
Appendix E

Maximum and Comparison
Principles

One of the, if not the, most important tools employed in the geometric
analysis of (MCF) and indeed geometric evolution equations in general, is
the maximum principle, or to be more precise, a collection of maximum
principles, each tuned to the particular application.

In this section, we will present and derive a number of maximum princi-
ples that are used extensively throughout the results contained in this thesis.
Apart from the maximum principles, the main result derived here is an ap-
plication of the non-compact maximum principle of Ecker and Huisken [11];
a comparison principle for graphs over surfaces, which exist in the convex
tubular neighborhood of these base surfaces.

E.1 Global Maximum Principle

This ‘quick-and-dirty’ maximum principle utilises Huisken’s monotonicity
formula [15] to derive a global maximum principle, useful for deriving global
bounds and convergence results. The following maximum principle is as in
[10].

Theorem E.1. Suppose (Mt)t∈[0,T ) for T > 0 is a solution of (MCF) and
f : Mt × [0, T ) → R is a function satisfying the evolution equation(

d

dt
−∆

)
f 6 〈a,∇f〉 , t ∈ [0, T )

for some vector field a = a(x, t) such that a is well-defined in an open neigh-
bourhood of all maximum points of f on [0, T ), then we have the estimate

sup
Mt

f(·, t) 6 sup
M0

f(·, 0)

for all t ∈ [0, T ].
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Proof. First, we define the function fk, where k = supM0
f , as

fk(x, t) = max(f(x, t)− k, 0)

So, if f(x, t) is less than k, then fk is zero. Now, we calculate(
d

dt
−∆

)
f2
k = 2fk

(
d

dt
−∆

)
fk − 2|∇fk|2

6 2fka∇fk − 2|∇fk|2 by assumption

6
1
2
a2

0f
2
k by Young’s inequality

Now, using the Monotonicity Formula (see below) with ϕ = f2
k , we have

that

d

dt

∫
Mt

f2
kρdµt =

∫
Mt

ρ

(
d

dt
−∆

)
f2
kdµt −

∫
Mt

f2
k

∣∣∣∣∣H +
1
2

(
x− x0

T − t

)⊥∣∣∣∣∣
2

ρdµt

6
1
2
a2

0

∫
Mt

f2
kρdµt

Which implies that ∫
Mt

f2
kρdµt 6 e

1
2
a2
0t

∫
M0

f2
kρdµ0

Thus, we see that ∫
M0

f2
kρdµ0 = 0

and so, ∫
Mt

f2
kρdµt = 0

Therefore, fk(·, t) ≡ 0 for t ∈ [0, T ) and thus f is bounded by its initial data
on M0.

To prove this useful maximum principle, we used Huisken’s monotonicity
formula, which helps us deal with the fact that M is not compact. The
monotonicity formula is, in effect, an evolution equation for the measure
of the surface area of an evolving surface, weighted by the backwards heat
kernel. Furthermore, it gives as the name suggests, monotonicity for this
measure.
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Proposition E.2 (Monotonicity Formula). The backward heat kernel, ρ

ρ(x, t) = (4π(T − t))−
n
2 e
− 1

4

„
|x0−x|2

T−t

«
, t < T

on a manifold Mt evolving by (MCF) satisfies

d

dt

∫
Mt

ρdµt = −
∫
Mt

∣∣∣∣∣H +
1
2

(
x− x0

T − t

)⊥∣∣∣∣∣
2

ρdµt

Proof. We begin by calculating (without loss of generality setting x0 = 0
and T = 0)(

d

dt
+ ∆

)
ρ− |H|2ρ =

∂

∂t
ρ+

〈
∇ρ,H

〉
+ divMt ∇ρ+

〈
∇ρ,H

〉
− |H|2ρ

=
∂ρ

∂t
+ divMt ∇ρ+ 2

〈
∇ρ+∇⊥ρ,H

〉
− |H|2ρ

=
∂ρ

∂t
+ divMt ∇ρ+ 2

〈
∇⊥ρ,H

〉
− |H|2ρ+

|∇⊥ρ|2

ρ
− |∇⊥ρ|2

ρ

=
∂ρ

∂t
+ divMt ∇ρ

− ρ

(
|H|2 −

2
〈
∇⊥ρ,H

〉
ρ

+
|∇⊥ρ|2

ρ2

)
+
|∇⊥ρ|2

ρ

=
∂ρ

∂t
+ divMt ∇ρ+

|∇⊥ρ|2

ρ
−
∣∣∣∣H− ∇⊥ρ

ρ

∣∣∣∣2 ρ
Now, lets look at the first three terms

∂ρ

∂t
= −n

2
(−4πt)−

n
2
−1(−4π)e

|x|2
4t + ρ

(
−|x|

2

4t2

)
= −ρ

(
n

2t
+
|x|2

4t2

)
and

divMt ∇ρ = divMt

(( x
2t

)
ρ
)

