
Chapter 2

Evolution Equations

2.1 Cylindrical Graphs

Instead of using an equation such as equation (1.2) to analyse the evolution
of cylindrical graphs we are instead going to use a more geometric approach
and compare the evolving surfaces directly to reference surfaces. For more
information on the ideas behind this approach, refer to Chapter C.

We shall be comparing our surfaces to cylinders, and one way to do this
is to introduce some way to measure the ‘height’ of our surface, relative to
the cylinder axis. Thus, we consider the function σ : Rn+1 → R defined by

σ(x) = |x⊥ϑ| (2.1)

where ϑ is a unit vector defining the direction of the axis and x⊥ϑ = x −
〈x,ϑ〉ϑ, the component of x not pointing in the direction of ϑ.

Clearly the family of level sets Mn
ρ =

{
x ∈ Rn+1 : σ(x) = ρ

}
, ρ > 0 is

the family of n-cylinders of radius ρ with axial direction ϑ centered at the
origin. These will be our reference slices when considering cylindrical graphs.

Now, the outward unit normal ω to the cylinder Mn
ρ at x is computed

as

ω(x) =
∇σ(x)
|∇σ(x)|

=
x⊥ϑ

|x⊥ϑ|

(2.2)

since |∇σ| ≡ 1. This is well defined whenever σ(x) > 0, i.e. we are not
passing through the axis.

If the comparison between the cylindrical reference slices and the surface
is to make sense, i.e. to be non-degenerate, we require that the normal of the
reference slice at x is not perpendicular to the normal of the surface for any
x. Thus we introduce the gradient function to quantify this relationship. In
the following, let M be an n-dimensional hypersurface in Rn+1.
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Definition 2.1 (Gradient Function). The cylindrical gradient function v
on M is defined by

v(x) = 〈ν,ω〉−1 , x ∈M

where ν is the outward pointing unit normal to M at x.

Clearly, this function blows up precisely at points on M at which the
unit normal of the reference cylinder Mn

r and M are perpendicular.
We also define the cylindrical height function of M relative to the refer-

ence slices.

Definition 2.2 (Height Function). The cylindrical height function u on M
is defined by

u(x) = σ(x), x ∈M

Worth noting is the fact that the cylindrical height function may be
written as

u = 〈x,ω〉

Now we may define exactly what we mean when we say a cylindrical
graph.

Definition 2.3 (Entire Cylindrical Graph). Let M be an n-dimensional
hypersurface in Rn+1 such that{

u > 0, x ∈M
v <∞, x ∈M

then we say that M is an entire cylindrical graph.

Note that requiring u to be positive ensures that ω and hence v is well
defined.

Our aim is that, under evolution by (MCF), we may prevent the normal
vector of the reference slice and the surface from ever becoming perpendicu-
lar, so that our comparison (and analysis) continues to make sense (at least
up to a singularity).

The general setup of the problem is presented diagrammatically in Figure
2.1.

2.2 The Evolution Equations

In the next section, we shall derive evolution equations for the quantities
governing the evolution of cylindrical graphs such as height and gradient
functions. In general, these equations will be of the form

(
d
dt −∆

)
f = Q,

where Q is some function of f and other geometric quantities on Mt. Us-
ing these equations along with delicate test- and cutoff-function arguments,
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Figure 2.1: Cylindrical Graph

we will be able to apply maximum principles to derive estimates on these
quantities.

We have this useful identity for the derivative of the normal vector on
the cylinder.

Lemma 2.4. For any vector Z we have

∇Zω =
1
u
Zτ (2.3)

where Zτ = Z− 〈Z,ϑ〉ϑ− 〈Z,ω〉ω is the twisting component of Z.

Proof. We calculate

∇Zω = ∇Z

(
x⊥ϑ

|x⊥ϑ|

)
=

1
|x⊥ϑ|

[Z− 〈Z,ϑ〉ϑ]− 1
|x⊥ϑ|

Z|x⊥ϑ|ω

=
1
u

[Z− 〈Z,ϑ〉ϑ− 〈Z,ω〉ω]

Here, by twisting, we mean the component of the vector which is directed
around the axis. In other words, it is the projection of the vector onto the
tangent space of the cylinder, minus the axial part.
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Lemma 2.5. For cylindrical graphs, the function χ =
〈
∇νω,ν

〉
is given by

χ =
κ

u
(2.4)

where κ = 〈ντ ,ντ 〉 is the twist function.

Proof. By Lemma 2.4 we have

χ =
〈
∇νω,ν

〉
=
〈

1
u

[ν − 〈ν,ϑ〉ϑ− 〈ν,ω〉ω] ,ν
〉

=
1
u
〈ντ ,ντ 〉

We see from its definition that κ measures at a point on Mt how much
the normal vector is directed or twisting around the axis of the cylinder.

