
Chapter 3

Estimates on Surfaces of
Revolution

3.1 Height Estimates

The main aim in this chapter is to obtain a range of local and global esti-
mates for the graph quantities u and v, and local and global estimates for
the curvature |A|2. To do this we make use of the evolution equations of
Chapter 2, coupled with specially crafted test- and cutoff-functions, allow-
ing us to obtain suitable evolution equations to which we may apply the
maximum principle.

The global estimates in this section make use of a global maximum prin-
ciple (Theorem E.1, [10]) while the local estimates require only the use of
the standard maximum principle on compact subsets of Rn+1 or a special
localised version. For a discussion of the various forms of the maximum
principle that we make use of in this thesis, see Chapter E.

The global estimates in this chapter are inspired by the corresponding
estimates for graphs over planes, as seen in [10], while the local estimates
are motivated by similar constructions to those presented in [11].

3.1.1 Local Estimates

A particularly useful cutoff-function for local height, gradient and curvature
estimates on cylindrical graphs is the ‘band function’. Note that the function
〈x,ϑ〉 measures the distance along the axis of the reference cylinders.

Lemma 3.1 (Band Function). The function ξ = ξ(x, t) defined by

ξ(x, t) = (R2 − 〈x− x0,ϑ〉2 − 2t)2(p+1)
+

for R, p > 0 and some x0 ∈ Rn+1, satisfies(
d

dt
−∆

)
ξ 6 −1

2

(
2p+ 1
p+ 1

)
ξ−1|∇ξ|2

15



16 CHAPTER 3. ESTIMATES ON SURFACES OF REVOLUTION

for x ∈Mt ∩ spt ξ.

Proof. Compute(
d

dt
−∆

)
ξ = 2(p+ 1)ξ

1
2

“
2p+1
p+1

” (
2|∇ 〈x,ϑ〉 |2 − 2

)
− 2(p+ 1)(2p+ 1)ξ

p
p+1 |∇(R2 − 〈x,ϑ〉2 − 2t)|2

= −4(p+ 1)ξ
1
2

“
2p+1
p+1

”
|∇u|2 − 1

2

(
2p+ 1
p+ 1

)
ξ−1|∇ξ|2

since |∇u|2 = 1− |∇ 〈x,ϑ〉 |2.

If we consider the set Mt ∩ spt ξ, we have selected out a ‘band’ of width
2
√
R2 − 2t on the evolving surface, centered at x0. Without loss of general-

ity, we will set x0 = 0.
Using this cutoff-function we may derive a local estimate for the height

function. Set g = u2ξ and compute(
d

dt
−∆

)
g = −2(n− 1)ξ − 2|∇u|2ξ − 2

〈
∇u2,∇ξ

〉
− 4(p+ 1)|∇u|2u2ξ

1
2

“
2p+1
p+1

”
− 1

2

(
2p+ 1
p+ 1

)
ξ−1|∇ξ|2u2

Estimating the cross-term using Young’s inequality

−2
〈
∇u2,∇ξ

〉
6

1
2

(
2p+ 1
p+ 1

)
ξ−1|∇ξ|2u2 + 8

(
p+ 1
2p+ 1

)
|∇u|2ξ

we obtain the evolution equation(
d

dt
−∆

)
g 6 −2(n− 1)ξ

− 2
[
1 + 2

(
p+ 1
2p+ 1

)(
(2p+ 1)u2ξ

− 1
2

“
1

p+1

”
− 2
)]

|∇u|2ξ (3.1)

the last term of which is negative for p sufficiently large, depending on
u0 = inf{u(x, t) : x ∈ Mt, t ∈ [0, T )}. Note that on compact subsets of Mt,
we may use the comparison principle to bound u0 below, depending only
on M0, by comparing with the exact solution of the co-axial homothetically
shrinking cylinders on the interval

[
0, T̄

)
where ū0 = infM0 u(·, 0) and T̄ =

1
2

(
ū2
0

n−1

)
, the existence time for the cylinder.

Using Equation (3.1) we obtain the following local estimate for the height
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Theorem 3.2. Set SR(t) =
{
x ∈ Rn+1 : 〈x− x0,ϑ〉2 6 R2 − 2t

}
, R > 0

then for p > 0 sufficiently high depending only on M0, we have

sup
Mt∩SR(t)

((
R2 − 〈x− x0,ϑ〉2 − 2t

)2(p+1)

+
u2

)
(·, t) 6

sup
M0∩SR(0)

((
R2 − 〈x− x0,ϑ〉2

)2(p+1)

+
u2

)
(·, 0) (3.2)

for t ∈
[
0,min

{
T, T̄ , R

2

2

})
where T̄ = 1

2

(
ū2
0

n−1

)
.

Proof. This is a simple application of the maximum principle for compactly
supported functions applied to the evolution equation (3.1) for the function
g = u2ξ on the compact (shrinking) sets SR(t).

Corollary 3.3 (Local Height Estimate). Suppose that on the set SR = {x ∈
Rn+1 : 〈x,ϑ〉2 6 R2} for some R > 0 we have the estimate

sup
M0∩SR

u(·, 0) 6 C0

for some C0 <∞, then if u > u0 > 0 we have the estimate

sup
Mt∩SR

2

u(·, t) 6 C

for t ∈
[
0,min

{
T, T̄ ,

(
R
2

)2}) and some constant C depending only on C0, R

and u0.

