Appendix D

Normal Graphs

In this chapter to set up the scalar problem which is equivalent to (MCF) we use a similar framework to that seen in [12]. We shall see that a quasi-linear parabolic partial differential equation can be obtained which is equivalent up to tangential diffeomorphisms.

The scalar problem shall be derived in a general setting, with the base surface being any smooth surface.

Suppose that we have a family $\left(M_{t}\right)_{t \in[0, T)}$ of n-dimensional sub-manifolds of \mathbb{R}^{n+1} evolving by (MCF), that is there exists a family of immersions $\mathbf{F}: M_{r}^{n} \subset \mathbb{R}^{n+1} \times[0, T) \rightarrow \mathbb{R}^{n+1}$ satisfying

$$
\frac{d \mathbf{F}}{d t}(\boldsymbol{p}, t)=\mathbf{H}(\mathbf{F}(\boldsymbol{p}, t)), \quad(\boldsymbol{p}, t) \in M_{r}^{n} \times[0, T)
$$

such that $M_{t}=\mathbf{F}(\cdot, t)\left(M_{r}^{n}\right)$.
We are going to investigate a special class of surfaces, the so called normal graphs (over M_{r}^{n}). These are immersions of the form

$$
\mathbf{F}(\boldsymbol{q}, t)=\boldsymbol{q}+\rho(\boldsymbol{q}, t) \boldsymbol{\omega}(\boldsymbol{q}), \quad \boldsymbol{q} \in M_{r}^{n}, t \in[0, T)
$$

for some scalar function ρ, which we call the graph height (above M_{r}^{n}). Our aim is to derive the parabolic PDE describing the evolution of the graph height of the evolving surfaces.

D. 1 Preliminaries

Consider a foliation of \mathbb{R}^{n+1}, given by the smooth level sets of a function $\sigma: \mathbb{R}^{n+1} \rightarrow \mathbb{R}$, defining the leaves

$$
M_{r}^{n}=\left\{\mathbf{x} \in \mathbb{R}^{n+1}: \sigma(\mathbf{x})=r\right\}, \quad r>0
$$

We may express the outward unit normal at $\boldsymbol{q} \in M_{r}^{n}$ by

$$
\boldsymbol{\omega}(\boldsymbol{q})=\frac{\bar{\nabla} \sigma(\boldsymbol{q})}{|\bar{\nabla} \sigma(\boldsymbol{q})|}
$$

Upon these level sets, we consider the immersion $\mathbf{X}: M_{r}^{n} \times(-\delta, \delta) \rightarrow$ $\mathbb{R}^{n+1}, \delta>0$ defined by

$$
\mathbf{X}(\boldsymbol{q}, \varepsilon)=\boldsymbol{q}+\varepsilon \boldsymbol{\omega}(\boldsymbol{q})
$$

If we choose δ sufficiently small, then \mathbf{X} is a smooth diffeomorphism onto its image \mathcal{R}_{r}. It is convenient to consider $\mathbf{X}^{-1}=(\mathbf{S}, \Lambda)$, where $\mathbf{S}: \mathcal{R}_{r} \rightarrow M_{r}^{n}$ and $\Lambda: \mathcal{R}_{r} \rightarrow(-\delta, \delta)$ where $\mathbf{S}(\mathbf{x})$ is the unique closest point in M_{r}^{n} to $\mathbf{x} \in \mathcal{R}_{r}$ and $\Lambda(\mathbf{x})$ is the signed distance from M_{r}^{n} to $\mathbf{x} \in \mathcal{R}_{r}$. Define the vector $\boldsymbol{\omega}$ by

$$
\boldsymbol{\omega}(\mathbf{x})=\bar{\nabla} \Lambda(\mathbf{x}), \quad \mathbf{x} \in \mathcal{R}_{r}
$$

which is a unit vector since $|\bar{\nabla} \Lambda|=1$. Furthermore, since $M_{r}^{n}=\Lambda^{-1}(\cdot)\{0\}$, this unit vector, ambiently defined on all of \mathcal{R}_{r}, gives the normal vector to M_{r}^{n} at $\mathbf{S}(\mathbf{x})$.

