate the orientations of all di raction
patterns.

Now that the orientations are known, the diraction patterns can be used to
construct the three-dimensional di raction volume. Theréore the i-th detector pixel
position p;j of the j-th snapshot is represented in a laboratory frame therigin of
which is located in the interaction region, with the z-axis kgned to the X-ray beam.
Let R; be the rotation matrix of the j-th snapshot, the wavelength andk,= z 2
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the wave-vector of the incident beam, therp;; can be mapped to reciprocal space
Qg;;j in the following way:

Kij = Ripy

ki;j = 2_ lii;j
ki;j

g;; = kij ko

Figure 5.5 shows slices of the resulting di raction volume and it can bseen that
the averaging of di raction patterns with similar orientation enhances the intensity
of the di raction fringes.

Fig. 5.5. Slices through the 3D di raction volume assembled by the geodesic method. Fig.
5.4 shows a subset of the 128 di raction patterns that contributed to this di raction volume. The
color-scale shows the intensity values in the arbitrary digtal units of the pnCCD detectors. Left :
slice with arbitrary rotation. Right : orthogonal slices aligned to the major axes of the particle

5.1.4 Phase retrieval

Two algorithms (HIO [33] and RAAR [67]) for two-dimensional phase retrieval were
implemented and extended with a nonlinear modulus constrati which ampli es
strong intensities in the rst few iterations in order to prefer the reconstruction
of intense low angle signals in the region where data is misgidue to the beam-
stop. Also, HAWK [68] was used, a phase retrieval software suite and software
library developed by Filipe Maia which is unsurpassed in spd because it uses hard-
ware acceleration (GPU computing) for the discrete Fourieransformation. For the
three-dimensional phase retrieval, the software librargm_recon[69] implemented
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by Jan Steinbrener was used which is documented im(]. This implementation
uses a distributed memory model that can connect the main meary of many com-
puters, forming a giant working memory that can hold the larg three-dimensional
di raction- and reconstruction data. At the same time, it uses message passing to
distribute work over the network of connected computers re#ting in a huge speedup
by parallelization. The library dm_reconimplements the algorithms HIO B3] and
di erence map [7]] in three dimensions.

2D real-space reconstruction

di raction pattern

reconstructed missing information

Fig. 5.6. Two-dimensional phase retrieval of a single nanorice di raction pattern. The real-
space projection of the nanorice grain was reconstructed usg the HIO algorithm [ 33]. The lower
right image shows the reconstruction of the low angle di radion intensities that were missing in
the experimental data (left) because of a gap int the detecto and a central hole for the direct X-
ray beam.

For three-dimensional phase retrieval a box 10 times largénan the expected
volume of the nanorice particle was used as a rough initial gport estimate and
the di erence map algorithm [71] was used to recover the phase information and
the electron density map which is shown in g.5.7. The algorithm converged after
1000 iterations. No sophisticated update of the support cstraint or tweaking of
parameters was necessary. The width and length of the rectmstion correspond
to 39 nm and 150 nm, respectively. The result is consistent tlvi the size and
shape that has been determined by transmission electron mascopy and is also
consistent with the individual two-dimensional diraction patterns (see g. 5.6).
The theoretical optical resolution of the imaging setup wa®.9 nm. However, the
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di raction pattern did not extend to the detector edge, and aly 7 di raction orders
were visible, resulting in a resolution of 21 nm.

Figure 5.7 shows, the latter was used for the reconstruction of the narnioce shown
in g. 5.7

Fig. 5.7. 3D reconstruction of the electron density of a medium-sized 150 nm long nanore
particle. The size distribution of the sample can be seen intie TEM micrograph (inset). The
bounding box shows the oversampling volume, the red magni d object shows an isosurface
representation.

5.1.5 Data inhomogeneity

A closer look at the geodesic three-dimensional reconsttionn showed the inhomo-
geneity of the di raction snapshots as a fundamental di culty of experimental CDI
data that could be successfully addressed by the geodesipagach. The size and
shape inhomogeneity (see g5.7 for a TEM micrograph) of the nanorice particles
splits the di raction data in di erent groups of di raction patterns that match into
common three-dimensional diraction volumes. Diraction snapshots of particles
that are indistinguishable based on the optical resolutioend up in the same group.
The geodesic approach singles out one such group by only édesng di raction
snapshots that are interconnected by similar pairs of di ration patterns, starting
from a (randomly) user-chosen di raction pattern. The degee of similarity is gov-
erned by the threshold" introduced in chapter 3.1

As mentioned before, a subset of 128 di raction patterns oudf 1389 was assigned
to geodesic sequences starting from the initial di ractiopattern P; shownin g. 5.3,
Interestingly, picking a di raction image from the remaining unassigned di raction
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patterns and starting the algorithm again with this pattern as P; revealed another
subset of di raction patterns which corresponds to an objeécsmaller than the one
reconstructed in section5.7. The orientation map can be seen in ¢g.5.8 These
results con rm that the geodesic algorithm can robustly hadle inhomogeneous data
sets by choosing the biggest subset of di raction patternshat can be matched into
a three-dimensional di raction volume. This is not possil® without modi cation for
the common arc method, the Bayesian approaches and the diios1 map described
in appendix A, since these methods include all di raction patterns into he three-
dimensional scattering volume whereas the di raction pa#rns that are combined
by the geodesic approach are contained within the border thas de ned by the
di raction patterns P;, P, and all their in-plane rotations.

Fig. 5.8. orientation map  of a second subset of matching di raction patterns, correspnding
to a smaller nanorice grain than the one resulting in g. 5.4.

5.1.6 Using a simple geometric consideration as a control

In order to test the recovered orientations and to obtain ma evidence that the
di erent subsets found in the di raction data are caused by ample inhomogeneities,
the high symmetry of nanorice was exploited to verify the prgous results.

The nanorice nanoparticle looks like a grain of rice (see ¢.7). Its minor axis
is invariant under projections and the Fourier transform tansforms it into a major
axis in reciprocal space. The length of this major axis is cetant in all di raction
patterns. The real-space major axis of the rice grain howevés a ected by the
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projection and the Fourier transform leads to a minor axis imeciprocal space whose
size depends on the orientation. The ratio of the two axes imé di raction pattern
varies between 1 (the head-on orientation that aligns thege grain with the X-ray
beam, see bottom row of g.5.4) and an extremumr ., (broad-side orientation, see
top row of g. 5.4). The ratio r can be read out automatically by tting ellipses to
the di raction fringes. When the rice grain is approximatedby a cylinder of length
dmax With spherical caps with diameterd.,, (see g. 5.9), the relation between angle
and projectiond is given by

d dmin

dmax dmin

d/dmn 1 .
Omax/ dmin =~ 1
The ratios d/ dyin and dmax/ dmin translate to 1/r and 1/r ., in reciprocal space. The
angle can be identi ed as the second Euler angle of the rice grairnsientation and

sin( )

can be determined from the ratios of major and minor axes in &di raction pattern:
. 1r 1
= arcsin— 5.1
The rst Euler angle of the rice grain's orientation is given by the in-plane orie-
tation of the tted ellipse. The third Euler angle is completely degenerate because

of the S symmetry along the axis of the rice grain.

Projection

Fig. 5.9. Simpli ed projection model of a nanorice grain.

Assembling the diraction patterns to the three-dimensioml di raction volume
with the orientations obtained by the simple and robust unpojection (eq. 5.1)
resulted in a surprise: the di raction volume was not usabléor three-dimensional
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reconstruction; the di raction fringes were washed out. Ast turned out, the dif-
fraction data could not be merged into a single dataset becse of inhomogeneities
of the sample objects which was con rmed by transmission eleon microscopic
images of the sample: the rice grains had slightly di erentizes and shapes (see TEM
micrograph in g. 5.7. The more general geodesic approach, however, without bgin
equipped with any prior information about the sample, foundsubsets of di raction
patterns with matching fringes (see g.5.4). The averaging of several diraction
patterns enhanced the di raction fringes instead of washinthem out (see g.5.5).
The result was consistent with the simple geometric check sleibed in this section.

