
Appendix C

Geometric Graphs

We will be dealing primarily with cylindrical graphs, but first we must define
precisely what we mean by that. There are at least two ways to deal look
at this concept, each with their advantages. An alternate method is covered
in Appendix D. The method we shall be employing takes a more geometric
point of view, where we shall be defining a graph in terms of ‘reference
slices’. A similar derivation to ours may be found in [5].

C.1 Local Graphs

First, suppose that we have a function σ : Ω → R such that ∇σ 6= 0,∀x ∈ Ω,
where ∇ is the gradient on Rn+1 and Ω ⊂ Rn+1 is some open set. Now, let
Mt be a surface evolving by mean curvature flow, that is

dx
dt

= H(x)

where x is the position vector on Mt and H is the mean curvature vector at
x.

Let us define the reference slices, with which we shall be comparing Mt.

Definition C.1 (Reference Slices). Let σ be a function with non-vanishing
gradient in an open set Ω ⊂ Rn+1 and let ξ be some fixed vector in Rn+1,
then denoting σξ(x) = σ(x−ξ), we define the reference slice Mn

ρ (ξ) centered
at ξ by

Mn
ρ (ξ) =

{
x ∈ Rn+1 : σξ(x) = ρ

}
, ρ > 0 (C.1)

Now, on Ω, since σ has non-vanishing gradient, we may define the unit
normal ωξ on Mn

ρ (ξ) by

ωξ(x) = βξ(x)∇σξ(x) (C.2)

where βξ = |∇σξ(x)|−1.
We shall also define the gradient function vξ (relative to ξ) on Mt ∩ Ω

by

77



78 APPENDIX C. GEOMETRIC GRAPHS

Definition C.2 (Gradient Function).

vξ(x, t) = 〈ν,ωξ〉−1 , x ∈Mt ∩ Ω (C.3)

The gradient function holds the essence of what to us will signify a graph.
We shall say that Mt ∩ Ω is a local graph over Mn

ρ (ξ) if vξ(x, t) < ∞ for
all x ∈ Mt ∩ Ω. In other words, the normal vectors of Mn

ρ (ξ) and Mt are
nowhere perpendicular.

Thus, we are ready to define a local graph:

Definition C.3 (Local Graph). If for every x0 ∈ Mt there exists a vector
ξ ∈ Rn+1 and an open neighborhood Ω ⊂ Rn+1 of x0 such that{

βξ <∞, x ∈ Ω
vξ <∞, x ∈ Ω ∩Mt

then we say that Mt is a local graph (with respect to the reference slicing
Mn
ρ (ξ)). Furthermore, if we may choose ξ independent of x0, then we call

Mt an entire graph (in which case we may extend Ω to cover all of Mt).

It is not immediately clear whether an entire graph will, under evolution
by (MCF), remain an entire graph for all future times. In fact, it is not even
clear whether a local graph will remain a local graph. It could degenerate
to a local entire graph, or worse.

Another quantity that will be interesting for us will be the ‘height’ of Mt.
We define the height function uξ (relative to ξ) on Mt∩Ω by the restriction
of σ to Mt ∩ Ω, that is

Definition C.4 (Height Function).

uξ(x, t) = σξ(x), x ∈Mt ∩ Ω (C.4)

We return now to our question of whether we may express Mt as a local
graph over Mn

ρ (ξ) if it was initially one. To answer this, we are going to
need to derive the evolution equations of the quantities uξ and vξ.

C.2 Evolution Equations

Let us now compute these equations, noticing that we may for simplicity
without any loss of generality assume that on the neighbourhood Ω that we
are working on, set ξ = 0. Thus, we denote σ0 = σ, β0 = β, u0 = u and
v0 = v.

