
Chapter 1

Introduction

Mean curvature flow arises when we look at ways of evolving embedded
hypersurfaces to minimise the area functional, in fact, mean curvature flow
can be defined as the steepest descent flow of the area functional and in
some sense, (MCF) evolves hypersurfaces towards minimal surfaces.

Intuitively, (MCF) is an evolutionary process by which each point x on
surface Mt is given a velocity equal to the mean curvature vector, H(x) =
−H(x)ν(x), where H(x) = divMt ν(x) is the mean curvature at x and ν the
unit normal at x. The process generates a family of surfaces which are said
to evolve via mean curvature flow. With this process in mind, we formally
define the evolution of a surface under (MCF).

Definition 1.1 (Mean Curvature Flow). A family of manifolds (Mt)t∈[0,T )

immersed in Rn+1 is said to evolve via mean curvature flow on [0, T ) for
some T > 0 if

dx
dt

= H(x), x ∈Mt, t ∈ [0, T ) (1.1)

An equivalent, and at times more useful, definition of (MCF) is gained
by considering the immersions Ft = F(·, t)

F : Mn × [0, T ) → Rn+1

so that (MCF) can be equivalently cast as

Definition 1.2 (MCF). A family (Ft)t∈[0,T ) of immersions moves by (MCF)
if

∂F
∂t

(p, t) = H (F(p, t)) , p ∈Mn, t ∈ [0, T )

So the manifolds Mt are now given by Mt = F(·, t)(Mn). Frequently we
will denote x = F(p, t) as the position vector on the evolving surface.

Mean curvature flow evolves surfaces in such a way as to minimise the
area, indeed (MCF) can be obtained as a result of computing the L2 gradient
flow for variations of the area functional. As a result, under the flow, we
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have that the local area element µ = µ(x, t) is monotone decreasing (see
Appendix B), moreover,

dµ

dt
= −H2µ

so, for compact Mt the total area, not just the area element, decreases
monotonically.

Mean curvature flow was first studied by Brakke [6] where the approach
was from the point of view of geometric measure theory. Many properties
of the solutions to (MCF) have been investigated and it and associated
flows remain an area of significant interest. One of the earlier results that
stimulated much interest in the flow was Huisken’s [14] result that convex,
compact hypersurfaces retain their convexity under the flow and in fact
become asymptotically round.

Since then, there has been much research on (MCF) and other associated
curvature flows such as the Gauß curvature flow or the celebrated Ricci
flow, with which Perelman [17], [18] has possibly provided a constructive
geometric proof for Thurston’s Geometrisation Conjecture.

Much insight into the properties of mean curvature flow is to be gained
by studying special classes of solutions. One such class of special solu-
tions which yields many interesting examples is the case of so called ‘normal
graphs’ (see Appendix D). These are surfaces that may be expressed as time-
dependent deformations in the normal direction of some fixed base surface
Mn in terms of a suitable height ρ.

We can show that evolution by (MCF) of a surface that may be expressed
as a normal graph is equivalent, up to tangential diffeomorphisms, to the
scalar quasi-linear parabolic partial differential equation on Mn

∂ρ

∂t
(q, t) = −|∇Φρ(x, t)|divRn+1

(
∇Φρ(x, t)
|∇Φρ(x, t)|

)∣∣∣∣
x=F̃(q,t)

,

(q, t) ∈Mn × [0, T )

(1.2)

where F̃(q, t) = q+ρ(q, t)ω(q) and Φρ(x, t) = Λ(x)−ρ(S(x), t) with Λ and S
the signed distance and closest point projection for Mn respectively. While
this is a parabolic equation, it is not necessarily uniformly so, especially if
the solution is moving towards a focal point of the base surface. Therefore,
much care must be taken to ensure that solutions to this equation do not
meet with such points.

Perhaps the simplest graphical case is that of an ordinary planar graph,
that is, the case where the base surface is an n-dimensional hyperplane
in Rn+1. In this case, the base surface has no focal points so all that is
required for parabolicity is a gradient bound. It has been shown by Ecker
and Huisken that for initial data satisfying a Lipschitz growth condition we
have long time existence for the flow [10], [11]. Furthermore, the authors
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show that for initial data with a unique tangent cone at infinity the rescaled
flow converges exponentially to a self-similarly expanding solution.

Another interesting choice of base surface is the cylinder. Under the
assumption that we have a surface that is a rotationally symmetric graph
over a cylinder, we obtain the equation for ρ : R× [0, T ) → R

∂ρ

∂t
(z, t) =

ρ′′

1 + (ρ′)2
− n− 1

ρ
, (z, t) ∈ R× [0, T ) (1.3)

where ρ′(z, t) = ∂ρ
∂z (z, t).

In this thesis, we shall concern ourselves mainly with the case of graphs
over cylinders, and more specifically the case where they have rotational
symmetry.

Rotationally symmetric graphs over cylinders has been studied by Alt-
schuler, Angenent and Giga [1] in the non-entire case where the ends are
capped perpendicular to the axis. In this paper, the authors show a num-
ber of interesting results. Among these are: the number of necks is a non-
increasing function of time, the evolution may be extended smoothly through
a neck-pinch, and the asymptotic rate of a pinching neck is exactly that of a
homothetically shrinking cylinder. In [2], Angenent and Velázquez study ro-
tationally symmetric non-entire solutions, constructing solutions exhibiting
type II blowup.

In this thesis, we shall also be investigating rotationally symmetric gra-
phs over cylinders, but here we will be looking at entire solutions, that is,
solutions over the entire axis. Also, while Altschuler, et al. [1] worked from
a mainly PDE point of view, we shall be deriving estimates and results using
a more geometric approach and exploit the maximum principle to maximum
effect.

The main result of this thesis is a convergence result for initially cylin-
drical graphs satisfying an asymptotic steepness and straightness condition.
For initial graphs with sufficient asymptotic steepness, we derive an analo-
gous result to that in [10], that is

Theorem 1.3 (Main Theorem). Suppose that M0 is a rotationally sym-
metric entire cylindrical graph, which has at most linear growth, bounded
curvature, is bounded below self-similarly (in a sense to be defined in Chap-
ter 5) and suppose also that M0 satisfies the estimate

〈x,ν〉2 6 c3

(
1 + 〈x,ϑ〉2

)1−δ
, x ∈M0

for some δ > 0 and c3 < ∞ then the solution M̃s of normalised (MCF)
converges as s→∞ to a limiting surface M̃∞ upon which the equation

x̃⊥ = H̃(x̃), x̃ ∈ M̃∞

is satisfied.
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Crucial to the proof of the main result will be the:

. . . evolution equations for basic geometric quantities such as height, gra-
dient and curvature derived in Chapter 2

. . . uniform geometric height, gradient and curvature bounds derived in
Chapter 3,

. . . existence and extension results of Chapter 4,

. . . self-similarly expanding barrier surfaces of Chapter 5,

. . . maximum and comparison principles of Appendix E.