It turns out that such an inhomogeneity is also present in theli raction data
collected from biological samples such as viruses. Hereg toroblem is so severe that
a three-dimensional reconstruction was not possible (sescton 5.2).

5.2 Preliminary application to virus di raction data

The successful 3D-reconstruction of the nanorice particlaotivated the collection
of di raction datasets of biological samples. Viruses withli erent sizes and shapes
were used: T4 bacteriophage, PBCV-1, CroV and Mimivirus.

5.2.1 Samples

The T4 virus is a large bacteriophage with an elongated icdsadral head ( 80nm
diameter) that contains a 172 kilobase pair DNA genome. A heél, hollow, con-
tractile tail (  20nm  100nm) is attached to the capsid.

Fig. 5.10. schematic drawing of a T4 bacteriophage (left) and TEM image (right, already
published in [47]).
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The Paramecium bursaria chlorella virusPBCV-1 and the Cafeteria roenber-
gensis virusCroV are both giant icosahedral double-stranded DNA viruse PBCV-1
infects fresh water algae Chlorella variablilis) [72], CroV infects a marine het-
erotrophic agellate (Cafeteria roenbergensis[73]. CroV is of particular biological
interest because it is a virus that itself can get parasitizeby another virus named
Mavirus and no three-dimensional structural information $ available. Mimivirus is
one of the larges known viruses, its icosahedral capsid hadiameter of 400 nm and
brils attached to the capsid add to the total diameter whichis about 750 nm 74].
A two-dimensional reconstruction of single Mimiviruses waachieved using X-FEL
di ractive imaging [ 759].

5.2.2 Results - aerosol injection

The viruses, like all biological samples, need a hydratiomell provided by residual
bu er solution which remains bound to the particle when an a@sol injection system
is used. The diraction patterns were collected using the CRIP instrument at

the AMO beam-line at the LCLS. The experimental parametersarrespond to the
parameters used for the nanorice dataset as describedari. 1

The classi cation scheme described i.1 that was also used for automatic clas-
si cation of the nanorice dataset proved general enough toandle virus di raction
data without modi cations, apart from specifying a di erent training dataset for
each sample. Again, a training data set of three classes (@& hits, multiple hits
and a class containing the rest) consisting of 20 di ractiorpatterns per class was
selected and classi cation was performed using a randomrést classi er. Figure
5.11shows a subset of automatically classi ed virus di ractionpatterns.
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Fig. 5.11. Classi cation : Randomly selected di raction snapshots of Mimivirus and their auto-
matically obtained classes.

Unexpectedly, the aerosol dataset displayed huge size immageneities. The
object size was estimated by tting diraction rings of a splerical object to the
di raction patterns. Fig. 5.12shows that the apparent size of the T4 virus varies
dramatically from snapshot to snapshot and the average sizé 330nm is much
larger than the actual particle size ( 100nm T4 head). This e ect only appears in
combination with aerosol injection, the size distributionobtained from TEM as well
as from liquid jet di raction data (see 5.2.3 is homogeneous. A possible explanation
for the origin of this size inhomogeneity are varying partie to detector distances
which will only change the apparent size without really alteang the particle. It
is also possible that structural changes occur or that a layef solvent remains
around the particle, leaving a salt crust when it dries in thevacuum chamber.
The e ect is less severe for larger particles (see .12, suggesting that either
the focusing of the aerodynamic lens works better with biggeparticles or that
the size of the bigger particles is similar to the preferredze of solvent droplets,
reducing solvent-shell artifacts as illustrated in g.5.12
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Fig. 5.12. Top: Size histogram of the small T4 virus (blue) and the Mimivirus (green). The size
was estimated by tting diraction rings of a spherical obje ct to the diraction patterns. The
apparent size of the larger Mimivirus matches the nominal ste obtained from electron microscopy,
but the obtained size of the smaller T4 virus (328 nm) di ers from the nominal size (100 nm
icosahedral head). TEM image: T4 virus, courtesy of Thomas Brends. Middle: aerosol injection
of particles with di erent sizes. The solvent layer around the sample evaporates as the particle
moves along the injector with increasing vacuum. Equal iniial droplet sizes may leave smaller
samples with a thicker remaining solvent shell, while a largr sample may dry o completely.
Bottom: autocorrelation functions of di erent T4 snapshots, displaying di erent apparent object
sizes.
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The severe size inhomogeneities render the current aerodata of mid-sized
viruses unusable for combination into a single three-dimeional dataset. Also
selecting a subset of matching particle sizes was not podsibecause too few dif-
fraction patterns matched in apparent size.

5.2.3 Results - liquid jet injection

To avoid inhomogeneities in the apparent virus size, anothénjection system was
used, the liquid jet system introduced on pagé. In a liquid jet, the amount of solvent
in the vicinity of a sample particle is constant in contrast b aerosolized particles with
varying solvent shells; thus injection artifacts like varyng salt crusts are avoided.

In order to reduce the large background signal from the ligdijet which is much
higher than the background of a small aerosol solvent sheiheasurements were
performed in the water window with a wavelength that had tobe increased to 2.4
nm / 520 eV photon energy (as compared to 1 nm used for aerosgkiction). Water
window microscopy was rst proposed by Wolter {6] in 1952, it is the wavelength
region between the K-absorption edge of oxygen at a wavelén@f 2.3 nm and the
K-absorption edge of carbon at 4.4 nm where the contrast bed@n biological samples
(mostly carbon) and water (mostly oxygen) is maximized.

The virus diraction dataset obtained by liquid jet injection does not display
the size inhomogeneities observed in the aerosol datasatf khe resolution of this
dataset is reduced because the reduced wavelength necesdar water window
imaging. Still, the background scattering from the liquid ¢t severely hampered a
three-dimensional reconstruction. Figuré.13shows that nding geodesic sequences
is possible after masking out the intense background signaf the liquid jet, but
since the signature of the jet changes rapidly, not enough tehing sequences could
be found to be combined into a three-dimensional di ractiorvolume.
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Fig. 5.13. CroV samples injected with a liquid jet. Top left : microscopic image of the jet, the
bright point shows uorescence of the X-ray beam.Top right : strong di raction signature of the
liquid jet (vertical streak). Bottom : geodesic sequence of di raction patterns. Only di raction
patterns with low jet signature were used to nd the sequenceand the jet streak was masked out

heavily.
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Discussion

The result of this thesis is a set of data evaluation method®f three-dimensional
serial coherent di raction imaging of microscopic samplesA major achievement
is a new algorithm for orientation recovery of di raction pdterns - the Geodesic
In-Plane Rotation AL gorithm gipral . This algorithm is able to cope with the
practical di culties posed by experimental conditions like noise, weak signals and
the possibility of inhomogeneous specimen which can be caminated by artifacts
or the presence of multiple conformations. For the rst timethe successful appli-
cation to experimental data was demonstrated with XFEL di raction patterns of
inhomogeneous nanoparticles which where automaticallyrged and orientationally
aligned, resulting in the rst three-dimensional reconstuction®!.

6.1 Comparison to other orientation recovery approaches

During the last six years, several orientation classi catin algorithms B3, 77, 62, 43
have been published and shown to work with simulated data. flough some are
reported to cope very well with simulated noise and very lowhmton counts p2, 78,
none have been used to successfully reconstruct an objecinfrserial single particle
CDI data. This is not due to lack of experimental data, since emade the data used
in this work publicly available at cxidb.org [47]. A detailed overview over existing
approaches is presented in appendi.