Proof. Since, by going to a smaller set we have

sup
Mt∩SR

2
(t)

(
u2ξ
)
(·, t) 6 sup

Mt∩SR(t)

(
u2ξ
)
(·, t)

Theorem 3.2 gives us

sup
Mt∩SR(t)

(
u2ξ
)
(·, t) 6 sup

M0∩SR(0)

(
u2ξ
)
(·, 0) 6 C0

which is bounded by assumption, and since on SR
2
×
[
0,
(
R
2

)2) we have
ξ > C(R), thus the result follows.

3.1.2 Global Estimates

First we derive an evolution equation for a useful cutoff function which allows
us to bound quantities which initially grow as a function of axial distance.
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Lemma 3.4. The function η = η(x, t) defined by

η(x, t) =
(
u2

0 + 〈βx,ϑ〉2 + 2β2(2γ + 1)t
)−p

for u0 > 0 and β, γ, p > 0 satisfies the evolution equation(
d

dt
−∆

)
η 6 −

(
p+ γ + 1

p

)
η−1|∇η|2

Proof. This is a direct consequence of the fact that(
d

dt
−∆

)
〈x,ϑ〉 = 0

and |∇ 〈x,ϑ〉 |2 6 1, along with the computation

η−1|∇η|2 = p2η
p+2

p |∇ 〈βx,ϑ〉2 |2

which we estimate to obtain

η−1|∇η|2 6 4p2β2η
p+2

p 〈βx,ϑ〉2

6 4p2β2η
p+1

p

since 〈βx,ϑ〉2 6 η
− 1

p .

We now derive an a priori estimate for the height function which shows
an initial polynomial height bound is preserved by the flow. Note that this
estimate also applies to non-rotationally symmetric solutions.

Proposition 3.5. Suppose that on M0 we have the estimate

u2 6
(
u2

0 + 〈βx,ϑ〉2
)p

for some u0 > 0 and β, p > 0, then on Mt we have the estimate

u2 6 c1

(
u2

0 + 〈βx,ϑ〉2 + 2β2(2p− 1)t
)p

for some c1 6 ∞, for all t > 0.

Proof. Define the function η = η(x, t) as in the above lemma with some
fixed γ > 0 to be chosen later. Now, using Lemma 3.4, we compute(

d

dt
−∆

)
u2η 6 −2η|∇u|2 − 2(n− 1− κ)η

−
(
p+ γ + 1

p

)
u2η−1|∇η|2 − 2

〈
∇u2,∇η

〉
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and estimating the last term using Young’s inequality

−2
〈
∇u2,∇η

〉
6 2η|∇u|2 + 2u2|∇η|2

and thus, one finds(
d

dt
−∆

)
u2η 6 −

(
γ + 1− p

p

)
u2η−1|∇η|2

so, choosing γ > p− 1, we have(
d

dt
−∆

)
u2η 6 0

and thus by the weak maximum principle (Theorem E.1) the function u2η
is bounded by its initial data and the result follows.

Next, we have another estimate which applies in the rotationally sym-
metric case where the evolving surface is developing a neck that pinches off.
The argument presented here is similar to that in [1]. The argument also
works in the non-rotationally symmetric case, however we only present here
the rotational case for simplicity.

Proposition 3.6. Suppose that Mt has a neck with minimum height at
z = ζ(t) that pinches at time T , then we have the estimate

ρ(ζ(t), t) 6
√

2(n− 1)(T − t), t ∈ [0, T ]

Proof. Recall that ρ = ρ(z, t) satisfies the equivalent (up to tangential dif-
feomorphism) equation

∂ρ

∂t
(z, t) = −n− 1

ρ
+

ρ′′

1 + ρ′2
, (z, t) ∈ R× [0, T )

Set ρ(t) = ρ(ζ(t), t), then since ζ(t) defines a minimum point, we have
ρ′(ζ(t), t) = 0 and ρ′′(ζ(t), t) > 0 for t ∈ [0, T ).

Thus, we have the inequality

dρ

dt
(t) > −n− 1

ρ(t)
, t ∈ [0, T ) (3.3)

or
d

dt
ρ2(t) > −2(n− 1), t ∈ [0, t)

Integrating (3.3) over [t, T ) for t 6 T , we have

ρ2(T )− ρ2(t) > −2(n− 1)(T − t)

and since ρ(T ) = 0, we are finished.
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3.2 Gradient Estimates

3.2.1 Local Estimates

In this section, we derive estimates on the gradient function, local in space
and time, under the assumption that our surface is rotationally symmetric.

Suppose that on the compact subset Mt ∩ SR(t), where SR(t) is the
support of some as yet to be chosen cutoff function, we have that

u0 = inf
t∈[0,T )

inf
Mt∩SR(t)

u(·, t)

is bounded away from zero. From Corollary 3.3 we also have that

u1 = sup
t∈[0,T )

sup
Mt∩SR(t)

u(·, t)

is bounded from above by a constant which only depends on supu(·, 0), so
long as we choose R sufficiently large. Having u0 > 0 will be essential to
our analysis, since it ensures that our setup is well-defined (i.e. ω may be
defined).

