Appendix B

Coherent states

For a harmonic oscillator with mass m and frequency w the creation and annihila-
tion operators are given by:
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where v = mw/k and, respectively, ¢ and p are the position and momentum
operators. Non-normalized eigenstates are generated by successively applying
the creator ' to the ground state |0) of the harmonic oscillator. A coherent state
is defined by [32]:
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with an arbitrary complex number z. The coherent states |z) ({z|) are right (left)
eigenfunctions of the annihilation (creation) operator with eigenvalue z (z*), i.e.,

alz) = z|z), (z|a’ = (z|2". (B.4)

The straight forward proof uses the expression of the exponential according to
e® = > z™/nl. The prefactor exp{—|z|?/2} ensures normalization. The co-
herent states fulfill a completeness relation of the form [32]:
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but two individual states are not orthonormal. This behavior has been termed
overcompleteness: one can express any normalized state by coherent states, but
the expression is non-unique. It should be noted that the overcomplete state basis
depends on the parameter ~; if this is important, it will be notified in the form
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162 Coherent states

A coherent state can be characterized by the expectation value of position ¢,
(corresponding to the operator (a + a')//27) and momentum p, (corresponding
to the operator /¥A(a — at)/iv/2). One observes:
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The position state representation of the coherent states is given by Eq. (2.84). In
the main the simplified notation z = (p., q.) is used for convenience.





