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ABSTRACT		

Learning	from	other’s	experiences	(i.e.,	social	 learning)	 is	 fundamental	 for	human	develop-

ment	and	 important	 for	educational	practice.	 In	contrast	 to	 learning	 from	personal	experi-

ence	 (i.e.,	 experience-based	 learning),	 social	 learning	 has	 hardly	 been	 investigated	 from	 a	

developmental	cognitive	neuroscience	perspective.	It	is	important	to	utilize	this	perspective	

to	broaden	our	knowledge	of	social	learning	and	to	gain	a	more	mechanistic	view	on	funda-

mental	learning	principles	across	development.	For	this	dissertation	project,	I	designed	three	

age-comparative	 studies	 (in	8-10	year	old	 children,	13-15	year	old	adolescents,	and	young	

adults)	to	investigate	developmental	differences	in	experience-based	and	social	learning	by	

employing	 behavioral,	 electrophysiological	 and	 computational	 analyses.	 I	 addressed	 the	

questions	how	peers	and	non-peers	(i.e.,	adults)	influence	learning	from	other’s	actions	and	

outcomes	 (observational	 learning)	 in	 children	 and	 how	 observational	 learning	 and	 advice	

taking	 from	peers	 vary	 across	development.	Our	 findings	provide	 important	novel	 insights	

into	the	development	of	social	 learning.	Overall,	 social	 learning	was	beneficial	 (in	 terms	of	

accuracy	 and	 higher	 earnings)	 compared	 to	 trial-and-error	 type	 learning	 (i.e.,	 experience-

based	 learning)	 across	 development.	 Importantly,	 social	 and	 individual	 information	 were	

weighted	differently	across	development.	(1)	During	middle	childhood,	we	found	enhanced	

event-related	potentials	(ERPs),	as	well	as,	more	pronounced	imitative	choice	behavior	when	

observing	peers	compared	to	non-peers	(i.e.,	young	adults).	(2)	Children	learned	more	slowly	

than	adults	from	peer	behavior	and	showed	difficulties	to	use	observed	feedback	for	learn-

ing;	as	seen	by	enhanced	medial	prefrontal	ERPs	and	no	learning-related	changes	in	parietal	

ERPs.	(3)	We	found	specific	developmental	differences	in	learning	from	good	peer	advice	for	

children,	adolescents,	and	adults.	Adolescents	were	 initially	highly	sensitive	 to	social	 infor-

mation	 of	 their	 peers,	 but	 quickly	 used	 their	 own	 experiences	 for	 learning	 and	 explored	

more	as	compared	to	adults.	Although	children	show	higher	exploration	similarly	to	adoles-

cents,	they	could	not	benefit	from	it	to	the	same	degree.	Whereas	adolescents	(as	compared	

to	 children	 and	 adults)	 selected	 choices	 with	 higher	 earning,	 children	 showed	 difficulties	

using	negative	feedback	for	learning.	Taken	together,	adolescents	showed	benefits	and	chil-

dren	 difficulties	 combining	 social	 and	 individual	 information	when	 compared	 to	 adults.	 In	

terms	of	educational	practice,	 this	highlights	 that	different	 learning	 forms	might	be	appro-

priate	 for	 different	 age	 groups.	 Children	 are	 highly	 sensitive	 to	 negative	 experiences	 and	
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have	difficulties	learning	from	them.	Moreover,	particularly	during	adolescence,	own	experi-

ences	(positive	or	negative)	and	the	freedom	to	explore	seem	to	be	beneficial	for	learning.		
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ZUSAMMENFASSUNG		

Das	Lernen	aus	Erfahrungen	Anderer	(soziales	Lernen)	 ist	 fundamental	 für	die	menschliche	

Entwicklung	und	wichtig	für	die	pädagogische	Praxis.	Im	Gegensatz	zum	Lernen	aus	eigenen	

Erfahrungen	(erfahrungsbasiertes	Lernen),	mangelt	es	an	Untersuchungen	des	sozialen	Ler-

nens	über	die	Entwicklungsspanne	aus	einer	kognitiv-neurowissenschaftlichen	Perspektive.	

Es	ist	wichtig,	diese	Lücke	zu	schließen,	um	einen	mechanistischeren	Blick	auf	fundamentale	

Prinzipien	des	sozialen	Lernens	über	die	Entwicklungsspanne	zu	erhalten.	Innerhalb	der	vor-

liegenden	Promotion	wurden	drei	altersvergleichende	Studien	(in	8-10-,	13-15-Jährigen	und	

jungen	Erwachsenen)	entwickelt,	um	Entwicklungsunterschiede	im	erfahrungsbasierten	und	

sozialen	Lernen	mit	Hilfe	von	Verhaltens-,	elektrophysiologischen	und	komputationalen	Ana-

lysen	zu	untersuchen.	Diese	Studien	konzentrierten	sich	auf	die	Forschungsfragen,	inwiefern	

Peers	 (gleichen	Alters	und	Geschlecht)	und	Nicht-Peers	 (d.h.	 junge	Erwachsene)	das	kindli-

che	 Lernen	 von	 Handlungen	 und	 Handlungskonsequenzen	 Anderer	 (d.h.	 Beobachtungsler-

nen)	beeinflussen	und	 inwiefern	 sich	das	 Lernen	aus	Beobachtungen	und	Ratschlägen	von	

Peers	 über	 die	 Entwicklung	 verändert.	 Unsere	 Befunde	 liefern	 erste	 wichtige	 Einblicke	 in	

entwicklungsbezogene	 Veränderungen	 im	 sozialen	 Lernen:	 Soziales	 Lernen	war	 vorteilhaft	

(im	 Sinne	 von	 richtigen	 Antworten	 und	 Gewinnen)	 im	 Vergleich	 zum	 erfahrungsbasierten	

Lernen	und	das	über	die	Entwicklung	hinweg.	Allerdings	 zeigten	 sich	auch	 spezifische	Ent-

wicklungsunterschiede	 in	 der	 Gewichtung	 eigener	 und	 sozialer	 Informationen.	 (1)	 Kinder	

wiesen	 erhöhte	medial-präfrontale	 ereigniskorrelierte	 Potentiale	 (EKPs)	 auf	 und	 imitierten	

beobachtete	Handlungen	von	Peers	im	Vergleich	zu	Nicht-Peers	häufiger.	(2)	Im	Vergleich	zu	

Erwachsenen	 lernten	Kinder	 langsamer	aus	beobachteter	 Information	und	 zeigten	Schwie-

rigkeiten	 im	 Lernen	 aus	 beobachtetem	 Feedback.	 Dies	 spiegelte	 sich	 in	 erhöhten	medial-

präfrontalen	 EKPs	 und	 fehlenden	 lernbezogenen	Veränderungen	 in	 parietalen	 EKPs	wider.	

(3)	Zudem	unterschieden	sich	Kinder,	Jugendliche	und	Erwachsene	darin,	wie	sie	einen	guten	

Ratschlag	eines	Peers	zum	Lernen	nutzten:	Jugendliche	zeigten	eine	hohe	anfängliche	Sensi-

tivität	für	Peer-Informationen,	nutzten	jedoch	schnell	ihre	eigenen	Erfahrungen	zum	Lernen	

und	 explorierten	mehr	 als	 Erwachsene.	 Kinder	 explorierten	 ähnlich	 stark	wie	 Jugendliche,	

konnten	aber	davon	nicht	vergleichbar	profitieren.	Wohingegen	Jugendliche	(im	Vergleich	zu	

Kindern	 und	 Erwachsenen)	 Optionen	 mit	 höheren	 Erträgen	 auswählten,	 hatten	 Kinder	

Schwierigkeiten,	aus	negativem	Feedback	zu	lernen.	Zusammenfassend	zeigten	Jugendliche	
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Vorteile	und	Kinder	Schwierigkeiten	(im	Vergleich	zu	Erwachsenen)	darin,	soziale	und	indivi-

duelle	 Informationen	adäquat	zum	Lernen	zu	nutzen.	 In	Bezug	auf	die	pädagogische	Praxis	

verdeutlichen	diese	Befunde,	dass	womöglich	unterschiedliche	Lernformen	für	verschiedene	

Altersgruppen	 angemessen	 sind.	 Kinder	 im	mittleren	Kindesalter	 sind	 sensitiv	 für	 negative	

Erfahrungen	 und	 haben	 Schwierigkeiten	 diese	 zum	 Lernen	 zu	 nutzen.	 Jugendliche	 lernen	

sowohl	aus	positiven	als	auch	negativen	Erfahrungen	und	zeigen,	dass	ihre	erhöhte	Explora-

tion	vorteilhaft	beim	Lernen	sein	kann.		
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LIST	OF	ABBREVIATIONS	

	

EEG		 	 Electroencephalography	

fMRI	 	 Functional	magnetic	resonance	imaging		

ERP	 	 Event-related	potentials	

oERP	 	 Observational	event-related	potentials	

FRN	 	 Feedback-related	negativity	

oFRN		 	 Observational	feedback-related	negativity	

oP300	 	 Observational	P300	

RL	 	 Reinforcement	learning	

EL		 	 Experience-based	learning	

OL	 	 Observational	learning	

WM	 	 Working	memory	
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1.	Introduction	

Since	our	first	moments	in	life	we	are	highly	sensitive	to	social	 information	(Meltzoff,	Kuhl,	

Movellan,	 &	 Sejnowski,	 2009;	Meltzoff	 &	Moore,	 1977).	 As	we	 grow	 older,	 learning	 from	

social	 information1	 shapes	 our	 cognitive	 and	 socio-emotional	 development	 (Tomasello,	

Carpenter,	 Call,	 Behne,	 &	Moll,	 2005;	 Nielsen	&	 Tomaselli,	 2010;	Meltzoff,	Waismeyer,	 &	

Gopnik,	2012;	Frith	&	Frith,	2003,	2007,	2012;	Meltzoff	et	al.,	2009).	Beginning	with	school,	

social	interactions	with	and	learning	from	peers	become	increasingly	important	(Blakemore	

&	 Mills,	 2014;	 Steinberg,	 2008)	 and	 affect	 learning	 (Silva,	 Shulman,	 Chein,	 &	 Steinberg,	

2015).	During	that	time	particularly	negative	social	feedback	of	own	peers	can	impact	long-

term	mental	health	up	to	40	years	 later	(Takizawa,	Maughan,	&	Arseneault,	2014).	Moreo-

ver,	maltreatment	by	peers	affects	 long-term	mental	health	even	more	strongly	 than	mal-

treatment	by	adults	(Lereya,	Copeland,	Costello,	&	Wolke,	2015).	Thus,	age	similarity	to	oth-

ers	we	are	learning	from	is	important	for	social	learning	during	development.	Social	learning	

in	children	also	depends	on	the	consequences	of	others’	actions	(whether	it	resulted	in	posi-

tive	or	negative	outcomes)	and	on	other’s	recommendations	(Lourenco	et	al.,	2015;	Morgan,	

Laland,	&	Harris,	 2015).	 Although	 social	 learning	 in	 children	has	 been	 studied	 for	 decades	

(Bandura,	Grusec,	&	Menlove,	1966;	Braaksma,	Rijlaarsdam,	&	van	den	Bergh,	2002;	Coates	

&	 Hartup,	 1969;	 Harper	&	 Sanders,	 1975;	 Ladd,	 1981;	 Nagell,	 Olguin,	 &	 Tomasello,	 1993;	

Zimmerman	&	Rosenthal,	1974),	investigations	across	development	and	with	respect	to	the	

underlying	neural	dynamics	are	still	missing.		

Research	in	adults	highlights	that	social	learning	is	linked	to	similar	underlying	neural	

dynamics	as	learning	from	one’s	own	experience	(Burke,	Tobler,	Baddeley,	&	Schultz,	2010;	

Cooper,	Dunne,	Furey,	&	O’Doherty,	2012).	Developmental	studies	show	that	learning	from	

one’s	 own	 experience	 is	 related	 to	 differences	 in	 prefrontal	 brain	 areas	 (e.g.	 van	

Duijvenvoorde,	Zanolie,	Rombouts,	Raijmakers,	&	Crone,	2008),	areas	that	show	a	protract-

ed	maturation	until	 adulthood	 (Gogtay	et	 al.,	 2004;	 Lenroot	&	Giedd,	 2006).	Van	Duijven-

voorde	 et	 al.	 (2008)	 suggest	 that	 sensitivity	 to	 especially	 negative	 feedback	 (signaling	 the	

need	 for	 behavioral	 adjustments)	 develops	 across	 adolescence.	 Whether	 developmental	

differences	previously	described	during	learning	from	own	experiences	apply	also	to	devel-

                                                
1	Social	learning	is	most	commonly	defined	as	“learning	that	is	influenced	by	observation	of,	or	interaction	with,	
another	animal	(typically	a	conspecific)	or	its	products”	(Heyes,	1994,	p.	207).	
2	If	the	learning	context	is	linked	to	certain	experiences	that	might	scale	with	age,	such	as	language,	(Jaswal	&	
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opmental	differences	during	social	learning,	is	an	open	question.	It	is	important	to	enhance	

our	understanding	of	developmental	differences	during	social	learning.	This	could	be	highly	

relevant	if	we	want	to	know	whether	or	not	and	why	particularly	sensitive	periods	to	nega-

tive	 social	 feedback	exist	and	how	to	work	with	 them	–	 from	clinical	and	educational	per-

spectives.		

The	aim	of	this	doctoral	thesis	is	to	advance	our	understanding	of	developmental	dif-

ferences	 in	 social	 learning	 using	 behavioral,	 computational	 and	 electrophysiological	 ap-

proaches.	 The	 thesis	 is	 structured	 along	 three	major	 research	 questions,	 which	 were	 ad-

dressed	 in	 each	 of	 the	 conducted	 empirical	 studies:	 (1)	 How	 does	 observed	 information	

about	 the	actions	and	outcomes	of	peers	 (i.e.,	 children)	and	non-peers	 (i.e.,	 young	adults)	

affect	 learning	 in	children	 (study	 I)?	 (2)	How	does	observed	 information	about	 the	actions	

and	outcomes	of	peers	affect	 learning	across	development	 (study	 II)?	 (3)	How	does	advice	

from	peers	regarding	a	specific	action	affect	learning	across	development	(study	III)?	

Before	answering	these	questions,	I	will	briefly	outline	the	existing	empirical	evidence	

related	to	these	questions	and	describe	the	broader	theoretical	and	empirical	background.	
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2.	Theoretical	and	empirical	background	

2.1	Social	learning	from	peers,	from	observation	and	from	advice		

How	we	use	social	 information	for	learning	depends	on	the	characteristics	of	those	we	ob-

serve,	such	as	similarity	to	the	observed	(Fukushima	&	Hiraki,	2009;	Mobbs	et	al.,	2009),	the	

consequences	of	what	we	observe	 (i.e.,	whether	 it	 resulted	 in	positive	or	negative	action-

outcomes;	 Burke	 et	 al.,	 2010)	 and	 whether	 specific	 actions	 are	 recommended	 by	 others	

(Biele,	Rieskamp,	&	Gonzalez,	2009;	Biele,	Rieskamp,	Krugel,	&	Heekeren,	2011).		

As	in	adults,	perceived	similarity	(or	dissimilarity)	between	the	observer	and	the	ob-

served	(Bandura,	1977;	Owens	&	Ascione,	1991;	Schunk,	1987)	influences	the	integration	of	

social	 information	 across	 development	 (Hendy	 &	 Raudenbush,	 2000).	 Results	 of	 develop-

mental	studies	suggest	that	children’s	similarity	in	age	to	the	observed	person	(i.e.,	peers	vs.	

young	adult)	predicts	the	degree	to	which	the	observed	behavior	of	the	other	is	integrated	

into	one’s	own	actions	(Bandura,	1977;	Schunk,	1987;	Zmyj	&	Seehagen,	2013).	Thus,	peers	

serve	as	stronger	role	models	for	children	than	adults	(Hendy	&	Raudenbush,	2000;	Schunk,	

1987;	Schunk	&	Usher,	2012;	van	Gog	&	Rummel,	2010;	Zmyj	&	Seehagen,	2013).	This	should	

be	particularly	the	case	if	peers	are	not	judged	less	competent.2	Peers	become	increasingly	

influential	during	childhood,	particularly	during	adolescence	(Blakemore	&	Mills,	2014).	Dur-

ing	adolescence,	peers	influence	not	only	risk	taking,	for	instance	gambling	(Smith,	Chein,	&	

Steinberg,	 2014)	 or	 driving	 (Chein,	 Albert,	 O’Brien,	 Uckert,	 &	 Steinberg,	 2011;	 Simons-

Morton,	Lerner,	&	Singer,	2005),	but	also	learning	from	positive	and	negative	feedback	(Silva	

et	al.,	2015;	see	also	van	Hoorn,	van	Dijk,	Meuwese,	Rieffe,	&	Crone,	2016	for	review).		

Although	similarity	between	the	observer	and	the	observed	seems	important	during	

social	 learning,	action-outcomes	 (i.e.,	observational	 reinforcment	 learning3,	 [OL];	 [Burke	et	

al.,	2010;	Cooper	et	al.,	2012;	Hill,	Boorman,	&	Fried,	2016])	and	action-recommendations	

                                                
2	If	the	learning	context	is	linked	to	certain	experiences	that	might	scale	with	age,	such	as	language,	(Jaswal	&	
Neely,	 2006;	 Rakoczy,	 Hamann,	Warneken,	&	 Tomasello,	 2010),	 the	 evaluation	 of	 nutritional	 values	 of	 food	
(Vander	 Borght	 &	 Jaswal,	 2009)	 and	 expertise	 (Meshi,	 Biele,	 Korn,	 &	 Heekeren,	 2012),	 the	 behavior	 of	 ol-
der/more	experienced	models	is	more	likely	to	be	used	for	one’s	own	behavior.	
3	Observational	reinforcement	learning	has	been	described	as	a	“subset	of	response-reinforcer	learning	(R-S)	in	
which	observation	of	a	demonstrator	exposes	the	observer	to	a	relationship	between	a	response	and	a	rein-
forcer	(…)”	(Heyes,	1994,	p.	225).	
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(i.e.,	 advice4	 [Biele	et	al.,	2009,	2009;	 Lourenco	et	al.,	2015;	Meshi	et	al.,	2012])	 influence	

social	learning	(discussed	in	further	detail	under	2.2.3.).	Using	computational	modeling	and	

fMRI,	these	studies	show	similar	learning	mechanisms	during	social	learning	as	during	learn-

ing	from	one’s	own	experience	(i.e.,	experience-based	reinforcement	learning	[EL])	and	link	

those	 to	prefrontal	areas,	which	 show	a	protracted	maturation	until	 adulthood	 (Gogtay	et	

al.,	2004;	Lenroot	&	Giedd,	2006).		

Taken	together,	peers	are	important	for	social	learning	in	children	and	adolescents.	In	

adults,	 social	 learning	 from	 other’s	 action-outcomes	 and	 other’s	 recommendations	 are	

linked	to	brain	areas	which	are	not	fully	matured	in	children	and	adolescents.	The	underlying	

neural	and	computational	mechanisms	of	social	 learning	(i.e.,	during	OL	and	advice	taking)	

across	 development	 are	 currently	 unclear.	How	higher	 peer	 sensitivity	 influences	 the	 pro-

cessing	 of	 observed	 action-outcomes	 of	 peers	 and	 peer	 advice	 across	 development	 is	 an	

open	question.	 So	 far,	 conclusions	 can	 only	 be	 drawn	 from	existing	 evidence	of	 EL	 across	

development.	 I	 will	 now	 outline	 the	 basic	 principles	 and	 underlying	mechanisms	 of	 EL	 in	

adults	and	describe	them	in	more	detail	across	development.	

2.2	Experience-based	reinforcement	learning	and	social	learning	in	adults	

I	will	now	discuss	the	prediction	error,	an	important	learning	signal	during	learning	action-

outcome-contingencies,	reinforcement	learning	(RL),	and	the	underlying	mechanisms	during	

EL	and	social	learning	in	adults	with	the	help	of	electroencephalography	(EEG)	studies.		

2.2.1	Prediction	error	as	reinforcement	learning	signal	

The	 appropriateness	 of	 behavior	 can	 be	 evaluated	 over	 resulting	 action-outcomes.	While	

positive	action-outcomes	(e.g.	positive	feedback	or	gains)	encourage	stay	behavior,	negative	

action-outcomes	 (e.g.	 negative	 feedback	 or	 losses)	 encourage	 shift	 behavior	 (i.e.,	 shifting	

towards	new	behavioral	patterns).	Learning	action-outcome-contingencies	can	be	captured	

using	RL	algorithms	(Sutton	&	Barto,	1998).	The	basic	principle	is	nicely	summarized	by	Niv	&	

Schoenbaum	(2008,	p.	266):	“make	the	best	prediction	you	can,	observe	actual	events	and	if	

your	prediction	was	wrong,	update	your	knowledge-base	so	that	future	predictions	are	more	

                                                
4	Advice	is	mostly	considered	“as	recommendation,	from	the	advisor,	favoring	a	particular	option”	(Bonaccio	&	
Dalal,	2006,	p.	128).	
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accurate”.	Thus,	discrepancy	between	what	was	expected,	𝑄! 𝑡 ,	 and	what	 is	actually	ob-

served,	𝑟 𝑡 ,	is	called	prediction	error	(PE):	

	

Prediction	error	=	𝑟 𝑡 − 𝑄! 𝑡 	

	

If	 action-outcomes	 are	 better	 (worse)	 than	 expected,	 this	 will	 generate	 a	 positive	

(negative)	 PE,	 which	 is	 used	 to	 increase	 (decrease)	 the	 expected	 value, 𝑄! 𝑡 ,	 associated	

with	the	chosen	option	𝑎	in	the	current	trial	𝑡	(see	Figure	1	for	a	schematic	illustration).		

	

	

Figure	1.	Schematic	illustration	of	the	PE	as	a	learning	signal	during	learning	from	action-outcomes.		

