
Appendix D

Normal Graphs

In this chapter to set up the scalar problem which is equivalent to (MCF) we
use a similar framework to that seen in [12]. We shall see that a quasi-linear
parabolic partial differential equation can be obtained which is equivalent
up to tangential diffeomorphisms.

The scalar problem shall be derived in a general setting, with the base
surface being any smooth surface.

Suppose that we have a family (Mt)t∈[0,T ) of n-dimensional sub-manifolds
of Rn+1 evolving by (MCF), that is there exists a family of immersions
F : Mn

r ⊂ Rn+1 × [0, T ) → Rn+1 satisfying

dF
dt

(p, t) = H(F(p, t)), (p, t) ∈Mn
r × [0, T )

such that Mt = F(·, t)(Mn
r ).

We are going to investigate a special class of surfaces, the so called normal
graphs (over Mn

r ). These are immersions of the form

F(q, t) = q + ρ(q, t)ω(q), q ∈Mn
r , t ∈ [0, T )

for some scalar function ρ, which we call the graph height (above Mn
r ). Our

aim is to derive the parabolic PDE describing the evolution of the graph
height of the evolving surfaces.

D.1 Preliminaries

Consider a foliation of Rn+1, given by the smooth level sets of a function
σ : Rn+1 → R, defining the leaves

Mn
r =

{
x ∈ Rn+1 : σ(x) = r

}
, r > 0

We may express the outward unit normal at q ∈Mn
r by

ω(q) =
∇σ(q)
|∇σ(q)|
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Upon these level sets, we consider the immersion X : Mn
r × (−δ, δ) →

Rn+1, δ > 0 defined by

X(q, ε) = q + εω(q)

If we choose δ sufficiently small, then X is a smooth diffeomorphism onto its
image Rr. It is convenient to consider X−1 = (S,Λ), where S : Rr → Mn

r

and Λ : Rr → (−δ, δ) where S(x) is the unique closest point in Mn
r to

x ∈ Rr and Λ(x) is the signed distance from Mn
r to x ∈ Rr. Define the

vector ω by

ω(x) = ∇Λ(x), x ∈ Rr

which is a unit vector since |∇Λ| = 1. Furthermore, since Mn
r = Λ−1(·){0},

this unit vector, ambiently defined on all of Rr, gives the normal vector to
Mn
r at S(x).
Now, we choose a sufficiently smooth function (representing height above

the foliation) ρ : Mn
r × [0, T ) → (−δ, δ). and let Φρ : Rr× [0, T ) → R be the

function defined by

Φρ(x, t) = Λ(x)− ρ(S(x), t)

Thus we have for each t ∈ [0, T ) the smooth level sets

M̃t = Φ−1
ρ (·, t){0}

=
{
x ∈ Rn+1 : Φρ(x, t) = 0

}
Now, consider the immersion F̃ : Mn

r × [0, T ) → Rn+1 defined by

F̃(q, t) = X(q, ρ(q, t))

then we have M̃t = F̃(·, t)(Mn
r ). We are now going to force M̃t to be a

family of surfaces satisfying the evolution equation

(
dF̃
dt

(q, t)

)⊥
= H

(
F̃(q, t)

)
, (q, t) ∈Mn

r × [0, T )

The flow defined by this equation is equivalent to (MCF), up to tangen-
tial diffeomorphisms, in a way we will now make clear.

Let ϕ : Mn
r × [0, T ) →Mn

r be a diffeomorphism satisfying

∇qF̃(ϕ(p, t), t)
(
∂ϕ

∂t
(p, t)

)
= −

(
∂F̃
∂t

(ϕ(p, t), t)

)>
(D.1)
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Now, let F(p, t) = F̃(ϕ(p, t), t) and compute

dF
dt

(p, t) = ∇qF̃(ϕ(p, t), t)
(
∂ϕ

∂t
(p, t)

)
+
∂F̃
∂t

(ϕ(p, t), t)

= −

(
dF̃
dt

(ϕ(p, t), t)

)>
+
∂F̃
∂t

(ϕ(p, t), t)

=

(
∂F̃
∂t

(ϕ(p, t))

)⊥
= H

(
F̃(ϕ(p, t))

)
= H (F(p, t))

and thus, we have shown that this is equivalent to a surfaceMt = F(·, t)(Mn
r )

evolving by (MCF), up to these tangential diffeomorphisms.
We may now write the normal vector ν at F̃(q, t) as