Now, we choose a sufficiently smooth function (representing height above the foliation) $\rho: M_{r}^{n} \times[0, T) \rightarrow(-\delta, \delta)$. and let $\Phi_{\rho}: \mathcal{R}_{r} \times[0, T) \rightarrow \mathbb{R}$ be the function defined by

$$
\Phi_{\rho}(\mathbf{x}, t)=\Lambda(\mathbf{x})-\rho(\mathbf{S}(\mathbf{x}), t)
$$

Thus we have for each $t \in[0, T)$ the smooth level sets

$$
\begin{aligned}
\tilde{M}_{t} & =\Phi_{\rho}^{-1}(\cdot, t)\{0\} \\
& =\left\{\mathbf{x} \in \mathbb{R}^{n+1}: \Phi_{\rho}(\mathbf{x}, t)=0\right\}
\end{aligned}
$$

Now, consider the immersion $\tilde{\mathbf{F}}: M_{r}^{n} \times[0, T) \rightarrow \mathbb{R}^{n+1}$ defined by

$$
\tilde{\mathbf{F}}(\boldsymbol{q}, t)=\mathbf{X}(\boldsymbol{q}, \rho(\boldsymbol{q}, t))
$$

then we have $\tilde{M}_{t}=\tilde{\mathbf{F}}(\cdot, t)\left(M_{r}^{n}\right)$. We are now going to force \tilde{M}_{t} to be a family of surfaces satisfying the evolution equation

$$
\left(\frac{d \tilde{\mathbf{F}}}{d t}(\boldsymbol{q}, t)\right)^{\perp}=\mathbf{H}(\tilde{\mathbf{F}}(\boldsymbol{q}, t)), \quad(\boldsymbol{q}, t) \in M_{r}^{n} \times[0, T)
$$

The flow defined by this equation is equivalent to (MCF), up to tangential diffeomorphisms, in a way we will now make clear.

Let $\varphi: M_{r}^{n} \times[0, T) \rightarrow M_{r}^{n}$ be a diffeomorphism satisfying

$$
\begin{equation*}
\bar{\nabla}_{\boldsymbol{q}} \tilde{\mathbf{F}}(\boldsymbol{\varphi}(\boldsymbol{p}, t), t)\left(\frac{\partial \varphi}{\partial t}(\boldsymbol{p}, t)\right)=-\left(\frac{\partial \tilde{\mathbf{F}}}{\partial t}(\boldsymbol{\varphi}(\boldsymbol{p}, t), t)\right)^{\top} \tag{D.1}
\end{equation*}
$$

Now, let $\mathbf{F}(\boldsymbol{p}, t)=\tilde{\mathbf{F}}(\boldsymbol{\varphi}(\boldsymbol{p}, t), t)$ and compute

$$
\begin{aligned}
\frac{d \mathbf{F}}{d t}(\boldsymbol{p}, t) & =\bar{\nabla}_{\boldsymbol{q}} \tilde{\mathbf{F}}(\boldsymbol{\varphi}(\boldsymbol{p}, t), t)\left(\frac{\partial \boldsymbol{\varphi}}{\partial t}(\boldsymbol{p}, t)\right)+\frac{\partial \tilde{\mathbf{F}}}{\partial t}(\boldsymbol{\varphi}(\boldsymbol{p}, t), t) \\
& =-\left(\frac{d \tilde{\mathbf{F}}}{d t}(\boldsymbol{\varphi}(\boldsymbol{p}, t), t)\right)^{\top}+\frac{\partial \tilde{\mathbf{F}}}{\partial t}(\boldsymbol{\varphi}(\boldsymbol{p}, t), t) \\
& =\left(\frac{\partial \tilde{\mathbf{F}}}{\partial t}(\boldsymbol{\varphi}(\boldsymbol{p}, t))\right)^{\perp} \\
& =\mathbf{H}(\tilde{\mathbf{F}}(\boldsymbol{\varphi}(\boldsymbol{p}, t))) \\
& =\mathbf{H}(\mathbf{F}(\boldsymbol{p}, t))
\end{aligned}
$$

and thus, we have shown that this is equivalent to a surface $M_{t}=\mathbf{F}(\cdot, t)\left(M_{r}^{n}\right)$ evolving by (MCF), up to these tangential diffeomorphisms.