	

The	PE	 is	related	to	phasic	changes	 in	the	activity	of	midbrain	dopamineric	neurons	

(Bayer	&	Glimcher,	2005;	Montague,	Dayan,	&	Sejnowski,	1996;	Montague,	Hyman,	&	Co-

hen,	2004;	Sadacca,	Jones,	&	Schoenbaum,	2016).	These	neurons	are	reciprocally	connected	

with	the	striatum	(Joel	&	Weiner,	2000;	Menegas	et	al.,	2015;	Watabe-Uchida,	Zhu,	Ogawa,	

Vamanrao,	&	Uchida,	2012).	fMRI	studies	reveal	that	striatal	activity	is	correlated	with	posi-

tive	 and	negative	 PE	 (Diederen,	 Spencer,	 Vestergaard,	 Fletcher,	&	 Schultz,	 2016;	McClure,	

Berns,	&	Montague,	2003;	Pessiglione,	Seymour,	Flandin,	Dolan,	&	Frith,	2006).	These	stria-

tal	 PE	 signals	 are	 linked	 to	updated	 representations	of	expected	values	 in	 the	medial	pre-

fronal	cortex	(mPFC)	(Hare,	O’Doherty,	Camerer,	Schultz,	&	Rangel,	2008;	Rangel,	Camerer,	

&	Montague,	2008;	Rushworth	&	Behrens,	2008).	Comparisons	of	the	connectivity	between	

striatum	and	mPFC	across	development	highlight	that	age-related	differences	 in	PE	related	

activity	are	not	found	in	the	striatum,	per	se,	but	in	the	connectivity	strength	between	stria-

tum	and	mPFC	(van	den	Bos,	Cohen,	Kahnt,	&	Crone,	2012).	This	finding	suggests	that	devel-

Action Outcome 

Predicted Outcome 

Updated action-value 

= ≠ Negative PE Positive PE 

< > Decreases Increases 
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opmental	differences	in	EL	are	linked	to	differences	in	the	updating	of	learning	signals	guid-

ing	 future	expectations	and	behavior.	Furthermore,	developmental	differences	 in	EL	 relate	

to	 activity	 changes	 in	 prefrontal	 areas	 (e.g.	 Christakou	 et	 al.,	 2013;	 Crone,	 Zanolie,	 Van	

Leijenhorst,	 Westenberg,	 &	 Rombouts,	 2008;	 Hauser,	 Iannaccone,	 Walitza,	 Brandeis,	 &	

Brem,	2015;	van	den	Bos,	Güroğlu,	Van	Den	Bulk,	Rombouts,	&	Crone,	2009;	van	den	Bos	et	

al.,	2012;	van	Duijvenvoorde	et	al.,	2008),	regions	that	are	not	yet	fully	developed	in	children	

(e.g.	 Gogtay	 et	 al.,	 2004;	 Lenroot	 &	 Giedd,	 2006)	 and	 are	 central	 for	 cognitive	 control5	

(Alexander	&	Brown,	2011;	Ridderinkhof,	2004).		

The	evaluation	and	updating	of	action-outcome	information	during	EL	have	been	bet-

ter	temporally	dissociated	using	EEG	(Ullsperger,	Fischer,	Nigbur,	&	Endrass,	2014).	Before	I	

outline	 developmental	 differences	 in	 EL	 using	 EEG,	 I	 will	 briefly	 introduce	 adult	 EEG-

correlates	of	action-outcome	processing.	

2.2.2	Experience-based	reinforcement	learning	in	adults	

Action-outcome	processing	operates	in	a	time	range	of	milliseconds	(Keele	&	Posner,	1968).	

The	investigation	of	temporal	dynamics	during	action-outcome	processing	(i.e.,	of	different	

valences)	requires	a	measure	with	a	high	temporal	resolution;	EEG	reflects	brain	activity	(i.e.,	

mainly	synaptic	potentials;	Klee,	Offenloch,	&	Tigges,	1965)	with	millisecond	resolution.	Pre-

vious	 studies	 identified	 several	 event-related	 potentials	 (ERP)	 that	 are	 sensitive	 to	 action-

outcome	 (or	 short	 outcome)	 processing	 of	 different	 valences	 during	 EL	 (see	 Ferdinand	 &	

Kray,	2014	for	review).	Two	ERP	components	are	sensitive	to	the	evaluation	and	updating	of	

action-outcome	 or	 feedback	 information	 during	 learning:	 the	 feedback-related	 negativity	

(FRN)	and	the	feedback-P300	(short	P300	in	the	following).	The	FRN	is	a	negative	deflection	

in	the	EEG	(see	Figure	2)	that	is	elicited	in	the	medial	prefrontal	cortex	(Hauser	et	al.,	2014;	

Sambrook	&	Goslin,	2015)	and	that	is	sensitive	to	negative	feedback	during	learning	(Miltner,	

Braun,	&	Coles,	1997).	The	FRN	is	assumed	to	reflect	an	early	binary	evaluation	of	feedback	

along	a	good-bad	dimension	(Hajcak,	Moser,	Holroyd,	&	Simons,	2006;	Nieuwenhuis,	2004;	

Philiastides,	 Biele,	 Vavatzanidis,	 Kazzer,	 &	 Heekeren,	 2010;	 von	 Borries,	 Verkes,	 Bulten,	

Cools,	&	de	Bruijn,	2013).		

                                                
5	Cognitive	control	can	be	defined	as	a	“system	for	selecting	contextually	relevant	information	and	for	organi-
zing	and	optimizing	information	processing”	(Ridderinkhof,	2004,	p.	306).	
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In	 addition	 to	 the	 FRN,	 a	 later	 positive	 deflection	 (see	 Figure	 2),	 the	 P300	 (Sutton,	

Braren,	 Zubin,	&	 John,	 1965),	 is	maximal	 at	 parietal	 electrodes	 (Polich,	 2007;	 San	Martín,	

2012).	The	P300	reflects	context	updating	 (Donchin,	1981;	Polich,	2007).	 It	 scales	with	 the	

expectedness	of	events	 (de	Rover	et	al.,	2015;	De	Taeye	et	al.,	2014;	Nieuwenhuis,	Aston-

Jones,	&	Cohen,	2005;	Nieuwenhuis,	De	Geus,	&	Aston-Jones,	2011)	and	the	degree	to	which	

information	can	be	used	to	update	reward	predictions	(Fischer	&	Ullsperger,	2013;	Ullsper-

ger	et	al.,	2014).	

	

	

Figure	2.	ERPs	to	self-experienced	feedback.	Grand	averages	shown	for	 losses	(red	 line)	and	gains	(blue	 line)	

for	the	FRN	and	P300	displayed	at	FCz.	The	topographic	map	displays	the	difference	(black	line)	between	losses	

and	gains.	

	

Most	interestingly,	both	ERP-components	are	evoked	when	observing	others’	action-

outcomes	during	learning	and	vary	with	similarity	between	the	observer	and	the	observed.	

Recent	 studies	 show	 how	 others’	 action-recommendations	 (i.e.,	 advice)	 influence	 social	

learning.	What	we	know	so	far	about	social	learning	in	adults	will	now	be	outlined.		

2.2.3	Social	learning	in	adults	

Previous	research	showed	that	adults	benefit	from	social	information	during	OL	as	compared	

to	EL	(Burke	et	al.,	2010)	or	in	form	of	advice	(Biele	et	al.,	2009,	2011).	During	OL,	Burke	et	

al.	(2010)	further	highlighted	that	the	observational	PE,	similarly	to	the	PE	during	EL,	triggers	
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learning	 from	 observed	 feedback.	 Thus,	 during	 OL,	 observational	 and	 individual	 PE’s	 are	

combined.	 This	 helps	 to	 quickly	 form	 expectation	 about	 the	 value	 associated	with	 choice	

options	and	to	benefit	from	additional	social	information	more	rapidly	as	compared	to	learn-

ing	without	social	information	(EL).	During	advice	taking,	outcomes	of	options	recommended	

by	others	are	more	positively	evaluated	(i.e.,	associated	with	a	constant	bonus	after	choos-

ing;	 see	 4.3	 for	 further	 details)	 as	 compared	 to	 outcomes	 of	 non-recommended	 options	

(Biele	et	al.,	2011).	As	a	consequence,	advice	helps	choosing	an	option	with	higher	earnings.	

Action-outcome	 processing	 during	 social	 learning	 has	 been	 investigated	 using	 EEG	

(Bellebaum,	Kobza,	Thiele,	&	Daum,	2010;	Clawson	et	al.,	2014;	Fukushima	&	Hiraki,	2009;	

Kang,	Hirsh,	&	Chasteen,	2010;	Rak,	Bellebaum,	&	Thoma,	2013;	 Yu	&	Zhou,	2006).	 These	

studies	show	that	adults	react	similarly	to	observed	feedback	of	others	as	compared	to	self-

experienced	 feedback.	 That	 is,	 the	 P300	 and	 the	 FRN	 are	 both	 generated	 after	 observed	

feedback	of	others	and	are	called	observational	FRN	(oFRN)	and	observational	P300	(oP300)	

(see	Figure	3),	respectively.		

	

	

Figure	3.	ERPs	to	observed	feedback.	Grand	averages	shown	for	losses	(red	line)	and	gains	(blue	line)	for	the	

oFRN	and	oP300	displayed	at	FCz.	The	topographic	map	displays	the	difference	(black	line)	between	losses	and	

gains.	

	

OFRN	and	oP300	are	sensitive	to	observed	feedback	of	different	valences.	The	oFRN	is	fur-

ther	 linked	 to	 similar	 medial	 prefrontal	 source	 activations	 as	 the	 FRN	 (Koban,	 Pourtois,	

Bediou,	&	Vuilleumier,	2012).	Whether	both,	observed	and	self-experienced	 feedback	pro-
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cessing	share	similar	or	 two	distinct	parallel	mechanisms	 is	still	a	matter	of	 research	 (Beh-

rens,	Hunt,	&	Rushworth,	2009;	Burke	et	al.,	2010;	Cooper	et	al.,	2012;	see	Ruff	&	Fehr,	2014	

for	review).	EEG-studies	in	adults	reveal	that	the	evaluation	of	observed	feedback	depends	

also	on	 the	 characteristics	 of	 the	observed,	who	 receives	 the	 feedback.	Here,	 the	oFRN	 is	

reported	to	be	 larger	observing	humans	vs.	computers	 (Fukushima	&	Hiraki,	2009)	 familiar	

others	 vs.	 unfamiliar	 others	 (Kang	 et	 al.,	 2010)	 and	 similar	 vs.	 dissimilar	 others	 (Carp,	

Halenar,	Quandt,	Sklar,	&	Compton,	2009).	Similarity	further	influences	later	behavioral	ad-

aptation	(Hendy	&	Raudenbush,	2000).	

Whether	observed	 feedback	 in	children	would	evoke	ERPs	 to	observed	 feedback	as	

shown	in	adults	and	whether	similarity	to	the	observed	person	would	further	modulate	this	

response,	is	an	open	question.	Similarly,	whether	children	ERPs	to	observed	feedback	show	

similarities	to	their	ERPs	to	self-experienced	feedback	has	to	be	investigated.	Developmental	

findings	point	to	specific	developmental	differences	during	EL,	which	will	be	described	in	the	

following.	

2.3	Experience-based	reinforcement	learning	across	development	

Previous	 developmental	 research	 described	 developmental	 differences	 during	 EL	 (Crone,	

Jennings,	 &	 van	 der	Molen,	 2004;	 Decker,	 Lourenco,	 Doll,	 &	 Hartley,	 2015;	 Decker,	 Otto,	

Daw,	&	Hartley,	2016;	Eppinger,	Mock,	&	Kray,	2009;	Hämmerer,	Li,	Müller,	&	Lindenberger,	

2010;	 van	den	Bos	et	 al.,	 2012;	 van	Duijvenvoorde	et	 al.,	 2008).	 These	 studies	 reveal	 that	

during	EL	children	adjust	their	behavior	more	to	current	evidence	(as	compared	to	adoles-

cents	and	adults),	particularly	after	negative	feedback,	reflected	in	higher	learning	rates	for	

losses	(van	den	Bos	et	al.,	2012).	Children	and	adolescents	rely	also	more	on	EL	and	less	on	

explicit	prior	instructions	as	compared	to	adults	(Decker	et	al.,	2015).	In	the	following,	I	dis-

cuss:	(1)	children’s	higher	sensitivity	to	negative	feedback	and	(2)	how	children	and	adoles-

cents	use	EL	and	prior	instructions	as	compared	to	adults.	

2.3.1	Experience-based	reinforcement	learning:	Using	feedback	for	learning	across	develop-

ment	

The	ability	to	effectively	use	(in	particular	negative)	feedback	for	 learning	varies	across	de-

velopment	(see	Ferdinand	&	Kray,	2014	for	review)	and	is	related	to	behavioral	and	electro-

physiological	differences:		
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Behavior.	Children	as	compared	to	adults	show	greater	difficulties	in	extracting	rele-

vant	outcome	information	and	in	adapting	their	behavior	to	negative	feedback	(Crone	et	al.,	

2004;	Crone,	Somsen,	Beek,	&	Van	Der	Molen,	2004;	Crone,	Somsen,	Zanolie,	&	Van	der	Mo-

len,	2006;	Eppinger	et	al.,	2009;	Hämmerer	et	al.,	2010;	van	den	Bos,	2009;	van	den	Bos	et	

al.,	2012;	van	Duijvenvoorde	et	al.,	2008).	Behavioral	findings	are	further	supported	by	chil-

dren's	 heart	 rate	 slowing	 following	 negative	 feedback	 (Crone	 et	 al.,	 2004).	 Interestingly,	

slowing	 does	 not	 differentiate	 between	 response-dependent	 and	 uninformative	 negative	

feedback,	as	it	is	the	case	in	adults.	This	finding	nicely	reflects	children’s	difficulties	to	assess	

and	use	particular	negative	outcome	information	to	adapt	their	behavior	later	on.	Develop-

mental	studies	further	suggest	that	positive	and	negative	feedback	are	updated	asymmetri-

cally	prior	to	adulthood	(van	den	Bos	et	al.,	2012).	Van	den	Bos	and	colleagues	(2012)	show	

an	age-related	decrease	in	the	impact	of	negative	feedback	on	expected	values	using	an	RL	

algorithm.	Children	as	compared	to	adults	show	higher	learning	rates	for	negative	feedback,	

indicating	 that	 recent	 experience	 has	 a	 stronger	 influence	 on	 future	 predictions	 than	 less	

recent	 experience.	 This	 finding	 further	 supports	 previous	 literature	 showing	 a	 decreasing	

influence	of	 irrelevant	negative	 feedback	during	 learning	with	 increasing	age	 (Crone	et	al.,	

2004;	 Eppinger	 et	 al.,	 2009).	 Developmental	 EEG-studies	 support	 and	 extend	 these	 devel-

opmental	differences	 in	using	feedback	for	 learning.	 I	will	discuss	their	main	findings	sepa-

rately	for	the	(1)	FRN	and	(2)	P300	in	the	following.	

FRN.	Children’s	difficulties	 to	disengage	 from	negative	 feedback	during	 learning	are	

reflected	 in	 an	 enhanced	 FRN	 (Eppinger	 et	 al.,	 2009;	 Hämmerer	 et	 al.,	 2010;	 Santesso,	

Dzyundzyak,	&	Segalowitz,	2011;	Zottoli	&	Grose-Fifer,	2012).	Thus,	children	are	less	able	to	

use	external	(particularly	negative)	feedback	during	learning	(e.g.	Crone	et	al.,	2006).	fMRI-

studies	 complement	 EEG	 studies	 by	 adding	 important	 aspects	 of	 the	 neurodevelopmental	

functional	changes	underlying	learning	from	positive	and	negative	feedback	(e.g.	Christakou	

et	al.,	2013;	Crone	et	al.,	2008;	Hauser	et	al.,	2015;	van	den	Bos,	2009;	van	den	Bos	et	al.,	

2012;	van	Duijvenvoorde	et	al.,	2008).	Van	Duijvenvoorde	et	al.	(2008)	show	developmental	

differences	 in	 areas	 linked	 to	 cognitive	 control,	 such	 as	 the	 dorsolateral	 prefrontal	 cortex	

(DLPFC)	 and	 superior	parietal	 cortex,	 regions	 that	 are	not	 fully	 developed	 in	 children	 (e.g.	

Gogtay	et	al.,	2004;	Lenroot	&	Giedd,	2006).	The	authors	observe	that	children	recruit	these	

areas	more	when	receiving	positive	compared	to	negative	feedback,	whereas	adults	recruit	
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these	 regions	more	 after	 negative	 feedback.	 Van	Duijvenvoorde	 et	 al.	 (2008)	 suggest	 that	

the	 greater	 difficulty	 in	 learning	 from	negative	 feedback	 in	 children	depends	 on	 the	 addi-

tional	 recruitment	of	 cognitive	 control	 after	 negative	 feedback.	 That	 is,	 negative	 feedback	

signals	 an	 erroneous	 response,	 but	 also	 the	 need	 to	 update.	 Adolescents,	 however,	 show	

similar	 patterns	 in	 the	 DLPFC	 and	 superior	 parietal	 cortex	 comparable	 to	 adults	 (van	

Duijvenvoorde	et	al.,	2008).	This	 finding	suggests	that	sensitivity	to	negative	feedback	that	

signals	the	need	for	behavioral	adjustments	develops	across	adolescence.	Jointly,	EEG	stud-

ies	show	an	enhanced	FRN	and	difficulties	to	disengage	from	negative	feedback	during	learn-

ing,	which	is	assumed	to	be	linked	to	less	developed	executive	control	functions	(see	Häm-

merer	&	Eppinger,	2012	for	review).	

P300.	Whereas	 children’s	 FRN	 is	 enhanced	 compared	 to	 adults	 (Ferdinand	&	 Kray,	

2014),	the	reverse	pattern	 is	reported	for	the	P300	component:	children’s	P300	is	reduced	

compared	to	adults	(Polich,	Ladish,	&	Burns,	1990;	see	van	Dinteren,	Arns,	Jongsma,	&	Kes-

sels,	2014	 for	 review).	The	reduction	 in	 the	P300	 is	 linked	to	developmental	differences	 in	

working	memory	(WM)	abilities	(Polich	et	al.,	1990).	Polich	and	colleagues	(1990)	show	that	

the	P300	response	varies	as	a	 function	of	WM	performance	across	development.	This	 is	 in	

line	with	the	context-updating	framework	(Donchin,	1981;	Karis,	Fabiani,	&	Donchin,	1984;	

Polich,	2007)	suggesting	that	 the	P300	amplitude	changes	proportionally	 to	the	amount	of	

updating	in	WM.	This	framework	assumes	a	frequent	stimulus-induced	updating	of	a	mental	

model.	 That	 is,	 if	 a	 stimulus	 representation	maintained	 in	WM	mismatches	with	 a	 recent	

stimulus,	the	model	is	updated	and	the	P300	changes	proportional	to	the	update.	More	re-

cent	studies	in	adults	further	extend	this	view	by	suggesting	that	the	differences	in	the	P300	

reflect	the	updating	of	reward	expectations	during	learning	(Philiastides	et	al.,	2010).	Thus,	

the	P300	seems	to	reflect	changes	in	reward	expectations	during	EL.	The	processing	of	such	

reward	expectations	relate	to	activity	in	the	locus	coeruleus	(LC),	leading	to	a	release	of	the	

neurotransmitter	 norepinephrine	 (NE)	 (Berridge	 &	 Waterhouse,	 2003).	 Previous	 findings	

suggested	 that	 the	P300	partly	 reflects	 the	 response	of	 the	LC-NE	system	(de	Rover	et	al.,	

2015;	De	 Taeye	 et	 al.,	 2014;	Nieuwenhuis	 et	 al.,	 2005;	Nieuwenhuis	 et	 al.,	 2011).	 That	 is,	

after	an	unexpected	stimulus,	reflected	in	a	larger	P300,	phasic	NE	is	released	and	promotes	

learning.	 Thus,	 in	 the	 LC-P3	account	 and	 the	 context-updating	 framework	 (Donchin,	 1981;	
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Karis	et	al.,	1984;	Polich,	2007)	the	P300	is	assumed	to	reflect	the	unexpectedness	of	stimuli,	

resulting	in	updating	of	an	internal	model.		

Taken	 together,	 children’s	 sensitivity	 to	 negative	 feedback	 is	 related	 to	 enhanced	

FRN-responses	and	greater	difficulties	to	disengage	from	negative	feedback.	A	reduced	P300	

in	children	as	compared	to	adults	is	linked	to	differences	in	WM-updating.	It	is	an	open	ques-

tion	whether	children	would	show	these	electrophysiological	differences	also	during	OL.	

2.3.2	Experience-based	reinforcement	learning:	Using	instructions	for	learning	across	devel-

opment	

A	recent	study	by	Decker	et	al.	(2015)	show	that	child	and	adolescent	behavior	is	more	influ-

enced	by	their	own	experiences	during	RL	and	less	by	prior	false	instructions	as	compared	to	

adults.	In	that	particular	learning	environment,	this	lead	to	learning	benefits	of	children	and	

adolescents	as	compared	to	adults.	The	reduced	bias	toward	false	instructions	helps	to	learn	

values	 of	 the	 better	 (non-instructed)	 choice	 alternatives	 faster.	 This	 is	 in	 line	with	 studies	

showing	that	across	development	the	efficiency	in	using	specific	rules	for	learning	increases	

from	early	childhood	(Munakata,	Snyder,	&	Chatham,	2012)	and	continues	into	adolescence	

(Crone,	Donohue,	Honomichl,	Wendelken,	&	Bunge,	2006;	Huizenga,	Crone,	&	Jansen,	2007).	

However,	 the	study	by	Decker	et	al.	 (2015)	could	not	rule	out	the	possibility	that	develop-

mental	differences	 in	 response	 to	 false	 instructions	are	 related	 to	 the	higher	 sensitivity	 to	

negative	feedback	in	younger	age	groups	(van	den	Bos	et	al.,	2012;	van	Duijvenvoorde	et	al.,	

2008).	That	is,	children	and	adolescents	may	not	have	selected	the	instructed	choice	option	

because	 it	was	associated	with	a	higher	 loss-probability	as	compared	to	the	other	options.	

On	the	other	hand,	it	could	also	be	suggested	that	children	and	adolescents	simply	explored	

more	alternative	options	in	line	with	studies	showing	higher	exploration	prior	to	adulthood	

(Buchsbaum,	Bridgers,	Weisberg,	&	Gopnik,	2012;	Gopnik	et	al.,	2015;	Lucas,	Bridgers,	Grif-

fiths,	&	Gopnik,	2014;	Thompson-Schill,	Ramscar,	&	Chrysikou,	2009).	In	part,	by	engaging	in	

more	exploration,	children	(i.e.,	preschoolers)	learn	the	use	of	objects	and	their	causal	rela-

tionships	 (Lucas	 et	 al.,	 2014).	 Other	 studies	 show	 that	 children	 and	 even	 adolescents	 at-

tempt	 unnecessary	 actions	 during	 learning	 (Nielsen	 &	 Tomaselli,	 2010).	 Recent	 studies,	

however,	suppose	that	an	early	period	of	more	exploration	might	be	important	for	cognitive	
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development	 (Gopnik	 et	 al.,	 2015)	 and	 allow	 acting	 more	 effectively	 during	 adulthood	

(Buchsbaum	et	al.,	2012).	