We define the tangential gradient ∇ on Mt as the projection of the
gradient on Rn+1 onto the tangent space of Mt. Thus we compute for u the
identity
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∇u = ∇u−
〈
∇u,ν

〉
ν

= ∇σ −
〈
∇σ,ν

〉
ν

=
ω

β
−
〈

ω

β
,ν

〉
ν

=
1
β

[
ω − 1

v
ν

] (C.5)

and thus the Laplacian of u is given by

∆u = divMt ∇u

= − 1
vβ

divMt ν + divMt ∇σ

=
1
β
〈H,ω〉+ divMt ∇σ

(C.6)

Now, since divRn+1 X = divM n X +
〈
∇ωX,ω

〉
, and also divRn+1 X =

divMt X +
〈
∇νX,ν

〉
for X a vector-field defined ambiently on Rn+1, we

have
divMt X = divM n X +

〈
∇ωX,ω

〉
−
〈
∇νX,ν

〉
(C.7)

and so, we compute

divMt ∇σ = divM n ∇σ +
〈
∇ω∇σ,ω

〉
−
〈
∇ν∇σ,ν

〉
=

1
β

divM n ω − 1
β2

ω(β) +
1
vβ2

ν(β)− 1
β

〈
∇νω,ν

〉
=

1
β

[
HMn

ρ
−∇u(β)− χ

] (C.8)

where χ =
〈
∇νω,ν

〉
and HMn

ρ
is the mean curvature at x of Mn

ρ .
Finally, we compute the time derivative of u, finding where X = H

du

dt
=X(σ)

=
〈
∇σ,X

〉
=

1
β
〈H,ω〉

(C.9)

and thus we have

Proposition C.5. The evolution equation of the height function on Mt ∩Ω
is (

d

dt
−∆

)
u = − 1

β
[HMn −∇u(β)− χ] (C.10)
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Height estimates are going to be very important to us in this study, giving
decay and growth bounds, and many will come from maximum principle type
arguments on this equation. We will also require estimates on the gradient
function, since it is one of our aims to show that the surfaces under (MCF)
actually do remain graphs over the cylinder.

Proposition C.6. The gradient function v on Mt∩Ω satisfies the evolution
equation(

d

dt
−∆

)
v = −|A|2v − 2v−1|∇v|2 + v2(Hχ− ω(H)) (C.11)

Proof. Again, we proceed similarly to [3], and calculate where X = H

dv

dt
= X 〈ν,ω〉−1

= −v2
[〈
∇Xν,ω

〉
+
〈
ν,∇Xω

〉]
= −v2 〈∇H,ω〉+Hv2χ

(C.12)

Now, computing the Laplacian,

∆v = −v2∆ 〈ν,ω〉+ 2v−1|∇v|2 (C.13)

Focusing on the first term, using normal coordinates and the fact that
[ω, τ i] = 0 (see Appendix B) we calculate

∆ 〈ν,ω〉 = τ iτ i 〈ν,ω〉
= τ i

(〈
∇τ iν,ω

〉
+
〈
ν,∇τ iω

〉)
=
〈
∇τ i∇τ iν,ω

〉
+ 2

〈
∇τ iν,∇τ iω

〉
+
〈
ν,∇τ i∇τ iω

〉
= 〈∆ν,ω〉+ 2

〈
hikτ k,∇τ iω

〉
+
〈
ν,∇ω∇τ iτ i

〉
by GW(i)

=
〈
∇H − |A|2ν,ω

〉
+ 2hik

〈
τ k,∇ωτ i

〉
by Proposition A.7

+
〈
ν,∇ω

(
−hiiν +

(
∇τ iτ i

)>)〉 and GW(ii)

= 〈∇H,ω〉 − |A|2v−1 + hikω(gik)

− hii
〈
ν,∇ων

〉
− ω(hii) 〈ν,ν〉+

〈
ν,∇ω

(
∇τ iτ i

)>〉
= 〈∇H,ω〉 − |A|2v−1 − hikω(gik)− gikω(hik)

= 〈∇H,ω〉 − |A|2v−1 − ω(H)
(C.14)

since in normal coordinates
〈
ν,∇ω

(
∇τ iτ i

)>〉 vanishes.
We note here that ω(H) measures the rate of change of mean curvature

as we deform Mt in the direction of ω. Later, in the case of cylindrical
graphs, we shall calculate ω(H) explicitly.