The essence of the method developed in the framework of thieesis is the nding
that geodesic sequences of di raction snapshots in recipal space can be assigned
to geodesic sequences of object rotations in real-space. istidguished property of

6.1. Loh et al. [77] demonstrated a successful application of the EMC algoritim to di raction snapshots
of nanorice, but no real-space reconstruction could be obfaed.
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such sequences is their globally optimal nature: the geodedistance is a combina-
tion of local distances between many data points into a confomable global distance,
a principle which makes the isomap7[)] algorithm so powerful and robust against
outliers and noise. Fast dynamic programming approacheskdi Dijkstra's shortest
path algorithm [45) are very e cient and guarantee globally optimal solutions

gipral combines two reliable sources of angular information (inlgne, out-of-
plane) without propagating the error exponentially by neshg steps, a problem
which is treated by additional averaging in common-line orarc methods 1, 8Q]. In-
plane angles can be obtained with an accuracy that is only lited by the discrete
nature of the pixel based diraction detection. The introdwction of arti cially in-
plane rotated di raction patterns increases the e ective @nsity of the orientation
sampling, a technique which could also bene t other approhes.

Moreover, every pixel of the whole di raction pattern contibutes to the angular
information and is considered ingipral , whereas in common-line methods used
frequently in EM, only lines within di raction patterns are compared. This makes
gipral applicable to data sets with much fewer scattered photons. HE method
of moments B1] used in EM which has also been described for X-ray di ractio
snapshots §7], analyzes an ellipsoid which has the same moments of inartas
the sample in order to recover its orientation. This methodhowever, su ers from
ambiguities, especially when no phase information is avallle, as is the case in X-ray
CDI. gipral is also applicable to objects that have identical or very siitar prin-
cipal axes, such as icosahedral viruses. While these lintitans prevent the methods
established in EM from generally being used in CDRgipral can only bene t from
the additional phase information of real space projectionsbtained from EM. An
application of gipral to EM data has not been tested yet, however, there are no
theoretical obstacles that would prevent this.

Orientation classi cation schemes proposed in Refs83, 80] make use of the
Pearson correlation coe cient to estimate the di raction pattern similarity while
[43] uses the Euclidean distance measure. In the described gesid approach, the
Pearson correlation coe cient is favored because of its imaviance under linear trans-
formations of the di raction intensities. As with Bayesian methods p2, 63, 37] the
ensemble information of all diraction patterns combined $ used to infer object
orientations, makinggipral also useful for data with very low photon counts€2,
84]. Unlike the expectation maximization algorithms used intie Bayesian methods,
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the dynamic programming algorithms applied in the geodesgearch ensure that the
global optimum is found. The Bayesian methods make use of asstical noise model
to estimate the likelihood that a di raction snapshot ts into the di raction volume
with a given orientation. Such noise models are bene cial fdow photon counts.
While this was not necessary for the data shown in this thesigipral can easily
be extended with such noise models. Then the notion of distes has to be replaced
with the Bayesian interpretation of likelihood and the nois models can be used to
estimate the likelihood that two di raction snapshots are nearest neighbors .

Compared to the graph-theoretic analysis of scattering dat[43, gipral re nes
simple pairwise local distances into an accurate integralsfance measure and uses
in-plane angles as an additional source of information. Thigeeodesic analysis reduces
the orientation recovery to one-dimensional sub problemmaking it fast and phys-
ically intuitive.

gipral isthe rst single-particle CDI orientation recovery methal that has been
used for a successful three-dimensional reconstructionXfay di raction snapshots
with random orientations. Its success is based on the abifitto handle inhomo-
geneous data as well as its ability to nd globally optimal shutions. Since the
intermediate one-dimensional snapshot-sequences areyews visualize, the whole
process can be supervised and the parameters (nearest neahthreshold ") can
be tweaked. In conclusiongipral is a method that can be used for single particle
CDI reconstructions in a very general sense: it requires n@sumptions about the
sample object other than its symmetry group (which can be obined from di rac-
tion patterns), it can cope with weak di raction signals andinhomogeneous data
and it can handle sample object symmetries.

6.2 Towards the imaging of biological samples

The ultimate goal of X-ray CDI, the imaging of single biologial molecules, cannot
not be realized yet, because the peak brilliance of FEL X-ragulses is currently
not high enough. While improvements in the X-ray sources matg the necessary
intensities available eventually may be expected, the ddepment of algorithms
for sorting and orientation recovery of such samples is reiged, too. The methods
presented in this thesis constitute a major step towards thigoal by demonstrating
their applicability to experimental FEL data of inorganic nanoparticles.
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The next logical step in this development is the applicatiorio biological model
systems. Large viruses are ideal in this respect, since thbgve similar atomic
constituents as single biological molecules, but providérgnger scattering signals
due to their large size. In addition, many identical copiesam easily be produced - a
prerequisite for serial CDI. Since the imaging of viruses & high biological interest
in itself, too, a large amount of structural information obtined from cryo-electron
microscopy is already available to benchmark results obtad with CDI.

In terms of data analysis, biological viruses are no di erérfrom the nanorice
particle for which a three-dimensional reconstruction cdd be obtained. Exper-
imentally, however, they have to be treated very carefullyni order not to a ect
their integrity which makes sample injection di cult. In pa rticular, the requirement
for de ned bu er compositions can be at odds with the need fowolatile bu ers
that leave only minimal background for aerosol injection. sting sample delivery
methods are not yet optimized to cope with these di culties.

Indeed, as shown in chapteb.2, a three-dimensional reconstruction of the virus
di raction data was not possible because because of variousasons. In the case
of liquid jet injection, the background signature of the ligid jet, which was not
constant over time, combined with a high background scatterg interfered with
orientation recovery. In the case of aerosol injection, heginhomogeneities of the
injected sample objects were observed, as can be seen inFi. Possible causes of
these inhomogeneities are poor aerodynamic focusing réisigl in di erent particle
to detector distances or di erent amounts of residual solvé around the particles.

The data of CDI experiments with giant Mimiviruses (700 nm) des not display
the injection artifacts, but these giant viruses are not pdectly reproducible, which
was one of the factors preventing a high-resolution threardensional reconstruction.

If the injection problems encountered with T4 and CroV canniobe alleviated,
other possibilities for sample introduction include a me@nical sample delivery with
sample particles suspended on thin membranes analogoushe sample holders used
in cryo-EM. Alternatively, electrospray can be used to disgrse liquids containing
the sample objects into ne aerosols using Coulomb repulsio

It can be expected though that these problems will be overcamin the near
future, making the algorithms proposed in this thesis apptable to single particle
coherent di ractive imaging of nano-scale biological sanigs.
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6.3 Room for improvements / outlook

6.3.1 Technical improvements

During the course of this thesis, much of the technology haonhonly been devel-
oped but also improved already. New imaging modes have beestablished for the
pnCCD detectors which reduce the e ects of charge spill, gadly improving the
guality of the recorded di raction patterns. A successor tahe CAMP instrument
has been built, LAMP [85 (LCLS ASG Michigan Project) including large gate-
valves in order to separate the detectors from the interacin region, so that the
vacuum chamber may be vented without having to warm up and cbalown the
detectors. This allows for rapid changes to and repair of cgonents inside the
chamber without wasting hours of valuable beam-time. Thes®e just two examples
of improvements that do away with factors that made life di cult for CDI pioneers.
In addition, many more details will be solved and labor-somtasks will be auto-
mated, turning the exciting but sometimes touchy CDI expe@ments more and more
into a standard imaging method.