ν(F̃(q, t)) =
∇Φρ(x, t)
|∇Φρ(x, t)|

∣∣∣∣
x=F̃(q,t)

and thus the mean curvature H at F̃(q, t) is

H(F̃(q, t)) = divRn+1

(
∇Φρ(x, t)
|∇Φρ(x, t)|

)∣∣∣∣
x=F̃(q,t)

Now, using (D.1), we obtain〈
dF̃
dt

(q, t),ν(F̃(q, t))

〉
= −H(F̃(q, t))

however, we also have〈
dF̃
dt

(q, t),ν(F̃(q, t))

〉
=
∂ρ

∂t
(p, t)

〈
ν(F̃(q, t)),ω(q)

〉
which combined with the fact that〈

ν(F̃(q, t)),ω(q)
〉

= |∇Φρ(F̃(q, t), t)|−1

we obtain the PDE for ρ

Theorem D.1 (Mean Curvature Flow of graph height). The graph height
ρ over a fixed base surface Mn

r = σ−1(·){r} of a surface M̃t = F̃(·, t)(Mn
r )

satisfying (
dF̃
dt

(q, t)

)⊥
= H

(
F̃(q, t)

)
(D.2)
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where
F̃(q, t) = q + ρ(q, t)ω(q)

evolves according to the equation

∂ρ

∂t
(q, t) = −|∇Φρ(x, t)|divRn+1

(
∇Φρ(x, t)
|∇Φρ(x, t)|

)∣∣∣∣
x=F̃(q,t)

(D.3)

for (q, t) ∈Mn
r × [0, T ), so long as F̃(q, t) /∈ ker∇σ.

D.2 Uniform Parabolicity

We shall see that under the right circumstances, D.3 is a quasilinear parabolic
partial differential equation, in fact with a uniform gradient bound, it is
uniformly parabolic. To do this, let us begin by expanding the derivatives.
Setting x = F̃(q, t) and q = S(x), using the chain rule, we obtain

ν(x) =
ω(x)− ∇̃ρ√

1 + |∇̃ρ|2

where ∇̃ρ =
〈
∇qρ,∇ek

S
〉
ek and ∇qρ = ∇ρ(q, t).

Lemma D.2. For each x ∈ Rr, there exists an orthonormal basis {ei}n+1
i=1

of Rn+1 such that 〈
∇eiS(x), ej

〉
=
〈
∇ejS(x), ei

〉
for all 1 6 i, j 6 n+ 1.

Proof. Arrange {ei}n+1
i=1 such that

ei =

{
γi, i 6 n

ω, i = n+ 1

where {γi}ni=1 is an orthonormal basis for TqM
n
r .

We note that S may be expressed as S(x) = x−Λ(x)ω(x) and compute

∇eiS = ei − ei(Λ)ω − Λ∇eiω

= ei − ei(Λ)ω − Λbikγk

where bij is the second fundamental form of Mn
r at q.

Now, we observe that ∇ωS = 0 and that ∇γi
S ∈ TqM

n
r (since S(Rr) =

Mn
r ) and compute 〈

∇eiS, ej
〉

= δij − Λbij

which is clearly symmetric, and thus we have the result.
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Expanding the second order derivatives, we obtain

∂ρ

∂t
(q, t) = −∆Rn+1Φρ + |∇Φρ|−2

〈
∇∇Φρ

∇Φρ,∇Φρ

〉
=
(
δkl − |∇Φρ|−2

〈
∇Φρ, ek

〉 〈
∇Φρ, el

〉) [ 〈
∇ek

S, ei
〉 〈
∇el

S, ej
〉
ρij

+
〈
∇ek

∇el
S, ei

〉
ρi

]
+ |∇Φρ|−2

〈
∇∇Φρ

ω,∇Φρ

〉
− divRn+1 ω

remembering of course, that all expressions on the right-hand side are eval-
uated at x = F̃(q, t).

Thus, we obtain an equation for ρ.