Recall the evolution equation for v,(
d

dt
−∆

)
v = −|A|2v − 2v−1|∇v|2 +

(
n− 1
u2

)
v

For planar graphs, the evolution equation for v is identical, except for
the last term which is not present. Somehow, we must handle that term as
it could be the source of blowup in the gradient function.

The evolution equation for u contains an almost identical term(
d

dt
−∆

)
u = −n− 1

u

so, some function ϕ of u might do the trick. This technique has also been
used by M. Simon, and Athenassenas ([19], [3]) to obtain similar gradient
estimates on cylindrical graphs for (MCF) and volume preserving (MCF)
respectively.

Lemma 3.7. Let ϕ = ϕ(u) be a non-negative function on R, then(
d

dt
−∆

)
ϕ(u) = −uϕ′

(
n− 1
u2

)
−
(
ϕ′′

ϕ′2

)
|∇ϕ|2

Proof. This is a simple application of the product and chain rules.
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Setting f = ϕv (where ϕ is yet to be chosen) we have(
d

dt
−∆

)
f = −

[
u

(
ϕ′

ϕ

)
− 1
](

n− 1
u2

)
f − |A|2f

−
(
ϕ′′

ϕ′2

)
fϕ−1|∇ϕ|2 − 2f−1ϕ2|∇v|2

− 2 〈∇ϕ,∇v〉

and we also compute

f−1|∇f |2 = f−1ϕ2|∇v|2 + 2 〈∇ϕ,∇v〉+ fϕ−2|∇ϕ|2

and using that

2 〈∇ϕ,∇v〉 = 2ϕ−1 〈∇ϕ,∇f〉 − 2fϕ−2|∇ϕ|2

we obtain

Lemma 3.8. The function f = ϕ(u)v satisfies the evolution equation(
d

dt
−∆

)
f = −

[
u

(
ϕ′

ϕ

)
− 1
](

n− 1
u2

)
f − |A|2f

−
(
ϕ′′

ϕ′2

)
fϕ−1|∇ϕ|2 − 2f−1|∇f |2 + 2ϕ−1 〈∇ϕ,∇f〉 (3.4)

Now, introduce a general cut-off function ξ (to be chosen later) and,
setting g = fξ, we have the evolution equation

Proposition 3.9. The function g satisfies the evolution equation(
d

dt
−∆

)
g = −|A|2g − 2g−1|∇g|2 + 2(ϕξ)−1 〈∇(ϕξ),∇g〉

−
[
u

(
ϕ′

ϕ

)
− 1
](

n− 1
u2

)
g −

(
ϕ′′

ϕ′2

)
ϕ−1|∇ϕ|2g

+ gξ−1

(
d

dt
−∆

)
ξ − 2(ϕξ)−1g 〈∇ϕ,∇ξ〉 (3.5)

Proof. Using the evolution equation for f , we find(
d

dt
−∆

)
g = −|A|2g − 2f−1|∇f |2ξ + 2ϕ−1 〈∇ϕ, ξ∇f〉

−
[
u

(
ϕ′

ϕ

)
− 1
](

n− 1
u2

)
g −

(
ϕ′′

ϕ′2

)
ϕ−1|∇ϕ|2g

+ f

(
d

dt
−∆

)
ξ − 2 〈∇f,∇ξ〉
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We calculate

g−1|∇g|2 = f−1|∇f |2ξ + 2 〈∇f,∇ξ〉+ fξ−1|∇ξ|2

to obtain

−2f−1|∇f |2ξ − 2 〈∇f,∇ξ〉 = −2g−1|∇g|2 + 2 〈∇ξ,∇f〉+ 2fξ−1|∇ξ|2

= −2g−1|∇g|2 + 2ξ−1 〈∇ξ,∇g〉

Finally, noting that

2ϕ−1 〈∇ϕ, ξ∇f〉 = 2ϕ−1 〈∇ϕ,∇g〉 − 2fϕ−1 〈∇ϕ,∇ξ〉

we have the result by combining these two identities.

What remains, is to choose test- and cutoff-functions appropriately so
that all terms on the right hand side of equation (3.5) remain non-positive,
apart from terms involving the gradient of g, which are, for the most part,
irrelevant.

Estimating the last term of (3.5) using Young’s inequality, for µ > 0 we
obtain the equation(

d

dt
−∆

)
g 6 −|A|2g − 2g−1|∇g|2 + 2(ϕξ)−1 〈∇(ϕξ),∇g〉

−
[
u

(
ϕ′

ϕ

)
− 1
](

n− 1
u2

)
g −

[(
ϕ′′ϕ

ϕ′2

)
− µ−1

]
ϕ−2|∇ϕ|2g

+ ξ−1

[(
d

dt
−∆

)
ξ + µξ−1|∇ξ|2

]
g (3.6)

Let us choose the cut-off function ξ. Let

ξ(x, t) = (R2 − 〈x− x0,ϑ〉2 − 2t)2(p+1)
+

for R, p > 0 and some x0, that is, the ‘band function’ as defined in Lemma
3.1.