On a more fundamental level, there is still room for improveent in the con-
struction of detectors with higher dynamic range, which wilgreatly bene t data
evaluation. As an example, samples of the giant Mimivirusegg00 nm including
brils) lead to very high intensities at small scattering argles, exceeding the dynamic
range of detectors available so far.

In addition, the repetition rate of future FEL facilities will be increased (sev-
eral kHz up to MHz at supra-conducting European XFEL and LCL&) which will
help tremendously as the number of di raction snapshots is Bmiting factor right
now. More diraction snapshots will improve the signal to nése ratio of the data
ensemble, facilitate orientation recovery by improving th orientational sampling
and will also soften the resolution limit outlined in sectia 1.3.

6.3.2 direct measurement and manipulation of orientations

At least for some types of sample, the necessity farposteriori orientation recovery
can be eliminated by directly measuring or even manipulatg the orientation of
the sample particles. While optical tweezers can be used tcamipulate electrically
neutral particles, these use very strong elds which mightampromise the integrity
of the sample object. However, weaker electric or electrogreetic elds can be
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used to control the orientation of sample particles with a penanent electric dipole
moment [86]. Also, the orientation of such sample objects can be measdr by
analyzing the ight direction of fragments that are releasd after the destruction of
the sample by the intense FEL pulsed7].

6.4 Conclusions

In this thesis, the rst successful three-dimensional reostruction from serial
coherent di raction data is demonstrated. To this end, novealgorithms such as
feature-based classi cation and the @odesic h-Plane Recovery ALgorithm gipral
for orientation recovery were conceived and developed, asdbsequently applied
to real data.

It may be expected that coherent di ractive imaging with X-ray FELs will evolve
from its current, budding stage to a stage that provides newsights into biomolec-
ular structures that cannot be obtained by other methods. Xays stand out because
of their long penetration depth, the high resolution that ca be achieved. Moreover,
X-ray FELs not only promise to outrun radiation damage but also provide the
possibility to perform time resolved measurements with ula-short pulses. However,
a lot of method development is still required to reach this sige. Many aspects have
to be improved in concert, ranging from the light source itdeto sample-handling
and data analysis. A better understanding of injection and etection artifacts will
help to improve reconstruction algorithms.

Two-dimensional di raction snapshots have already helpetb analyze nanoparti-
cles in their natural environment, an example is the inveggation of the morphology
of airborne particulate matter without introducing substrates B8] . The generaliza-
tion to three-dimensional imaging opens up the door to a new@ting chamber of
the nano-world.
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Existing approaches to the orientation problem

While gipral was the rst algorithm that could demonstrate the feasibilty of serial
coherent di ractive imaging, several alternative orientéion recovery methods have

been published. This appendix provides a brief summary oféhapproaches relevant
for CDI.

A.1 Correlation

Sectionl.1showed that the spatial correlations that exist within the éectron density
of a sample object can be obtained by calculating the auto4celation function of the
electron density based on diraction intensities. Using pase retrieval algorithms,
the spatial correlations can be turned into a spatial recomgiction of the sample.

Similarly, correlations within the di raction signal can be used to reconstruct the
di raction volume. It can be thought of as an angular extensin to small-angle X-
ray scattering (SAXS), where radial information of the rotéional average of many
particle diraction signals is used to extract information about the shape of the
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sample object. If the degree of this rotational averaging reduced to a small number
of di erent orientations (as opposed to a continuous disthution of orientations),
small angular uctuations remain in the averaged intensigs, carrying information
about the sample structure. These angular SAXS uctuationgan be obtained by
freezing the sample particles in space or time, removing tireuence of di usion on
the rotational average.

Kam [89) showed that angular correlations of a single-particle draction volume
can be obtained by forming ensembles of discrete orientat® (without rotational
averaging caused by di usion), summing up the scattering whin one ensemble,
correlating the summed up intensities between pairs of dirent scattering directions
and then averaging over many ensembles. Uncorrelated paivgl cancel out during
the averaging. The correlations can thus be determined fromany single-particle
di raction patterns or from di raction patterns of particl e ensembles. Converting
these correlations into structural information is an undeiconstrained problem. Just
as in phase retrieval, additional constraints like informi@on on the sample symmetry
can help to overcome the information de ciencyq(. This method was successfully
applied to experimental soft X-ray scattering of nanopartles that were lying on a
membrane only allowing rotations about a single axis, consiining their orientations
to one dimension $§1]. Theoretical considerations for application to three-ahen-
sional XFEL data can be found in $2].

A.2 Common arc

The common arc method is borrowed from the common-line§3 methods used
for three-dimensional reconstructions from micrographs icryo-electron microscopy
(cryo-EM). Because of the large depth of focus of conventialelectron microscopes,
electron micrographs can be seen as a projection of the saepbject onto a plane.
Any two such projections of a three-dimensional object shama common one-dimen-
sional projection P3). It is possible to identify those common projections whichan
then be used to nd relative orientations of three projectias, which are xed by
three common-lines $4].
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Fig. A.1. The common arc  (red line) of two slices of the di raction volume sampled by the
Ewald sphere in two di erent orientations (blue and green). The two spheres intersect in the
common arc.

The projection-slice theorem (see chapterl1.9) relates reciprocal slices to the
Fourier transform of projections: the Fourier transform ofa two-dimensional pro-
jection of the sample object is the same as a slice through teigin of the three-
dimensional Fourier transform of the object parallel to theprojection plane. These
reciprocal slices share a common intersection.

This concept can be generalized to di raction patterns whit, depending on the
wavelength, can not be considered to be orthographic projens corresponding to
planar reciprocal slices (see chapter.8): the three-dimensional scattering volume
(reciprocal space) is sampled by the Ewald sphere. When thansple object is
rotated, so is the intersection of the scattering volume wilit this sphere. This spher-
ical intersection always contains the origin and thus the sapling sphere of two
di raction snapshots always intersect in acommon-arg where the two di raction
snapshots share the same di raction signal, allowing the oamon-arcs to be iden-
tied. Three common arcs of three di raction snapshots unigely determine their
relative orientations (up to chirality) [83]. If the Ewald sphere is almost at the
common-arcs become common-lines, but unlike in electronarescopy, where the
complex phase information can be measured, in di ractive iaging ambiguities are
introduced because of Friedel symmetry. In6fl] it is shown that a unique solution
can still be obtained.
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Since only local relationships are used in common-arc mett®to establish the
global orientations of all di raction snapshots, local erors can accumulate and a
global re nement is required, optimizing the self-consisincy of all pairs of dirac-
tion patterns [80]. In contrast to other methods (includinggipral ), common-arc
methods only consider correlations between small subsefdlte di raction patterns
(the common-arc) instead of all the available scattering formation.

A.3 Bayesian methods

The orientation recovery problem can be seen as an optimizah problem in which
a model of the di raction volume and the orientations of the mderlying di raction
patterns is sought that maximizes the likelihood of the modexplaining the data. As
shown in P5], both the Expansion-Maximization-Compression algoritim (EMC [63,
77])) and the Generative-Topographic-Mapping (GTM §2]) use Bayesian inference
methods to nd optimal models.

The EMC algorithm starts with a random initial guess of the diraction volume.
Tomograms (curved Ewald sphere sections) are extracted finothis model volume
and the likelihood is calculated of how well the measured diaction patterns are
explained by these tomograms, assuming a Poisson noise modéis likelihood is
maximized by altering the model tomograms. Therefore, a toogram is updated by
averaging measured di raction patterns weighted by the proability that the model
tomogram explains the diraction pattern. In a compressionstep, the consistency
of the updated tomograms is enforced by interpolating all mograms into a three-
dimensional regular grid representing the model di ractio volume. These steps are
repeated iteratively and can be thought of as an expectatiomaximization ([96])
technique.