We may now write the normal vector $\boldsymbol{\nu}$ at $\tilde{\mathbf{F}}(\boldsymbol{q}, t)$ as

$$
\boldsymbol{\nu}(\tilde{\mathbf{F}}(\boldsymbol{q}, t))=\left.\frac{\bar{\nabla} \Phi_{\rho}(\mathbf{x}, t)}{\left|\bar{\nabla} \Phi_{\rho}(\mathbf{x}, t)\right|}\right|_{\mathbf{x}=\tilde{\mathbf{F}}(\boldsymbol{q}, t)}
$$

and thus the mean curvature H at $\tilde{\mathbf{F}}(\boldsymbol{q}, t)$ is

$$
H(\tilde{\mathbf{F}}(\boldsymbol{q}, t))=\left.\operatorname{div}_{\mathbb{R}^{\mathbf{n}+1}}\left(\frac{\bar{\nabla} \Phi_{\rho}(\mathbf{x}, t)}{\left|\bar{\nabla} \Phi_{\rho}(\mathbf{x}, t)\right|}\right)\right|_{\mathbf{x}=\tilde{\mathbf{F}}(\boldsymbol{q}, t)}
$$

Now, using (D.1), we obtain

$$
\left\langle\frac{d \tilde{\mathbf{F}}}{d t}(\boldsymbol{q}, t), \boldsymbol{\nu}(\tilde{\mathbf{F}}(\boldsymbol{q}, t))\right\rangle=-H(\tilde{\mathbf{F}}(\boldsymbol{q}, t))
$$

however, we also have

$$
\left\langle\frac{d \tilde{\mathbf{F}}}{d t}(\boldsymbol{q}, t), \boldsymbol{\nu}(\tilde{\mathbf{F}}(\boldsymbol{q}, t))\right\rangle=\frac{\partial \rho}{\partial t}(\boldsymbol{p}, t)\langle\boldsymbol{\nu}(\tilde{\mathbf{F}}(\boldsymbol{q}, t)), \boldsymbol{\omega}(\boldsymbol{q})\rangle
$$

which combined with the fact that

$$
\langle\boldsymbol{\nu}(\tilde{\mathbf{F}}(\boldsymbol{q}, t)), \boldsymbol{\omega}(\boldsymbol{q})\rangle=\left|\bar{\nabla} \Phi_{\rho}(\tilde{\mathbf{F}}(\boldsymbol{q}, t), t)\right|^{-1}
$$

we obtain the PDE for ρ
Theorem D. 1 (Mean Curvature Flow of graph height). The graph height ρ over a fixed base surface $M_{r}^{n}=\sigma^{-1}(\cdot)\{r\}$ of a surface $\tilde{M}_{t}=\tilde{\mathbf{F}}(\cdot, t)\left(M_{r}^{n}\right)$ satisfying

$$
\begin{equation*}
\left(\frac{d \tilde{\mathbf{F}}}{d t}(\boldsymbol{q}, t)\right)^{\perp}=\mathbf{H}(\tilde{\mathbf{F}}(\boldsymbol{q}, t)) \tag{D.2}
\end{equation*}
$$

where

$$
\tilde{\mathbf{F}}(\boldsymbol{q}, t)=\boldsymbol{q}+\rho(\boldsymbol{q}, t) \boldsymbol{\omega}(\boldsymbol{q})
$$

evolves according to the equation

$$
\begin{equation*}
\frac{\partial \rho}{\partial t}(\boldsymbol{q}, t)=-\left.\left|\bar{\nabla} \Phi_{\rho}(\mathbf{x}, t)\right| \operatorname{div}_{\mathbb{R}^{\mathbf{n}+1}}\left(\frac{\bar{\nabla} \Phi_{\rho}(\mathbf{x}, t)}{\left|\bar{\nabla} \Phi_{\rho}(\mathbf{x}, t)\right|}\right)\right|_{\mathbf{x}=\tilde{\mathbf{F}}(\boldsymbol{q}, t)} \tag{D.3}
\end{equation*}
$$

for $(\boldsymbol{q}, t) \in M_{r}^{n} \times[0, T)$, so long as $\tilde{\mathbf{F}}(\boldsymbol{q}, t) \notin \operatorname{ker} \bar{\nabla} \sigma$.