Inserting the result from Lemma 3.1 into (3.6), and setting µ = 1
2

(
2p+1
p+1

)
we obtain(

d

dt
−∆

)
g 6 −|A|2g − 2g−1|∇g|2 + 2(ϕξ)−1 〈∇(ϕξ),∇g〉

−
[
u

(
ϕ′

ϕ

)
− 1
](

n− 1
u2

)
g

−
[(

ϕ′′ϕ

ϕ′2

)
− 2

(
p+ 1
2p+ 1

)]
ϕ−2|∇ϕ|2g (3.7)
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Finally, we choose the test-function ϕ. Let

ϕ(u) = e
1

λ+1

“
u

u0

”λ+1

for λ > 0 and we find that

u

(
ϕ′

ϕ

)
− 1 =

(
u

u0

)λ+1

− 1 > 0

and (
ϕ′′ϕ

ϕ′2

)
− 2

(
p+ 1
2p+ 1

)
= 1 + (λ+ 1)

(
u

u0

)−(λ+1)

− 2
(
p+ 1
2p+ 1

)
= (λ+ 1)

(
u

u0

)−(λ+1)

− 1
2p+ 1

> 0

for p > 0 sufficiently high.
So, we obtain the equation(

d

dt
−∆

)
g 6 −|A|2g − 2g−1|∇g|2 + 2(ϕξ)−1 〈∇(ϕξ),∇g〉 (3.8)

This equation is now in a form to which the maximum principle may be
applied and we obtain the local estimate

Theorem 3.10. Set SR(t) =
{
x ∈ Rn+1 : 〈x− x0,ϑ〉2 6 R2 − 2t

}
, R > 0

and suppose that on Mt we have u0 > 0, then for all λ > 0 and p > 0
sufficiently high, we have

sup
Mt∩SR(t)

(
e

1
λ+1

“
u

u0

”λ+1 (
R2 − 〈x− x0,ϑ〉2 − 2t

)2(p+1)

+
v

)
(·, t) 6

sup
M0∩SR(0)

(
e

1
λ+1

“
u

u0

”λ+1 (
R2 − 〈x− x0,ϑ〉2

)2(p+1)

+
v

)
(·, 0) (3.9)

for t ∈
[
0,min

{
T, R

2

2

})
.

Proof. This is a simple application of the maximum principle for compactly
supported functions applied to the evolution equation (3.8) for the function
g = fξ on the compact (shrinking) sets SR(t).

Remark 3.11. Since v > 1, the local gradient estimate Theorem 3.10 im-
plies an alternative (but less sharp) local height estimate to Theorem 3.2 of
the form

sup
Mt∩SR

2

e
1

λ+1

“
u

u0

”λ+1

(·, t) 6 C(R)

for t ∈
[
0,min

{
T, R

2

2

})
.
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Corollary 3.12 (Local Gradient Estimate). Suppose that on the set Sk =
{x ∈ Rn+1 : 〈x,ϑ〉2 6 k2} for some k > 0 we have the estimate

sup
M0∩Sk

v(·, 0) 6 C0

for some C0 <∞, then if u > u0 > 0 we have the estimate

sup
Mt∩S k

2

v(·, t) 6 C

for t ∈
[
0,
(
k
2

)2)
and some constant C depending only on C0, k and u0.

There are many other alternatives to using the band cut-off function in
order to obtain compact subsets on which to derive local estimates. One
such example is the spot cut-off function.

Consider the function k = k(x, t) defined by

k =
1
2

(1− 〈Z,ω〉)

where Z = ω(x0) is the normal to the cylinder at some x0 in M0. This
function can be used to measure angular deviation from some given direction.
This function can be used to select out a spot on the evolving surface Mt.

Lemma 3.13 (Spot Function). The function ψ = ψ(x, t) defined by

ψ(x, t) =

(
R2 − 〈x,ϑ〉2 −

(
R

θ

)2

k2 −

((
R

θ

)2(n+ 2
u2

0

)
+ 2

)
t

)2(p+1)

+

(3.10)
for some given R, θ > 0, p > 0 satisfies(

d

dt
−∆

)
ψ 6 −1

2

(
2p+ 1
p+ 1

)
ψ−1|∇ψ|2

for x ∈Mt ∩ sptψ so long as u0 > 0.

Proof. First we compute

d

dt
〈Z,ω〉 =

〈
Z,∇Hω

〉
=

1
u
〈Z,Hτ 〉

=
1
u
〈Zτ ,H〉
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and also

∆ 〈Z,ω〉 = τ iτ i 〈Z,ω〉

= τ i

(
1
u
〈Zτ , τ i〉

)
= − 1

u2
〈Zτ ,∇u〉+

1
u

〈
∇τ iZτ , τ i

〉
+

1
u
〈Zτ ,H〉

= − 2
u2
〈Zτ ,∇u〉 −

(
n− 1− κ

u2

)
〈Z,ω〉+

1
u
〈Zτ ,H〉

which gives us(
d

dt
−∆

)
k = −1

2

(
n− 1− κ

u2

)
〈Z,ω〉 − 1

u2
〈Zτ ,∇u〉

> −1
2

(
n− 1− κ

u2

)
− 1
u2

> −1
2

(
n+ 1
u2

0

)
Now we compute(
d

dt
−∆

)
ψ = 2(p+ 1)ψ

1
2

“
2p+1
p+1

” [
−
(
d

dt
−∆

)
〈x,ϑ〉2 −

(
R

θ

)2( d

dt
−∆

)
k2 − β

]