Taken	 together,	 children	 and	 adolescents	 rely	more	 on	 their	 own	 experiences	 and	

less	on	prior	 (false)	 instructions	compared	to	adults.	 It	 is	an	open	question	whether	this	 is	

due	to	developmental	differences	in	the	sensitivity	to	negative	feedback	and	whether	good	

instructions	would	 result	 in	 similar	 developmental	 differences.	 It	 is	 unclear,	whether	prior	

social	advice,	particularly	of	another	peer,	would	influence	child	and	adolescent	EL.		
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3.	Research	questions	and	hypotheses	

In	the	previous	sections,	I	outlined	that	(1)	peers	influence	child	and	adolescent	learning	and	

decision-making.	 (2)	 Children	 show	 a	 high	 sensitivity	 to	 external	 (in	 particular	 negative)	

feedback	and	difficulties	to	use	(in	particular	negative)	feedback	information	for	learning	as	

compared	to	adults.	 (3)	Children	and	adolescents	rely	more	on	their	experiences	during	EL	

and	less	on	prior	instructions	as	compared	to	adults.	It	is	an	open	question	how	these	factors	

connect	to	each	other	and	how	they	influence	social	learning	across	development.	

The	aim	of	this	doctoral	thesis	is	to	advance	our	understanding	of	developmental	dif-

ferences	in	social	learning	from	observation	and	advice	using	behavioral,	computational	and	

electrophysiological	approaches;	a	developmental	cognitive	neuroscience	perspective.	More	

specifically,	 this	 doctoral	 thesis	 investigates	 how	 the	 characteristics,	 behavior	 (i.e.,	 actions	

and	 outcomes)	 and	 advice	 (i.e.,	 for	 a	 specific	 action)	 of	 other	 individuals	 affect	 learning	

across	development.	This	thesis	is	structured	along	three	major	research	questions	(see	Fig-

ure	4	for	illustration):	

1) How	does	observed	information	about	the	actions	and	outcomes	of	peers	(i.e.,	children)	

and	non-peers	(i.e.,	young	adults)	affect	learning	in	children	(study	I)?	

2) How	does	observed	information	about	the	actions	and	outcomes	of	peers	affect	learning	

across	development	(study	II)?	

3) How	does	peer’s	 advice	 regarding	 a	 specific	 action	 affect	 learning	 across	development	

(study	III)?	

The	first	research	question	(RQ)	concerns	whether	similarity	in	age	between	the	ob-

server	 and	 the	 observed	 individual	 influences	 learning	 in	 children.	 Study	 I	 compared	 how	

observed	actions	and	outcomes	of	peers	and	non-peers	(i.e.,	young	adults)	influences	OL	in	

children	using	EEG.	We	hypothesised	that	observing	peers	as	compared	to	non-peers	would	

result	in	enhanced	oERP	responses	and	greater	behavioral	adaptation	in	children.		

The	second	research	question	focuses	on	developmental	differences	in	social	learning	

from	peers’	actions	and	outcomes	(OL).	To	address	RQ	2	we	compared	children	and	young	

adults	in	processing	others’	and	self-experienced	action-outcomes	using	EEG.	We	examined	

whether	previously	 reported	difficulties	 in	 children	 (as	 compared	 to	 adults)	 to	use	 action-

outcomes	during	EL	also	apply	to	OL.	We	hypothesised	that	children	should	show	more	diffi-

culties	 to	disengage	and	use	external	 (observed	and	self-experienced)	action-outcomes	 for	
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learning.	 Therefore,	 we	 predicted	 enhanced	 and	 less	 learning	 sensitive	 oERP	 and	 ERP	 re-

sponses	in	children	as	compared	to	adults.		

The	third	research	question	concerns	developmental	differences	in	how	advice	(oth-

ers’	action-recommendation)	from	another	peer	influences	learning.	If	the	consequences	of	

others’	 actions	 are	 not	 observable,	 the	 quality	 of	 social	 information	 has	 to	 be	 evaluated	

based	on	one’s	own	experience.	Using	computational	models,	we	described	how	children,	

adolescents	and	young	adults	use	advice	and	their	own	experience	for	learning.	We	hypoth-

esised	that	adolescents	(as	compared	to	children	and	adults)	would	show	the	highest	initial	

sensitivity	to	peer	advice,	reflected	by	their	choice	behavior.	We	predicted	that	with	more	

time	of	 learning	 from	own	 actions,	 adolescents	 and	 children	would	 rely	 less	 on	 the	 initial	

advice	and	more	on	their	own	experience.	Children	(as	compared	to	adolescents	and	adults)	

should	show	more	difficulties	using	negative	outcomes	for	learning,	reflected	in	higher	learn-

ing	rates	for	losses.	

	

Figure	4.	 Illustration	of	research	questions.	How	do	other’s	experience	 influence	one’s	own	experience	(I)	 in	

children	 when	 peer’s	 or	 non-peer’s	 action	 and	 outcomes	 were	 observable,	 (II)	 in	 children	 and	 adults	 when	

learning	 from	 peer’s	 action	 and	 outcomes	 and	 (III)	 in	 children,	 adolescents	 and	 adults	 when	 learning	 from	

peer’s	advice.	
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4.	Methods	

I	 investigated	developmental	differences	social	 learning	from	peers	–	during	OL	and	advice	

taking	-	in	three	empirical	studies.	The	task	setup	for	the	three	studies	will	be	briefly	outlined	

in	the	following	section.	For	the	first	and	the	second	OL-study,	we	used	the	same	2-armed	

bandit	task.	For	the	third	advice-study,	we	used	a	4-armed	bandit	task	and	an	extended	RL	

algorithm	to	describe	dynamics	during	learning	from	advice	and	experience.	In	the	following	

section,	I	will	outline	our	experimental	designs	and	how	we	applied	RL	algorithms.		

I	aimed	to	create	a	more	realistic	social	learning	setting	by	testing	participants	within	

group	sessions	and	pairing	them	with	other	participants	for	the	EEG-session	(study	I	and	II;	

see	Figure	5).	The	advice-study	consisted	of	a	single	group	session	(study	III).		

	

	

Figure	5.	Experimental	setting.	In	study	I	and	II,	participants	were	matched	in	the	single	EEG-session	with	a	

person	from	a	previous	group	session	and	saw	a	real	picture	of	this	person.	Study	III	consisted	of	one	group	

session,	 were	 participants	 were	 told	 that	 they	 would	 receive	 advice	 of	 another	 peer	 out	 of	 a	 previous	

group	session.	

	

In	 the	 following	 I	will	describe	the	experimental	designs	of	 the	three	studies	 in	 fur-

ther	details:	

4.1	Observational	reinforcement	learning	task	

In	 study	 I	 and	 II	 we	 used	 a	 probabilistic	 reward-based	 observational	 learning	 paradigm	

(Burke	et	al.,	2010;	Rodriguez	Buritica,	Eppinger,	Schuck,	Heekeren,	&	Li,	2016).	Participants	

were	asked	to	choose	one	out	of	two	abstract	stimuli	(colored	snowflakes	[Windell,	2008]).	

One	stimulus	was	associated	with	a	high	probability	(80%	gains,	20%	losses)	and	one	associ-

Group-Session Single EEG-Session 
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ated	with	a	low	probability	(20%	gains,	80%	losses)	of	gaining	points	(see	Figure	6A).	Before	

they	 could	 choose,	 they	 observed	 another	 peer	 (who	 participated	 in	 the	 same	 previous	

group	 session)	dealing	with	 the	 same	 two	abstract	 stimuli.	 Participants	were	 told	 that	 the	

other	 player	 had	 already	 performed	 the	 task	 and	 that	 they	 could	 observe	 the	 recorded	

choices,	which	were	-	unbeknownst	to	participants	-	computer	generated	using	a	RL	model	

(see	mean	learning	curve	of	the	“other	player”	 in	Figure	6C;	publication	I	and	II	 for	further	

details).	Participants	were	debriefed	about	the	cover	story	after	the	experiment.		

	

	

Figure	6.	Experimental	Design.	(A)	Trial	procedure.	(B)	Learning	conditions.	1:	 Individual	Learning	(IL);	2:	Ac-

tion	Only	(A),	3:	Action	+	Outcome	(AO).	(C)	Computer	simulated	averaged	learning	curve	for	the	two	observa-

tional	conditions.	

	

The	amount	of	observable	information	of	the	other	player	was	gradually	manipulated	

across	three	learning	conditions	(see	Figure	6B):	(1)	 individual	 learning	 (neither	the	actions	

nor	the	outcomes	of	the	other	player	were	observable	[IL]),	(2)	learning	from	observing	only	

the	other	player’s	actions	(action	only	[A]),	(3)	observing	both	the	other	player’s	actions	and	
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outcomes	(action	+	outcome	[AO])	(see	Figure	6B).	Each	of	the	three	conditions	were	associ-

ated	with	one	stimulus	pair,	and	presented	within	one	block,	for	10	trials	(resulting	in	a	block	

of	 30	 trials	 per	 block),	 for	 a	 total	 of	 12	 blocks.	While	 the	participants	 performed	 the	 task	

(controlled	by	PsychToolBox-3,	Brainard,	1997),	EEG	was	recorded	continuously	(Brain	Amp	

DC,	 BrainVision	 Recorder	 software)	 from	 64	 Ag/AgCl	 electrodes	 (10-10	 System,	 American	

Electroencephalographic	Society,	1994)	in	an	elastic	cap	(Braincap,	BrainVision)	(see	publica-

tion	I	and	II	for	further	details	regarding	the	EEG	data	analysis).	

In	study	I	we	further	varied,	in	addition	to	the	amount	of	observable	information,	the	

age	of	the	observed	model	player	(another	sex-matched,	age-matched	and	randomly	chosen	

peer	(i.e.,	child)	or	a	non-peer	(i.e.,	adult),	who	participated	in	the	same	previous	group	ses-

sion).	This	manipulation	examines	effects	of	similarity	 in	age	on	the	use	of	observed	 infor-

mation	for	learning	in	children.		

4.2	Advice	taking	task	

As	can	be	 seen	 in	 Figure	7,	 in	 study	 III	we	used	a	probabilistic	 reward-based	 learning	 task	

(modified	after	Biele	et	al.,	2011),	where	participants	are	supposed	to	gain	as	many	points	as	

possible	by	choosing	more	beneficial	decks	over	the	course	of	210	trials.		

	

	

Figure	7.	Experimental	design.	Participants	received	advice	prior	to	when	they	were	asked	to	play	a	4-armed	

bandit	task.	Every	trial	started	with	the	presentation	of	4	card	decks,	where	one	should	be	selected	within	max.	

4	seconds.	Afterwards	the	associated	feedback	was	presented.	Before	a	new	trial	started	a	fixation	cross	was	

displayed	for	1	second.	
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Decks	that	were	more	beneficial	were	associated	with	higher	expected	values,	although	each	

deck	had	a	50%	probability	of	 losses.	Unbeknownst	 to	 the	participants,	 two	of	 four	decks	

were	 associated	 with	 higher	 expected	 positive	 values	 (“good	 decks”)	 than	 the	 other	 two	

(“bad	decks”).	At	 the	beginning	of	 the	experiment,	participants	 received	a	good	advice	 for	

one	of	the	“good	decks”	from	another	peer	(see	publication	III	for	further	details).	Thus,	the	

preference	for	the	advised	deck	over	the	other	good	deck,	would	be	a	clear	indicatior	for	the	

advice-effect.	

4.3	Advice	taking	in	reinforcement	learning	models	

Learning	 action-outcome-contingencies	 can	 be	 computationally	 captured	 using	 RL	models	

(Sutton	 &	 Barto,	 1998).	 During	 RL	 learning	 the	 discrepancy	 between	what	 was	 expected,	

Q! t ,	and	what	is	actually	observed,	r t ,	is	called	prediction	error:		

	

Prediction	error	=	r t -Q! t 	

	

If	 feedback	 is	 better	 (worse)	 than	 expected,	 the	 model	 will	 generate	 a	 positive	

(negative)	prediction	error,	which	is	used	to	increase	(decrease)	the	predicted	value, 𝑄! 𝑡 ,	

associated	with	the	chosen	option	𝑎	in	the	current	trial	𝑡.		

The	 impact	of	 the	prediction	errors	on	 forming	new	expectations	 is	 scaled	by	 the	 learning	

rate	𝛼	as	follows:	

	

𝑄! 𝑡 + 1 = 𝑄! 𝑡 + 𝛼[𝑟 𝑡 − 𝑄! 𝑡 ]	

	

A	high	learning	rate	(~1)	indicates	that	a	new	experience	(i.e.	prediction	error)	has	a	stronger	

impact	on	future	predictions	whereas	a	low	learning	rate	(~0)	means	that	a	prediction	error	

only	weakly	influences	the	expected	value.		

This	basic	RL-algorithm	has	been	further	extended	to	describe	social	 influences	dur-

ing	 learning:	by	 learning	 from	other’s	 choices	and	outcomes	 (Burke	et	al.,	2010)	or	during	

advice-taking	 (Biele	et	al.,	2009,	2011).	 In	 study	 III	we	 investigated	 the	 influence	of	advice	

(i.e.,	 for	a	 certain	option)	on	 learning	by	using	different	extensions	of	RL	models:	We	 first	

compared	how	well	an	outcome-bonus	model,	a	prior	model,	described	participants'	choices;	

and	then	a	combined	prior	&	outcome-bonus	model	(Biele	et	al.,	2011).		
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The	outcome-bonus	model	differs	from	the	standard	RL	model	by	assuming	that	there	

is	 a	 constant	bonus	associated	with	 choosing	 the	advised	option.	The	 constant	bonus	was	

added	to	the	objective	reward	(highlighted	in	bold)	according	to:	

	

𝑄! 𝑡 + 1 = 𝑄! 𝑡 + 𝛼[𝑟 𝑡 + 𝒈(𝒊)𝝁𝜷𝒃 − 𝑄! 𝑡 	

	

Here	𝑔(𝑖)	 serves	as	an	 indicatior	 for	 the	advice,	which	takes	 the	value	1	 if	 the	option	was	

advised	and	the	value	0	if	it	was	not	advised.	The	outcome-bonus	parameter	𝛽! captures	the	

degree	to	which	social	 influence	 leads	to	an	outcome	bonus,	and	𝜇	 is	 the	expected	payoff	

from	choosing	randomly	among	all	options.	

The	simple	prior	model	assumes	an	an	initial	strong	positive	prior	for	the	advised		

	option.	The	initial	reward	expectation	in	the	prior	model	is	defined	as:	

	

𝒈(𝒊)𝝁𝜷𝒑𝑵	

	

Here	βp	reflects	the	social	influence	on	the	prior	expectations	and	N,	the	number	of	trials	in	

the	experiement	serving	as	a	scaling	factor.		

Finally,	 the	combined	prior	&	outcome-bonus	model	 assumes	an	 increased	prior	β!	

for	the	advised	option,	and	the	advice	is	also	associated	with	a	constant	bonus	βb.		

We	furthermore	tested	versions	of	the	social	influence	models	that	assumed	that	the	

outcome-bonus	associated	with	the	advised	option	would	decline	over	time	(highlighted	in	

bold).	 To	 model	 this	 decreasing	 influence	 of	 advice	 over	 time	 we	 modulated	 the	 bonus	

parameter:		

	

𝑄! 𝑡 + 1 = 𝑄! 𝑡 + 𝛼[𝑟 𝑡 + 𝑔(𝑖)𝜇𝛽!
𝟏
𝒕

𝝅
− 𝑄! 𝑡 ]	

where	𝜋	is	the	free	parameter	that	captures	how	quickly	the	effect	of	influence	decays,	with	

smaller	values	indicating	less	decline	(0 < 𝜋 <	∞).	

We	 extend	 all	 social	 influence	 models	 additionally	 with	 two	 independent	 learning	

rates:	a	 learning	rate	for	positive	feedback	(αpos)	and	a	 learning	rate	for	negative	feedback	

(αneg).	Based	on	previous	developmental	studies	(Palminteri,	Kilford,	Coricelli,	&	Blakemore,	
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2016;	 van	 den	 Bos	 et	 al.,	 2012)	 we	 expected	 that	 gains	 and	 losses	 are	 asymmetrically	

updated.		

The	initial	expected	values	were	set	to	0,	except	for	the	the	prior	model.	In	addition,	

all	social	influence	models	assume	that	participants	who	received	advice	will	always	choose	

the	 advised	 option	 in	 their	 first	 trial	 accoring	 to	 (accoring	 to	 Biele	 et	 al.,	 2011).	 This	was	

implemented	by	setting	the	probability	of	choosing	the	advised	option	to	1	for	the	first	trial.		

For	all	social	influence	models,	the	probability	of	the	model	choosing	option	𝑎	from	a	

pair	-	according	to	the	ratio	of	the	Q	values	linked	to	each	stimulus	(𝑎	and	𝑐)	-	was	computed	

using	a	softmax	function	(O’Doherty,	2004):	

	

𝑃(!) =
𝑒!! (!) !

𝑒!∈!
!! (!) !

	

	

The	probability	of	selecting	option	𝑎	is	influenced	by	the	expected	value	of	option	𝑎	in	trial	𝑡	

divided	by	the	sum	of	the	expected	values	of	all	possible	options 𝐴.	The	𝛽	parameter	reflects	

the	sensitivity	of	 the	subject	 to	 the	differences	 in	expected	values.	The	 lower 𝛽,	 the	more	

exploratory	choices	appear.		 	
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5.	Empirical	studies	

5.1	STUDY	I:	Observational	reinforcement	learning	from	peers	vs.	non-peers	in	children	

Rodriguez	Buritica,	J.	M.,	Eppinger,	B.,	Schuck,	N.	W.,	Heekeren,	H.	R.,	&	Li,	S.-C.	(2016).	Elec-

trophysiological	 correlates	 of	 observational	 learning	 in	 children.	 Developmental	 Science,	

19(5),	699–709.	

Aims.	Whether	 observed	 behavior	 of	 others	 is	 integrated	 in	 one’s	 own	 behavior	 is	

modulated	-	next	to	other	factors	-	by	the	perceived	similarity	(or	dissimilarity)	between	the	

observer	and	the	observed	person	(Bandura,	1977;	Owens	&	Ascione,	1991;	Schunk,	1987;	

Schunk	&	Usher,	2012).	Whether	8-10	year	old	children	show	an	ERP-response	while	observ-

ing	other’s	 feedback	and	whether	 similarity	 to	 the	observed	person	 (either	another	 same-

aged	peer	or	an	adult)	further	modulates	this	ERP-response,	was	unknown.		

Hypotheses.	 Based	 on	 previous	 findings	 in	 adults	 (Burke	 et	 al.,	 2010)	we	 predicted	

that	children	should	benefit	from	additional	social	information	during	learning.	We	expected	

that	social	information	is	further	evaluated	by	similarity	in	age	(i.e.,	high	similarity	for	peers):	

Children	should	prefer	social	information	of	similar	others	(i.e.,	peer)	over	dissimilar	others	

(i.e.,	adults)	(Hendy	&	Raudenbush,	2000;	Schunk,	1987;	van	Gog	&	Rummel,	2010).	There-

fore,	we	expected	 larger	oFRN	observing	similar	others	 (i.e.,	peers)	compared	to	dissimilar	

others	(i.e.,	adult).		

Methods.	To	address	this	question	we	used	a	probabilistic	reward-based	OL	paradigm	

(adopted	from	Burke	et	al.,	2010)	in	combination	with	EEG	in	8-10	year	old	children	(N	=	31,	

15	female,	mean	age	=	8.94,	SD	=	0.85).	We	used	a	factorial	3	(learning	condition)	x	2	(model	

player)	within-subject	design	to	measure	behavior	(i.e.	accuracy	and	imitative	choice	behav-

ior)	and	ERPs	for	self-experienced	(i.e.,	FRN	and	P300)	and	observed	feedback	(i.e.,	oFRN	and	

oP300).		

Results.	The	results	show	that	children’s	accuracy	increased	as	the	amount	of	observ-

able	 information	 across	 learning	 conditions	 increased	 (see	 Figure	 8A).	 Interestingly,	 when	

analyzing	how	often	other’s	choices	were	chosen	independently	of	the	feedback	(called	“imi-

tative	choice	behavior”),	children	imitated	the	behavior	of	the	same-aged	child	model	player	

more	 often	 than	of	 an	 adult	model	 (see	 Figure	 8B)	 and	 imitation	was	 higher	 for	 the	A	 as	

compared	 to	 the	 AO	 condition.	 Due	 to	 restrictions	 in	 available	 trials,	 we	 could	 not	 test	

whether	children	differently	imitated	with	respect	to	the	correctness	of	observed	choices.		
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Figure	8.	Behavior.	 (A)	 Learning	 condition	effects.	Accuracy	 in	proportion	correct	 for	 learning	 condition	and	

trial	(IL	–	Individual	Learning;	A	–Action	Only,	AO	–	Action	+	Outcome).	(B)	Imitative	choice	behavior.	Propor-

tion	of	imitative	choice	behavior	observing	another	peer	(i.e.,	another	child	of	the	same	age	and	same	sex)	and	

non-peer	(i.e.,	young	adult).	

	

The	FRN	in	children	distinguished	between	losses	and	gains	(as	previously	shown:	e.g.	

Crone,	2014;	Eppinger	et	al.,	2009;	see	Ferdinand	&	Kray,	2014	for	review;	Hämmerer	&	Ep-

pinger,	 2012;	 Santesso	 et	 al.,	 2011)	 and	was	 comparable	 across	 all	 learning	 conditions.	 In	

contrast,	 and	 in	 line	 with	 the	 behavioral	 learning	 effects,	 the	 feedback-locked	 P300	 in-

creased	with	the	amount	of	observable	information	over	the	learning	conditions.	Thus,	the	

feedback-locked	P300	amplitude	decreased	from	AO	to	IL	learning	condition.	Most	interest-

ingly,	we	found	that	8-10	year	old	children	showed	ERP	responses	(i.e.,	oFRN)	to	observed	

feedback,	which	were	 similar	 to	 their	 ERP	 responses	 to	 self-experienced-feedback.	 In	 con-

trast	to	previous	adult	studies,	children’s	oFRN	was	not	diminished	compared	to	their	FRN.	