D. 2 Uniform Parabolicity

We shall see that under the right circumstances, D. 3 is a quasilinear parabolic partial differential equation, in fact with a uniform gradient bound, it is uniformly parabolic. To do this, let us begin by expanding the derivatives. Setting $\mathbf{x}=\tilde{\mathbf{F}}(\boldsymbol{q}, t)$ and $\boldsymbol{q}=\mathbf{S}(\mathbf{x})$, using the chain rule, we obtain

$$
\boldsymbol{\nu}(\mathrm{x})=\frac{\boldsymbol{\omega}(\mathrm{x})-\tilde{\nabla} \rho}{\sqrt{1+|\tilde{\nabla} \rho|^{2}}}
$$

where $\tilde{\nabla} \rho=\left\langle\bar{\nabla}_{\boldsymbol{q}} \rho, \bar{\nabla}_{\mathbf{e}_{k}} \mathbf{S}\right\rangle \mathbf{e}_{k}$ and $\bar{\nabla}_{\boldsymbol{q}} \rho=\bar{\nabla} \rho(\boldsymbol{q}, t)$.
Lemma D.2. For each $\mathbf{x} \in \mathcal{R}_{r}$, there exists an orthonormal basis $\left\{\mathbf{e}_{i}\right\}_{i=1}^{n+1}$ of \mathbb{R}^{n+1} such that

$$
\left\langle\bar{\nabla}_{\mathbf{e}_{i}} \mathbf{S}(\mathbf{x}), \mathbf{e}_{j}\right\rangle=\left\langle\bar{\nabla}_{\mathbf{e}_{j}} \mathbf{S}(\mathbf{x}), \mathbf{e}_{i}\right\rangle
$$

for all $1 \leqslant i, j \leqslant n+1$.
Proof. Arrange $\left\{\mathbf{e}_{i}\right\}_{i=1}^{n+1}$ such that

$$
\mathbf{e}_{i}= \begin{cases}\gamma_{i}, & i \leqslant n \\ \boldsymbol{\omega}, & i=n+1\end{cases}
$$

where $\left\{\gamma_{i}\right\}_{i=1}^{n}$ is an orthonormal basis for $T_{\boldsymbol{q}} M_{r}^{n}$.
We note that \mathbf{S} may be expressed as $\mathbf{S}(\mathbf{x})=\mathbf{x}-\Lambda(x) \boldsymbol{\omega}(x)$ and compute

$$
\begin{aligned}
\bar{\nabla}_{\mathbf{e}_{i}} \mathbf{S} & =\mathbf{e}_{i}-\mathbf{e}_{i}(\Lambda) \boldsymbol{\omega}-\Lambda \bar{\nabla}_{\mathbf{e}_{i}} \boldsymbol{\omega} \\
& =\mathbf{e}_{i}-\mathbf{e}_{i}(\Lambda) \boldsymbol{\omega}-\Lambda b_{i k} \gamma_{k}
\end{aligned}
$$

where $b_{i j}$ is the second fundamental form of M_{r}^{n} at \boldsymbol{q}.
Now, we observe that $\bar{\nabla}_{\boldsymbol{\omega}} \mathbf{S}=0$ and that $\bar{\nabla}_{\gamma_{i}} \mathbf{S} \in T_{\boldsymbol{q}} M_{r}^{n}$ (since $\mathbf{S}\left(\mathcal{R}_{r}\right)=$ M_{r}^{n}) and compute

$$
\left\langle\bar{\nabla}_{\mathbf{e}_{i}} \mathbf{S}, \mathbf{e}_{j}\right\rangle=\delta_{i j}-\Lambda b_{i j}
$$

which is clearly symmetric, and thus we have the result.