Proposition D.3. If (Mt)t∈[0,T ), T > 0 satisfies (D.2) then the graph height
ρ : Mn

r × [0, T ) → R satisfies the scalar evolution equation

∂ρ

∂t
(q, t) = aij(ρ,∇qρ)ρij + bi(ρ,∇qρ)ρi + f(ρ) (D.4)

where

aij =
(
δkl − |∇Φρ|−2

〈
∇Φρ, ek

〉 〈
∇Φρ, el

〉) 〈
∇ek

S, ei
〉 〈
∇el

S, ej
〉

and

bi =
(
δkl − |∇Φρ|−2

〈
∇Φρ, ek

〉 〈
∇Φρ, el

〉) 〈
∇ek

∇el
S, ei

〉
− |∇Φρ|−2

〈
∇∇Φρ

ω,∇eiS
〉

and
f = −HMn

r+ρ(q,t)

with HMn
r+ρ(q,t)

= divRn+1 ∇Λ(x)|x=F̃(q,t). Note that these derivatives are

evaluated at x = F̃(q, t), and thus (may) depend implicitly upon ρ.

It is quite easy to see that this equation is parabolic.

Proposition D.4. The matrix aij is positive definite on any compact region
of Rr upon which |∇qρ| is bounded above.

Proof. Recall that the gradient function v defined as usual by

v(x, t) = 〈ν(x),ω(x)〉−1 , x ∈Mt, t ∈ [0, T )

measures the angle between the normal vector (or equivalently tangent
plane) of the base surface Mn

r at q = S(x) and the normal vector (or tangent
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plane) of the evolving surface Mt at x. If this function is bounded above,
then the projection of tangent vectors between these planes is non-zero.

On a surface expressed as a normal graph we have

v(x, t) =
√

1 + |∇ρ(S(x), t)|2

thus, for x ∈ Rr, bounding |∇qρ| is equivalent to obtaining a bound on v.

Now, since aij =
〈
(∇γi

S)>, (∇γj
S)>

〉
we can easily see that it composed

only from the contraction of the metric on Mt at x and the metric of Mn
r

at q. Furthermore, the assumption of bounded gradient implies that these
metrics are non-orthogonal. Thus, we have that aij , the composition of two
non-orthogonal positive definite metrics, is itself positive definite.

Theorem D.5. There exists a neighborhood Rr of Mn
r on which the graph

height ρ of a surface (Mt)t∈[0,T ) evolving via Equation (D.2) satisfies a quasi-
linear parabolic partial differential equation.

Remark D.6. The region Rr depends on the principle curvatures of the
base surface Mn

r since ([13], [7]) in terms the normal coordinate basis

ei =

{
γi, i 6 n

ω, i = n+ 1

we have

D2Λ(x) = diag
(

κ1

1− Λκ1
, . . . ,

κn
1− Λκn

, 0
)

where {κi}ni=1 are the principle curvatures of Mn
r at q. Thus it is clear that

if ρ < min(κ−1
i ) that the setup is valid.

D.3 Cylindrical Case

In the case of cylindrical normal graphs, the signed distance function to the
cylinder Cnr is given by

Λ(x) = |x⊥ϑ| − r

and the closest point projection is

S(x) = r

(
x⊥ϑ

|x⊥ϑ|

)
+ 〈x,ϑ〉ϑ

Let {γi}ni=1 be an orthonormal basis for TqM
n
r with γn = ϑ (making

the basis in fact normal coordinates) and arrange

ei =


γi, i < n

ϑ, i = n

ω, i = n+ 1
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Now, we compute the first derivatives of the closest point projection

∇eiS =
(

r

|x⊥ϑ|

)
eiτ + 〈ei,ϑ〉ϑ

and the second derivatives

∇ei∇ejS = −
(

r

|x⊥ϑ|2

)[〈
eiτ , ejτ

〉
ω + 〈ei,ω〉 ejτ + 〈ej ,ω〉 eiτ

]
Also, we we have that

HMn
r+ρ

=
n− 1
ρ+ r

all of which were evaluated at x = F̃(q, t).
Set bij =

〈
∇eiS, ej

〉
, then

bij =


(

r
r+ρ

)
, i = j < n

1, i = j = n

0, otherwise

We also define ∇̃ρ by
∇̃ρ = ρkbklel

and without loss of generality, we may set〈
∇qρ(q, t),ω(q)

〉
= 0, ∀q ∈Mn

r

then we have the equation

∂ρ

∂t
(q, t) = aijρij −

n− 1
ρ+ r

−
(

1
ρ+ r

)(
|(∇̃ρ)τ |2

1 + |∇̃ρ|2

)
q ∈Mn

r , t ∈ [0, T ) (D.5)

where

aij = bikbjl

(
δkl −

∇̃kρ∇̃lρ

1 + |∇̃ρ|2

)
It is easily seen that (D.5) is a quasilinear parabolic partial differential

equation.



88 APPENDIX D. NORMAL GRAPHS