This	was	especially	true	for	observing	peers,	as	oFRNs	in	response	to	observed	feedback	giv-

en	to	peers	showed	a	trend	of	being	larger	compared	to	those	when	observing	an	adult	(see	

Figure	9A	vs.	9B).		
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Figure	9.	OFRN	to	the	to	be	observed	model.	OFRN	for	gains	and	losses	after	observing	a	same-aged	child	

or	adult	model.	Recorded	at	FCz	as	peak-to-peak	measures.	Grand	averages	are	shown	for	losses	(red	line)	

and	gains	(blues	line).	The	topographic	map	displays	the	difference	between	the	oFRN	for	losses	and	gains	

(black	line)	within	a	time	window	of	50	ms	around	the	peak	separately	for	the	(A)	same-aged	child	model	

player	and	(B)	adult	model	player	condition.	

	

Taken	 together,	 study	 I	 answered	 RQ	 I	 as	 follows:	 children’s	 oFRN	 was	 enhanced	

when	 observing	 feedback	 received	 by	 peers	 (i.e.,	 another	 sex-	 and	 age-matched	 child)	

compared	to	non-peers	(i.e.,	young	adults).	Children	also	imitated	behavior	of	their	peers	as	

compared	to	non-peers	more	frequently.	

5.2	STUDY	II:	Observational	reinforcement	learning	from	peers	across	development		

Rodriguez	Buritica,	J.	M.,	Heekeren,	H.	R.,	Li,	S.-C.	&	Eppinger,	B.	(under	revision).	Develop-

mental	differences	in	the	neural	dynamics	of	observational	learning.	

	

Aims.	In	the	second	study,	we	described	developmental	changes	during	OL	using	EEG	

in	8-10	year	old	children	and	young	adults.	More	specifically,	we	 investigated	whether	de-

velopmental	differences	in	FRN	and	P300	during	EL	(e.g.	Eppinger	et	al.,	2009;	Hämmerer	&	

Eppinger,	2012)	also	apply	to	OL.	That	is,	(1)	whether	children	show	an	enhanced	oFRN	(as	

they	 show	an	enhanced	 FRN)	 in	 comparisons	 to	 adults	 and	 (2)	whether	 their	 oP300	 is	 re-

duced	(like	their	P300	[Polich	et	al.,	1990;	van	Dinteren	et	al.,	2014])	as	compared	to	adults.	

We	used	3	 (learning	condition)	x	2	 (learning	changes	by	contrasting	the	beginning	and	the	

end	across	all	learning	blocks)	within-subject	factors	and	age	(child	vs.	young	adult)	as	a	be-
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tween-subject	factor	to	measure	behavior	(i.e.,	accuracy)	and	ERPs	for	self-experienced	(i.e.,	

FRN	and	P300)	and	observed	feedback	(i.e.,	oFRN	and	oP300).		

Hypotheses.	We	predicted	that	both	groups	should	benefit	(i.e.,	in	terms	of	accuracy)	

from	the	additional	social	information	during	learning.	Children,	however,	should	show	more	

difficulties	in	using	(particularly	negative)	feedback	for	learning	as	compared	to	adults	(e.g.	

Eppinger	et	al.,	2009).	This	should	be	reflected	in	an	enhanced	FRN	response	as	compared	to	

adults	(Ferdinand	&	Kray,	2014).	In	contrast	to	adults	(Bellebaum	et	al.,	2010),	children’s	FRN	

and	oFRN	should	not	differ	in	amplitude	(Rodriguez	Buritica	et	al.,	2016).	We	expected	that	

children	 should	 be	 less	 able	 (as	 compared	 to	 adults)	 to	 efficiently	 update	 feedback	 infor-

mation	during	learning	(Ferdinand	&	Kray,	2014),	reflected	over	a	diminished	P300	response	

in	children	compared	to	adults	(van	Dinteren	et	al.,	2014).	Developmental	differences	in	up-

dating	 of	 feedback	 information	 should	 further	 be	 related	 to	 developmental	 differences	 in	

WM	capacity	(Polich	et	al.,	1990).		

Methods.	 The	 effective	 sample	 consisted	 of	 23	 adults	 (20-30	 years	 old;	 11	 female,	

mean	age	=	23.52,	SD	=	2.81)	and	22	children	(8-10	years	old;	10	female,	mean	age	=	9.05,	

SD	=	0.79).	General	cognitive	abilities	of	the	sample	were	assessed	using	several	psychomet-

ric	 tests,	 such	as	a	modified	version	of	 the	 spatial	n-back	 task	 to	 investigate	WM	capacity	

(described	in	detail	by	Li	et	al.,	2008).	Children	had	proportionally	lower	scores	than	adults	

on	the	WM	test,	which	is	in	line	with	previous	developmental	studies	(Fry	&	Hale,	1996)	.		

Results.	 Both	 age	 groups	 differed	 in	 behavior	 and	 ERP-response:	 Children	 showed	

more	gradual	observational	learning	compared	to	adults	(see	Figure	10).		

	

	

Figure	10.	Behavior.	Learning	&	Condition	Effects.	Accuracy	 in	proportion	correct	for	age	group	and	learning	

condition	displayed	per	trial	(IL	–	Individual	Learning;	A	–Action	Only,	AO	–	Action	+	Outcome).	

Furthermore,	 they	showed	greater	 sensitivity	 to	observed	 (particularly	negative)	 feedback,	

reflected	over	their	oFRN	(see	Figure	11A).	Adults’	more	pronounced	OL	effects	(see	Figure	
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10)	were	related	to	reduced	sensitivity	to	observed	feedback	(i.e.,	no	oFRN	valence	effect;	

see	 Figure	 11A).	 Childrens’	 oERPs	 (oFRN	 and	 oP300)	 were	 generally	 not	 diminished	 com-

pared	to	their	ERPs	(FRN	and	P300;	see	Figure	11B),	like	it	was	for	adults	(see	Figure	11).	

	

	

Figure	11.	ERPs	to	observed	and	experienced	feedback.	Grand	averages	shown	for	losses	(red	line)	and	gains	

(blue	 line)	 for	 the	 (A)	 oFRN/oP300	 and	 (B)	 FRN/P300	 displayed	 at	 FCz	 separately	 for	 both	 age	 groups.	 The	

topographic	map	displays	the	difference	(black	line)	between	losses	and	gains	of	the	oFRN/FRN	(within	50	ms)	

and	oP300/P300	(within	200	ms).	Correlation	effects.	Scatter	plots	illustrate	the	correlation	between	difference	

scores	of	proportion	of	correct	choice	(second	–	first	block	half)	on	the	x-axis	and	the	difference	score	of	the	

mean	oP300/P300	amplitude	to	gains	(second	–	first	block	half)	on	the	y-axis	separately	for	the	two	age	groups.	

	

The	P300	to	observed	and	self-experienced	gains	decreased	with	 learning	 in	adults,	

but	not	in	children	(see	Figure	11).	Interestingly	in	adults,	the	relation	between	learning	and	

changes	of	the	P300	was	moderated	by	WM	(see	Figure	12).		
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Figure	12.	Effects	of	learning	on	the	P300.	(A)	Correlation	effects.	Scatter	plots	illustrate	the	correlation	be-

tween	difference	score	of	proportion	correct	in	the	WM	task	on	the	x-axis	and	the	difference	score	of	the	mean	

P300	amplitude	to	gains	(second	–	first	block	half)	on	the	y-axis	separately	for	the	two	age	groups.	(B)	Modera-

tion	model	 of	 P300	 learning	 effects.	Working	memory	 (WM)	 as	 a	moderator	 for	 the	 relationship	 between	

learning	and	learning	related	changes	in	the	P300	to	gains:	a*b	path	predicted	learning	related	changes	in	the	

P300	to	gains	(neither	the	a	path	(learning	as	predictor)	nor	the	b	path	(WM	as	predictor)	reached	significance).	

	

Taken	together,	 study	 II	answered	RQ	 II	as	 follows:	children’s	oERP	responses	were	

similarly	to	their	ERP	responses	and	showed	specific	developmental	differences.	Children,	as	

compared	to	adults,	seemed	less	able	to	disengage	from	observed	negative	feedback	and	to	

use	 observed	 feedback	 information	 to	 update	 their	 predictions,	 probably	 due	 to	 develop-

mental	differences	in	WM	capacities.		

5.3	STUDY	III:	Advice	taking	from	peers	across	development	

Rodriguez	Buritica,	J.	M.,	Heekeren,	H.	R.,	&	van	den	Bos,	W.	(under	revision).	Adolescents	

are	sensitive	to	peer	influence,	but	only	for	so	long.	

Aims.	In	this	age-comparative	study,	we	compared	behavioral	difference	in	the	inte-

gration	of	advice,	EL	and	the	exploration	of	alternatives	(in	8-10	year	old	children,	13-15	year	

old	adolescents	and	18-22	year	old	adults).	Furthermore,	we	aimed	to	computationally	de-

scribe	 developmental	 differences	 in	 advice	 taking	 by	 an	 extension	 of	 the	 outcome-bonus	
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model	 (previously	described	 in	adults	by	Biele	et	al.,	2011;	 see	Chapter	4.3	 for	 further	de-

tails).		

Hypotheses.	All	age	groups,	particularly	adolescents,	should	be	sensitive	to	the	initial	

peer	advice.	As	previously	described	(Biele	et	al.,	2009,	2011)	the	advised	option	should	be	

associated	with	 a	 continuous	 bonus	 (i.e.,	 the	 expected	 value	 of	 an	 option	 is	 always	 a	 bit	

higher,	when	being	advised	by	another	person)	while	choosing	it.	Children	and	adolescents,	

however,	 should	 be	 less	 biased	 than	 adults	 towards	 the	 initial	 advice	 and	 instead	 explore	

more	alternative	options	(Decker	et	al.,	2015).	As	a	result,	the	two	younger	groups	are	more	

likely	to	discover	the	other	(equally)	“good	deck”.	Due	to	the	fact	that	all	decks	were	equally	

associated	with	gains	and	losses,	children	should	encounter	the	other	positive	deck	less	of-

ten	than	adolescents	due	to	 their	greater	difficulties	 to	use	negative	 feedback	 for	 learning	

(van	Duijvenvoorde	et	al.,	2008).	This	should	be	further	captured	in	higher	learning	rates	for	

losses	compared	to	gains	in	children	(van	den	Bos	et	al.,	2012).		

Methods.	In	this	study,	we	tested	25	adults	(18-22	years	old;	13	female,	mean	age	=	

20.32,	SD	=	1.15),	24	adolescents	(13-15	years	old;	12	female,	mean	age	=	13.71,	SD	=	0.75)	

and	24	children	(8-10	years	old;	10	female,	mean	age	=	9.08,	SD	=	0.83).	Here,	we	applied	

and	extended	RL	models	(see	Study	I	and	4.3.	for	further	details)	to	capture	developmental	

differences	in	the	influence	of	advice,	experience	and	exploration	on	learning.	We	measured	

P(chosen)	per	deck	across	210	trials	as	a	within-subject	factor	and	age	(children,	adolescents,	

adults)	as	a	between	subject-factor.	

Results.	All	age	groups	 followed	the	good	advice	at	 the	beginning	of	 the	 task.	With	

more	time	of	sampling-behavior	the	age	groups	differed	their	choice	behavior:	Adolescents	

showed	 the	 highest	 initial	 sensitivity	 to	 peer	 advice	 (see	 Figure	 13),	whereas	 adults	most	

consistently	 followed	 the	 advice	 throughout	 the	 task	 (Decker	 et	 al.,	 2015).	 This	 age-

difference	during	 initial	 advice	 taking	was	 captured	with	 the	prior	 +	 bonus	 dual	 RL	model	

(which	was	 the	winning	model	 across	our	model	 comparison,	 see	Figure	14A).	 This	model	

revealed	higher	prior	expectations	based	on	the	advice	in	adolescents	compared	to	the	oth-

er	 two	 age	 groups	 (see	 Figure	 14B).	 Adolescents	 and	 children	 showed	 higher	 exploration	

rates	(see	Figure	14B),	but	due	to	children’s	difficulties	using	negative	feedback	for	learning	

(i.e.,	indicated	by	higher	learning	rates	for	losses;	see	Figure	14B),	only	adolescents	explored	
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the	good	alternative	within	the	task	(see	Figure	13).	Adolescents	also	selected	the	bad	decks	

less	often	and	showed	highest	expected	earnings	compared	to	the	other	two	age	groups.		

	

	

Figure	13.	Choice	Behavior.	Proportion	chosen	separately	for	bin	(of	5	trials	each)	and	age	group	seperately	for	

the	advised,	other	good	deck	and	bad	decks.	

	

No	differences	between	age	groups	were	found	neither	for	their	learning	rate	for	gains,	nor	

for	their	bonus	parameter	(see	Figure	14B).	

Taken	together,	the	results	of	this	study	answered	RQ	III:	peer	advice	influenced	ado-

lescents’	behavior	initially	more	strongly	as	compared	to	children	and	adults.	However,	only	

adults	showed	a	more	consistent	influence	of	advice	over	time	(as	compared	to	children	and	

adolescents).	Children	and	adolescents	showed	more	exploratory	behavior.	Whereas	adoles-

cents	benefited	from	that,	children	did	not	and	showed	higher	learning	rates	for	losses.	Ado-

lescents	were	 better	 able	 to	 use	 their	 own	 experience	 to	 choose	 options	with	 higher	 ex-

pected	values	and	to	discover	the	other	good	choice	alternative	within	the	task.	Our	social	

learning	model	combined	both	(apparently)	contradicting	findings	-	the	higher	sensitivity	to	

peer	information	and	higher	exploration.	
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Figure	 14.	 (A)	 Relative	 BIC’s	 for	 model	 comparision.	 The	 relative	 difference	 in	 BIC	 values	 for	 each	models	

compared	to	the	model	with	the	lowest	over	BIC	value.	The	Bayes	factor	for	comparing	the	best	(lowest	BIC)	

and	second	best	model	 is	6494,	which	 indicates	 the	best	 fitting	model	 is	very	strongly	 favored	over	all	other	

models	tested.	Note	that	this	model	also	is	the	winning	model	if	we	perform	these	comparisons	on	the	level	of	

age	groups	separately.	(B)	Parameter	estimates	for	the	prior	+	bonus	dual	RL	model.	Estimates	separatly	for	

the	three	age	groups	and	the	two	learning	rates	(alpha_gain,	alpha_loss),	temperature,	prior	and	bonus.		
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6.	Discussion	

This	thesis	provides	a	preliminary	description	of	developmental	differences	in	social	learning,	

especially	 OL	 and	 advice	 taking.	 In	 three	 age-comparative	 studies	 I	 employed	 behavioral,	

EEG	and	computational	analyses	 in	8-10	year	old	children,	13-15	year	old	adolescents	and	

young	adults.	I	mainly	addressed	three	research	questions:	How	(1)	other’s	similarity	in	age	

to	 the	 learner	 (high	 for	 peers),	 (2)	 action	 and	 outcomes	 (during	 OL)	 and	 (3)	 action-

recommendations	(in	form	of	advice)	influence	social	learning	across	development.	The	an-

swers	to	these	questions	will	be	discussed	in	the	following:	

6.1	 Observational	 reinforcement	 learning:	 Using	 peers’	 and	 non-peers’	 information	 for	

learning	in	children	

Whether	social	information	is	used	for	learning	is	influenced	additionally	by	the	characteris-

tics	of	its	sources	(i.e.,	the	observed	model	or	the	adviser),	such	as	by	similarity	in	age	to	the	

observer	 (Hendy	&	Raudenbush,	2000;	Schunk,	1987).	Developmental	 studies	 suggest	 that	

similarity	in	age	is	used	as	an	indicator	for	the	appropriateness	of	an	observed	behavior	(see	

Schunk,	1987	for	review).	Study	I	supported	this	view:	8-10	year	old	children	imitated	choic-

es	of	their	peers	as	compared	to	choices	of	young	adults	more	frequently.	Study	I	extended	

this	view	by	showing	that	higher	peer-sensitivity	also	influenced	the	processing	of	observed	

feedback.	

Children’s	oFRN	to	observed	peer-feedback	was	enhanced	as	compared	to	their	oFRN	

to	observed	non-peer-feedback	(i.e.	by	young	adults).	Comparing	oERPs	(i.e.,	oFRN,	oP300)	

to	ERPs	(i.e.,	FRN,	P300),	children’s	oERPs	to	their	own	peers	were	similar	 in	magnitude	to	

their	 ERPs	differently	 from	 findings	 in	 adults	 (Bellebaum	et	 al.,	 2010;	 Fukushima	&	Hiraki,	

2009).	 The	higher	peer	 sensitivity	 to	 the	observed	 feedback,	 reflected	 in	 childrens’	oERPs,	

aligns	with	 our	 finding	 that	 children	 imitated	 choices	 of	 own	 peers	more	 frequently	 than	

choices	 of	 young	 adults.	 Both	 findings	 support	 the	 assumption	 that	 peers	 can	 serve	 as	

stronger	 role	 models	 for	 children	 than	 non-peers	 (Hendy	 &	 Raudenbush,	 2000;	 Schunk,	

1987;	Schunk	&	Usher,	2012;	van	Gog	&	Rummel,	2010;	Zmyj	&	Seehagen,	2013).	Our	ERP-

results	extended	previous	findings	in	adults	(Carp	et	al.,	2009;	Mobbs	et	al.,	2009)	by	show-

ing	 that	 the	oFRN	 is	also	 (and	probably	more	strongly)	modulated	by	social	 factors	 in	chil-

dren	as	compared	to	adults.	
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6.2	 Observational	 reinforcement	 learning:	 Using	 peers’	 information	 for	 learning	 across	

development	

Developmental	 differences	 in	 using	 of	 observed	 feedback	 information	 for	 learning	 show	

similarities	to	developmental	differences	in	using	self-experienced	feedback	information	for	

learning.	 Developmental	 studies	 on	 EL	 show	 that	 children,	 as	 compared	 to	 adults,	 have	

greater	difficulties	in	extracting	relevant	feedback	information	and	using	(particularly	nega-

tive)	feedback	for	learning	(Crone,	2014;	Eppinger	et	al.,	2009;	Hämmerer	&	Eppinger,	2012;	

van	den	Bos,	 2009;	 van	den	Bos	et	 al.,	 2012;	 van	Duijvenvoorde	et	 al.,	 2008).	 Study	 II	 ex-

tended	this	view	by	showing	that	children	(as	compared	to	adults)	also	benefited	more	slow-

ly	from	social	 information.	Importantly,	study	II	added	electrophysiological	evidence	to	this	

behavioral	finding:	Children	showed	(1)	enhanced	sensitivity	to	external	(particular	negative)	

observed	and	self-experienced	feedback	and	(2)	had	difficulties	to	use	this	information	dur-

ing	learning.		

oFRN/FRN.	During	OL,	children	showed	an	enhanced	oFRN-response	(particularly	 to	

negative	feedback)	as	compared	to	adults.	This	finding	is	consistent	with	the	general	notion	

that	 children	are	more	 susceptible	 to	external	 (and	especially	 to	negative)	 feedback	 infor-

mation	during	learning	than	adults	(Eppinger	et	al.,	2009;	Ferdinand	&	Kray,	2014;	Hämmer-

er	et	al.,	2010).	Moreover,	it	extended	this	notion	by	showing	that	this	greater	sensitivity	to	

negative	feedback	in	children	can	be	generalized	to	observed	negative	feedback	(Rodriguez	

Buritica	et	al.,	2016).	This	might	suggest	that	children	(i.e.,	8-10	years	old)	do	not	yet	appro-

priately	weight	 and	 integrate	external	 information	of	different	 (and	 in	particular	negative)	

valences	compared	to	adults	(Eppinger	et	al.,	2009;	Hämmerer	et	al.,	2010;	van	den	Bos	et	

al.,	2012).	Our	findings	showed	that	children	do	not	yet	appropriately	assess	the	information	

value	of	feedback	(that	is,	how	much	it	should	guide	learning)	and	thus	are	less	efficient	in	

integrating	 (particularly	 negative)	 outcomes	 into	 their	 behavioral	 strategies	 than	 adults.	

Therefore,	they	might	generally	up-regulate	their	response	to	external	(particularly	negative)	

feedback,	 independently	 of	 who	 receives	 the	 feedback.	 Thus,	 developmental	 differences	

during	OL	link	to	a	greater	sensitivity	to	negative	feedback,	comparable	to	findings	during	EL.		

oP300/P300.	Our	ERP	findings	suggest	that	children	as	compared	to	adults	were	less	

able	 to	use	observed	 feedback	 for	 learning.	 Children	 learned	more	 gradually	 from	OL	and	

their	oP300	to	gains	did	not	decreased	with	learning	as	found	in	adults.	In	adults,	this	learn-
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ing-related	decrease	in	the	P300	to	gains	was	positively	correlated	with	their	success	in	OL.	

Similarly,	adult’s	P300	to	gains	decreased	as	a	function	of	learning;	WM	capacity	modulated	

this	relationship.	These	findings	are	consistent	with	prior	research	showing	a	correlation	of	

the	 P300	 (but	 not	 the	 FRN)	with	 reward	 prediction	 errors	 generated	 during	 RL	 (Fischer	&	

Ullsperger,	2013;	Ullsperger	et	al.,	 2014)	and	 that	 reward-based	 learning	depends	on	WM	

abilities	(Collins	&	Frank,	2012).	Collins	and	Frank	(2012)	show	that	WM	abilities	explain	dif-

ferences	during	RL.	That	is,	learning	was	slower	the	greater	the	WM	load.	The	fact	that	chil-

dren	P300	was	not	modulated	by	learning	nor	WM,	suggested	that	children	might	not	be	as	

efficient,	compared	to	adults,	in	using	feedback	information	to	update	their	predictions	dur-

ing	learning	(McGuire,	Nassar,	Gold,	&	Kable,	2014;	van	den	Bos	et	al.,	2012).	This	is	possibly	

due	to	developmental	differences	in	WM,	which	increase	until	young	adulthood	(Fry	&	Hale,	

1996).	 Thus,	developmental	differences	 in	 learning	may	not	be	 the	 consequence	of	differ-

ences	in	prediction	error	signaling,	per	se	(Cohen	et	al.,	2010;	Hauser	et	al.,	2015),	but	rather	

of	determining	how	much	to	learn	from	a	given	prediction	error	(McGuire	et	al.,	2014;	van	

den	Bos	et	al.,	2012)	based	on	WM	abilities.	Thus,	extracting	how	much	to	learn	from	out-

comes	(worse	or	better	than	expected)	might	require	sufficient	WM	abilities.	Future	studies	

should	directly	 investigate	 to	what	extend	are	developmental	differences	during	RL	 link	 to	

WM	and	whether	children’s	difficulties	to	use	negative	feedback	for	learning	are	partly	due	

to	their	WM	abilities.		