For a derivation of graph evolution equations in a more general setting,
please refer to Appendix C. However, here we present the evolution equations
for a specific graph setting; the cylindrical graph.

Proposition 2.6. The height function u of a cylindrical graph satisfies the
evolution equation (

d

dt
−∆

)
u = −n− 1− κ

u
(2.5)

Proof. This follows from a simple application of Proposition C.5, however
in the cylindrical case it is far easier to just compute (2.5) directly, using
Lemma 2.5 and the fact that u = 〈x,ω〉.

First, compute the time derivative of u, finding where X = H

du

dt
= X(u)

= 〈H,ω〉+
〈
x,

1
u
Hτ

〉
= 〈H,ω〉

since xτ = 0.
Now, compute the Laplacian of u and we obtain

∆u = τ iτ i 〈x,ω〉

= τ i

[
〈τ i,ω〉+

〈
x,

1
u

τ iτ

〉]
= 〈H,ω〉+

〈
τ i,

1
u

τ i

〉
= 〈H,ω〉+

n− 1− κ

u

since 〈τ i, τ i〉 = n− 1− κ. The result follows from these two equations.
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If the height function u is initially uniformly bounded, the evolution
equation (2.5) immediately implies an a priori estimate for the height, since
the right hand side of (2.5) is negative.

Proposition 2.7. The gradient function v of a cylindrical graph satisfies
the evolution equation(

d

dt
−∆

)
v = −|A|2v − 2v−1|∇v|2 +

(
n− 1− κ

u2

)
v +

2Hτv
2

u
(2.6)

where Hτ = divMt ντ is the twist mean curvature.

Proof. Firstly,

ω(H) = ω(gijhij)

= gijω(hij) + ω(gij)hij

Now, we compute

ω(hij) = −ω
〈
ν,∇τ iτ j

〉
= −

〈
ν,∇ω∇τ iτ j

〉
−
〈
∇ων,∇τ iτ j

〉
= −

〈
ν,∇τ i∇τ jω

〉
= −

〈
ν,∇τ i

(
1
u

τ jτ

)〉
by Lemma 2.4

=
1
u2
〈ντ , τ i(u)τ j〉

− 1
u

〈
ν,−hijντ −

〈
τ j ,∇τ iω

〉
ω − 〈τ j ,ω〉∇τ iω

〉
=

1
u2
〈ντ , τ i(u)τ j + τ j(u)τ i〉

+
κhij
u

+
v−1

u

〈
∇τ iω, τ j

〉
which leads to

gijω(hij) =
2
u2
〈ντ ,∇u〉+

Hκ

u
+
v−1

u
divMt ω

= −2κv−1

u2
+
Hκ

u
+
(
n− 1− κ

u2

)
v−1

(2.7)

Similarly, we compute

ω(gij) = −ω(gij)

= −2
〈
∇τ iω, τ j

〉
= −2

u

〈
τ iτ , τ jτ

〉
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so we obtain

hijω(gij) = −2
u
hij
〈
τ iτ , τ jτ

〉
(2.8)

With Hτ as defined above, we compute

Hτ = divMt (ν − 〈ν,ϑ〉ϑ− 〈ν,ω〉ω)
= H − hij 〈τ i,ϑ〉 〈τ j ,ϑ〉 − hij 〈τ i,ω〉 〈τ j ,ω〉

−
〈
ν,∇τ iω

〉
〈ω, τ i〉 − 〈ν,ω〉

(
n− 1− κ

u

)
= hij

〈
τ iτ , τ jτ

〉
+
κv−1

u
−
(
n− 1− κ

u

)
v−1

Thus combining this identity with (2.7) and (2.8), we have

ω(H) =
κH − 2Hτ

u
−
(
n− 1− κ

u2

)
v−1 (2.9)

and then the proposition follows from (C.6).

Note that we cannot immediately (or easily) obtain an a priori estimate
on v using Equation 2.6 and the maximum principle since it is not clear
what the sign of the right hand side of (2.6) is. To obtain this estimate we
will require a test function argument, as developed in Chapter 3.

Remark 2.8 (Rotational Symmetry). In the case where M0 (and hence
Mt, since (MCF) is invariant to isometries of Rn+1, including rotations) is a
surface of revolution (of a graph) about the ϑ axis, we have both κ = 0 and
Hτ = 0 everywhere. This is clear, since for a rotationally symmetric surface
we may express the normal as ν = 〈ν,ϑ〉ϑ + 〈ν,ω〉ω and thus ντ = 0 on
Mt.