The GTM method uses Gaussian functions as basis functions Bomapping from
di raction patterns to the underlying orientations. Similarly to the EMC method,
the expectation maximization algorithm is used to maximizehe likelihood. The
central principle behind this method is the nding that while changing orientations
of the sample are re ected in changes in high-dimensional &nifest space’ of mea-
sured pixel intensities, the true nature of this changes isnty three-dimensional as
di erent orientations only introduce three degrees of fre#om. Thus, a latent three-
dimensional manifold exists within manifest space, represting the orientations.
GTM provides a way to embed this manifold into manifest spacenapping di rac-
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tion snapshots to their orientation.

A.4 Diusion map / graph theory

The orientational relationships between di raction snapbots that correspond to a
nite number of di erent sample orientations can be encodeth a graph (see g.A.2)
with each vertex being a di raction snapshot while the edge &ights of the graph
re ect the orientational distances, or angles. Just like irnthe geodesic orientation
recovery developed in chapteB.3, the orientational distances can be approximated
locally by dissimilarities of diraction patterns. Establishing the global structure
of the graph also reveals information about the orientation In the following, a
geometrical interpretation of the graph theoretical take o the orientation problem
is presented, which was described in a more formal way h3].

Fig. A.2. Snapshots of an object  from di erent orientations (as viewed from the blue cam-
eras around Beethoven's bust). The graph that reveals the dentations can be constructed by
linking the two closest neighbors. Although the two graphs $iown in this gure are identical in
a topological sense, the orientations only become apparerih an adequate geometrical layout, as
shown in the circular arrangement in the top image.
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For simplicity, in this paragraph the dimensionality of theorientation problem is
reduced to just one rotational degree of freedom, correspbng to a sample object
which can only rotate about a xed single axis. If only the twonearest neighbors
of each vertex are taken into account, the graphical structe of this problem is
that of a ring while the position on the ring encodes the origation (see g. A.2).
Consider the one-dimensionaling graph R,, with n vertices. In a geometrical rep-
resentation where the vertices are distributed equidistdly on a circle, the action
of the graph Laplacianhas a nice geometrical interpretation: The graph Laplacian
is the discretized Laplacian di erential operator and as sth is symmetric in the
sense that both the left and the right neighbor of a given veeix contribute equally
to the e ect of the Laplacian on said vertex. Therefore the Lplacian preserves the
symmetry of the equispaced circular representation and iao only a ect the radial
position of the vertices, changing the scale of the circle .his shows that the circular
representation behaves similarly to an eigenvector of thegph Laplacian, with the
radial scaling factor (change in radius) being the eigenwe. This scaling behavior
still holds after decomposing the circle into the two compamntsx (u)= sin(u2 /n)
and y(u)= cos(u2 /n), two continuous eigenfunctions which, after evaluating at
the vertex positions lead to two discrete eigenvectorssandy of the graph Laplacian
of R,. In this representation, the parameteru can be interpreted as the position
along the circular ring graph and as such it encodes the angbé the underlying
orientation. Thus, calculating the value of the Laplacian igenfunctions evaluated
at a given vertex (or snapshot) reveals the orientation of ik snapshot.

The geometrical interpretation of the eigenvectors of thergph Laplacian was
built on the requirement of equidistant vertices, or a unifan density of the orien-
tation distribution. This requirement can be relaxed when lhe eigenfunctions of
the continuous Laplace Beltrami operator are considered stead of the discrete
eigenvectors of the graph Laplacian which might be samplecmn uniformly [97].
A way to nd these continuous eigenfunctions can be adopteddm the analysis of
physical di usion processes where the Laplace operator gtaa fundamental role.
In a di usion process, the spatial ux j is proportional to the spatial concentration
gradientj = D r ¢, while the temporal change of the concentration is directly
linked to the ux and has to obey the continuity equation %ﬁ r j =0. These two
requirements can be combined into the di usion equation

@c 2
=*= D
@t re
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which displays the continuous Laplace operator. Simulatgha di usion process by
means of a random walk among di raction snapshots where thergbability of a
step is governed by the local angular similarity of the snapsts (the edge weights)
can be used to nd approximations of the wanted continuous l@ace Beltrami
operator and its eigenfunctions even when the discrete salimg of the underlying
continuous orientations are non uniform43, 97]. In higher dimensions with three
rotational degrees of freedom, the eigenvectors of the Lapk Beltrami operator are
the Wigner D-functions §3, 98] which map the snapshot's orientation to the value
of the Laplacian eigenfunction evaluated at its correspoimy graph vertex, just like
x and y do in the one-dimensional case.






Appendix B

Implementation

The computations carried out for this thesis were organizeuito a high-level con-
trolling stage written in Python [99] and a low-level stage for time-critical computa-
tions written in C/C++. Therefore, numerical data was represented as continuous
memory blocks that could be accessed from C/C++ code whildumpy [10Q wrap-

pers were used for high-level access from Python. The follog chapter focuses
on performance optimizations that were performed to makgipral applicable in

acceptable time to big di raction datasets (on the order of Q0000 di raction snap-

shots with a million pixels each). Starting from a naive immmentation without

optimizations, the computation times went down from monthgo days.

B.1 Hardware optimization

Several parts of the implementation required fast numeridrear algebra routines.
SIMD (Single instruction, multiple data) hardware optimization was provided by
the linear algebra libraryEigen [101] which uses SSE$treaming SIMD Extension3g
provided by the Intel x86 processors that were used for calations. In addition,
the library LAPACK [ 10 was used along with ATLAS [03 (Automatically Tuned
Linear Algebra Softwarg that o ered automatically performed extensive optimiza-
tions of the provided linear algebra implementations, tafired to the exact machines
that were used for computations.Numpy was used as a high-level wrapper for
LAPACK and ATLAS. With those hardware optimizations, on the same machine
a matrix multiplication of 20000x10000 random numbers witllouble oating point
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precision was two times faster than a commercial implemeritan (Matlab ) that
was not optimized for this speci ¢ machine.

B.2 Parallelization

The computational bottleneck for geodesic orientation rewery is the computation
of a pairwise distance matrix of all pairs of diraction patterns. The calculation
of the distance between di erent pairs (resulting in singlanatrix elements) can
be done independently, which means that this task can be pdleized easily. The
distance matrix is divided into several parts and each parsisent out for calculation
and distributed among several computing units (vorkers). There are two di erent
types of workers: workers which share memory and thus datattvihe master process
and workers that have isolated memory and need to send and ede data in a point
to point type communication like a computer network. In the érmer, the shared
memory type, communication between workers is only necessary ifajineed to write
to a memory address which is concurrently read or written by di erent worker.
The latter, distributed memorytype needs direct communication for every exchange
of data or instructions. The computations carried out for tls thesis were performed
on a cluster of 164 machines that did not share main memory. €hmachines in
turn consisted of 4 to 16 computing cores with shared memoryotaling in 1000
CPUs, of which approximately 300 CPUs could be reserved onesmge for this work.
Therefore, a mixture of distributed and shared memory parbdlization was used in
a two-stage approach (see guré.l).

