Appendix A

Notation and Useful
Identities

The purpose of this appendix is to introduce (or remind) the reader to some
of the important results and notation of differential geometry that we make
use of in this thesis. Wherever possible, we will be making full advantage of
normal coordinates (due to the point-wise nature of most of our estimates),
making our calculations far neater.

Unless otherwise stated, {7;}}_; will always denote an orthonormal basis
of T, M, while {ei}?jll will always be the standard basis on R"*1. Also, we
will be following the Einstein summation convention over repeated indices,

e.g.
n
X:Xsz:ZXﬂ_z
1=1

A.1 Geometry in Coordinates

While normal coordinates are immensely useful, it is sometimes useful to
work in a particular coordinate system. To that end, we introduce this
notation, closely following that used by Huisken [I4].

Suppose that M is given as the image of a smooth immersion F : U —
R*1 U C R™ open, i.e. M = F(U). We will denote by x the position
vector on M, i.e. x =F(p),pe U.

We have a basis for the tangent space T4xM at x € M given by the
coordinate tangent vectors, i.e.

OF
T,M = span { —
1<i<n | OP' |,

The canonical metric on R"™! will be denoted by (-, ), with which we
define the components of the first fundamental form g;; (induced metric) on
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gij(x) = <g; >

The inverse metric g%/ is defined by (gij ) = (gij)_l.
Thus, we define the inner product for tensors T, S of rank (p,q) on M
by

TxM by
OF
p OV

limy | lgmgdi-Jp gk1.-kp
gq qj—‘llmlq Sml..‘mq

<T’ S> = Gk Gipkp9

The second fundamental form h;; is computed by
ov
hij(x) = <Z >
Jdp »
The Christoffel symbols are given by
1 0 0 0
)=t (Lot Dgu 2y
z](x) 29 (8plglj + opi gil 8pkgj>

giving us the unique Levi-Civita connection on M of a tensor field T =

{Til...z‘p }”
Tieda ) gy gy i, je=1

oF
P’apj

of rank (p, q)

tp + Fil Tmzp 4+ 4 I‘ZP T21m

v, T 0 ...

Ji--Jg apk J1---Jq km=j1...Jq km™ j1...Jq
pmopitedp  mm pidedp
kj1Tm,..jq qule...m

We will often use the fact that Vig;; = 0,V4, 7, k.
The Laplacian of a tensor is defined by

i1...lp __  mn i1...0p
ATh]q - g va”Tth

We have the matrix of the Weingarten map given by
(h5) = (9"7) (i)

the eigenvalues of which are the principle curvatures. We will denote the

principle curvatures by {k;}.
The following notation will be used to denote the mean curvature H and
the norm |A|? of the second fundamental form.

H = g"h;; |A]? = " g" hirhyy
The measure on the surface, du is given by

dp = p(x)dp
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where p is given by

pu(x) = y/det (gi5)

and dp is the n-dimensional volume measure on R™.
This gives the definition of the n-dimensional Hausdorff measure on M,
allowing us to measure the area of the surface

Wy = )= | du
M

A.2 Geometry Coordinate-Free

Now, geometry in a coordinate system is fun (to be sure), but it gets a little
tedious working with difficult to calculate Christoffel symbols. To vastly
simplify our calculations we shall introduce normal coordinates.

Proposition A.1 (Normal Coordinates). There exists a smooth frame field
{Ti} on M such that at a point x € M

(it) (Vr1j,7k) (x) =0, 1<4,5,k<n

Note that (ii) implies that V,,g;; = 0 at x.

The thing to remember, is that this coordinate system is valid only at a
single point; not even valid in a neighbourhood.

In this basis, we define the second fundamental form on M by

hl'j = <Vﬂ.v,7—j> = — <V,ﬁ7-i7'j>

Now, since in normal coordinates, the Weingarten map is given by the
diagonal of the second fundamental form, so the eigenvalues of the Wein-
garten map and hence the principle curvatures are given by the diagonal of
the second fundamental form.

Thus, we calculate H, the mean curvature of M at x by

n
H=ghi; =hi =Y _ ki
i=1
and the norm of the second fundamental form is given by

n
AP = g% g hijhiy = hachir =Y K}
=1
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The tangential gradient on M will be denoted V, defined as follows
(where T denotes projection onto the tangent space)

=T
V= (V)
=Vf- <Vf, 1/> v
= <ﬁf7 Ti> 75
=7i(f)7
Note that V is the unique Levi-Civita connection on M.

The Laplace-Beltrami operator of a scalar function f : M; — R is defined
and calculated as follows

Af =divy, Vf
= divyy, (ﬁf — <§f,1/> V)
=divy, Vf —divy, ((Vf,v)v)
=divy, Vf — <Vf,u> divy, v — <V <§f, V> ,V>
=divy, Vf+ (H,Vf)

Note that {7;, v} is an orthonormal basis of R"*! and thus we have

divgn1 X = (V7 X, 75) + (Vo X, v)
=divy, X + (V. X,v)

Which leads to this formula for the Laplacian

Af = divgasi VS — (Y, (Vf) .w) + (H,Vf)
= Apnii f = Vo f(v,v) + (H,Vf)

Equivalently, due to our expedient choice of basis, we may also calculate the
Laplacian as

Af =7iTi(f)
The total derivative of a function f : My — R is defined as
df 0
a(xvt) - a (F(pat)at)
0 _
= W (,t) 4 (T (x.1), H)
thus
&g _of

dt _E+<H’vf>
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A.3 Identities

Proposition A.2 (Codazzi Equations). The second fundamental form is
totally symmetric on M, i.e. it satisfies

Ti(hjr) = Tr(hij) = 7(hri)
Proposition A.3 (Gauss Equations). On M, the Riemann tensor satisfies
Rijr = highj, — hihjy
Proposition A.4 (Simons’ Identity).
Ahi; =V V;H + Hhyg"™ hynj — |Ahi; (A.1)

Proof. Computing in normal coordinates, we find

Ahij = TTE(hij)
= T,Ti(hj) by Codazzi
= 7,7i(hjK) by symmetry
= 7iTk(hjk) + RiijmPmk + RiikmPjm
= 7T (hix) + (hijhim — hmhij) i

+ (hikhim — himhir)hjm by Gauss equations
= ’Ti‘Tj(H) + thkh‘kj — |A’2hw

O

Lemma A.5 (Gauss-Weingarten Relations). Let {7;};—; be a smooth frame
field on M, then we have the relations

(i) Vrv = highlT
(i1) Vo, Tj = —hijv + (ﬁrﬁj)T

Proof. Relation (i) follows easily from the definition of h;; and relation (ii)
follows from resolving V., 7; onto the tangent space, then using the def-

inition of h;;. Note that in normal coordinates, g;; = d;; and (VTiTj)
vanishes at x. O

We also have in normal coordinates

Proposition A.6.
ﬁnvﬁll = Vhij — hikhkj’/
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Proof. By GW(i), we compute

Ve Vv =Va, (hjkTe)
= 7kVrhjk + Wi Ve, Th
= 7,Vr hij — hjhgv by Codazzi and GW(ii)
= Vhij — hiphyv

Note that Proposition A.6 implies

Proposition A.7. The unit normal to M satisfies

Av =VH — |Av (A.2)