− 1
2

(
2p+ 1
p+ 1

)
ψ−1|∇ψ|2

6 2(p+ 1)ψ
1
2

“
2p+1
p+1

” [
2|∇ 〈x,ϑ〉 |2 +

(
R

θ

)2((n+ 1
u2

0

)
k + 2|∇k|2

)
− β

]

− 1
2

(
2p+ 1
p+ 1

)
ψ−1|∇ψ|2

and we check that

|∇k|2 =
1

4u2

[
|Zτ |2 − 〈Zτ ,ν〉

]
6

1
4u2

0

So, recalling that |∇ 〈x,ϑ〉 |2 6 1 and setting

β =

((
R

θ

)2(n+ 2
u2

0

)
+ 2

)
we have the result.

Note that for θ ∈ (0, 1), the set Mt ∩ sptψ is a subset of Mt which does
not wrap around the axis completely, however if we let θ → ∞ we obtain
the same sets to those given by Mt ∩ spt ξ, the band function.
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3.2.2 Global Estimates

Without some extra assumptions on the growth of the height of the evolving
surface, it is quite difficult to obtain estimates for the gradient that do not
grow strongly in time (non-polynomially). This will be remedied in Chapter
5, however, in the meantime a quick global estimate for the gradient is
presented here.

Lemma 3.14. The function v̂ defined by

v̂ = e
−

„
n−1

u2
0

«
t
v

satisfies the evolution equation(
d

dt
−∆

)
v̂ 6 −|A|2v̂ − 2v̂−1|∇v̂|2 (3.11)

Proposition 3.15. Suppose that u(x, t) > u0 > 0 for all x ∈Mt, t ∈ [0, T ),
and suppose that on M0 we have the estimate

v 6
(
ε2 + 〈βx,ϑ〉2

)p
for some ε > 0, β, p > 0 then on Mt we have the estimate

v 6 c2e

„
n−1

u2
0

«
t (
ε2 + 〈βx,ϑ〉2 + 2β2t

)p
for some c2 <∞ for all t ∈ [0, T )

Proof. Let η be defined as in Lemma 3.4, with γ = 0, then we compute(
d

dt
−∆

)
v̂η 6 −|A|2v̂η − 2ηv̂−1|∇v̂|2

−
(
p+ 1
p

)
v̂η−1|∇η|2 − 2 〈∇v̂,∇η〉

Estimating the cross term using Young’s inequality,

−2 〈∇v̂,∇η〉 6 2ηv̂|∇v̂|2 +
1
2
v̂η−1|∇η|2

and, since p > 0, we obtain(
d

dt
−∆

)
v̂η 6 −|A|2v̂η − 1

2

(
p+ 2
p

)
v̂η−1|∇η|2

and thus, applying the maximum principle to v̂η we obtain the result.

While this estimate is sufficient to prove longtime existence, in some
applications it won’t be very useful because it still grows very strongly in
time. Since we haven’t used the fact that the minimum height may in fact
be increasing, we can still improve on this estimate. We shall attend to these
details (Chapter 5) once we have derived some barriers for the height.
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3.3 Curvature Estimate

3.3.1 Local Estimates

In this section we will derive local estimates on the curvature and covariant
derivatives of the curvature of all orders. We will do this using a version
([9]) of the Ecker and Huisken ([11]) localised weak maximum principle (see
Appendix E for more details).

Without some extra work, we will not be able to derive local curvature
estimates which do not grow strongly in time. The technical reason is that
the order v term in the evolution equation for v needs to be taken care of.

While we can control this term using the evolution equation for u, in
doing so we would lose some of the ‘good’ gradient of v term. If we are very
careful we can retain just enough of the gradient term and obtain a local
estimate for the curvature, independent of time.

The following proposition is motivated by the local curvature estimates
derived in [9] and [11], adapted to cylindrical graphs.

Proposition 3.16. Let (Mt)t∈(t0−R2,t0), R > 0 be a smooth, properly em-
bedded solution in the set QR(x0) = {x ∈ Rn+1 : 〈x− x0,ϑ〉2 6 R2} for
some x0 ∈ Rn+1. Suppose that in this set u0 > 0 and for f = ϕv (as above)
the estimate

f1 = sup
Mt∩QR(x0)

f(·, t) 6 2 inf
Mt∩QR(x0)

f(·, t) = f0

holds for t ∈ (t0−R2, t0), then there exists a constant c0 = c0(n, u0, f1) such
that

sup
Mt∩QR

2
(x0)

|A|2(·, t) 6
c0
R2

for t ∈
(
t0 −

(
R
2

)2
, t0

)
.

Proof. First, we shall scale the solution such that

(Mt)t∈(t0−R2,t0) 7→ (MR
s )s∈(0,1)

Set for any R > 0

MR
s =

1
R

(
Mt0−R2(1−s) − x0

)
for s ∈ (0, 1).

This is effected by the mapping

t 7→ 1−
(
t0 − t

R2

)
x 7→ x− x0

R



28 CHAPTER 3. ESTIMATES ON SURFACES OF REVOLUTION

for R > 0 which preserves (MCF), that is (MR
s )s∈(0,1) also solves (MCF).