Expanding the second order derivatives, we obtain

$$
\begin{aligned}
\frac{\partial \rho}{\partial t}(\boldsymbol{q}, t)= & -\Delta_{\mathbb{R}^{n+1}} \Phi_{\rho}+\left|\bar{\nabla} \Phi_{\rho}\right|^{-2}\left\langle\bar{\nabla}_{\bar{\nabla} \Phi_{\rho}} \bar{\nabla} \Phi_{\rho}, \bar{\nabla} \Phi_{\rho}\right\rangle \\
= & \left(\delta_{k l}-\left|\bar{\nabla} \Phi_{\rho}\right|^{-2}\left\langle\bar{\nabla} \Phi_{\rho}, \mathbf{e}_{k}\right\rangle\left\langle\bar{\nabla} \Phi_{\rho}, \mathbf{e}_{l}\right\rangle\right)\left[\left\langle\bar{\nabla}_{\mathbf{e}_{k}} \mathbf{S}, \mathbf{e}_{i}\right\rangle\left\langle\bar{\nabla}_{\mathbf{e}_{l}} \mathbf{S}, \mathbf{e}_{j}\right\rangle \rho_{i j}\right. \\
& \left.+\left\langle\bar{\nabla}_{\mathbf{e}_{k}} \bar{\nabla}_{\mathbf{e}_{l}} \mathbf{S}, \mathbf{e}_{i}\right\rangle \rho_{i}\right] \\
& +\left|\bar{\nabla} \Phi_{\rho}\right|^{-2}\left\langle\bar{\nabla}_{\bar{\nabla} \Phi_{\rho}} \boldsymbol{\omega}, \bar{\nabla} \Phi_{\rho}\right\rangle-\operatorname{div}_{\mathbb{R}^{n+1}} \boldsymbol{\omega}
\end{aligned}
$$

remembering of course, that all expressions on the right-hand side are evaluated at $\mathbf{x}=\tilde{\mathbf{F}}(\boldsymbol{q}, t)$.

Thus, we obtain an equation for ρ.
Proposition D.3. If $\left(M_{t}\right)_{t \in[0, T)}, T>0$ satisfies (D.2) then the graph height $\rho: M_{r}^{n} \times[0, T) \rightarrow \mathbb{R}$ satisfies the scalar evolution equation

$$
\begin{equation*}
\frac{\partial \rho}{\partial t}(\boldsymbol{q}, t)=a^{i j}\left(\rho, \bar{\nabla}_{\boldsymbol{q}} \rho\right) \rho_{i j}+b^{i}\left(\rho, \bar{\nabla}_{\boldsymbol{q}} \rho\right) \rho_{i}+f(\rho) \tag{D.4}
\end{equation*}
$$

where

$$
a^{i j}=\left(\delta_{k l}-\left|\bar{\nabla} \Phi_{\rho}\right|^{-2}\left\langle\bar{\nabla} \Phi_{\rho}, \mathbf{e}_{k}\right\rangle\left\langle\bar{\nabla} \Phi_{\rho}, \mathbf{e}_{l}\right\rangle\right)\left\langle\bar{\nabla}_{\mathbf{e}_{k}} \mathbf{S}, \mathbf{e}_{i}\right\rangle\left\langle\bar{\nabla}_{\mathbf{e}_{l}} \mathbf{S}, \mathbf{e}_{j}\right\rangle
$$

and

$$
\begin{aligned}
b^{i}= & \left(\delta_{k l}-\left|\bar{\nabla} \Phi_{\rho}\right|^{-2}\left\langle\bar{\nabla} \Phi_{\rho}, \mathbf{e}_{k}\right\rangle\left\langle\bar{\nabla} \Phi_{\rho}, \mathbf{e}_{l}\right\rangle\right)\left\langle\bar{\nabla}_{\mathbf{e}_{k}} \bar{\nabla}_{\mathbf{e}_{l}} \mathbf{S}, \mathbf{e}_{i}\right\rangle \\
& -\left|\bar{\nabla} \Phi_{\rho}\right|^{-2}\left\langle\bar{\nabla}_{\bar{\nabla}_{\rho}} \boldsymbol{\omega}, \bar{\nabla}_{\mathbf{e}_{i}} \mathbf{S}\right\rangle
\end{aligned}
$$