B.2.1 Shared memory parallelization

Shared memory parallelization was implemented using Pythdhreads and OpenMP
[104. Python threads were managed using a queue data structure $tore tasks and
several instances of processing classes that worked thrbuge queue carrying out
the tasks. While Python has a global interpreter lock (gil) hat blocks concurrent
access of threads to python data structures, low-level ranes written in C/C++
can release the gil (using the Python C-API macroBy BEGIN_ALLOW_THRBADS
Py END_ALLOW_THREAPSrts of the code that does not use Python data struc-
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tures. Computation heavy parts were implemented in C/C++ sich that no Python

data structures were necessary and the gil could be releasadhieving true paral-
lelism. OpenMP was used for C/C++ code to parallelize for lops using the compiler
directive #pragma omp for(see listingB.2).

import Queue
inputQueue = Queue.Queue( nr_of threads + 2)
import threading
class correlateThread (threading.Thread):
def  init _ (self, correlationclass):
threading.Thread.__init__ (self)
self.correlationclass = correlationclass
def run(self):
self.finished = False
while not self.finished:
try :
data_in = inputQueue.get()
if data_in is None
# finished with all tasks
inputQueue.task_done()

break
except Queue.Empty:
break
imgl, maskl = data in[ 0]
il = data_in[ 1]
jj = data_in[ 2]

img2 = self.correlationclass.getimage(jj)
mask2 = self.correlationclass.getmask(jj)
cormat

self.correlationclass.cormat
cormatfii,jj] = self.correlationclass.image
crossCorrelation(imgl, img2, maskl, mask?2)
cormat(jj,ii] = cormat]ii,jj]
inputQueue.task_done()

Listing B.1. A Python thread class that carries out tasks that are deposited in a queue
(inputQueue)
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#import <math.h>
#pragma omp for schedule (dynamic)
for (int aa=0; aa<npoints; ++aa)
for (int bb=0; bb<npoints; ++bb)
RESULT2(aa,bb) = sqrt( (VECTORS2(aa,0)-VECTORS2(
bb,0))*(VECTORS2(aa,0)-VECTORS2(bb,0)) ) }

Listing B.2. Example code showing the simple parallelizations of loops ith OpenMP [104].

Fig. B.1. Two level parallelization architecture for computer clusters that consist of nodes
with multiple processor cores.

B.2.2 Distributed memory parallellization

In order to harvest the big computational power of large comyer clusters that

do not use a single shared main memory, parallelization has be managed by
sending messages between the machines. Commands, inputadand results are
communicated with such messages. The implementation demeéd for this thesis
usesOpen MPI, a high performance message passing library. Open MPI prdes
an implementation of the standardized message passing irisece, providing synchro-
nization and communication between di erent processes on @rent machines. One
of the cluster machines was designated as a master node th&tdbutes tasks and
collects results. The computational bottleneck ofipral is the calculation of the
dissimilarity distance matrix of pairs of di raction patterns. A big contribution to
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the computation cost is slow loading of di raction patternsfrom disk into memory.
Smart caching was used to speed this up. Each node caches action patterns in
memory and computes all possible distance pairs for the cachdi raction patterns.
In order to avoid unnecessary reloading, the parallel taskse scheduled such that
the cache of one machine can be reused in big parts for the néagk (see gureB.2).
Orchestrating the machines accordingly minimizes the amatiof reloading to a large
extend and the computational time is reduced tremendouslyThe computational
time needed for the computation of the distance matrix of 5@D di raction patterns
went down from a half a year (naive implementation without peallelization and
optimizations) to just a couple of days when a parallel imphlaentation with smart
caching was used.

Fig. B.2. Parallel calculation of a distance matrix. A machine can re-use parts of the di rac-
tion pattern cache if the tasks of computing sub-matrices ae distributed accordingly. Carefully
tuning the shape of the sub-matrices can lead to huge speedps.

The following listing shows the de nition of a virtual base tass that was used to
manage cluster nodes. Classes can be derived from this bdsss; overwriting the
worker functions to implement speci ¢ calculations.

from mpidpy import MPI
mpi_comm = MPIL.COMM_WORLD
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mpi_rank = mpi_comm.Get_Rank()

mpi_size = mpi_comm.Get_size()

class MPI_Poot
"'general class to distribute tasks
to an Open MPI worker pool."
tag_work = 0
tag_stop = 1
# the following worker functions have to be specialized
# by derived classes
def work_init (self, *initargs):
# gets called before the nodes start working
self.work_size = 0
def work_finalize (self):
# gets called after every node is finished
def work doWorkself, index, work_data):
# does the actual work
def work_checkinWorkResult(self, index, result):
# gets called after a work chunk is finished
def work getWorkChunkéself, index):
# splits work into chunks, returns chunk
# number ‘index’

# end of worker functions

def process(self, *initargs, **keyargs):
# main function of a computer node
self.work_init(*initargs, **keyargs)
if self.mpi_rank == 0: # use node number 0 as master node

self._master()
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result = self.work_getResult()

else:
self._slave()
result = None

self.work_finalize()

return result

def master(self):

work_index =

num_completed =

# fill all nodes with work

for ii in range( 1, min(self.mpi_size, self.work_size+1)):
work_data = self.work_getWorkChunk(work_index)
self.mpi_comm.send(work_index, ii, tag=self.tag_work)
self.mpi_comm.send(work_data, ii)
work_index +=

# receive results and distribute remaining work:

for ii in range(self.mpi_size, self.work size+1):
result = self.mpi_comm.recv(source=MPI.ANY_SOURCE,

tag=self.tag_work)

result_index = status.tag
self.work_checkinWorkResult(result_index, result)
num_completed +=
proc = status.source
work_data = self.work_getWorkChunk(work_index)
self.mpi_comm.send(work_index, proce, tag=self.tag wo rk)
self.mpi_comm.send(work_data, proc)
work_index +=

# collect remaining results

while num_completed < self.work_size:
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result = self.mpi_comm.recv(source=MPI.ANY_SOURCE,
tag=MPI.ANY_TAG,
status=status)
result_index = status.tag
self.work_checkinWorkResult(result_index, result)
num_completed +=
# shut down workers:
for proc in range(l, mpi_size):

self.mpi_comm.send(- 1, proc, tag=self.tag_stop)

def _slave (self):
status = MPI.Status()
continue_working = True
while continue_working:
work_index = self.mpi_comm.recv(source=0, tag=MPI.ANY_ TAG,
status=status)
if status.tag == self.tag_stop:
continue_working = False
else :
work_data = self.mpi_comm.recv(source=0, tag=MPI.ANY_TAG,
status=status)
result = self.work_doWork(work_index, work_data)

self.mpi_comm.send(result, dest=0, tag=work_index)

B.3 Class hierarchies

In order to make the implementation re-usable for many di eent data sources such
as di erent detectors as well as simulated data encoded in drent data formats,
a exible class hierarchy was used. This way, the algorithmsan access di raction
snapshots by means of a uni ed interface.
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Fig. B.3. Class diagram  showing inheritance relationships and specialized class @mbers. This
hierarchy provides a uni ed interface to di raction data.
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Mathematical Tools

C.1 Rodrigues Frank parametrization

Geodesics of objects with rotational symmetries can be trea elegantly in the
Rodrigues/Frank (RF) parametrization. RF parametrization is a mapping from
SQO(3) to R3. R3is not a natural space for rotations, because it does not recethe
curvature of SQ3). In RF space, this problem is addressed by attening out tle
round structure that is inherent to rotations by mapping rotations of 180 to in nity

via a factor tan . The e ect is that each circle representing a rotation has imite

2
curvature radius and is hereby attened. RF space can be see&s a gnomonic
projection of quaternions to Euclidean space. At the pricefdhe nonlinear mapping
tan - comes a very nice property of RF space: the aforementionedttaning

transforms geodesic lines into straight lines and the bouades of Voronoi cells into

planes. A rotation de ned by a Euler axisé and angle# can be expressed as a RF

vector
v = étan % (C.1)
As shown in fig] a rotation r, followed by a rotationr , then takes the form
ri+ra ra ro (C.2)

r rr, =
! 2 1 rqiry

From the de nition C.1 it is clear that geodesic movements that start from the
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reference orientation (the origin in RF space) are straighines in RF space, because
they are rotations about a single, xed axis. This xed axis & nes the direction of
the RF vector and the angle modulates the length. Fron€C.1 it can be seen that
geodesics are straight lines, even if the reference oridrdga is changed by applying
a rotation to a new reference orientation rst; see49. This means that all geodesic
curves are straight lines in RF space.

