
Appendix B

Geometric Flows

B.1 General Flows

We are going to describe a general geometric flow of a hyper-surface in Rn+1.
To that end, we define the family of immersions F : Mn × [0, T ) → Rn+1

where Mn is an n-dimensional manifold. We denote the evolving hyper-
surface by Mt = F(·, t)(Mn) and by x = F(p, t) ∈Mt we denote the position
vector on Mt. The presented method of deriving the following geometric
evolution equations was made known to the author through [8].

Now, we stipulate that Mt satisfies the evolution equation

dx
dt

= ην, x ∈Mt, t ∈ [0, T ) (B.1)

where η = η(x, t) is a smooth function onMt and ν = ν(x, t) is a (consistent)
choice of unit normal to Mt at x. Thus in this system, we have the surface
Mt evolving in the direction of ν, with velocity equal to η.

It is up to us to decide what we would like η to be. Our choice will depend
upon the properties that we want the flow to have. In mean curvature flow,
we choose η = −H, a choice we shall motivate later.

In studying the properties of the flow (B.1) we need to derive the evolu-
tion equations of some geometric quantities on Mt, such as the metric, the
second fundamental form and the measure. One way to do this is to consider
the way that these vary when the surface is deformed along the path of the
flow.

We will be deforming Mt in a neighbourhood of a point x0 ∈ Mt. To
that end, we define a local deformation of the hyper-surface Mt in Rn+1 in
an open neighbourhood Ω ⊂ Rn+1 of x0 as a family of diffeomorphisms

ϕ : Ω× (ε, ε) → Rn+1

which satisfy

(i) ϕ(z, 0) = z, ∀z ∈ Ω
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(ii) d
ds

∣∣
s=0

ϕ(z, s) = X(z), ∀z ∈ Ω

where X ∈ C∞0
(
Ω,Rn+1

)
.

We shall be choosing X = ην̄ where ν̄ ∈ C∞0
(
Ω,Rn+1

)
is a smooth

extension of ν into Ω. Thus, in this setting the deformation ϕ locally has
the same ‘action’ as the flow.

Now, as always, we will be using normal coordinates {τ i} at x0. Defining
τ i(s) = dϕs(τ i), we obtain a local coordinate system {τ i(s),ν} in Ω, which
has the desirable property

∇τ iX−∇Xτ i = [X, τ i] , in Ω× (−ε, ε)

With the technical details out of the way, we are now prepared to calcu-
late our evolution equations.

Lemma B.1. The gij and gij of the metric satisfy the equation

d

ds

∣∣∣∣
s=0

gij = 2ηhij (B.2)

d

ds

∣∣∣∣
s=0

gij = −2ηhij (B.3)

Proof.

d

ds

∣∣∣∣
s=0

gij = X 〈τ i, τ j〉

= 2
〈
∇Xτ i, τ j

〉
= 2

〈
∇τ iX, τ j

〉
= 2ηhij

The evolution equation for the gij is a simple corollary of the fact

X(gikgkj) = 0

Lemma B.2. The unit normal, ν evolves according to the equation

dν

ds

∣∣∣∣
s=0

= −∇η

Proof.

dν

ds

∣∣∣∣
s=0

= −∇Xν

=
〈
∇Xν, τ k

〉
τ k since ∇Xν ∈ TxMt

= −
〈
ν,∇Xτ k

〉
τ k

= −
〈
ν,∇τk

X
〉
τ k

= −
〈
ν, τ k(η)ν + η∇τk

ν
〉
τ k

= −∇η
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Proposition B.3. The measure µ satisfies

dµ

dt
= ηHµ

Proof.

dµ

dt
= µ

d

dt
logµ

= µ
d

dt
log
√

det gij

=
µ

2

d
dt det gij
det gij

=
µ

2
det gijgab ddtgab

det gij

=
µ

2
gij

d

dt
gij

=
µ

2
gij (2ηhij)

= ηHµ

Proposition B.4. The second fundamental form hij evolves by the equation

d

ds

∣∣∣∣
s=0

hij = −τ iτ j(η) + ηhikhjk

Proof.

d

ds

∣∣∣∣
s=0

hij = −X
〈
ν,∇τ iτ j

〉
= −

〈
∇Xν,∇τ iτ j

〉
−
〈
ν,∇X∇τ iτ j

〉
= −

〈
ν,∇τ i∇τ jX

〉
= −

〈
ν,∇τ i

(
τ i(η)ν + η∇τ jν

)〉
= −

〈
ν, τ iτ j(η)ν + τ j(η)∇τ iν + τ i(η)∇τ jν + η∇τ i∇τ jν

〉
= −〈ν, τ iτ j(η)ν + η∇hij + ηhjkhik〉
= −τ iτ j(η) + ηhikhjk

Collecting these equations together, and evaluating along the path given
by t 7→ x(t) = ϕ(x0, t) we obtain
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(i)
(
d
dt −∆

)
gij = 2ηhij

(ii)
(
d
dt −∆

)
µ = ηHµ

(iii)
(
d
dt −∆

)
ν = |A|2ν −∇(η +H)

(iv)
(
d
dt −∆

)
hij = |A|2hij − τ iτ j(η +H) + (η −H)hikhkj

where we have used the Simons’ inequality in the last equation.

B.2 Mean Curvature Flow

To see why (MCF) is an interesting flow to investigate, consider the following
variation calculation of the ‘energy’ |Mt| under the evolution

dx
dt

= ην,x ∈Mt

and we find

d

dt
|Mt| =

∫
Mt

1
µ

dµ

dt
dµ

=
∫
Mt

divMt

(
dx
dt

)
dµ

= −
∫
Mt

〈
H,

dx
dt

〉
dµ

by the divergence theorem. Thus, it is clear that in setting

dx
dt

= H, x ∈Mt

we have chosen the least energy flow for the area functional of Mt. This is
the equivalent of setting η = −H in the previous calculations. From this,
it is clear that the area of a compact surface monotonically decreases under
(MCF).