2.3 Normalised Equations

The evolution equations that we shall use to analyse the flow throughout
Chapter 3 are

(i)
(
d
dt −∆

)
u = −n−1−κ

u

(ii)
(
d
dt −∆

)
v = −|A|2v − 2v−1|∇v|2 +

(
n−1−κ
u2

)
v + 2Hτv2

u

(iii)
(
d
dt −∆

)
H = H|A|2

(iv)
(
d
dt −∆

)
|A|2 = −2|∇A|2 + 2|A|4
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For derivations of the evolution equations for the curvature quantities H
and |A|2, equations (iii) and (iv) respectively, refer to Appendix B.

The derivation of the last two equations, which we don’t include in this
chapter since they don’t depend at all on the particular graph setting, can
be found in Appendix B.

All of our estimates will use these equations or combinations thereof.
The ultimate objective of taking combinations (multiples, sums, functions)
of these quantities is to obtain evolution equations suitable for application
of the maximum principle. Chapter 3 is concerned with finding such com-
binations, or test-functions.

A further set of equations can be obtained if we rescale the flow so as to
preserve certain rates or quantities. Suppose we have a solution (Mt)t∈[t0,T ),
T > 0 of (MCF) which is developing a singularity (T < ∞), or perhaps
expanding out to infinity (T = ∞). If we suspect the rate at which the
surface is asymptotically expanding about a point x0 is, say λ(t), i.e. that
there exists some limiting surface M such that

lim
t→T

(
Mt − x0

λ(t)

)
= M̃

then it is prudent to ‘look at Mt on the scale of λ(t)’, in other words, if we
want to show properties of the surface as time runs to the singular time (or
infinity), then something that we might do is look at it on a different scale
(in both time and space) such that the contraction (or be it expansion) is
normalised out.

We make the ansatz that (at least in the case of cylindrical graphs) the
asymptotic rate of contraction (or expansion) is given by

λ(t) =
√

1 + α(t− t0), t ∈ [t0, T )

for some α 6= 0, and T > 0 is given by

T =

{
t0 + ξ

α , α < 0
∞, α > 0

where ξ = signα.
This choice is motivated by the hypothesis that singularities (and ex-

pansion) of (MCF) are modelled by self-similar solutions. For more details,
see Chapter 5. In the case that α < 0 we are interested in singularities, and
in the case that α > 0 we are interested in expansion.

To that end, let us normalise our solution, defining new space and time
variables,

x̃(s) = ψ(t)x(t), t ∈ [t0, T )

and
s = ξ log λ(t), t ∈ [t0, T )
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where ψ(t) =
√

ξα
2 λ

−1(t),

Denote the normalised surface by M̃s. The normalisation has the effect
of scaling out homothety while extending the (finite, in the case α < 0) time
interval to be defined for all positive times s and we obtain the normalised
flow (M̃s)s∈[0,∞). The following results are from [15].

Proposition 2.9 (Normalised Mean Curvature Flow).

dx̃
ds

= H̃− ξx̃, x̃ ∈ M̃s, s ∈ [0,∞) (2.10)

Proof. Since dψ
dt = −ξψ3 and ds

dt = ψ2, we compute

H =
dx
dt

=
d

dt

(
ψ−1x̃

)
= − 1

ψ2

dψ

dt
x̃ +

1
ψ

dx̃
ds

ds

dt

= ψ

(
dx̃
ds

+ ξx̃
)

which yields the result, since H̃ = ψ−1H.

Lemma 2.10. Suppose P and Q are quantities formed by contractions of
gij and hij, P and satisfies the evolution equation(

d

dt
−∆

)
P = Q

and P̃ has degree γ (i.e. P̃ = ψγP ), then Q̃ has degree γ − 2 and(
d

ds
− ∆̃

)
P̃ = Q̃− ξγP̃

Proof. Much the same as above, we calculate

Q =
(
d

dt
−∆

)
P

=
(
d

dt
−∆

)
ψ−γP̃

= ψ−γ
(
d

dt
−∆

)
P̃ − γψ−γ−1dψ

dt
P̃

= ψ−(γ−2)

((
d

ds
− ∆̃

)
P̃ + ξγP̃

)
and defining Q̃ = ψξ−2Q the conclusion follows.



2.3. NORMALISED EQUATIONS 13

Applying this lemma, we obtain the rescaled equations on M̃s

(i)
(
d
ds − ∆̃

)
ũ = −n−1−κ̃

ũ − ξũ

(ii)
(
d
ds − ∆̃

)
ṽ = −|Ã|2ṽ − 2ṽ−1|∇ṽ|2 +

(
n−1−κ̃
ũ2

)
ṽ + 2H̃τ ṽ2

ũ

(iii)
(
d
ds − ∆̃

)
H̃ = H̃|Ã|2 + ξH̃

(iv)
(
d
ds − ∆̃

)
|Ã|2 = −2|∇Ã|2 + 2|Ã|4 + 2ξ|Ã|2

Note that the rescaled equation for ṽ is identical to that of v.
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