and

$$
f=-H_{M_{r+\rho(\boldsymbol{q}, t)}^{n}}
$$

with $H_{M_{r+\rho(\boldsymbol{q}, t)}^{n}}=\left.\operatorname{div}_{\mathbb{R}^{\mathbf{n}+1}} \bar{\nabla} \Lambda(\mathbf{x})\right|_{\mathbf{x}=\tilde{\mathbf{F}}(\boldsymbol{q}, t)}$. Note that these derivatives are evaluated at $\mathbf{x}=\tilde{\mathbf{F}}(\boldsymbol{q}$, t), and thus (may) depend implicitly upon ρ.

It is quite easy to see that this equation is parabolic.
Proposition D.4. The matrix $a^{i j}$ is positive definite on any compact region of \mathcal{R}_{r} upon which $\left|\bar{\nabla}_{\boldsymbol{q}} \rho\right|$ is bounded above.

Proof. Recall that the gradient function v defined as usual by

$$
v(\mathbf{x}, t)=\langle\boldsymbol{\nu}(\mathbf{x}), \boldsymbol{\omega}(\mathbf{x})\rangle^{-1}, \quad \mathbf{x} \in M_{t}, t \in[0, T)
$$

measures the angle between the normal vector (or equivalently tangent plane) of the base surface M_{r}^{n} at $\boldsymbol{q}=\mathbf{S}(\mathbf{x})$ and the normal vector (or tangent
plane) of the evolving surface M_{t} at \mathbf{x}. If this function is bounded above, then the projection of tangent vectors between these planes is non-zero.

On a surface expressed as a normal graph we have

$$
v(\mathbf{x}, t)=\sqrt{1+|\bar{\nabla} \rho(\mathbf{S}(\mathbf{x}), t)|^{2}}
$$

thus, for $\mathbf{x} \in \mathcal{R}_{r}$, bounding $\left|\bar{\nabla}_{\boldsymbol{q}} \rho\right|$ is equivalent to obtaining a bound on v.
Now, since $a^{i j}=\left\langle\left(\bar{\nabla}_{\gamma_{i}} \mathbf{S}\right)^{\top},\left(\bar{\nabla}_{\gamma_{j}} \mathbf{S}\right)^{\top}\right\rangle$ we can easily see that it composed only from the contraction of the metric on M_{t} at \mathbf{x} and the metric of M_{r}^{n} at \boldsymbol{q}. Furthermore, the assumption of bounded gradient implies that these metrics are non-orthogonal. Thus, we have that $a^{i j}$, the composition of two non-orthogonal positive definite metrics, is itself positive definite.

Theorem D.5. There exists a neighborhood \mathcal{R}_{r} of M_{r}^{n} on which the graph height ρ of a surface $\left(M_{t}\right)_{t \in[0, T)}$ evolving via Equation (D.2) satisfies a quasilinear parabolic partial differential equation.

Remark D.6. The region \mathcal{R}_{r} depends on the principle curvatures of the base surface M_{r}^{n} since ([13], [7]) in terms the normal coordinate basis

$$
\mathbf{e}_{i}= \begin{cases}\boldsymbol{\gamma}_{i}, & i \leqslant n \\ \boldsymbol{\omega}, & i=n+1\end{cases}
$$

we have

$$
D^{2} \Lambda(\mathbf{x})=\operatorname{diag}\left(\frac{\kappa_{1}}{1-\Lambda \kappa_{1}}, \ldots, \frac{\kappa_{n}}{1-\Lambda \kappa_{n}}, 0\right)
$$

where $\left\{\kappa_{i}\right\}_{i=1}^{n}$ are the principle curvatures of M_{r}^{n} at \boldsymbol{q}. Thus it is clear that if $\rho<\min \left(\kappa_{i}^{-1}\right)$ that the setup is valid.