=
( n

2t

)
ρ+

〈 x
2t
,∇ρ

〉
=
( n

2t

)
ρ+

〈
x
2t
, ρ

(
x>

2t

)〉
=
(
n

2t
+
|x>|2

4t2

)
ρ
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and

|∇⊥ρ|2

ρ
=

1
ρ

〈
∇⊥ρ,∇⊥ρ

〉
=

ρ

4t2
〈
x⊥,x⊥

〉
=
|x⊥|2

4t2
ρ

so we have that
∂ρ

∂t
+ divMt ∇ρ+

|∇⊥ρ|2

ρ
= 0

which implies the result

d

dt

∫
Mt

ρdµt =
∫
Mt

(
dρ

dt
− |H|2ρ

)
dµt since

dµt
dt

= −|H|2µt

=
∫
Mt

((
d

dt
+ ∆

)
ρ− |H|2ρ

)
dµt by divergence theorem

= −
∫
Mt

∣∣∣∣H− ∇⊥ρ
ρ

∣∣∣∣2 ρdµt
= −

∫
Mt

∣∣∣∣H +
x⊥

2t

∣∣∣∣2 ρdµt

Remark E.3. More generally, for a test function ϕ = ϕ(x, t) on Mt we have
the formula

d

dt

∫
Mt

ϕρdµt =
∫
Mt

ρ

(
d

dt
−∆

)
ϕdµt −

∫
Mt

ϕρ

∣∣∣∣∣H +
1
2

(
x− x0

T − t

)⊥∣∣∣∣∣
2

dµt

E.2 Extending the Maximum Principle

Sometimes we wish to apply the maximum principle to a non-compact man-
ifold (such as an entire graph), however we don’t wish to impose any bound-
ary conditions or growth restraints on the manifold. A convenient method
to obtaining estimates on compact subsets of a non-compact manifold is to
use localisation functions.

Definition E.4 (Localisation Function). A (sufficiently) smooth non-negative
function ϕ : Rn+1× [0, T ] → R is called a localisation function if there exists
a constant cϕ such that

ϕ+
∣∣∣∣∂ϕ∂t

∣∣∣∣+ |∇ϕ|+ |∇2
ϕ|+ 1

ϕ
|∇ϕ| 6 cϕ
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Importantly, all localisation functions satisfy the estimate∣∣∣∣( d

dt
−∆

)
ϕ

∣∣∣∣ 6 c(n, cϕ)

Using this estimate, we obtain the following local maximum principle as
derived in [9].

Proposition E.5 (Localised Maximum Principle). Let (Mt)t∈[0,T ), T > 0
be a solution of (MCF) and let ϕ : Rn+1 × [0, T ) → R be a localisation
function such that for all t ∈ [0, T ), Mt ∩ sptϕ(·, t) is compact. Now, let
f : Mt × [0, T ),→ R be a non-negative twice continuously differentiable
function satisfying(

d

dt
−∆

)
f 6 〈a,∇f〉 − δf2 − df +K

where δ > 0, K < ∞, d(x, t) > 0 and |a(x, t)|2 6 a2
0(1 + d(x, t)) for all

(x, t) ∈ spt f , then we have the estimate

sup
Mt

(fϕ)(·, t) 6 sup
M0

(fϕ)(·, 0) + C(n, δ, a0,K, cϕ)

for all t ∈ [0, T ).

Remark E.6. The constant C = C(n, δ, a0,K, cϕ) in Theorem E.5 is of the
form

C(n, δ, a0,K, cϕ) = c(n, cϕ)(1 +K)(1 + a2
0)(1 + 1/δ)

E.3 Comparison Principle

One major application of a maximum principle is the derivation of a com-
parison principle. Simply, a comparison principle for (MCF) says that two
initially disjoint solutions to (MCF) will remain disjoint.

This is useful in the case where an explicit solution to (MCF) is known,
allowing us to create impassable barrier surfaces, perhaps protecting other
solutions from developing singularities, or from moving to regions where cer-
tain equations are not well defined, for example a cylindrical graph moving
towards the axis.

The following comparison principle has been adapted from a more gen-
eral version given by Barles et al. in [4].

Theorem E.7 (Comparison Principle). Let ρ1 : R × [0, T ) → R and ρ2 :
R× [0, T ) → R, T > 0 be two rotationally symmetric graphical solutions to
(MCF) with at most polynomial growth. If

ρ1(z, 0) 6 ρ0(z) 6 ρ2(z, 0), z ∈ R
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for some function ρ0 satisfying

|ρ0(y)− ρ0(z)| 6 m ((1 + |y|+ |z|)ν |y − z|) , y, z ∈ R

where m is a modulus of continuity and 0 6 ν < (1 +
√

5)/2, then

ρ1(z, t) 6 ρ2(z, t) z ∈ R, t ∈ [0, T )

Proof. Let ρi, i = 1, 2 be a solution to the equation

∂ρi
∂t

(z, t) = b(ρ′i)ρ
′′
i +H(ρi), z ∈ R, t ∈ [0, T )

where
b(p) =

1
1 + p2

, p ∈ R

and
H(u) = −n− 1

u
, u ∈ R

In this simplified 1-dimensional case, for Theorem 2.1 of [4] to be appli-
cable, we must have that H is a non-decreasing function of u and that there
exists a function σ : R → R such that

b(p) = σ2(p)

and
|σ(p)− σ(q)| 6 C|p− q|

1 + |p|+ |q|
The function H is clearly non-decreasing, and by Lemma 3.1 of [4], σ

satisfies the required inequality. Thus, we may apply Theorem 2.1 of [4] to
the solutions ρ1 and ρ2 satisfying the initial condition

ρ1(z, 0) 6 ρ0(z) 6 ρ2(z, 0), z ∈ R

for some function ρ0 satisfying

|ρ0(y)− ρ0(z)| 6 m ((1 + |y|+ |z|)ν |y − z|) , y, z ∈ R

where m is a modulus of continuity (i.e. lims→0+ m(s) = 0 and m(t+ s) 6
m(t) +m(s)) and 0 6 ν < (1 +

√
5)/2, and obtain the result.