	The	results	of	study	II	support	previous	accounts	of	the	P300	as	a	marker	of	context	

updating	 (Donchin,	1981).	 It	 is	 also	 in	 line	with	more	 recent	accounts,	 suggesting	 that	 the	

P300	 reflects	 the	 expectedness	 of	 events	 (de	 Rover	 et	 al.,	 2015;	 De	 Taeye	 et	 al.,	 2014;	

Nieuwenhuis	et	al.,	2005,	2011)	and	the	degree	to	which	different	information	(of	one’s	own	

and	 others’	 experiences)	 can	 be	 used	 to	 update	 reward	 predictions	 (Fischer	&	Ullsperger,	

2013;	Ullsperger	et	al.,	2014).	Combining	these	accounts,	the	P300	may	be	a	marker	of	the	

computational	mechanisms	that	determine	the	degree	to	which	behavior	is	updated	based	

on	a	given	prediction	error,	which	might	depend	on	WM	capacity	(Nassar	et	al.,	2016).		

6.3	Advice	taking:	Using	peers’	information	for	learning	across	development	

A	recent	study	by	Decker	et	al.	(2015)	show	that	children	and	adolescents	rely	more	on	their	

own	experiences	and	 less	on	prior	 (false)	 instructions	than	adults	during	EL.	 It	was	unclear	

whether	this	is	due	to	developmental	differences	in	the	sensitivity	to	negative	feedback	and	
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whether	good	instructions	would	result	in	similar	developmental	differences.	It	was	an	open	

question,	whether	a	prior	social	advice	would	and	particularly	of	another	peer	would	have	

another	 influence	 on	 children’s	 and	 adolescent’s	 EL.	 Study	 III	 solved	 these	 questions	 and	

investigated	how	good	peer	advice	and	own	experience	was	used	 for	 learning	 in	 children,	

adolescents	and	adults.		

Adolescents	 initially	 showed	greater	 sensitivity	 to	peer	advice	and	 selected	 the	ad-

vised	deck	more	often	than	children	and	adults.	Peer	advice	affected	adolescents’	initial	ex-

pectations	(i.e.,	their	priors)	most	strongly	as	compared	to	the	other	age	groups.	These	re-

sults	support	the	view	that	adolescence	may	be	a	developmental	period	with	a	particularly	

high	sensitivity	to	social	influence	(Blakemore	&	Mills,	2014;	Jones	et	al.,	2014;	van	Hoorn	et	

al.,	2016).	Although	social	information	(i.e.,	in	form	of	single	initial	advice)	was	highly	influ-

ential	in	adolescents	at	the	beginning	of	learning,	social	information	was	less	influential	the	

more	own	experience	they	collected	-	in	line	with	a	recent	study	by	Decker	et	al.	(2015).	The	

authors	showed	that	adolescents	are	highly	sensitive	to	social	influence,	but	also	more	likely	

to	stop	recommended	behavior,	 if	they	are	not	positively	reinforced.	In	line	with	the	study	

by	Decker	et	al.	(2015)	adolescents	and	children	explored	more	(i.e.,	showed	higher	explora-

tion	rates).	That	is,	adolescents	increasingly	selected	the	other	good	deck	with	learning	and	

chose	the	bad	decks	 less	often	(as	compared	to	adults	and	children).	Consequently,	and	 in	

contrast	to	adults	and	children,	adolescents	selected	choices	with	higher	earnings.	Although	

children	also	showed	increased	explorative	behavior	this	did	not	result	in	choosing	the	other	

good	 deck	 more	 often.	 This	 might	 be	 due	 to	 of	 children’s	 greater	 sensitivity	 to	 negative	

feedback	 (as	 compared	 to	 adolescents	 and	 adults	 [van	 Duijvenvoorde	 et	 al.,	 2008]);	 chil-

dren’s	higher	 learning	rates	for	 losses,	as	compared	to	the	other	two	age	groups,	supports	

this	view.	Previous	studies	suggest	that	children’s	performance	decreases	as	the	probability	

of	 negative	 feedback	 increases	 (Eppinger	 et	 al.,	 2009).	 Thus,	 children’s	 difficulties	 to	 use	

negative	feedback	for	learning	should	be	particularly	salient	in	the	current	task,	where	each	

card	deck	was	associated	with	50%	losses	and	50%	gains	(although	they	differ	in	their	magni-

tude;	see	publication	III	for	further	details).	Thus,	probably	due	to	their	higher	sensitivity	to	

negative	 feedback	 (i.e.,	higher	 learning	 rates)	 children	were	not	able	 to	benefit	 from	their	

experience	to	the	same	degree	as	adolescents	in	this	learning	environment.		

In	contrast	to	children	and	adolescents,	adults	followed	recommended	actions	more	
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consistently	over	time,	which	was	adaptive	in	our	experiment.	Decker	et	al.	 (2015)	suggest	

that	adults	will	also	do	so	if	 it	would	be	less	adaptive	(i.e.,	 if	the	recommendation	was	not	

good).	This	adult-bias	towards	prior	instructions	is	linked	to	the	frontal/hippocampal	system	

that	 trains	 the	 reinforcement	 system;	 amplifying	 instruction-consistent	 feedback	 and	 dis-

missing	instruction-inconsistent	feedback	(Doll,	Jacobs,	Sanfey,	&	Frank,	2009).	Developmen-

tal	 literature	 link	the	protracted	maturation	of	prefrontal	cognitive	control	 functions	to	re-

duced	 abilities	 using	 rules	 to	 guide	 behavior	 (Crone	 et	 al.,	 2006;	 Wendelken,	 Munakata,	

Baym,	Souza,	&	Bunge,	2012)	and	higher	exploration	 rates	during	development	 (Decker	et	

al.,	 2015;	Thompson-Schill	 et	al.,	 2009).	Thus,	 lower	 levels	of	 cognitive	 control	might	have	

led	to	a	reduced	advice-bias	and	more	exploration	in	children	and	adolescents	as	compared	

to	adults.	Exploratory	behavior	can	have	positive	aspects	in	dynamic	and	unknown	environ-

ments,	and	is	suggested	to	be	an	important	adaptation	in	human	development	(Thompson-

Schill	et	al.,	2009).	Higher	exploration	in	children	and	adolescents,	however,	was	not	linked	

to	similar	learning	benefits	in	both	age	groups.	That	is,	adolescents	but	not	children	selected	

to	other	good	(non-advised)	option	increasingly	and	chose	more	choices	with	higher	earning	

(as	compared	to	children	and	adults).	To	what	extend	children’s	behavior	might	reflect	ran-

dom	behavior	cannot	be	drawn	from	their	exploration	rate.	Recent	studies	in	adults	use	dif-

ferent	computationally	approaches	to	investigate	exploration	in	uncertain	learning	environ-

ments	(Speekenbrink	&	Konstantinidis,	2015)	and	differentiate	between	direct	(i.e.,	in	which	

sampling	is	encouraged	by	information	seeking)	and	random	exploration	(i.e.,	in	which	sam-

pling	is	encouraged	by	chance)	(Wilson,	Geana,	White,	Ludvig,	&	Cohen,	2014).	Future	stud-

ies	need	to	investigate	exploration	across	development.		

6.4	Conclusion	

In	the	final	section	I	will	highlight	main	findings	and	implications	of	our	empirical	studies	and	

will	discuss	them	with	respect	to	their	limitations,	and	possible	direction	of	future	research.		

6.4.1	Social	learning	across	development:	Implications	of	the	empirical	studies		

The	empirical	studies	constituting	this	thesis	show	that	social	learning,	across	development,	

is	influenced	by	peers,	their	behavior	and	their	advice	(see	Figure	15).	Children	and	particu-

larly	adolescents	were	highly	sensitive	to	social	information	of	peers.	That	is,	it	affected	chil-

dren’s	sensitivity	to	observed	feedback	more	strongly	compared	to	adults,	children	imitated	
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choices	of	peers	more	frequently	than	non-peers	and	adolescents	were	initially	highly	sensi-

tive	to	peer-advice.	How	other’s	behavior	and	recommendations	were	used	for	learning	was	

related	to	specific	developmental	differences:	children	benefited	from	the	additional	social	

information	 as	 compared	 to	 learning	 without	 additional	 social	 information	 (EL),	 but	 they	

benefited	more	slowly	from	others	behavior	(action	and	outcomes)	than	adults.	Our	electro-

physiological	results	gave	first	insights	in	why	that	might	be	the	case.	Children	showed	a	gre-

ater	sensitivity	to	negative	observed	feedback,	reflected	in	enhanced	FRN	to	observed	feed-

back	(as	compared	to	adults).	Children	were	less	able	than	adults	to	disengage	and	use	ob-

served	feedback	for	learning,	by	showing	no	learning	related	changes	in	their	P300	to	obser-

ved	and	self-experienced	feedback.	 In	contrast,	 in	adults	the	P300	to	observed	and	experi-

enced-feedback	 changed	with	 learning	 and	 this	 relationship	was	moderated	 by	WM.	WM	

has	been	 recently	 shown	 to	explain	 learning	differences	during	EL	 (Collins	&	Frank,	2012).	

Our	study	showed	that	WM	also	explained	learning	differences	during	OL	und	suggested	that	

WM	 might	 limit	 children’s	 abilities	 to	 use	 social	 information	 for	 learning.	 Future	 studies	

should	address	this	question	more	directly.	

If	behavior	was	not	observable	and	social	information	was	only	given	in	form	of	good	

peer	 advice,	 social	 information	 had	 to	 be	 evaluated	 based	 own	 experiences.	 Our	 findings	

point	to	specific	developmental	differences	in	using	advice	and	experience	for	learning.	Initi-

ally,	adolescents	were	strongly	influenced	by	their	peer’s	advice	as	compared	to	children	and	

adults.	Adults,	however,	stayed	more	consistently	with	the	good	advice.	Children	and	adole-

scents	were	more	exploratory	and	relied	less	on	the	initial	advice	with	more	time	of	learning	

from	own	actions.	Adolescents	benefited	from	that.	They	chose	the	good	(non-advised)	al-

ternative	 more	 and	 the	 bad	 alternative	 less	 often	 (as	 compared	 to	 children	 and	 adults).	

Therefore,	they	selected	choices	with	higher	earnings	more	than	adults	and	children.	Child-

ren	did	not	benefit	similarly	to	adolescents	from	higher	exploration.	Children	showed	com-

parably	to	our	OL-studies	a	higher	sensitivity	to	negative	feedback	(i.e.,	higher	learning	rate).	

That	might	have	caused	difficulties	to	distinguish	good	and	bad	alternatives	comparably	to	

adolescents	and	adults.	
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Figure	 15.	 Framework	 for	 developmental	 differences	 in	 social	 learning.	How	 others'	 experience	 influenced	

one‘s	own	experience	 is	modulated	by:	time	for	one’s	own	experience,	others’	 feedback,	and	others’	charac-

teristics.	Thickness	of	arrows	represents	strength	of	effect.	

	

Taken	together,	although	children	and	particularly	adolescents	are	highly	sensitive	to	

peer	information,	they	might	rely	more	strongly	on	what	they	experience	during	EL.	Children	

are	more	sensitive	to	(negative)	experiences	and	have	more	difficulties	to	use	them	for	lear-

ning,	whereas	adolescents	and	adults	are	able	to.	Adults	showed	that	they	are	more	efficient	

to	use	other’s	behavior	to	update	their	expectations	during	learning.	When	transferring	the	

current	 findings	to	an	applied	context,	one	tempting	 interpretation	of	our	results	could	be	

that	educational	 interventions	programs	that	are	supposed	to	enhance	learning	 in	children	

should	focus	on	their	ability	to	use	experienced	feedback	for	learning	and	should	be	particu-

larly	 cautious	 with	 using	 negative	 social	 feedback,	 which	might	 lead	 to	 reduced	 learning.	

During	 adolescence	 positive	 and	 negative	 feedback	 were	 integrated	 more	 balanced.	 Alt-

hough	adolescents	where	initially	highly	sensitive	to	other’s	recommendations,	they	quickly	

relied	more	on	their	own	experiences.	Future	studies	should	investigate	whether	this	finding	

has	implications	for	adolescent	instruction-based	learning	in	school.	

Although	 these	 findings	 have	 enhanced	 the	 knowledge	 about	 developmental	 diffe-

rences	 during	 social	 learning,	 they	 are	 also	 limited	 in	 their	 conclusions,	 for	 instance,	with	

respect	to	educational	practice.	 In	the	 last	paragraph,	 I	will	describe	 limitations	and	future	

directions	studying	social	learning	across	development.		
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6.4.2	Social	learning	across	development:	Limitations	of	the	empirical	studies	

Even	though	our	studies	broaden	the	understanding	of	developmental	differences	in	social	

learning,	they	are	also	limited	regarding	(1)	the	understanding	of	the	underlying	neural	dy-

namics	in	the	neural	substrates	and	(2)	their	broader	implications	for	educational	practice.	

First,	our	EEG-studies	did	not	allow	us	to	draw	inferences	about	the	neural	substrates	

underlying	EL	and	OL.	Recent	literature	suggests	that	fronto-striatal	areas	play	a	role	in	the	

generation	of	 the	FRN	during	 learning	 in	adults	 (Becker,	Nitsch,	Miltner,	&	Straube,	2014).	

That	 is,	 the	FRN	might	serve	as	an	 index	of	 learning	dynamics	 in	 this	network,	 in	 line	with	

recent	 findings	 showing	 that	 developmental	 differences	 in	 action-outcome	processing	 and	

RL	are	due	to	changes	in	the	fronto-striatal-networks	(Hämmerer	&	Eppinger,	2012;	van	den	

Bos,	 2009;	 van	den	Bos	 et	 al.,	 2012;	 van	Duijvenvoorde	et	 al.,	 2008).	As	 compared	 to	 the	

FRN,	the	oFRN	is	similarly	sensitive	to	gains	and	losses	(Kobza,	Thoma,	Daum,	&	Bellebaum,	

2011)	and	shares	similar	medial	prefrontal	source	activation	(Koban	et	al.,	2012).	Whether	

social	and	individual	feedback-processing	are	linked	to	similar	or	two	distinct	parallel	mech-

anisms	(according	to	Ruff	&	Fehr,	2014)	is	still	a	matter	of	research.	For	instance,	social	and	

individual	feedback-processing	are	similarly	linked	to	PE	signals,	but	their	PE	signals	are	not	

linked	 to	 the	 same	neural	 substrates	 (Apps,	 Lesage,	&	Ramnani,	 2015;	 Burke	 et	 al.,	 2010;	

Cooper	et	al.,	2012;	Dunne,	D’Souza,	&	O’Doherty,	2016;	Hill	et	al.,	2016).	Importantly,	it	has	

to	 be	 considered	 that	 the	 social	 context	 further	 modulates	 whether	 action-outcomes	 of	

others	are	perceived	as	rewarding	or	aversive	(Burke	et	al.,	2010;	Koban	et	al.,	2012).	These	

studies	 show	 that	 the	 oFRN	 for	 losses	 is	 enhanced	 for	 cooperating	 partners,	whereas	 the	

oFRN	 for	 gains	 is	 amplified	 for	 competing	 partners	 (Itagaki	 &	 Katayama,	 2008;	 Marco-

Pallarés,	Krämer,	Strehl,	Schröder,	&	Münte,	2010).	In	line	with	this	view,	Burke	and	collea-

gues	report	that	reward	prediction	error	of	other’s	action-outcomes	is	inversely	coded	in	the	

ventral	 striatum.	This	 is	 supported	by	previous	 findings	highlighting	 the	 role	of	 the	ventral	

striatum	 in	competitive	social	 situations	 (Fliessbach	et	al.,	2007).	Thus,	although	both	pro-

cesses	might	be	embedded	in	same	or	similar	neural	dynamics,	they	might	be	further	modu-

lated	differently,	particularly	by	the	social	context.	Developmental	studies	have	just	started	

to	investigate	the	influence	of	the	social	context	on	the	neural	dynamics	during	social	learn-

ing.		
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This	should	be	extended	using	different	methods,	such	as	fMRI,	DTI	and	computatio-

nal	modeling	to	get	a	more	mechanistic	view	on	the	underlying	processes	involved	in	deve-

lopmental	changes	during	social	learning.	Additionally,	using	multiple	repeated	assessments	

of	 developmental	 changes	 in	 social	 learning	 will	 give	 a	 better	 approximation	 of	 intra-

individual	changes.	This	could	be	for	 instance	important	for	a	better	approximation	of	pro-

bable	sensitive	periods	(e.g.	for	negative	social	feedback)	in	different	developmental	phases	

and	their	relation	to	intra-individual	changes	in	the	underlying	mechanisms.	

Second,	in	school,	children	and	adolescents	learn	directly	from	and	in	interaction	with	

their	 teachers	or	peers.	 In	our	 laboratory	setting,	however,	children	and	adolescents	 learn	

more	indirectly	(mainly	in	the	OL-task)	from	other	individuals	(young	adults	and	peers)	using	

computer-generated	information.	In	school,	social	information	is	mostly	given	via	instruction	

and	advice,	but	rarely	by	a	contingently	observation	of	other’s	behavior,	where	teachers	or	

peers	make	errors.	Thus,	a	generalization	of	our	findings	for	educational	practice	is	not	given	

yet.	If	we	want	to	understand	and	design	programs	to	enhance	learning	from,	for	instance,	

errors	 and	 negative	 feedback	 in	 children,	 we	 have	 to	 study	 social	 learning	 in	 classroom-

settings	with	more	real-world	designs	and	to	manipulate	factors	that	might	drive	learning	in	

school.	

For	instance,	whereas	educational	studies	suggest	that	errors	are	helpful	for	learning	

(see	Metcalfe,	2016	for	review),	developmental	neuroscience	studies	suggest	that	errors	and	

negative	 feedback	are	not	helpful	 for	 learning	 in	 children	 (see	Ferdinand	&	Kray,	2014	 for	

review).	Thus,	one	research	question	for	developmental	neuroscience	could	be,	how	child-

ren	 can	benefit	 from	 their	 errors	 in	 certain	more	 school-like	 contexts	 and	whether	 advice	

from	other’s	in	a	constructive	way	(e.g.	due	to	corrective	instead	of	negative	feedback)	can	

help	to	enhance	learning	in	children.	Importantly,	developmental	neuroscience	and	educati-

onal	science	can	profit	from	each	other:	Educational	science	can	provide	applicable	approa-

ches	 for	 learning	 in	 school,	whereas	developmental	neuroscience	can	provide	a	more	me-

chanistic	view	of	the	underlying	processes.	This	exchange	will	help	elucidating	questions	that	

arise	during	educational	practice,	which	developmental	neuroscience	might	answer.	

Taken	together,	social	 learning	has	been	studied	for	decades,	but	 it	has	rarely	been	

studied	across	development	and	with	 respect	 to	 its	underlying	mechanisms.	 In	 this	 thesis,	

we	outlined	 that	others’	experience	 influence	one’s	own	experience	differently	depending	
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on:	on	the	characteristics	of	 the	observed	other,	on	the	ability	 to	use	others’	 feedback	for	

learning	and	 the	ability	 to	use	others’	 advice	and	one’s	own	experience	 for	 learning.	How	

these	bits	of	information	are	weighted	against	each	other	seemed	to	be	scaled	by	age.	This	

thesis	provides	preliminary	steps	in	outlining	possible	mechanisms	underlying	social	learning	

across	development.	Future	studies	are	needed	to	gain	a	more	mechanistic	view	on	develo-

pmental	differences	in	social	learning.	This	will	help	to	design	interventions,	when	negative	

social	feedback	might	lead	to	mental	health	issues	or	if	we	want	to	enhance	learning	in	child-

ren	with	learning	difficulties.	
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AGE DIFFERENCES IN VICARIOUS LEARNING 	

Abstract 

Learning from vicarious experience is central for educational practice, but not well 

understood with respect to its ontogenetic development and underlying neural dynamics. In 

this age-comparative study we compared behavioral and electrophysiological markers of 

learning from vicarious and one’s own experience in children (age 8-10) and young adults. 

Behaviorally both groups benefitted from integrating vicarious experience into their own 

choices however, adults learned much faster from social information than children. The 

electrophysiological results show learning-related changes in the P300 to experienced and 

observed rewards in adults, but not in children, indicating that adults were more efficient in 

integrating observed and experienced information during learning. In comparison to adults, 

children showed an enhanced FRN for observed and experienced feedback, indicating that 

they focus more on valence information than adults. Taken together, children compared to 

adults seem to be less able to rapidly assess the informational value of observed and 

experienced feedback during learning and consequently up-regulate their response to both, 

observed and experienced (particularly negative) feedback. When transferring the current 

findings to an applied context, educational practice should strengthen children’s ability to use 

feedback information for learning and be particularly cautious with negative social feedback 

during supervised learning. 

 

Keywords: development, experience-based learning, observational learning, FRN/P300 & 

observational FRN/P300 
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Highlights 

• Adults benefit more from observed information during learning than children. 

• ERP: Children have problems in disengaging from observed and experienced feedback. 

• ERP: Adults are better in integrating observed and experienced information.  

• Educational practice should enhance children’s ability to use feedback for learning. 

• Educational practice should be cautious with the negative social feedback 



AGE DIFFERENCES IN VICARIOUS LEARNING 	

1. Introduction 

Learning through observation is a prerequisite for the acquisition of new behavior (Rendell et 

al., 2011) and central for educational practice (Groenendijk, 2013). Observational learning is 

particularly of interest from a developmental perspective because it may serve as an important 

mechanism for human cognitive and social-emotional development (Marshall et al., 2011; 

Meltzoff et al., 2012; Nielsen and Tomaselli, 2010). Compared to learning from own 

experience (Bos et al., 2012; Duijvenvoorde et al., 2008; Eppinger et al., 2009; Hämmerer et 

al., 2010), however, the underlying neural dynamics and their ontogenetic development are 

far less well understood. In the current study we therefore investigated developmental 

differences in experience-based and observational learning using an electrophysiological 

approach. 

Developmental studies on experience-based learning suggest that children in 

comparison to adults seem to have greater difficulties in extracting and using relevant 

feedback information for learning (Bos et al., 2012; Crone et al., 2004; Duijvenvoorde et al., 

2008; Eppinger et al., 2009; Hämmerer et al., 2010). Consistent with these findings, 

electrophysiological studies in children point to a reduced ability to disengage from negative 

feedback during learning as reflected in an enhanced medial prefrontal ERP component, the 

feedback-related negativity (FRN) (Eppinger et al., 2009; Hämmerer et al., 2010).	