Setting s = 1 −
(
t0−t
R2

)
and y = x−x0

R , we deduce that AR, the second
fundamental form of (MR

s ), satisfies

|∇mAR|2(y, s) = R2(m+1)|∇mA|2(x, t) (3.12)

for y ∈Ms and all m > 0.
Thus, to prove the proposition, we need only show that

sup
MR

t ∩Q 1
2
(0)

|A|2(·, t) 6 c0

for t ∈ (0, 1).
As shown in Appendix B, the curvature |A|2 satisfies the evolution equa-

tion (
d

dt
−∆

)
|A|2 = 2|A|4 − 2|∇A|2

We must construct a suitable test function to control the first term of
the evolution equation of |A|2, since it might cause the curvature to blow
up. We try a test function of f = ϕv.

As in Theorem 3.10, we set ϕ = ϕ(u) to be

ϕ = e
1

λ+1

“
u

uo

”λ+1

for λ > 0, and analogously from earlier calculations, we have(
d

dt
−∆

)
f 6 −|A|2f − (1 + δ)f−1|∇f |2 (3.13)

where δ =
(

δ̄
1+δ̄

)
> 0 where δ̄ = λ

(
u
u0

)−(λ+1)
.

Remember that we have an a priori bound on f on compact subsets.
Thus we may assume that f is uniformly bounded on the set QR(x0) for all
times t ∈ [t0 −R2, t0].

Now, let h = h(f2) be a test-function to be chosen later, and setting
g = |A|2h, we compute(

d

dt
−∆

)
g 6 − 2

h2

[
f2h′ − h

]
g2 − 2h|∇A|2

− 2
h2

[
(2 + δ)hh′ + 2f2hh′′

]
|∇f |2g − 2

〈
∇h,∇|A|2

〉
Using the identity

1
2
g−1|∇g|2 = 2h|∇|A||2 +

〈
∇h,∇|A|2

〉
+ 2f2

(
h′

h

)2

|∇f |2g
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and Kato’s inequality, we have

−2h|∇A|2 − 2
〈
∇h,∇|A|2

〉
6 −2h|∇|A||2 − 2

〈
∇h,∇|A|2

〉
= −1

2
g−1|∇g|2 −

〈
∇h,∇|A|2

〉
+ 2f2

(
h′

h

)2

|∇f |2g

= −1
2
g−1|∇g|2 − h−1 〈∇h,∇g〉

+ 6f2

(
h′

h

)2

|∇f |2g

from which we obtain(
d

dt
−∆

)
g 6 −1

2
g−1|∇g|2 − h−1 〈∇h,∇g〉 − 2

h2

[
f2h′ − h

]
g2

− 2
h2

[
(2 + δ)hh′ + f2(2hh′′ − 3h′2)

]
|∇f |2g (3.14)

Now the task is to find a function h such that all the terms are bounded
in such a way as to satisfy the hypotheses of Theorem E.5.

Let us begin by letting h = h(q) be defined by

h(q) =


(
q
q1

)
(
1− L

(
q
q1

)ε) 1
ε


γ

, q ∈ [q0, q1]

for ε, γ > 0 and 0 < L < 1.
Consider the coefficient of the order g2 term, then we have

2
h2

[
f2h′ − h

]
=

2
h

(
1− L

(
q

q1

)ε)−1 [
L

(
q

q1

)ε
+ γ − 1

]
and similarly, the coefficient of the order g term is

2
h2

[
(2 + δ)hh′ + q(2hh′′ − 3h′2)

]
|∇f |2 = 2γq−1

[
(2ε− δ)L

(
q

q1

)ε
+ δ − γ

]
|∇f |2

So, in order to satisfy Theorem E.5, we require the inequalities

L

(
q

q1

)ε
+ γ − 1 > 0 and (2ε− δ)L

(
q

q1

)ε
+ δ − γ > 0

to hold, for any δ > 0. Let ε = δ, then we require the inequality

q1 < L
1
δ

(
1 + δ

1− δ

) 1
δ

q, q ∈ [q0, q1]
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to hold to be able to choose γ to satisfy the two inequalities for δ > 0.

Choose L = 2−δ and in noting that
(

1+δ
1−δ

) 1
δ
> e2 it is sufficient to require

q1 <
1
2
e2q0

which is satisfied, since by assumption

f1 6 2f0

So, with this, and choosing a suitable γ, we have(
d

dt
−∆

)
g 6 〈a,∇g〉 − kg2 − dg (3.15)

with k > 0, d > 0 and |a|2 6 a2
0(δ)(1 + d).

Let ψ be the function defined by

ψ(x, t) = t(1− 〈x,ϑ〉)3+

We can easily verify that ψ is a localisation function. Note that

sptψ(·, t) =

{
∅, t = 0
Q1(0), t ∈ (0, 1]

Since the surfaces (MR
t )t∈(0,1) are properly embedded, the setMR

t ∩Q1(0)
is compact for all t ∈ (0, 1).