D. 3 Cylindrical Case

In the case of cylindrical normal graphs, the signed distance function to the cylinder C_{r}^{n} is given by

$$
\Lambda(\mathbf{x})=\left|\mathbf{x}_{\perp \vartheta}\right|-r
$$

and the closest point projection is

$$
\mathbf{S}(\mathbf{x})=r\left(\frac{\mathbf{x}_{\perp \boldsymbol{\vartheta}}}{\left|\mathbf{x}_{\perp \boldsymbol{\vartheta}}\right|}\right)+\langle\mathbf{x}, \boldsymbol{\vartheta}\rangle \boldsymbol{\vartheta}
$$

Let $\left\{\gamma_{i}\right\}_{i=1}^{n}$ be an orthonormal basis for $T_{\boldsymbol{q}} M_{r}^{n}$ with $\gamma_{n}=\boldsymbol{\vartheta}$ (making the basis in fact normal coordinates) and arrange

$$
\mathbf{e}_{i}= \begin{cases}\boldsymbol{\gamma}_{i}, & i<n \\ \boldsymbol{\vartheta}, & i=n \\ \boldsymbol{\omega}, & i=n+1\end{cases}
$$

Now, we compute the first derivatives of the closest point projection

$$
\bar{\nabla}_{\mathbf{e}_{i}} \mathbf{S}=\left(\frac{r}{\left|\mathbf{x}_{\perp \boldsymbol{\vartheta}}\right|}\right) \mathbf{e}_{i \tau}+\left\langle\mathbf{e}_{i}, \boldsymbol{\vartheta}\right\rangle \boldsymbol{\vartheta}
$$

and the second derivatives

$$
\bar{\nabla}_{\mathbf{e}_{i}} \bar{\nabla}_{\mathbf{e}_{j}} \mathbf{S}=-\left(\frac{r}{\left|\mathbf{x}_{\perp \boldsymbol{\vartheta}}\right|^{2}}\right)\left[\left\langle\mathbf{e}_{i \tau}, \mathbf{e}_{j_{\tau}}\right\rangle \boldsymbol{\omega}+\left\langle\mathbf{e}_{i}, \boldsymbol{\omega}\right\rangle \mathbf{e}_{j_{\tau}}+\left\langle\mathbf{e}_{j}, \boldsymbol{\omega}\right\rangle \mathbf{e}_{i \tau}\right]
$$

Also, we we have that

$$
H_{M_{r+\rho}^{n}}=\frac{n-1}{\rho+r}
$$

all of which were evaluated at $\mathbf{x}=\tilde{\mathbf{F}}(\boldsymbol{q}, t)$.
Set $b_{i j}=\left\langle\bar{\nabla}_{\mathbf{e}_{i}} \mathbf{S}, \mathbf{e}_{j}\right\rangle$, then

$$
b_{i j}= \begin{cases}\left(\frac{r}{r+\rho}\right), & i=j<n \\ 1, & i=j=n \\ 0, & \text { otherwise }\end{cases}
$$

We also define $\tilde{\nabla} \rho$ by

$$
\tilde{\nabla} \rho=\rho_{k} b_{k l} \mathbf{e}_{l}
$$

and without loss of generality, we may set

$$
\left\langle\bar{\nabla}_{\boldsymbol{q}} \rho(\boldsymbol{q}, t), \boldsymbol{\omega}(\boldsymbol{q})\right\rangle=0, \quad \forall \boldsymbol{q} \in M_{r}^{n}
$$

then we have the equation

$$
\begin{align*}
\frac{\partial \rho}{\partial t}(\boldsymbol{q}, t)=a^{i j} \rho_{i j}-\frac{n-1}{\rho+r}-\left(\frac{1}{\rho+r}\right)\left(\frac{\left|(\tilde{\nabla} \rho)_{\tau}\right|^{2}}{1+|\tilde{\nabla} \rho|^{2}}\right) \\
\boldsymbol{q} \in M_{r}^{n}, t \in[0, T) \tag{D.5}
\end{align*}
$$

where

$$
a^{i j}=b_{i k} b_{j l}\left(\delta_{k l}-\frac{\tilde{\nabla}_{k} \rho \tilde{\nabla}_{l} \rho}{1+|\tilde{\nabla} \rho|^{2}}\right)
$$

It is easily seen that (D.5) is a quasilinear parabolic partial differential equation.