Interestingly, the reverse pattern is observed for the later parietal P300 component, which has 

been associated with the updating of working memory	(WM) representations (Morgan et al., 

2008). The parietal P300 component tends to be reduced in children compared to adults, 

which has been interpreted in terms of developmental differences in working memory 

capacities (Polich et al., 1990)	

In adults, the two ERP components described in experience-based learning (FRN and 

P300) can also be observed during vicarious learning (referred to as observational FRN 



 AGE DIFFERENCES IN VICARIOUS LEARNING  

	

	

5	

(oFRN) and observational P300 (oP300), respectively; (Bellebaum et al., 2010; Rodriguez 

Buritica et al., 2016; Yu and Zhou, 2006). Developmental differences in these ERP 

components during observational learning have, however, just started to be investigated 

(Rodriguez Buritica et al., 2016). 

Here we examined whether children and younger adults differ in their abilities to learn 

from experienced and observed feedback information and whether these developmental 

differences in learning are associated with separable underlying neurophysiological 

mechanisms. To address these questions we used a probabilistic reward- based observational 

learning paradigm (Burke et al., 2010; Rodriguez Buritica et al., 2016) in combination with 

EEG in 8-10 year-old children and 20-30 year-old adults. The paradigm consists of two 

observational and an individual learning condition (see Figure 1B). In the two observational 

conditions we varied the amount of observable information: in the “action only” (A) 

condition, only the actions of the other player were observable; whereas, in the “action + 

outcome” (AO) condition, both the actions and the outcomes of the other player were 

presented. In the individual learning condition neither the actions nor the outcomes of the 

other player were observable (see Figure 1B). 

Based on prior work (Burke et al., 2010; Rodriguez Buritica et al., 2016), we predicted 

that learning performance should scale with the amount of observable information and that 

children should be impaired in learning compared to adults. Furthermore, we expected that 

learning impairments in children should be associated with a greater sensitivity to observed as 

well as experienced negative feedback, as reflected in enhanced medial prefrontal (FRN) 

activity (Ferdinand and Kray, 2014). Based on our own prior work, we predict that in children 

medial prefrontal brain responses to external feedback information should not be modulated 

by its relationship to one’s own action (Rodriguez Buritica et al., 2016). In contrast, in adults 
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medial prefrontal brain responses to external feedback information should vary with its 

relationship to one’s own action (Bellebaum et al., 2010; Yu and Zhou, 2006). Thus, the FRN 

and oFRN should not differ in amplitude in children, whereas in adults the oFRN should be 

reduced compared to the FRN.   

Based on previous results, suggesting that reward-based learning depends on WM 

abilities (Collins and Frank, 2012) and given several findings indicating that developmental 

differences in WM updating are reflected in the parietal P300 components (Polich et al., 1990; 

van Dinteren et al., 2014), we expected reduced P300 components during the processing 

observed and experienced feedback during learning in children compared to adults.  

2. Methods 

2.1. Participants 

The effective sample of the study consisted of 23 adults between 20-30 years of age (11 

female, mean age = 23.52, SD = 2.81) and 22 children between 8-10 years of age (10 female, 

mean age = 9.05, SD = .79). Data of one child were excluded from further analyses, due to 

technical problems during data collection. Data from another child had to be excluded 

because the individual ERP components of interest differed more than three standard 

deviations from the group mean. All participants were right-handed (Oldfield, 1971), had 

normal or corrected-to-normal vision and no neurological or psychological disorders. Prior to 

the experiment we obtained informed consent from the participants and their parents (in case 

of children). The study was approved by the Ethics Committee of the Max-Planck-Institute 

for Human Development, Berlin. Subjects participated in two experimental sessions: a 

behavioral group session (together with same-aged participants) in which we assessed 

psychometric covariate measures and an individual EEG session in which we assessed 

observational learning performance. The participants received a compensation of 14 Euro for 
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the first and 24 Euro for the second session. General cognitive abilities of the sample were 

assessed using several psychometric tests: I. Identical pictures test (Ekstrom et al., 1976) as a 

marker for cognitive speed; II. Raven's Progressive matrices (Raven and Court, 1998) for 

adults and the Colored Progressive Matrices (CPM;  Raven and Raven, 2002) for children as a 

measure of fluid intelligence; III. a modified version of the Spot-the-Word test (Lehrl, 2005; 

Lindenberger et al., 1993) as a marker for verbal knowledge; IV. a modified version of the 

spatial n-back task described in detail by Li et al. (2008) to investigate working memory 

(WM) capacity. Children had lower scores than adults on the Identical Pictures (children: M = 

20.32 (SD = 2.95), adults: M = 32.83 (SD = 3.63); F(1, 43) = 160.24, p < .001, ηp2 = .79), 

Spot-the-Word test (children: M = 2.09 (SD = 1.49), adults: M = 17.57 (SD = 6.77); F(1, 43) = 

100.55, p < .001, ηp2 = .7) and in proportion correct on the WM test (children: M = .64 (SD = 

.21), adults: M = .84 (SD = .08); F(1, 43) = 18.47, p < .001, ηp2 = .3). These age differences 

are consistent with previous findings from larger population-based lifespan samples (Li et al., 

2004). One-way analysis of variance (ANOVA) yielded no age differences in the normalized 

IQ scores, F(1, 43) = .72, p = .4, ηp2 = .02 (children: M = 63.23 (SD = 30.53), adults: M = 

70.61 (SD = 27.71)). 

2.2. Experimental Design and Procedure 

2.2.1. Design. The task involved three learning conditions: Individual Learning (IL), Action 

Only (A), and Action and Outcome (AO). As shown in Figure 1A, participants were asked to 

choose one of two abstract stimuli (generated with Vector Snowflake Application; (Windell, 

2008) that may result in a positive or negative feedback. Within each stimulus pair, one 

stimulus was associated with a high probability (80% rewards, 20% losses) and one 

associated with a low probability (20% rewards, 80% losses) of gaining points. In the two 

observational learning conditions (A and AO), prior to making their own choices, the 
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computer program presented the participants a picture of the face of a randomly chosen sex- 

and age-matched “model player” (i.e., another participant who took part in the same first 

group session of cognitive covariate assessments together with the to be tested participant). 

The participants were told that the other player had already performed the task and that they 

would observe recorded choices of this other player. In fact, however, the to be observed 

behavior was computer-generated (see Figure 1C; see Appendix A for further details). The 

participants were debriefed about the cover story after the experiment.   

  

Figure 1. Design. (A) Trial procedure. (B) Learning conditions. 1: Action + Outcome (AO), 2: Action 

Only (A), 3: Individual Learning (IL). (C) Computer simulated averaged learning curve for the two 

observational conditions. 

2.2.2. Trial procedure: As shown in Figure 1A, the participants first saw the picture and the 

name of the model player for 500 ms. They were told that if they pressed the response key 

within 2 seconds they could see the choices of the model player (to ensure that they paid 
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attention during the task). Then the model player’s choice was indicated using a colored 

frame (1 sec), which was followed by a fixation cross for 500 ms and the outcome (reward / 

loss of 10 Points) for 1 sec. The position of the stimuli was randomized across and within 

trials and blocks. The amount of information about the model behavior differed between the 

three different learning conditions: In the AO condition, full information about the choices 

and outcomes of the model players was provided (see Figure 1B). In the A condition, 

information about the choices of the model players was shown but not information about the 

associated choice outcomes (see Figure 1B). In the IL condition, no information about the 

model player’s choices and the outcomes was provided (see Figure 1B). At the end of each of 

the learning conditions was an action stage indicated by the picture of the participant 

(displayed for 500 ms) for the participant to take his or her own actions (within 2 sec) about 

the same pair of stimuli as in the prior learning condition. The timing of the action stage was 

identical to the prior learning condition. Each block included 10 trials per learning condition. 

Each condition was assigned to one stimulus pair (3 different pairs per block). The orders of 

the learning conditions were pseudo-randomized over each of the 12 blocks. 

2.3. Electrophysiological recording  

While the participants performed the task (controlled	 by	 using	 the	 psychtoolbox	 for	

Matlab;	 psychtoolbox, Brainard, 1997) EEG was recorded continuously (Brain Amp DC, 

BrainVision Recorder software) from 64 Ag/AgCl electrodes (American 

Electroencephalographic Society, 1994) in an elastic cap (Braincap, BrainVision). The 

sampling rate was 1000 Hz, with a bandpass filter (0.01 to 100 Hz) applied. EEG recordings 

were referenced online to the right mastoid. Vertical and horizontal eye movements were 

recorded from electrodes placed next to each eye and below the eye. Impedances were kept 

below 5 kΩ.  
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2.4. Data analysis 

2.4.1. Behavioral Data. Responses faster than 100 ms (children: 4.22 %, adults: .09%) and 

exceeding the response deadlines (2000 ms) in the action stage (children: 5.31 %, adults: 1.38 

%) were excluded from further analyses.  

2.4.2. EEG Data. The recorded data were re-referenced offline to averaged mastoids and 

further analyzed using BrainVision Analyzer software (Brain Products, Germany). The data 

were bandpass-filtered in a range of .01 to 20 Hz (according to suggestions of Luck, 2012) 

and segmented into epochs (200 to 700 ms) after feedback onset. Ocular artifacts were 

removed using a linear regression approach (Gratton et al., 1983). Additional artifacts were 

rejected based on a maximum admissible voltage step (50 µV), and by a maximum admissible 

difference between 2 values on a segment (200 µV). The data were baseline corrected (200 

ms pre-stimulus). For eight participants, the data from one to seven malfunctioning electrodes 

(AF7, AF8, FP1, FP2, FPz, FP2, F8, FT8, P1, P2, PO7, O1, O2, Oz) were replaced via 

spherical spline interpolation (Perrin et al., 1989). ERPs were averaged for each condition and 

each participant first, and then across participants. The FRN was determined in all three 

learning conditions. The oFRN was measured in the AO condition.  

As shown in Figure 3A & 6A FRN and oFRN peak latencies differed between age 

groups. To evaluate these effects we determined the peak latencies of FRN and oFRN for 

each individual and valence (reward, loss). We then used mixed-effects analysis of variances 

(ANOVA) with the between-subject factor age group (adults, children), and the within-

subject factors valence (reward, loss) to compare FRN and oFRN latencies statistically. The 

analyses revealed main effects of age group (p’s < .001, ηp
2’s >.3) for both components, but 

no main effects of valence (p’s > .1). To account for these group differences in peak latencies 
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we measured and analyzed the FRN and oFRN as mean amplitudes in 50 ms time windows 

centered on the peaks of the components (Reinhart and Woodman, 2014) at electrode FCz 

(adults: FRN: 248 to 298 ms & oFRN: 275 to 325 ms; children: FRN: 317 to 367 ms & 

oFRN: 327 to 377 ms).  

Similar to the FRN/oFRN, visual inspection of the EEG waveforms of the P300 and 

oP300 (see Figure 3B & 6B) suggested differences in peak latencies between groups and 

additionally between valences. To verify this we performed a latency analysis on the 

individual peaks latencies of P300 and oP300 using a mixed-effects analysis of variances 

(ANOVA) with the between-subject factor age group (adults, children), and the within-

subject factors valence (reward, loss).  The analyses showed main effects of age (p’s < .001, 

ηp
2’s >.3), and of valence (p’s < .01, ηp

2’s >.2) for both components. To account for the 

significantly different peaks for rewards and losses in the P300 and oP300 we adjusted the 

time windows accordingly. The components were measured and analyzed as mean amplitudes 

within an age -group and valence-specific 100 ms time window centered on the peaks of the 

components at electrode Pz (adults: P300: rewards: 309 to 409 ms & losses: 325 to 425 ms; 

oP300: rewards 313 to 413 & losses 366 to 466 ms; children: P300: rewards: 443 to 543 ms & 

losses 472 to 572 ms; oP300: rewards: 484 to 584 ms & losses 472 to 572 ms) (see Figure 3B 

und 6B). Difference waves were calculated by subtracting the ERPs following gains from 

those following losses.  

2.4.3. Statistical analyses. Statistical analyses were performed using SPSS (SPSS Inc., 

Chicago, IL). Accuracy (proportion correct) was averaged into two block halves (i.e., trials 1-

5 versus trials 6-10 for each learning condition, collapsed across 12 blocks) and was analyzed 

using a mixed-effects analysis of variances (ANOVA) with the between-subject factor age 

group (adults, children), and the within-subject factors learning condition [Action + Outcome 
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(AO), Action Only (A), Individual Learning (IL)] and block half [first (BH1), second (BH2)]. 

The accuracy data involved an average trial number of M = 54.16, SD = 3.53 trials per block 

half in children and M = 59.13, SD = 1.88 in adults.  

ERPs to experienced feedback (FRN, P3) were analyzed using a mixed-effects 

ANOVA with the between-subject factor age group (adults, children), and the within-subject 

factors learning condition (AO, A, IL), valence (reward, loss), and block half (first, second). 

ERPs with respect to observed feedback (AO condition) were investigated using a mixed-

effects ANOVA with the between-subjects factor age group (adults, children), and the within-

subjects factors valence (rewards, loss), block half (first, second). The ANOVA comparison 

between experienced and observed outcomes involved the additional factor agency (FRN, 

oFRN). For this comparison the FRN was averaged across the three learning conditions. 

Given that we were interested in valence-dependent learning effects in the ERPs rather than 

overall amplitude changes with learning, we focused the analyses of ERP components on 

interactions including the factor valence. To understand the resulting interactions separate 

ANOVAs and paired samples t-tests were conducted. Effect sizes (partial eta squared, ηp2) are 

reported, and Pearson’s r was computed for correlation analysis. The Greenhouse-Geisser 

correction for non-sphericity and Bonferroni-corrections were applied when necessary 

(Geisser and Greenhouse, 1958) and the corrected p-values are reported.  

3. Results 

3.1. Behavioral results 

3.1.1. Learning Effects. Both age groups benefited (in terms of accuracy) from integrating the 

observed information into their own choices (learning condition: F (2, 86) = 27.09, p < .001, 

ηp2 = .39). As shown in Figure 2, accuracy was greater in the AO than the other learning 
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conditions (two-tailed t test, p’s <. 001). However, accuracy did not differ significantly 

between the A and IL conditions (p > .1). 

Adults performed significantly better than children (age group: F (1, 43) = 28.94, 

p < .001, ηp
2 = .40) and, across conditions, showed greater learning effects (age group x block 

half: F(1, 43) = 15.42, p < .001, ηp
2 = .26). Most interestingly, we found a significant three-

way interaction between age group, learning condition and block half (F (2, 86) = 8.18, p < 

.001, ηp
2 = 0.16). Separate analyses for each age group showed that learning effects differed 

across conditions in adults, (p = .001, ηp
2 = 0.27), but not in children, (p = .14). As displayed 

in Figure 2 younger adults showed faster learning in the AO compared to the other two 

learning conditions. In contrast, children learned more gradually in the AO condition.  

 

Figure 2. Behavior. Learning & Condition Effects. Accuracy in proportion correct separately for age 

group and learning condition displayed per trial.  

 

3.2. ERPs to experienced feedback 

3.2.1. FRN. As shown in Figure 3A, across age groups, the FRN was significantly larger 

(more negative going) for losses than for rewards (valence: F(1, 43) = 22.45, p < .001, ηp
2 = 

.34), and across conditions, FRN amplitudes were larger for children than adults (age group: 

F (1, 43) = 43.86, p < .001, ηp
2 = .51). 
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Figure 3. ERPs experienced feedback. Grand averages shown for losses (red line) and rewards 

(blue line) for the (A) FRN displayed at FCz and the (B) P300 displayed at Pz separately for both age 

groups, as well as the learning related changes for losses and rewards separately for both block 

halves (BH1 and BH2). The topographic map displays the difference (black line) between losses and 

rewards for the FRN (within 50 ms) and P300 (within 200 ms). (C) Correlation effects. Scatter plots 

illustrating the correlation between difference score of proportion of correct choice (second – first block 

half) on the x-axis and the difference score of the mean P300 amplitude to rewards (second – first 

block half) on the y-axis separately for the two age groups. 
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3.2.2. Feedback-related P300. Across age groups, the analysis revealed main effects of 

learning condition F(2, 86) = 5.08, p = .008, ηp
2 = .11 and valence: F(1, 43) = 9.25, p = .004, 

ηp
2 = .18 as well as a significant learning condition by valence interaction in the P300, F(2, 

86) = 7.55, p < .001, ηp
2 = .15. Separate analyses for reward and loss trials showed a condition 

effect for both trial types (p = .002 ɛ = .93, ηp
2 = .13, for reward trials and p = .006, ηp

2 = .11, 

for loss trials). T-tests between conditions that were performed separately for the two valences 

show that the P300 to rewards decreases with increasing amount of observable information 

(two-tailed t test, AO – A + IL: p =. 004; A – IL: p =. 067), whereas as the P300 response to 

losses increases, two-tailed t test, AO – A + IL: p =. 045; A – IL: p =. 017. Thus, the P300 

difference between losses and rewards increased with the amount of information that could be 

used for learning (see Figure 4A). 

As shown in Figure 3B, the P300 was larger for adults compared to children (age 

group: F(1, 43) = 23.54, p < 0.001, ηp
2 = .35) and for losses compared to rewards (valence: 

F(1, 43) = 9.25, p = .004, ηp
2 = .18). Moreover, as for performance, we obtained a significant 

interaction between the factors age group, valence, and block half (F(1, 43) = 7.82, p = .008, 

ηp
2 = .15). Separate analyses for the factor valence revealed a significant interaction between 

block half and age group, (p =  .002, ηp
2 = .2) for rewards, but not for losses (p =  .37).  As 

shown in Figure 3B, comparisons between block halves revealed a decrease in the P300 to 

rewards as a function of learning in adults (two-tailed t test, p < .001), but not in children (p = 

.37).  
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Figure 4. P300 valence effects. (A) Amplitude difference for the P300 between losses and rewards 

separately for age group and learning condition. (B) Correlation effects. Scatter plots illustrating the 

correlation of proportion of correct choice on the x-axis and the mean P300 amplitude difference 

between losses and rewards on the y-axis separately for the two age groups. 

3.2.3.Correlation analyses. As shown in Figure 4B, in adults the P300 difference between 

losses and rewards correlated positively with accuracy in both age groups (adults: r(23) = .43,  

p = .04, children: r(22) = .6, p = .003). Thus, the more participants differentiate between 

outcomes in the P300 the better their performance. No such effects were observed for the 

FRN (p’s > .3). This result suggests that the P300 but not the FRN reflects the degree to 

which individuals update outcome predictions (see Figure 4B).  

Moreover, in adults learning effects in the P300 to rewards (amplitude difference 

between block halves) were positively correlated with behavioral learning effects (accuracy 

difference between block halves) (r(23) = -.45, p = .03) (see Figure 3C) and WM (r(23) = -

.42, p = .045) (Figure 5A). In children the correlations were not significant, neither for 
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behavioral learning effects (r(22) = .16, p = .47) nor for WM (r(22) = .23, p = .31). Fisher’s Z 

test showed that the correlation coefficients between both age groups were significantly 

different from each other (two-tailed test for behavioral learning: z = -1.91, p = .056 & WM: z 

= -2.22, p = .03). 

  

Figure 5. P300 learning effects. (A) Correlation effects. Scatter plots illustrating the correlation 

between difference score of proportion correct in the WM task on the x-axis and the difference score 

of the mean P300 amplitude to rewards (second – first block half) on the y-axis separately for the two 

age groups. (B) Moderation model of P300 learning effects. Working memory (WM) as a moderator for 

the relationship between learning and learning related changes in the P300 to rewards: a*b path 

predicted learning related changes in the P300 to rewards (neither the a path (learning as predictor) 

nor the b path (WM as predictor) reached significance). 

3.2.4. Moderator analysis. To investigate whether WM might moderate the relationship 

between learning and the P300 (Collins and Frank, 2012) we performed a linear regression 

separately for each age group. In this analysis learning effects in the P300 to rewards were the 

dependent variable, and behavioral learning and WM the independent variables. The results of 

this analysis showed that in adults neither behavioral learning nor WM separately predicted 
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changes in the P300 to rewards (p’s > .3). However, for the interaction between learning and 

WM we found a marginally significant moderation effect (learning * WM: β = -.56, p = .077; 

linear regression model: R2 = .41, F(3, 22) = 4.38, p =.02). In children no significant effects 

were obtained (p’s > .2). Thus in adults WM seems to moderate the relationship between 

learning and learning-related changes in the P300 to rewards, whereas no such effect was 

obtained in children (see Figure 5B). 

3.3. ERPs to observed feedback 

3.3.1. oFRN. As shown in Figure 6A we found significant main effects of age group and 

valence (p’s ≤.05, ηp
2’s > .08) as well as a significant age group by valence interaction, F(1, 

43) = 5.37, p = .03, ηp
2 = .11. The oFRN was larger for losses than rewards in children (t(21) = 

-3.22, p  = .004,) but not in adults, (p  = .57) (see Figure 6A). 

3.3.2. Feedback-related oP300. Similar to the P300 we found a significant interaction 

between the factors age group, valence, and block half (see Figure 6B) in the oP300 (F(1, 43) 

= 4.05, p = .05, ηp
2 = .09). Separate analyses for the factor valence showed a significant 

interaction between block half and age group, (p =  .015, ηp
2 = .13) for rewards, but not for 

losses (p =  .64). As shown in Figure 6B, comparisons between block halves revealed a 

decrease in the oP300 to rewards as a function of learning in adults (two-tailed t test, p = .05), 

but not in children (p = .09). No further main effects or interactions reached significance (p’s 

> .2).  
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Figure 6. ERPs observed feedback. Grand averages shown for losses (red line) and rewards (blue 

line) for the (A) oFRN displayed at FCz and the (B) oP300 displayed at Pz separately for both age 

groups, as well as the learning related changes for losses and rewards separately for both block 

halves (BH1 and BH2). The topographic map displays the difference (black line) between losses and 

rewards for the oFRN (within 50 ms) and oP300 (within 200 ms). (C) Correlation effects. Scatter plots 

illustrating the correlation between difference score of proportion of correct choice (second – first block 

half) on the x-axis and the difference score of the mean oP300 amplitude to rewards (second – first 

block half) on the y-axis separately for the two age groups. 
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3.3.3. Correlation analyses.	As shown in Figure 6C the learning effects in the oP300 to 

rewards (amplitude difference between block halves) were positively correlated with 

behavioral learning effects (accuracy difference between block halves) in the AO condition 

(r(23) = -.46, p = .03) in adults, but not in children (r(22) = .04, p = .85). For the oFRN no 

significant correlations were observed (p’s > .3). Similar to our findings in the P300 to 

experienced feedback this result suggests that the oP300 (but not the oFRN) reflects the 

degree to which individuals can use information from vicarious experience during learning to 

update feedback predictions (see Figure 6). Fisher’s Z test showed a marginally significant 

difference between the correlation coefficients of the two age groups (two-tailed test for 

behavioral learning: z = -1.67, p = .09). 