The proof of full orientation coverage of Eq3.2 can now be performed using the
RF parametrization. Since the orientation ofP; is used as the reference orientation,
its RF vector can be found at the origin REP;) = (0; 0; 0)" (this means that no
rotation is necessary to reach the orientation oP; from the reference orientation).
The in-plane rotations of P; are single-axis rotations and therefore geodesics, thus
the points RF(Py( )) lie on a straight linel; and the points RHP,( )) describe a
straight line |,. The geodesic® ... betweenPy( ) and P,( ) are then the straight-
line segmentdye, ;. that start at |, and end atl,. Since we are free to choose any
combination of and , every combination of start and end points orl; and |, is
possible, and the possible geodesigs, Il the convex hull of |; and |, (see g. C.1
for an illustration).

The out-of-plane rotation axisa is orthogonal to the X-ray axise, therefore a
parametric representation ofl, is I (t) = 222 2r @l 2 e 0 \hered (1) &
€ is perpendicular to botha ande. RF(P,) = tan( /2) &, soly(t)= RF(P2)+ g(t),

where g(t) is orthogonal to RHP,), so the distance between the origin anth is

d=jRF(Py)j=tan( /2). |, is parallel to €, so RHP,) is also orthogonal tol, and
sincel; contains the origin andl, contains RHP,), d is the distance betweern; and
[, with d!'1 for ! 180.

As stated earlier, the convex hull ofl; and I, contains all RF vectors that can
be reached by a combination of out-of-plane geodesics andpiane rotations. The
boundaries of the convex hull of two in nite lines is given bytwo planes whose
normals are orthogonal to both lines. The distance of thesdgnmes is the distance
of the lines, and sincad!1 , the half-space that is cut out of RF space by a plane
that includes the origin is the space of all rotations that ca be reached by patterns
P... . This half-space is su cient to cover the full orientations space, since the
other half represents equivalent rotations with inverted ges and angles.
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Fig. C.1. lllustration of geodesics in Rodrigues/Frank spa ce. Purple arrows: geodesic
sequence in real space which connect the start and end orieation (green arrows), blue squares:
corresponding points in Rodrigues space. The grids indicat the planar borders of the convex
hull of possible geodesics after adding in-plane rotationso the start and end orientations. For
a separation = 180C° between start and end orientation, the planes are in nitely far apart. The
bottom row is the same as the top row except an in-plane rotaton of the start orientation has
been added. The green arrow pointing upwards depicts the sta orientation. It points along the
X-ray direction. For an interactive graphic, see www.gipral.org.

C.2 Object symmetries in Rodrigues-Frank space

The geodesic analysis afipral is based on a diraction pattern distance which
is subject to the rotational specimen symmetry. Only the asymetric unit can be
explored, like wave vectors in a crystal that always resida ithe rst Brillouin zone.
The analysis of in-plane rotations does not underlay this sgriction, since the true
angular distance measure can be used here. This has implioas for the geodesic
paths whichgipral identi es as shortest paths. The longest of these can only @p
half of the maximum angle which is irreducible under the ob@'s symmetry. If
additional di raction patterns are added to the longest gedesic pattern sequence,
there will be a di erent sequence that acts as a shortcut to t# additional di raction
patterns to which they will then be attributed instead. In principle, there are ways
to nd longer geodesic sequences, but the notion of shortgsaths is simple, robust
and e cient.
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The fact that the longest of all shortest paths corresponslto a rotation of half
the maximum irreducible angle can be used to calibrate the daction pattern
distance to an angular distance. Therefore, the maximum psible object rotation
within the fundamental zone of the symmetry has to be known. fiis is similar to
the maximum misorientation angle used in crystallographi¢exture analysis, for
which RF space has proved to be an elegant tool],[50).

Finite rotation groups can be classi ed into just a handfullof classes: a nite
subgroup of S@3) is isomorphic to either a cycle group, a dihedral group or orsd
the groups of regular (platonic) solidsJ05. This result allows to categorize the fun-
damental RF cells of all possible symmetry classes. A listcde found in p0]. The
maximum angle can be found as the longest RF vector within tise cells, in the case
of nite symmetry groups this is the RF vector of the cell verices. Geometrically,
it can be seen that the maximum angle is unique in the sense thacorresponds to
rotation axes which are equivalent in terms of the symmetryperations. Thus, by
identifying the longest shortest paths , not only anglesbut also the orientation of
the rotation axis with respect to the symmetry axes of the smémen are determined.
Due to the symmetry, there is a degeneracy of the maximum amglsince a rotation
by an angle! of the specimen around the maximal-angle-axi@ does not change
the maximum geodesic distance. The ax@ restricts € to the intersection| of the
fundamental cell with a plane perpendicular t@ (becauses ? d). Within this plane
the angle! can be inferred with additional constraints: in-plane rotéions are not
restricted by the symmetry and thus the size of the fundameat cell in the direction
of the in-plane rotations can be determined. The in-plane & ¢ lies within the
planar regionl and the point pporger Where it touches the border of the fundamental
cell reveals the orientation ofe within I and can be used to obtain . The geodesic
distance will be modulated by in-plane rotations such thatymps occur when in-
plane rotations pushap,( ) (or ge,( )) Over the boundaries of the fundamental cell.
These jumps can be used to identifpyorger . Therefore, the orientation of bothd and
€ with respect to the fundamental cell can be obtained and thei daction snapshot
orientations can be related to the object's symmetry axes.

When geodesics are identi ed as shortest paths the correspiing out-of-plane
angle is restricted to only half of the maximum possible obg¢ rotation. There-
fore the completeness of orientation coverage depends oe tymmetry. However,
because in-plane angles are not a ected by the symmetry, theeect is not that
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severe. In the case of the dihedral symmetry of nanorice (sehapter 5.1.3, com-
plete coverage can be achieved. As an example of higher syrtrias, | numerically
identi ed the possible coverage to be 92% for icosahedralmsgnetry (see gure S
C.2). This coverage can be increased to 100% when results withedent spanning
patterns P; and P, are merged. Icosahedral symmetry is very common in nature
and is of high importance for biological samples such as vaes.

Fig. C.2. Fundamental cell in Rodrigues space for icosahedral symmetry (dodecahedron).
The blue part can be reached by a combination of out-of-planegeodesics and in-plane rotations
of P; and P, in one go. Further iterations can then |l the whole fundamental cell. Due to the
nonlinear deformation of Rodrigues space the gaps at the caoer of the fundamental cell appear
large but correspond to very small angular regions. In fact he blue region corresponds to 92% of
all possible orientations.

C.3 extending geodesics

The orientation recovery of symmetric objects using the geesic approach can be
improved by eliminating the e ect of the symmetry on the geodsic sequences. In
the algorithm proposed in chapter3.3, geodesic sequences are found by looking for
shortest paths. Without any object symmetry, the maximum lagth of such a path
corresponds to a rotation of 18Q which is reduced by symmetries. This reduction
has to be taken into account when interpreting the geodesieguences, which is
somewhat alleviated by the RF formalism but still limits thenumber of orientations
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which are reachable by the geodesic search in one go. The lang rotations do
not su er from this limitation, they can be interpreted regardless of the object
symmetry. In principle, this can also be achieved for the ottf-plane rotations if
full geodesic paths can be found instead of just the sub-pathat corresponds to the
shortest path between two snapshots. Figur€.2 shows that this limitation is not
severe, and can be worked around by repeated execution of edgorithm, but it is
also possible to nd full geodesic sequences. One solutioouM be to nd geodesics
based on local properties, but this works against a main adviage of the proposed
method: nding shortest paths can be achieved e ciently in aglobally optimal way.
Mixing the global search with a more local search is possibath the following idea:
the geodesic sub-paths found by a global search for shortgestths can be extended
by other sub-paths as illustrated in g. C.3: sub-paths can be patched together if
they display a big intersecting part.