So, to summarise the earlier results when applied to (MCF), we have

(i)
(
d
dt −∆

)
gij = −2Hhij

(ii)
(
d
dt −∆

)
µ = −H2µ

(iii)
(
d
dt −∆

)
ν = |A|2ν

(iv)
(
d
dt −∆

)
hij = |A|2hij − 2Hhikhkj

Corollary B.5. The mean curvature and the norm of the second funda-
mental form satisfy the evolution equations
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(i)
(
d
dt −∆

)
H = |A|2H

(ii)
(
d
dt −∆

)
|A|2 = −2|∇A|2 + 2|A|4

Proof of (i). Using the evolution equations for hij and gij we calculate(
d

dt
−∆

)
H =

(
d

dt
−∆

)(
gijhij

)
= hij

(
d

dt
−∆

)
gij + gij

(
d

dt
−∆

)
hij − 2

〈
∇gij ,∇hij

〉
= hij

(
2Hhklgikgjl

)
+ gij

(
−2Hhilglmgmj + |A|2hij

)
= |A|2H

Proof of (ii). Again, using the equations for hij and gij we calculate(
d

dt
−∆

)
|A|2 =

(
d

dt
−∆

)(
gikgjlhijhkl

)
= 2gikgimhkl

(
d

dt
−∆

)
gml + 2gikgmlhim

(
d

dt
−∆

)
hkl

− 2
〈
∇
(
gikgimhkl

)
,∇hkl

〉
= 2gikgimhkl

(
2Hhabgmaglb

)
+ 2gikgmlhim

(
−2Hhkagabhal + |A|2hkl

)
− 2gikgml 〈∇him,∇hkl〉

= 2|A|4 − 2|∇A|2

B.3 Higher-order Evolution Equations

Suppose that some tensor T on a solution (Mt)t∈[0,T ) of (MCF) satisfies the
evolution equation (

d

dt
−∆

)
T = Q (B.4)

If we require estimates on higher derivatives of T , we will require evolution
equations for these derivatives.

Proposition B.6. Suppose a tensor T on a solution (Mt)t∈[0,T ) to (MCF)
satisfies the evolution equation(

d

dt
−∆

)
T = Q
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then ∇T satisfies the evolution equation(
d

dt
−∆

)
∇T = ∇Q+A ∗ (∇T ∗A+ T ∗ ∇A)

where ∗ denotes any product with respect to the metric.

Proof. Computing in normal coordinates,

d

dt
Γkij =

1
2

[
τ i

(
d

dt
gkj

)
+ τ j

(
d

dt
gik

)
− τ k

(
d

dt
gij

)]
= − [τ i(Hhkj) + τ j(Hhik)− τ k(Hhij)]

thus, since

∇kT
i1...ip
j1...jq

=
∂

∂pk
T
i1...ip
j1...jq

+ Γi1kmT
m...ip
j1...jq

+ · · ·+ ΓipkmT
i1...m
j1...jq

− Γmkj1T
i1...ip
m...jq

− · · · − ΓmkjqT
i1...ip
j1...m

we have that
d

dt
(∇T ) = ∇

(
dT

dt

)
+ T ∗A ∗ ∇A

Now, compute

∆ (∇kT ) = ∇i∇i(∇kT )
= ∇i [∇k(∇iT ) + (R ∗ T )ik]
= ∇k(∆T ) +R ∗ ∇kT +∇kR ∗ T

or, since R = A ∗A by the Gauß relations, we have

∆(∇T ) = ∇(∆T ) +A ∗ (∇T ∗A+ T ∗ ∇A)

and the result follows immediately.

Corollary B.7. The covariant derivative of the second fundamental form
∇A satisfies the evolution equation(

d

dt
−∆

)
∇A =

∑
i+j+k=1

∇iA ∗ ∇jA ∗ ∇kA (B.5)

Proposition B.8. The pth covariant derivative of the second fundamental
form ∇pA satisfies the evolution equation(

d

dt
−∆

)
∇pA =

∑
i+j+k=p

∇iA ∗ ∇jA ∗ ∇kA (B.6)

for p > 0.
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Proof. We proceed to prove this evolution equation by induction. The base
case (p = 0) is already established by Corollary B.7. Now, suppose that for
p = m the evolution equation holds, then we compute(

d

dt
−∆

)
∇m+1A =

(
d

dt
−∆

)
∇(∇mA)

= ∇

 ∑
i+j+k=m

∇iA ∗ ∇jA ∗ ∇kA


=

∑
i+j+k=m

∇i+1A ∗ ∇jA ∗ ∇kA

=
∑

i+j+k=m+1

∇iA ∗ ∇jA ∗ ∇kA

and the result follows by induction on p.

Corollary B.9. The length of the pth covariant derivative |∇pA|2 satisfies
the evolution equation(

d

dt
−∆

)
|∇pA|2 = −2|∇p+1A|2 +

∑
i+j+k=p

∇iA ∗∇jA ∗∇kA ∗∇pA (B.7)

for p > 0.

Proof. First, we compute

d

dt
|∇pA|2 =

d

dt
(∇pA) ∗ ∇pA+A ∗A ∗ ∇pA ∗ ∇pA

= 〈∆(∇pA),∇pA〉+
∑

i+j+k=p

∇iA ∗ ∇jA ∗ ∇kA ∗ ∇pA

where the last term in the first line has been absorbed into the last term of
the second line.

Now, using the Bochner formula

∆|∇pA|2 = 〈∆(∇pA),∇pA〉+ 2|∇p+1A|2

the result is immediately clear.
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