3.4. Comparison between ERPs to experienced versus observed feedback 

In a final analysis step we compared ERPs to experienced feedback (FRN, P300) and ERPs to 

observed feedback (oFRN, oP300). As previously reported we found significant main effects 

of valence (p’s ≤.001, ηp
2’s > .3), as well as main effects of age group and agency (p’s ≤.001, 

ηp
2’s > .3). For the P300/oP300, similar to the previously reported results, we found valence 

effects for the P300 (F(1, 44) = 52.65, p < .001, ηp
2 = .55), but not for the oP300 (F(1, 44) = 

.98, p = .33, ηp
2 = .02), indicated by an interaction between valence and agency (F(1, 43) = 

18.76, p < .001, ηp
2 = .3). Moreover, age group and agency interacted significantly for the 

FRN/oFRN, F(1, 43) = 4.89, p =  .03, ηp
2 = .1, and the P300/oP300, F(1, 43) = 24.46, p < 

.001, ηp
2 = .36 (see Figure 3 & 6). Separate analyses for the two age groups showed larger 

ERPs to experienced (FRN/P300) than observed (oFRN/oP300) feedback in adults (p’s  < 

.001), but not in children (p’s  >.2). These results indicate that adults were more sensitive to 

experienced than observed feedback, whereas children attribute similar weight to both types 

of feedback. 
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4. Discussion 

In this age-comparative study we used an observational learning paradigm (Burke et al., 2010; 

Rodriguez Buritica et al., 2016) to compare behavioral and electrophysiological markers of 

experience-based and observational learning in 8-10 year old children and younger adults. 

Although both age groups benefitted from information about the other’s actions and outcomes 

during learning, adults learned much faster from vicarious information (see Figure 2). The 

ERP results indicate that these age differences in observational learning are associated with a 

developmental shift in the processing of experienced and observed feedback during learning: 

children are less able than adults to disengage from processing the valence of experienced 

feedback during learning. This effect is further exaggerated when learning from observed 

information. In contrast, young adults are better able to disengage from valence processing 

during learning and are more efficient in integrating experienced and observed feedback 

information. 

4.1. Benefits of observing other’s feedback for learning  

In line with previous developmental studies (Bos et al., 2012; Crone et al., 2004; 

Duijvenvoorde et al., 2008; Eppinger et al., 2009; Hämmerer et al., 2010), adults performed 

better than children and showed more learning than children across all conditions (see also 

Figure 2). As hypothesized, both age groups benefited from observing the actions and 

outcomes of the other player (in the AO condition) (Burke et al., 2010; Rodriguez Buritica et 

al., 2016). However, this effect was exaggerated in younger adults, who showed rapid 

learning in the AO condition, whereas children learned more gradually from the observed 

information. In line with recent findings on developmental differences in behavioral learning 

strategies (Decker et al., 2016), children might be less able to use the additional information 

of the other player  (particularly in the AO condition) to form and test hypotheses about their 
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own outcomes. Previous studies refer to this type of learning as goal-directed or model-based 

learning (Eppinger et al., 2013; Otto et al., 2013) and the findings by Decker and colleagues 

suggest that the ability to use such a learning strategy emerges around adolescence (see also 

Li and Eppinger, 2016). One cognitive ability that has been linked to model-based learning is 

WM capacity (Eppinger et al., 2013; Otto et al., 2013). In relating these findings to the current 

results it could be that developmental differences in WM functions (Fry and Hale, 1996; 

Kwon et al., 2002) are one of the primary sources of the developmental differences in 

observational learning. Future studies should address this hypothesis more directly and should 

also try to clarify whether age differences in the ability to integrate social information during 

learning relate to processes involved in model-based learning.  

4.2. ERPs to experienced feedback  

4.2.1. FRN. In line with previous developmental findings we observed a larger FRN for losses 

compared to rewards and for children compared to adults (see Figure 3A), suggesting that 

children react more strongly to the valence of external feedback than adults (Eppinger et al., 

2009; Hämmerer et al., 2010). However, we found no evidence for valence by condition or 

age by condition interactions in the FRN. This corroborates several previous results indicating 

that the feedback negativity reflects a rapid and relatively coarse evaluation of events along a 

valence (good vs. bad) dimension (Eppinger et al., 2008; Hajcak et al., 2006; Hämmerer et al., 

2010). 

4.2.2. P300. In contrast to the FRN, the P300 valence effects varied as a function of learning 

condition (Rodriguez Buritica et al., 2016). As shown in Figure 4A across age groups the 

P300 difference between losses and rewards was larger in the AO compared to the other 

learning conditions. Thus, the P300 reward effect increases with increasing amount of 

observable information. We think that this might reflect the fact that with better performance 
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the probability of positive feedback increases whereas the likelihood of negative feedback 

decreases. That is, rewards may be experienced as more expected whereas negative outcomes 

may be experienced as more surprising (Mars et al., 2008; Neville et al., 1986). Consistent 

with this interpretation the P300 differentiation between losses and rewards correlated with 

behavioral performance (see Figure 4B). That is, the more subjects expect themselves to be 

correct, the greater the P300 for losses and the smaller the P300 for rewards.  

Our P300 results also point to specific developmental differences: In line with prior 

research (Polich et al., 1990; van Dinteren et al., 2014), adults showed a larger P300 than 

children (see Figure 3B). Moreover, the P300 to rewards decreased as a function of learning 

in adults but not in children and this learning-related decrease in the P300 correlated with 

behavioral learning effects as well as working memory capacity (WM). Together, these 

findings suggest that the P300 in adults may reflect the updating of reward predictions 

(Philiastides et al., 2010; Wu and Zhou, 2009) and that this effect is sensitive to	 individual	

differences	 in	 WM	 (Gevins	 and	 Smith,	 2000;	 Nittono	 et	 al.,	 1999).	 In line with this 

interpretation, results of a regression analysis suggest that in younger adults WM capacity 

may moderate the relationship between behavioral learning effects and learning-related 

changes in the P300 (see Figure 5B). In contrast no such effect is observed in children. These 

findings are consistent with prior research showing that the P300 rather than the FRN 

correlates with reward prediction errors generated during reinforcement learning (Fischer and 

Ullsperger, 2013; Ullsperger et al., 2014) and that reward-based learning depends on WM 

abilities (Collins and Frank, 2012). Thus, our electrophysiological findings suggest that WM 

abilities might be a limiting factor for reward-based (probabilistic) learning in children 

compared to adults. 
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Taken together, the current results suggest that the P300 reflects the degree to which 

individuals can use information from own and observed experience to update outcome 

predictions (Fischer and Ullsperger, 2013; Ullsperger et al., 2014). However, there are also 

alternative accounts suggesting that the P300 may reflect context updating (Donchin, 1981). 

One way of combining these views would be to assume that the P300 may reflect the 

computational mechanisms that determine the degree to which behavior should be updated 

based on a given prediction error (i.e. areas involved in determining the rate of learning) and 

that this process may in part depend on WM capacity (Nassar et al., 2016). According to such 

an interpretation the absence of this effect in children may reflect difficulties in determining 

(or adjusting) the optimal rate of learning in a given environment (McGuire et al., 2014; 

Nassar et al., 2012) as well as developmental differences in WM functions (Fry and Hale, 

1996; Kwon et al., 2002). On a more general level such an interpretation suggests that 

developmental differences in learning may not be the consequence of differences in prediction 

error signaling per se (Cohen et al., 2010; Hauser et al., 2015) but rather in determining how 

much to learn from a given prediction error (van den Bos et al., 2012; McGuire et al., 2014).  

4.3. ERPs to observed feedback 

4.3.1. oFRN. Children showed a larger oFRN than adults when observing the outcomes of 

others’ actions, confirming previous results that children are generally more susceptible to 

external (experienced or observed) negative feedback information during learning than adults 

(van den Bos et al., 2012; Crone et al., 2004; Duijvenvoorde et al., 2008; Eppinger et al., 

2009; Ferdinand and Kray, 2014; Hämmerer et al., 2010; Rodriguez Buritica et al., 2016). In 

adults, we found no significant differentiation between losses and rewards in the oFRN, 

indicating that the valence information of observed feedback is less salient for them (see 

Figure 6A). One interpretation of these findings is that children are less able to rapidly assess 
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the information value of feedback (that is, how much the feedback should guide learning). As 

a consequence they up-regulate their response to negative feedback, independently of who 

receives the feedback. In contrast, the younger adults may use the observed feedback in a 

more goal-directed manner and focus less on the valence information.  

4.3.2. oP300. Similar to the findings in the P300 to experienced outcomes, in adults but not in 

children the P300 to observed rewards decreased with learning (see Figure 6B). Moreover and 

similar to the findings in the P300 to experienced outcomes, in adults but not in children the 

oP300 valence effect was positively related to learning effects in the AO condition (see Figure 

6C). Thus, consistent with the interpretation for the P300 to experienced outcomes our results 

suggest that adults are able to use the observed information to update reward predictions. In 

contrast, children seem to be stuck in processing the valence of the observed outcomes but are 

unable to determine how much they should learn from this information. 

4.3.3. Comparison of ERPs & oERPs. Children’s ERP responses to observed outcomes were 

similar in magnitude to their ERPs to experienced feedback (see Figure 3 & 6). In adults the 

ERPs to observed outcomes were overall significantly smaller than the ERPs to experienced 

feedback (Bellebaum et al., 2010). This finding is consistent with the general notion that 

children compared to adults are more susceptible to external (and especially to negative) 

feedback information during learning than adults (Eppinger et al., 2009; Ferdinand and Kray, 

2014; Hämmerer et al., 2010). Moreover, it extends this notion by suggesting that this greater 

sensitivity to negative feedback in children is also found when they observe feedback that 

other individuals receive (Rodriguez Buritica et al., 2016).  

Taken together, our findings suggest that children in the age of 8 to 10 years do not yet 

appropriately assess the information value of feedback (that is, how much it should guide 

learning) and thus are less efficient in integrating  (particularly negative) outcomes into their 
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behavioral strategies than adults (van den Bos et al., 2012; Eppinger et al., 2009; Hämmerer et 

al., 2010; Rodriguez Buritica et al., 2016). As a consequence, they might generally up-

regulate their response to external negative feedback, independently of who receives the 

feedback. When transferring the current findings to an applied context one tempting 

interpretation of our results is that educational intervention programs designed to enhance 

learning in children should focus on their ability to use experienced feedback for learning and 

should be particularly cautious with using negative social feedback. Thus, at least in the age 

range between 8 and 10 years, supervised learning may be less effective than its prevalence in 

education may suggest. 

5. Conclusion 

Our results indicate a developmental shift in the processing of experienced and observed 

feedback during learning: Although both age groups benefitted from observational 

information during learning, adults learned much faster compared to children. Our 

electrophysiological results suggest that adults are more efficient in using the additional 

information in the fully observational (AO) condition, which is in line with their accelerated 

learning effects in this condition. Children also benefit from the observational information, 

but rely more on external (particularly negative) feedback (oFRN) during learning than adults. 

Thus, their behavior seems to be driven more by the valence of the observed feedback rather 

than the information content of the feedback. These developmental differences may reflect a 

more general developmental trend in the ability to use observed and experienced feedback for 

goal-directed learning. According to our findings, educational practice should enhance 

children’s ability to use experienced feedback for learning and be particularly cautious with 

negative social feedback during supervised learning. 
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SUPPLEMENTARY INFORMATION 

Model-generated choices of “model players” 

The choices of the “model players” presented to the participants were generated using a Q 

learning algorithm (Burke et al., 2010; Sutton and Barto, 1998). Specifically, after a reward r, 

the value Q of action a in the next trial was calculated according to the delta updating rule:  

 

where α is the learning rate, r(t) the reward obtained after performing action a and t indexes 

the current trial. The probability of performing action a was computed using a softmax 

function (O’Doherty, 2004). 

 

where P(a) is the probability of choosing action a, A is the set of all possible actions and β is 

the temperature parameter that controls the competition between possible choices. The 

computer-controlled behavior of the model players was associated with the same percentage 

of probabilistic positive or negative outcomes (80% gains for the good, 20% for the bad 

choice), like the participants experienced during the individual learning conditions. To ensure 

comparability between conditions (see Figure 1C), the mean of the rewards obtained by the 

model were constrained to small deviations from each condition’s true mean with a 2.5% 

maximum deviation (between 77.5% and 82.5% upon choosing the good option and between 

17.5% and 22.5% upon choosing the bad option). The Q-values were set to zero at the 

P (a) =
eQa(t)/�

P
c2A eQc(t)/�

Qa(t+ 1) = Qa(t) + ↵ [r(t)�Qa(t)]
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beginning of the task and continuously updated on subsequent trials. The β and α parameters 

were estimated based on data of 30 subjects (acquired in a prior pilot testing) from 105-

simulated runs with the same model.  
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Abstract 

Advice taking helps to quickly acquire knowledge and make decisions. After 

the initial advice, however, one may start gathering first hand experience and explore 

alternatives. Across development, advice seems to be weighted differently against own 

experience. To capture developmental differences in how advice, experience and 

exploration influence learning, we used a 4-armed bandit task including an initial good 

peer advice in 8-10, 13-15 and 18-22-year olds. We show that although adolescents are 

highly sensitive to peer advice, they are also more exploratory like children. Whereas 

adults stayed with the advice over the task, only adolescents explored another good 

alternative. Our social learning model resolved the apparently conflicting findings of 

adolescents being either more or less sensitive to peer influence. Here we show that 

adolescents are indeed initially easily swayed to follow peer advice, but also faster 

exploring alternatives and put more weight on own experience compared to adults. 

 

Keywords: development, advice-taking, social reinforcement learning, learning from 

experience, exploration, decision making  
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1. Introduction 

When faced with uncertain situations, advice taking helps us to quickly acquire 

knowledge during learning and decision making (Biele, Rieskamp, Krugel, & 

Heekeren, 2011). After the initial advice one may start gathering first hand experience. 

For instance, when trying a new restaurant, you will decide to order the dish 

recommended by a friend who went there before. However, after a while you may 

wonder about the other dishes, particularly if the advised one is not so spectacular, and 

explore more of the menu. These new experiences may confirm that the friends’ advice 

was good or not.  

The integration of social information, such as advice, is very relevant from a 

developmental perspective given that it represents an important source for cognitive 

and socio-emotional development (Meltzoff, Waismeyer, & Gopnik, 2012; Nielsen & 

Tomaselli, 2010). Especially during adolescence social information becomes 

increasingly influential on learning and decision-making processes (Blakemore & 

Mills, 2014; Jones et al., 2014). This greater sensitivity to peer advice can have negative 

effects, as in the case of peer influence on risk-taking (Chein, Albert, O’Brien, Uckert, 

& Steinberg, 2011; Steinberg, 2008). But it may also have positive effects, for example 

a recent study showed that one’s own experience during learning may overrule (bad) 

advice (i.e. for a specific choice option within a learning task) faster in adolescents 

compared to adults. (Decker, Lourenco, Doll, & Hartley, 2015). This may be 

advantageous when the social information was of low quality. Indeed, Decker and 

colleagues (2015) reported that inaccurate task instructions influenced adults more than 

younger age groups. On the other hand, learning from experience also shows significant 

developmental differences: For instance, children and adolescents may not learn to 

select optimal choice options due to their sensitivity to negative feedback (van den Bos, 
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Cohen, Kahnt, & Crone, 2012; van Duijvenvoorde, Zanolie, Rombouts, Raijmakers, & 

Crone, 2008). Importantly, this relative sensitivity to negative feedback of younger age 

groups may also contribute to developmental differences in responses to bad advice.  

In sum, recent studies have started to outline developmental differences in social 

influence (Lourenco et al., 2015; Monahan, Steinberg, & Cauffman, 2009; Steinberg, 

2008; Steinberg & Monahan, 2007; Sumter, Bokhorst, Steinberg, & Westenberg, 

2009). These studies suggest that there are important developmental differences in how 

advice and experience are weighted during learning and raised important questions: For 

instance, some of these studies suggest adolescents are most sensitive to advice (e.g. 

Steinberg & Monahan, 2007), whereas others suggest they are more sensitive to 

experience (e.g. Decker et al., 2015).  In addition, developmental changes in using 

inaccurate social information can be due to differences in weighing advice and/or the 

negative feedback associated with following that advice. To resolve some of these 

outstanding issues we use a task where participants are provided with good advice 

(Biele, Rieskamp, & Gonzalez, 2009), in combination with computational modeling. 

The latter allows us to separate the effects of advice and feedback valence on learning. 

In addition, the model allows us to measure the short- vs. long-term effects of advice 

on behavior.  

In the current study we used a reinforcement-learning task (modified after Biele et 

al., 2011), where participants had to choose one out of four card decks, which were 

associated with gains and losses (see Figure 1 & S1). Participants should gain as much 

points as possible by choosing more beneficial decks (associated with higher expected 

values). Unbeknownst to the participants, two of the four decks were associated with 

higher expected positive values (“good decks”) than the other two (“bad decks”). At 

the beginning of the experiment participants received a good advice. Crucially, only 
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one of the “good decks” was advised (see Methods for further details). Thus, the 

preference for the advised deck over the other good deck is a straight forward indicator 

for the effect of advice. 

Based on previous work (Biele et al., 2011), we predicted that all age groups should 

benefit from advice taking during learning. Adolescents, however, should show the 

strongest sensitivity to peer influence (see van Hoorn, van Dijk, Meuwese, Rieffe, & 

Crone, 2016 for review), at least in the beginning of the task before learning by 

experience takes over (Decker et al., 2015). Throughout learning children and 

adolescents should show more exploration than adults (Decker et al., 2015). As a result, 

the two younger groups should more often discover that there is another (equally) good 

deck in the experiment. Children, should encounter the other positive deck less often 

than adolescents due to their greater difficulties to use negative feedback for leaning 

(van Duijvenvoorde et al., 2008). Reinforcement learning (RL) models can capture 

these developmental differences during learning (van den Bos, Cohen, Kahnt, & Crone, 

2012) and have been useful to further describe also social learning mechanisms during 

advice taking in adults (Behrens, Hunt, & Rushworth, 2009; Biele et al., 2009). 

Previous studies with adults (Biele et al., 2009, 2011) using RL models suggest that the 

advised option is associated with a bonus when choosing it, which has a long term 

positive effect on the valuation of that option. Furthermore, these studies suggest that 

advice may lead to a higher initial propensity for one of the decks, which has a short-

term effect and then changes quickly based on experience. Here we apply and extend 

these models to further capture developmental differences in how advice, experience 

and exploration influence learning and decision making. These techniques enable us to 

get a more mechanistic understanding of developmental dynamics of social influence 

(van den Bos & Eppinger, 2016). 
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2. Methods 

2.1. Participants 

The effective sample (see supplemental for justification of sample size) of the study 

consisted of 25 adults between 18-22 years of age (13 female, mean age = 20.32, SD = 

1.15), 24 adolescents between 13-15 years of age (12 female, mean age = 13.71, SD = 

.75), and 24 children between 8-10 years of age (10 female, mean age = 9.08, SD = 

.83). Data of one adult were excluded due to techniqual problems during data collection 

and data of one adolescent were excluded from further analyses due to many missing 

responses (2 SD from the group mean). All participants had normal or corrected-to-

normal vision and no neurological or psychological disorders. Prior to the experiment 

we obtained informed consent from the participants and their parents (in case of 

children). The study was approved by the Ethics Committee of the Max-Planck-

Institute for Human Development, Berlin. 

Subjects participated in one behavioral group session (together with same-aged 

participants) in which we assessed psychometric covariate measures and performance 

in the advice task. Participants received a compensation of 15 Euro.  

General cognitive abilites of the sample were described using I. Numbers task (Gold, 

Carpenter, Randolph, Goldberg, & Weinberger, 1997) as a marker for working memory 

(WM) and II. a short version oft the CFT (Weiß, 2006) as a marker for fluid intelligence. 

Children had lower WM scores compared to adolescents and adults [children: M = 7.52 

(SD = 1.71); adolescents: M = 10.23 (SD = 1.71); adults: M = 10.66 (SD = 2.18); F(2, 

70) = 19.77, p < .001, ηp2 = .36)], wheras adolescents and adults did not differ in their 

WM scores (t(48) = .87, p = .39). Fluid intelligence scores increased with age 

[(children: M = 9.56 (SD = 2.68), adolescents: M = 12.29 (SD = 2.25), adults: M = 13.48 
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(SD = 1.48); F(2, 70) = 20.57, p < .001, ηp2 = .37)]. These age differences are consitent 

with findings from larger population-based lifespan samples (Li et al., 2004). 

 

2.2. Experimental Desgin 

In the learning task (modified after Biele et al., 2011 and programmed in PsychoPy; 

Peirce, 2007) participants were asked to choose one out of four card decks (see Figure 

1). The goal of the task was to maximize cumultative rewards. Participants could select 

on card deck within a maximal response time window of 4 sec and received feedback 

(displayed for 1 sec) afterwards. After a short fixation cross (displayed for 1 sec) a new 

trial out of a total of 210 trials started. Unbeknownst to the participants, the four decks 

constisted of two more beneficial „good“ decks and two less beneficial „bad“ decks 

(see Figure 1B). Prior to the experiment participants recieved once an advice for one of 

the good decks at the beginning of the task (see Figure 1A). Thus, the preference for 

the advised deck over the other good deck, would be a clear indicatior for advice taking. 

Participants were told that another peer (out of a previous session) gave an adivce after 

he/she played the task. Unbeknownst to the participants the advice was controlled by 

the experimenter and was always a good advice. Participants were debriefed about the 

cover story after the experiment. 
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Figure 1. Experimental design. (A) Participants received advice prior they were asked to play a 4-armed 

bandit task. Every trial started with the presentation of 4 card decks, where one should be selected within 

max. 4 seconds. Afterward the associated feedback was presented. Before a new trial started a fixation, 

cross was displayed for 1 second. (B) Payoff Distribution separately for the good and the bad decks. 

 

Furthermore, to investigate the effect of advice following on positive and 

negative feedback, each card deck (good and bad) was associated with 50% losses and 

50% gains, although the bad decks were associated with higher losses and slightly 

higher gains than the good decks (see Figure 1B). Overall, the expected value of the 

good decks was on average 10, whereas the bad decks had an expected value of 2.5 on 

average. 