Using ψ, we are now able to apply Theorem E.5 to g in the set Q1(0),
since all the hypotheses are satisfied. Thus, we arrive at the estimate

sup
MR

t ∩Q1(x0)

(gψ)(·, t) 6 C(n, k, a0, cψ)

for t ∈ (0, 1) since ψ(·, 0) = 0.
Upon Q 1

2
(0) ×

(
3
4 , 1
)

we have ψ uniformly bounded away from zero.
Furthermore, on the same set we also have h uniformly bounded above and
below. Thus, since supMR

t ∩Q 1
2
(x0)(gψ) 6 supMR

t ∩Q1(x0)(gψ), we obtain the

estimate
sup

MR
t ∩Q 1

2
(x0)

|A|2 6 C

for t ∈ [34 , 1) where C = C(n, k, a0, cψ, f1)
Scaling back to the original flow yields the estimate in

QR
2
(x0)×

(
t0 −

(
R

2

)2

, t0

)
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Proposition 3.16 gives an interior estimate on the curvature, however,
it requires a rather restrictive technical assumption, which renders it some-
what limited when applied to proving long-time existence. If we sacrifice
some of the sharpness of this estimate, then we may remove this technical
assumption, obtaining an estimate suitable for proving long-time existence
results.

Proposition 3.17. Let (Mt)t∈(t0−R2,t0), R > 0 be a smooth, properly em-
bedded solution in the set QR(x0) = {x ∈ Rn+1 : 〈x− x0,ϑ〉2 6 R2} for
some x0 ∈ Rn+1. Suppose that in this set u0 > 0 and the estimate

sup
Mt∩QR(x0)

v(·, t) 6 v0

holds for t ∈ (t0 − R2, t0), then there exist constants c0 = c0(n, v0) and
ζ0 = ζ0(n, u0) such that

sup
Mt∩QR

2
(x0)

|A|2(·, t) 6
( c0
R2

)
eζ0(t−(t0−R2))

for t ∈
(
t0 −

(
R
2

)2
, t0

)
.

Proof. The proof of this proposition is almost identical to that in Proposition
3.16, except that instead of working with the evolution equation of f , we
work directly with the evolution equation of v̂ = e−ζ0(t−(t0−R2))v(

d

dt
−∆

)
v̂ 6 −|A|2v̂ − 2v̂−1|∇v̂|2

for ζ0 >
(
n−1
u2
0

)
.

Working on the scaled solution (MR
t )t∈(0,1), analogously to Equation

(3.14) for the function g = |A|2h(v̂2), where h is an arbitrary positive twice-
differentiable function, we obtain the evolution equation(

d

dt
−∆

)
g 6 −1

2
g−1|∇g|2 − h−1 〈∇h,∇g〉 − 2

h2

[
v̂2h′ − h

]
g2

− 2
h2

[
3hh′ + v̂2(2hh′′ − 3h′2)

]
|∇v̂|2g (3.16)

Choosing h = h(q) to be defined by

h(q) =


(
q
q1

)
1− 1

2

(
q
q1

)
 , q ∈ [1, q1]

we have
2
h2

[
v̂2h′ − h

]
= 1
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and
2
h2

[
3hh′ + v̂2(2hh′′ − 3h′2)

]
=

1

v2
0

(
1− 1

2

(
v̂
v0

)2
)2

As in Proposition 3.16, we are able to apply Theorem E.5 with the
localisation function Ψ defined by

ψ(x, t) = t(1− 〈x,ϑ〉)3+
to obtain the estimate

sup
MR

t ∩Q1(x0)

(gψ)(·, t) 6 C(n, k, a0, cψ)

for t ∈ (0, 1) since ψ(·, 0) = 0.
Upon Q 1

2
(0) ×

(
3
4 , 1
)

we have ψ uniformly bounded away from zero.
Furthermore, on the same set we also have h uniformly bounded above and
below, since (

v̂

v0

)2

6 h(v̂2) 6 2
(
v̂

v0

)2

Thus, since supMR
t ∩Q 1

2
(x0)(gψ) 6 supMR

t ∩Q1(x0)(gψ), we obtain the esti-

mate
sup

MR
t ∩Q 1

2
(x0)

|A|2 6 Ceζt

for t ∈ [34 , 1) where C = C(n, k, a0, cψ, v0).
Scaling back to the original flow yields the estimate in

QR
2
(x0)×

(
t0 −

(
R

2

)2

, t0

)

Either of the local curvature estimates can be extended to a local esti-
mate on all derivatives of the curvature.

Theorem 3.18 (Smoothness Estimate). Let (Mt)t∈(t0−R2,t0), R > 0 be
a smooth, properly embedded solution in the set QR(x0) = {x ∈ Rn+1 :
〈x− x0,ϑ〉2 6 R2} for some x0 ∈ Rn+1, satisfying the estimate

sup
Mt∩QR(x0)

|A|2(·, t) 6
c0
R2

for t ∈
(
t0 −R2, t0

)
then for every m > 1 there exists a constant cm =

cm(n,m) such that

sup
Mt∩QR

2
(x0)

|∇mA|2(·, t) 6
cm

R2(m1)

for t ∈
(
t0 −

(
R
2

)2
, t0

)
.
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Proof. As in Proposition 3.16, owing to the scaling behaviour of the second
fundamental form and its derivatives, we may rescale appropriately and our
assumption becomes

sup
MR

t ∩Q1(0)

|A|2(·, t) 6 c0 (3.17)

for t ∈ (0, 1). What is to be show is that that for m > 0 there exist constants
cm such that

sup
MR

t ∩Q 1
2
(0)

|∇mA|2(·, t) 6 cm

for t ∈
(

3
4 , 1
)
. This we shall show by induction. By the assumption (3.17),

we trivially obtain the base case for m = 0 since

sup
MR

t ∩Q 1
2
(0)

|A|2(·, t) 6 sup
MR

t ∩Q1(0)

|A|2(·, t) 6 c0

for t ∈
(

3
4 , 1
)
⊂ (0, 1).