Fig. C.3. patching geodesic sub-paths A and B

The resulting full geodesic rings still re ect the objects ynmetry, but they |l
the gaps in the space of orientations that can be reached inego.

Another method to Il these gaps is the repeated execution dhe geodesic algo-
rithm, picking new start end endpointsP; and P, from already reached orientations
(blue partin g. C.2) will resultin geodesics betwee®;( ) and P,( ) that protrude
into previously unreached orientations.

C.4 Projections and mirror symmetry

Suppose the object under consideration is symmetric undemairror operation M

and the object orientation O is such that the X-ray axis coincides with the normal
of the mirror plane. If the image formation process is appraxated by a parallel
projection P along the X-ray axis, it followsP p= P M p for every point p. Suppose
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R™ is a rotation whose axis of rotation lies within the mirror pane of M and
R := R* 'is the inverse rotation (see gure SC.4). Then R*p= R* MM p=
MR M pbecause mirroring inverts the rotation direction. It follavs that PR * p=
PMR M p=PR M p. Applied to the set of object points, we can neglect the
mirroring operation due to the symmetry) PR*p= PR p. Thus, starting from
the orientation O, the sequence of di raction patterns obtained by intermedites of
the rotation R™ will be the same as for intermediates of its invers&® . Inversely,
the sequence starting from@, R*] going to [O,ld] gives a sequence of inverted
element order compared to the sequence going fro@®,[d] to [O, R ]. Only a single
rotation axis is involved and thus the full sequence fromd, R*] to [O, R ] is of
geodesic nature. However, the di raction pattern based diance will increase until
[O, Id] is reached and then decrease until it falls to zero whe®@[ R ] is reached.
When we search for the maximum geodesic sequence startingnfr[O, R*], then
[O, Id] will be the end of the found sequence when only di ractio pattern based
similarities are taken into account. This means that the gatesic sequences tend to
end at mirror axes as shown in gureC.4. This can be used to identify the symmetry
of the object, as stated in the main text.

A stop at mirror axes means that geodesic sequences might bee very short,
depending on the the proximity of the start orientationSy to mirror axes. But the
sequence can be extended afterwards by making the orientatiof the stop the new
start orientation. The search for long geodesic sequencé®m yields sequences of
maximal length.

Fig. C.4. Mirror symmetry together with a projection operation leads to symmetry in rotation
such that rotations in positive and negative direction yield the same projection. The di raction
pattern based geodesic sequence depicted by red arrows orethight side is equivalent to the blue
sequence and it therefore stops at the mirror plane. It does ot continue to the blue arrows as it
would without symmetry.
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C.5 Orthogonalizing in-plane and out-of-plane rotations

In the following considerations we will use a coordinate sgsn that is xed to the
sample object. So instead of considering orientations ofdhsample we consider
orientations of the x-ray beam and the detector. This implig that the in-plane axis
changes from shot to shot. Three non collinear points are sgient to represent
orientations. Since we don't consider translations, all @ntations are related by
rotation axes that have one point in common: the origi©® which is used as the rst
reference pointro. rq is invariant for all shots. We choose the second referencemmo
r, as the unit vector pointing along the x-ray beam and the thirdeference pointr,
is a point on the detector that does not coincide with the x-rabeam. The shortest
(in an angular sense) rotationR ; that rotates r; of one shot tor{ of a di erent shot
is a rotation about an axise that is perpendicular to the x-ray beams of both shots:
e?rorg, e?rord. After applying R4, the two reference pointsR; ro=ro=rd= 0
and Ry r;=r{ are aligned to the new orientation. To complete the rotatiorio the
new orientation, r, also has to be rotated tar? by a rotation R,. R, needs to leave
ro and r invariant, so its rotation axis is ror which is the new x-ray axis of the
second shot, meaningr , describes an in-plane rotation. Thus the complete relative
rotation between the two shots isR = R, R ;. By construction no rotation that
rotates ry to r can be shorter thanR ;, meaning that the angle of the composition
R is minimized whenR,= 1. SinceR is a in-plane rotation, an in-plane-rotation
of the second shot can be found such that upon replacing theattwith its in-plane
rotation, R =1 R ;. Thus nding the shortest rotation between the two shots whe
allowing cost-free in-plane-rotations of the second shotillwyield a true out-of-plane
rotation R; with an axis that is orthogonal to the x-ray beam.

C.6 Discontinued: neighborhood preserving embedding

The following section describes an orientation recovery itied that was developed
initially for this thesis but was then abandoned in favor of he geodesic method
described in chapter3.

The orientation recovery problem can be formulated in termsf dimensionality
reduction: the nominal dimensionality in detector space foa diraction pattern
is in the millions (one dimension for the intensity values oévery pixel), but the
intrinsic dimensionality is just three, because the only timg that di ers between
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di erent di raction snapshots is the orientation of the sample object which can be
described by three Euler-angles. Embedding the di ractiosnapshots in this three-
dimensional orientation space would solve the orientatioproblem. Two things are
known about this embedding:

1. the orientation space is round since orientations canebwrapped around by
rotations through an angle of2 . A natural choice for the target space of the
embedding is therefore the three-dimensional surface ofetiypersphereS3.

2. The similarities should be preserved. If two di raction sapshots are similar in
the high dimensional detector space, they are also close byadrientation space.

This leads to the following embedding procedure: given theisgimilarity measure

i.j = dass(Pi; Pj) in detector spaceN diraction snapshots are embedded into a
four dimensional Euclidean space while being constrained the surface of a three-
sphereC3. Their positions (X1;:::;Xn) are thereby chosen to minimize the deviation
of pairwise distancekx; x;k from the dissimilarity measure ;; :

min (kx; Xj k ij )2:

To account for geometric di erences between the two metricpaces, the radius
r of the three-sphereC? is chosen such that its hyper-are2 2r2 can be covered
uniformly with N points such that the average distance between closest neigins
corresponds to the average minimum distance,, between all pairs of di raction

shapshots:
r
3 N min .
4 2°

The three-sphere is a double-cover of the orientation spa¢see sectionl.3) To
solve the optimization problem, a classic multidimensionacaling algorithm [LO] as

r =

well as a gradient descent similar to simulated annealing(7 were used. Another
approach was the use of a simulated physical model in whichetldata points where
connected pairwise by springs the length of which represeahe dissimilarity distance
of the given pair. With carefully adjusted damping, a randominitial state relaxes
to the solution while being constrained to the surface of théhree-sphere.

Only local similarity distances are correlated to angular idtances. FigureC.5
shows the e ect of missing global distance informationgipral solves this problem
by introducing a global geodesic distance measure.
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Regardless of the optimization algorithm, the orientatiorrecovery of simulated
data was only successful when no noise was added to the dit@n snapshots.
Even moderate noise lead to a solution that was stuck in a lolceninimum of the
objective function. Also it is not easy to visualize and combl the intermediate steps
of the algorithm. Both problems can be overcome with the geedic method as it
guarantees global optima and the one dimensional geodesiagshot sequences are
easy to visualize.

Fig. C.5. Global structure from local distances . Distances of points on a regular grid are
fed into a multidimensional scaling algorithm. The left shows the resulting embedding into two-
dimensional Euclidean space for the case where only distaas of nearest neighbors were included,
while the right images shows the result for distances in the heighborhood with a result closer
to the original regular grid.
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