 

2.3. Data analysis 

Statistical analyses were performed using R. Responses exceeding the response 

deadline (4 sec) were excluded from further analyses [children: M = 7.42 trials (SD = 
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8.05), adolescents: M = 6.83 trials (SD = 7.56), adults: M = 4.24 trials (SD = 5.09)]. 

Importantly, the three age groups did not differ from each other in terms of missing 

responses (F(2, 70) = 1.439, p = .24, ηp2 = .04).  

Choice behavior was analyzed separately for each deck [Advised Deck (AD), 

Other Good Deck (GD), Bad Decks (BD)] using logistic regression with the 

independent predictors of age group (linear trend; adults, adolescents, children), of age 

group 2 (quadratic trend; adults, adolescents, children), trial (1:210, z-transformed), and 

their interactions. General cognitive abilities were analyzed using univariate ANOVAs 

and independent samples t-tests. Effect sizes (partial eta squared, ηp2) are reported. 

 

2.4. Modeling Social Influence 

To further investigate the processes underlying the influence of advice on feedback-

based learning in the N-armed bandit task, we fit reinforcement learning (RL) models 

to each participant’s behavioral data (Sutton & Barto, 1998). These models have been 

successfully applied to describe the behavior of teenagers and children (Lourenco et al., 

2015; van den Bos et al., 2012), as well as describing the influence of advice (Biele et 

al., 2009, 2011). The basic RL model uses the prediction error to update the beliefs 

associated with each choice option (e.g. Deck A, B, C, or D). The prediction error (δt) 

compares the current outcome (rt) with the predicted outcome (wt): 

𝛿" = 𝑟" − 𝑤"(chosen_stimulus) 

 Whenever feedback is better (worse) than expected, the model will generate a positive 

(negative) prediction error, which is used to increase (decrease) the predicted value 

(decision weight, (wt)) associated with the chosen option. The impact of the prediction 

errors on forming new beliefs is scaled by the learning rate (0<a<1): 

𝑤(𝑖)"67 = 𝑤(𝑖)" + 		α	. 𝛿" 
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A high learning rate indicates that new information has a much stronger impact on 

future behavior than less recent information.  

To model trial-by-trial choices, we used the soft-max choice rule to compute 

the probability (P) of choosing one of the decks based upon one’s own predictions about 

the outcomes of all decks on trial t (Montague, Hyman, & Cohen, 2004): 

𝑃(𝑖)" =
𝑒(>∙@(A)B)	

∑ 𝑒(>∙@(D)B)E
DF7

 

where the q parameter is a free parameter that indicates the sensitivity of the subject to 

the differences in decision-weights. The lower the q parameter, the more exploratory 

the choices appear. To test various models of social influence on these basic learning 

processes we tested and compared several learning models.  

 

Social Influence RL models. To investigate the influence of advice on learning, 

we first compared how an  “outcome-bonus” model, a “prior” model, and a combined 

“prior & outcome-bonus” model described participants' choices (Biele et al., 2011). 

The bonus model differs from the standard RL model by assuming that there is a 

constant bonus associated with choosing the recommended option. Accordingly, the 

updating rule was modified such that: 

𝑤(𝑖)"67 = 𝑤(𝑖)" + 	α	. (𝑟𝑡 +	 (λ(𝑖). β	. µ) +	−𝑤𝑡(chosen_stimulus)) 

where l(i) is an indicator function that takes the value 1 if option i is recommended and 

the value 0 if option i is not recommended. The βb parameter captures the extent to 

which social influence leads to an outcome bonus (0<β<∞), and μ is the expected 

payoff from choosing randomly among all options (6.25). 

 The simple “prior” model assumes that the recommendation sets an initial 

strong positive prior for the recommended deck but has no further influence on choices. 
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The initial reward expectation in the prior model is defined as: 

𝑤(𝑟𝑒𝑐𝑜𝑚𝑚𝑒𝑛𝑑𝑒𝑑)7 = βP	. µ 

 where βp captures the social influence on the prior expectations and μ is the expected 

payoff from choosing randomly among all options (6.25). Finally, the combined 

“prior+bonus” model assumes people have an increased prior βP for the recommended 

deck, and the recommendation is also associated with a constant bonus βb.  

Next, based on previous developmental studies we expected that gains and 

losses are asymmetrically updated (Kahnt et al., 2009; van den Bos et al., 2012) thus 

we extended all the social influence models with two independent learning rates instead 

of one, i.e. one learning rate for positive feedback (αpos) and one for negative feedback 

(αneg). Finally, we tested versions of the social influence models that assumed that the 

outcome bonus associated with the recommended option would decline over time. To 

model this waning influence of advice over time we modulated the bonus parameter:	 

𝑤(𝑖)"67 = (βQ	. µ). R
7
"
S
T
+	𝛿") 

where 𝜋 is the free parameter that captures how quickly the effect of influence decays, 

with smaller values indicating less decline (0 < 𝜋< ∞). 

Note that for all models except the models with a prior, the decision weight (w) 

for each option was always set to 0 at the beginning of the experiment. This reflects the 

assumptions that the participants had the same expectation of rewards for each option 

at the beginning. In addition, following Biele and colleagues (2009; 2011), all models 

assume that participants who received advice will always choose the recommended 

option in their first trial. This is implemented by setting probability of choosing the 

recommended deck at 100% for the first trial.  

Model Fitting Procedure. The learning rates and sensitivity parameter were 

individually estimated by fitting the model predictions to participants’ decisions. We 
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used a robust combination of grid-search and maximum likelihood estimation using the 

Nelder–Mead simplex algorithm implemented in the optim function in R to estimate 

the model parameters for each participant. For each point on the grid the log likelihood 

of corresponding parameter setting was estimated. The five grid points that produced 

the maximum over all starting positions were selected as starting point for finding the 

final solution using minimization. For model selection purposes we computed the 

Bayesian information criterion (BIC), where lower BIC values indicate better fit (see 

Figure 3A). 

 

3. Results 

3.1. Choice behavior 

Choice behavior was analyzed separately for each deck [Advised Deck (AD), Other 

Good Deck (GD), Bad Decks (BD)] using a logistic regression with the independent 

predictors of age group (linear trend; children, adolescents, adults), of age group 2 

(quadratic trend; children, adolescents, adults), trial (1:210, z-transformed), and their 

interactions.  

Advised Deck. The advised deck was chosen more often with increasing age 

(Age: b1 = 0.06, SD = .01, t = 8.30, p < .001; see Table S1 & Figure 2). With more time 

of sampling the advised deck was selected less often in adolescents (see Figure 2) 

compared to the other two age groups (Age2	*	Trial: b5 = -0.01, SD = .004, t = -3.24, p 

= .001;	see	supplemental	Table	S1). Other Good Deck. As can be seen in Figure 2 

adolescents chose the other good deck more often compared to the other two age groups 

(Age2: b2 = 0.04, SD = .006, t = 6.04, p < .001; see Table 2) and with more time of 

sampling (Age2 * Trial: b5 = 0.04, SD = .01, t = 6.04, p < .001; see supplemental Table 

S2 & Figure 2). Bad Decks. Bad Decks were selected less often with increasing age 
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(Age: b1 = - 0.04, SD = .007, t = -6.34, p < .001; see Table S3) and by adolescents 

compared to adults and children (Age2: b2 = -0.05, SD = .007, t = - 6.79, p < .001; see 

supplemental Table S3 & Figure 2).  

 

 

Figure 2. Choice Behavior for the Advised Deck, Other Good Deck and Bad Decks (collapsed over the 

two bad decks). Proportion chosen separately for bin (of 5 trials each) and age group. 

 

 Expected Value. Finally, we ran a logistic regression where we analyzed the 

expected value (EV) of each choice per trial (i.e., EVadvised = 10, EVgood_alternative = 10 

and EVbad_alternatives = 2.5) with the independent predictors of age group (linear trend; 

adults, adolescents, children), of age group 2 (quadratic trend; adults, adolescents, 

children), trial (1:210, z-transformed), and their interactions. Interestingly, the expected 

value was higher with increasing age (Age: b1 =  0.33, SD = .054, t = 6.34, p < .001; 

see Table 4) and for adolescents compared to adults and children (Age2: b1 =  0.36, SD 

= .053, t = 6.79, p < .001). No further interactions with the variable trial reached 

significance (p’s >.325) 
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3.2. Modeling Social Influence 

The model comparison yielded several important findings. First, as expected, the model 

comparisons show that all social models are better than the baseline RL learning model. 

Second, consistent with previous findings (Bos et al., 2012), the dual learning rate 

models are generally better at capturing behavior than the single learning rate models. 

Third, the decay parameter does not improve model fit. Finally, social influence is best 

described by two separate (uncorrelated, rpearson =. 01, p = .99) processes: (1) an 

increased prior, and (2) a constant bonus for the recommended option. For further 

quality control we have simulated the behavior of the “prior + bonus, dual RL” model 

(see supplemental and Figure S2). For each age group we simulated 100 agents using 

the medians of the parameter fits for that group. The results of these simulations 

indicate that the model is adequately able to capture the qualitative difference in 

learning behavior seen in each age group (e.g. the initial peak in adolescence; see 

supplemental Figure S2). Finally, Kolmogorov-Smirnov tests indicated that the 

distributions of all of the model parameters deviate significantly from a normal 

distribution (all p’s < .001). For subsequent analyses all parameters were transformed 

to approximate normality via the Box-Cox transformation.  

Parameter Estimates – Prior + Bonus dual RL. To better understand the 

processes that underlie age difference in task behavior we further investigated age 

differences in parameter estimates (see Supplement, Table S4). We did not find any 

significant age trend for the learning rate associated with gains (awin), but in line with 

previous studies (Bos et al., 2012) we found that the children had a higher learning rate 

for negative outcomes compared to adolescents and adults (aloss : bemerging= .28, t = 2.08, 

p = 0.041), indicating they are most sensitive to negative feedback (see Figure 3B). In 

addition, there was a significant linear increase in the temperature function (q :  blinear= 
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.05, t = 3.03, p = 0.003), indicating that the older participants behaved less exploratory 

than the younger participants. With regards to social influence we found that the prior, 

but not the bonus, was showing age related differences. More specifically, adolescents’ 

prior expectation based on recommendation was significantly larger than that of both 

children and adults (bp : bquadratic = .14, t = 2.3, p = 0.025). 

 

Figure 3. (A) BIC’s for model comparison. The relative difference in BIC values for each model compared 

to the model with the lowest over BIC value. The Bayes factor for comparing the best (lowest BIC) and 

second best model is 6494, which indicates the best fitting model is very strongly favored over all other 

models tested. Note that this model also is the winning model if we perform these comparisons on the 

level of age groups separately. (B) Parameter estimates for the prior + bonus dual RL model. Estimates 

separately for the three age groups and the two learning rates (alpha_gain, alpha_loss), temperature, 

prior and bonus. 
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specifically advantageous in the environment where there was a better alternative 

present.  

 

Figure 4. Simulated data using the best fitting model and the median parameter values for each group. 

The simulations are the result of 100 iterations and 210 trials. Shaded areas represent standard error. (A) 

Simulation: Better alternative. Simulations in context of when the other good deck was better than the 

advised deck (EVadvised = 10; EValternative= 12.5) the blue line represents choices from the advised deck, 

red line represents the better alternative. Total payoff per age group for better alternative. Payoff is 

calculated by multiplying the % of choices per deck times the expected value (times number of trials 

(N=210)). When there is a better alternative adolescents have a slight advantage over the adults. (B) 

Simulation: Worse alternative. Simulations in which the advised deck was better than all other decks. 

Again, the blue line is the advised deck (EVadvised = 10), red line represents the worse alternative 

(EValternative= 7.5). Total payoff per age group for worse alternative. Payoff is calculated by multiplying the 

% of choices per deck times the expected value (times number of trials (N=210)).  

 

Indeed, as expected the simulations indicate that the adolescents are quicker at 

switching from the recommended to the optimal deck (see Figure 4A). However, this 

was not the case when the alternative was worse (see Figure 4B). In that case the 

exploratory behavior of the children and adolescents is costly (see Figure 4). 
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4. Discussion 

In this age-comparative study we used a 4-armed bandit task (Biele et al., 2011) 

including an initial peer advice in children (8-10 year old), adolescents (13-15 year old) 

and young adults (18-22 year old). As expected all age groups followed the advice in 

the beginning of the task, however after a few rounds the behavior of the different age 

groups started to diverge. The most salient developmental differences suggest that (1) 

adolescents are initially the most sensitive to advice, (2) adults are most consistently 

following the advice, (3) younger participants’ behavior is more exploratory and (4) 

children’s sensitivity to negative feedback hampers their learning. Computational 

modeling helped to further describe these developmental differences and extended 

them by (5) showing higher exploration rates prior to adulthood and (6) confirming 

children’s higher sensitivity to negative feedback. Moreover, developmental 

differences could be captured and simulated within a (7) social influence model: Our 

prior + bonus dual RL model gives first insights in possible underlying mechanism in 

advice-taking and exploring alternatives across development: First, our social learning 

model integrates different effects of advice as well as experience. Moreover, our social 

learning model is able to resolve the apparently conflicting findings of adolescents 

being more sensitive to peer influence- they are more willing to take risks in the 

presence of peers- but on the other hand explore and “re-evaluate” alternatives to the 

advice more quickly, compared to adults. Second, the model makes the interesting 

prediction that the adolescents’ behavior may be optimal in certain environments. These 

novel findings are discussed in more detail below.  

In line with previous developmental findings (Chein et al., 2011), adolescents 

showed the highest initial sensitivity to peer advice compared to children and adults. 

This suggests that social influence most strongly impacts adolescents’ initial 
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expectations (i.e. their priors). Thus our findings support the view that adolescence may 

be a developmental period with a particularly high sensitivity to social influence 

(Blakemore & Mills, 2014; Jones et al., 2014; van Hoorn et al., 2016). However, a 

recent study by Decker et al. 2015 also suggest that this influence does not have a long 

lasting effect. That is, teenagers may be easily swayed to try out something when it is 

suggested by their peers, such as skipping classes, but when this is not positively 

reinforced, they will also likely be the first age group to stop pursuing the suggested 

behavior. Adults on the other hand showed a more consistent influence of advice over 

time, which is adaptive in this experiment, but the data of Decker et al. 2015 suggest 

they will also do so when the advice is not good. Taken together these findings suggest 

a more nuanced view on developmental differences in advice taking suggesting that 

adolescence might be not only a unique period associated with higher peer-influence 

on behavior, but also with a healthy reliance on personal experiences.  

In line with previous developmental studies (Decker et al., 2015) children and 

adolescents showed more exploratory behavior (see Figure 3B). Higher exploration 

rates have been linked to the protracted maturation of prefrontal cognitive control 

functions (Decker et al., 2015; Thompson-Schill, Ramscar, & Chrysikou, 2009). 

Furthermore, exploratory behavior in itself has many positive aspects, particularly in 

dynamic and unknown environments, and has been suggested to be an important 

adaptation in human development (Thompson-Schill et al., 2009). Indeed, in the current 

task the explorative behavior of the adolescents may have resulted in a benefit That is, 

adolescents increasingly selected the other good deck with learning and chose the bad 

decks less often than adults and children (see Figure 2). Interestingly, adolescents also 

showed the highest expected earnings compared to the other two age groups.  This 

suggests that their exploration may have led them to find out more about the expected 
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value of each of the decks and ended up using a strategy that led to higher earnings. 

Our simulations further support this hypothesis. That is, if the other good deck was 

associated with even higher expected values than the advised deck, adolescent’s higher 

exploration behavior would lead to higher learning rates compared to adults and higher 

total payoffs within the task (see Figure 4). These findings highlight the importance of 

taking into account the structure of the environment when making normative statements 

about certain types of behavior. Future studies, using different learning environments, 

are needed to further explore the possible harms and benefits of adolescent vs. adult 

learning strategies. 

Finally, although children also showed increased explorative behavior this did 

not result in choosing the other good deck more often (see 2). This might be the result 

of children’s greater sensitivity to negative feedback compared to adolescents and 

adults (van Duijvenvoorde et al., 2008). Our modeling results support this view by 

showing higher learning rates for losses in children compared to the other two age 

groups (see Figure 3B). Previous studies suggested that children’s performance 

decreases as the probability of negative feedback increases (Eppinger, Mock, & Kray, 

2009). Thus, children’s difficulties to use negative feedback for learning should be 

particularly salient in the current task, where each card deck was associated with 50% 

losses and 50% gains (although they differ in their magnitude; see Figure S1). In sum, 

although (negative) experience weighs more than advice for children, they are not able 

to benefit from their experience to the same degree as adolescents in this learning 

environment.  
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5. Conclusion 

Taken together, our findings show that peer-advice guides learning from one’s 

own experience, especially in adults, although adolescents show the highest initial 

sensitivity to peer advice. Crucially, higher exploration rates enable adolescents to 

discover other opportunities. Thus, our results extend previous findings by showing that 

their more explorative behavior can be – depending on the environmental structure –

even more beneficial than the more adult-like learning strategies. This raises interesting 

questions regarding which possible features of the everyday environment of 

adolescents affords such exploratory behavior and highlights the need to understand the 

structure of the environment in which development takes place.   
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Supplementary 

 

1. Sample Size 

To determine the number of participants for each of the age groups we have based 

ourselves on the study that most closely resembles the current design. In van den Bos 

et al., 2012 we have used a very similar task and also a very similar reinforcement 

learning model to analyze the data (except there was no advise). To estimate the number 

of subjects we need to find age differences in parameter estimates we have focused on 

the two effects of the learning rates reported (i.e. as alpha’s) in that paper. First there 

was a significant effect of age on the negative learning rate (i.e. alpha loss) and a 

marginal significant effect on the positive learning rate (i.e. alpha gain) (F2,67 = 

9.87, P < 0.001 and F2,67 = 2.73, P = 0.06 respectively). This translates in Cohen’s f of 

.53 and .27 (large and medium effect sizes). These effect sizes result in power estimates 

of .61 and .46. We used the R pwr toolbox to calculate the minimum number of subjects 

needed to find an effect at alpha of .05. These analyses suggest that we need between 

21 subjects (per group) to for the medium effect size and 29 subjects per group for the 

large effect size. This, taken together with the observation that other similar studies ( is 

this true, you could check the Decker studies, e.g., Decker et al., 2015) use similar 

group sizes, we decided to select 25 number of subjects for each group. 

 

2. Choice behavior 

In Table S1 to S3 the exact results of the logistic regressions for the choice behavior 

with respect to the advised deck (see Table S1), the other good deck (see Table S2) and 

the bad decks [i.e. collapsed over both bad decks (see Table S3), with the same payoff 

distributions (see Figure S1)] are reported: 

 



	 26	

Table S1. Summary of logistic regression for choice behavior AD = intercept + B1Age-Group + B2 Age-

Group 2 + B3Trial +  B4 Age-Group * Trial + B5 Age-Group 2 * Trial 

 Estimate S.E. t value p 

Intercept 0.338 0.004 87.325 <.001 *** 

Age 0.055 0.007 8.299 <.001 *** 

Age2 0.011 0.007 1.751 0.08 

Trial -0.013 0.004 -3.235 0.001 ** 

Age * Trial -0.005 0.007 -0.752 0.452 

Age2 * Trial -0.019 0.007 -2.889 0.004 ** 

 

Table S2. Summary of logistic regression for choice behavior GD = intercept + B1Age-Group + B2 Age-

Group 2 + B3Trial + B4 Age-Group * Trial + B5 Age-Group 2 * Trial 

 Estimate S.E. t value p 

Intercept 0.229 0.003 66.665 <.001 *** 

Age -0.011 0.006 -1.867 0.062 

Age2 0.036 0.006 6.037 <.001 *** 

Trial 0.013 0.003 3.782 <.001 *** 

Age * Trial 0.009 0.006 1.594 0.111 

Age2 * Trial 0.026 0.006 4.415 <.001 *** 

 

Table S3. Summary of logistic regression for choice behavior BD = intercept + B1Age-Group + B2 Age-

Group 2 + B3Trial + B4 Age-Group * Trial + B5 Age-Group 2 * Trial 

 Estimate S.E. t value p 

Intercept 0.433 0.004 106.88 <.001 *** 

Age -0.044 0.007 -6.342 <.001 *** 

Age2 -0.048 0.007 -6.791 <.001 *** 

Trial -0.0004 0.004 -0.118 0.906 

Age * Trial -0.004 0.007 -0.633 0.527 

Age2 * Trial -0.007 0.007 -0.985 0.325 
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3. Simulations 

For quality control we performed simulations using the medians of the parameter 

estimates for each age group (see Figure S2), using the best fitting model (prior + bonus, 

dual RL). For each age group we simulated 100 agents. These agents were presented 

with the original Decks and the pseudo-random ordering of feedback that was used in 

the behavioral experiment.  

 

 

Figure S2. Simulated data using the best fitting model and the median parameter values for each group. 

The simulations are the result of 100 iterations and 210 trials. Shaded areas represent standard error, 

blue line is the advised deck, red line the other good deck.   

 

The simulations indicate that the best fitting model is able to capture the main 

behavioral difference between age groups; the initial peak of the advice effect in 

adolescence, adolescents choosing the other good deck more than the other age groups, 

and the overall increase in performance with age (see Figure S2).  

 

5. Parameter Estimates – Prior + Bonus dual RL 

Table S4 shows age differences in the in parameter estimates of the “prior + bonus dual 

RL” model. 
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Table S4. Age differences in parameter estimates. 

 

 

6. Recovery Analyses.  

To further explore the validity of the reinforcement learning models and the model 

selection procedure we performed model recovery analyses. For these analyses we 

selected the winning model (dual RL + prior + bonus) and extracted the median 

parameter values of the fitting results of the total subject pool. These parameters, that 

are the most representative, were then used to generate behavior as described in the 

simulation section. We have simulated the behavior for 100 subjects and then used all 

dual learning rate reinforcement models to fit those 100 simulated subjects.  As 

expected the generative model (dual RL + prior + bonus) showed the best fit (see Table 

S5).  

 

Table S5. BIC’s for simulated data. 

Dual RL models BIC 
Bonus + prior 25047 
Prior 25231 
Bonus 25246 
Bonus + prior + decay 25950 
Bonus + decay 26449 
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Furthermore, the extract the parameter fits for the 100 randomly simulated 

datasets show the same patterns, and the populations medians are all within the 95% 

confidence interval (see Figure S3). Together these findings support the validity of the 

model specification and selection.  

 

Figure S3. Parameter estimates for the median and recoverd parameters. Error bars represent 95% 

confidence interval. 
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