Now, assume that for k = 1, . . . ,m − 1 that we have established the
inequalities

sup
MR

t ∩Q 1
2
(0)

|∇kA|2(·, t) 6 ck

for t ∈
(

3
4 , 1
)
.

Using these estimates, we aim to establish an estimate for |∇mA|2. From
Corollary B.9, and Young’s inequality, we have the evolution equation(

d

dt
−∆

)
|∇mA|2 6 −2|∇m+1A|2 + Cm(1 + |∇mA|2) (3.18)

where Cm = Cm(c0, . . . , cm−1).
Let g = |∇mA|2(|∇m−1A|2 + Λ) for some Λ > 0 and compute(
d

dt
−∆

)
g 6 −2|∇m+1A|2(|∇m−1A|2+Λ)+Cm(1+|∇mA|2)(|∇m−1A|2+Λ)

− 2|∇mA|4 + Cm−1(1 + |∇m−1A|2)|∇mA|2

− 2
〈
∇|∇m−1A|2,∇|∇mA|2

〉
(3.19)

and estimate the cross-term using the Cauchy-Schwarz, Kato, and Young
inequalities

−2
〈
∇|∇m−1A|2,∇|∇mA|2

〉
6 8|∇m−1A||∇mA|

∣∣∇|∇m−1A|
∣∣ |∇|∇mA||

6 8|∇m−1A||∇mA||∇mA||∇m+1A|
6 2|∇m+1A|2(|∇m−1A|2 + Λ)

+ 8
(

|∇m−1A|2

|∇m−1A|2 + Λ

)
|∇mA|4
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which gives us(
d

dt
−∆

)
g 6 −2

[
1− 4

(
|∇m−1A|2

|∇m−1A|+ Λ

)]
|∇mA|2 + C|∇mA|2

where C = C(Λ, Cm, Cm−1), and again using Young’s inequality, we obtain(
d

dt
−∆

)
g 6 −

[
Λ− 7|∇m−1A|2

(|∇m−1A|+ Λ)3

]
g2 +K

Setting Λ = 8cm−1 we succeed in obtaining an evolution equation of the
form (

d

dt
−∆

)
g 6 −kg2 +K

where k = 1
729c20

> 0 and K = K(n,m, c0, . . . , cm−1) by the inductive as-
sumption. As in Proposition 3.16, this equation is in a suitable form to
apply Theorem E.5 with a suitable localisation function.

As in Proposition 3.16, we choose the localisation function ψ defined by

ψ(x, t) = t(1− 〈x,ϑ〉)3+

and in applying Theorem E.5 we obtain the estimate

sup
MR

t ∩Q1(0)

(gψ)(·, t) 6 C(n, k,K, cψ)

for t ∈ (0, 1) since ψ(·, 0) = 0.
Upon Q 1

2
(0) ×

(
3
4

)
we have ψ bounded away from zero, and we obtain

the estimate
sup

MR
t ∩Q 1

2
(0)

|∇mA|2 6 cm

for t ∈
(

3
4 , 1
)

where cm = cm(n,m, c0, . . . , cm−1).
Scaling back to the original flow yields the estimate in

QR
2
(x0)×

(
t0 −

(
R

2

)2

, t0

)

3.3.2 Global Estimates

Global curvature estimates that grow polynomially in time are quite diffi-
cult to obtain in the cylindrical graph setting, owing to the term linear in
v in the evolution equation for v, a term that is not present in the planar
graph setting. In absence of the more delicate barrier techniques devel-
oped in Chapter 5, we present a global estimate for the curvature, growing
exponentially in time.



3.3. CURVATURE ESTIMATE 35

Proposition 3.19. The function g = |A|2v̂2 satisfies the evolution equation(
d

dt
−∆

)
g 6 −2v̂−1 〈∇v̂,∇g〉

where v̂ = e
−

„
n−1

u2
0

«
t
v.

Proof. This follows easily from the estimate

−2
〈
∇v̂2,∇|A|2

〉
6 −2v̂−1 〈∇v̂,∇g〉+ 6|A|2|∇v̂|2 + 2v̂2|∇|A||2

Corollary 3.20. Let (Mt)t∈[0,T ), T > 0 be a smooth solution to (MCF) with
bounded curvature and gradient and u > u0 > 0 on each Mt then we have
the a priori estimate

sup
Mt

(|A|2v2)(·, t) 6 e

„
n−1

u2
0

«
t
sup
M0

(|A|2v2)(·, 0)

for all t ∈ [0, T ).

Proof. This follows simply from Proposition 3.19 and the estimate

|∇v| = v2|∇ 〈ν,ω〉 |
= v2|hij 〈ω, τ i〉 τ j |
6 |A|v2

which allows us to apply the non-compact maximum principle (Theorem
E.1) with a = −2v̂−1∇v̂.
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