Appendix A

Mathematics of classical mechanics

A. 1 Canonical transformations

Classical mechanics can be expressed by Hamilton's integral principle [51, 64]. Consider a N-dimensional system described by the Lagrangian $\mathcal{L}(\mathbf{q}, \dot{\mathbf{q}}, t)$. The Lagrangian is defi ned by the difference of kinetic energy T and potential energy $V, \mathcal{L}=T-V$. Any continuos vector function $\mathbf{q}(t)$ is called a path. The classical trajectories are those special kinds of paths that are extrema of the functional,

$$
\begin{equation*}
S[\mathbf{q}(t)]=\int_{t_{1}}^{t_{2}} \mathcal{L}(\mathbf{q}, \dot{\mathbf{q}}, t) d t \tag{A.1}
\end{equation*}
$$

A path is extremal if the variation δ among all paths $\mathbf{q}(t)$ from $\mathbf{q}\left(t_{1}\right)$ to $\mathbf{q}\left(t_{2}\right)$ with boundary conditions $\delta \mathbf{q}\left(t_{1}\right)=\delta \mathbf{q}\left(t_{2}\right)=0$ vanishes,

$$
\begin{equation*}
\delta S[\mathbf{q}(t)]=0 \tag{A.2}
\end{equation*}
$$

The Lagrangian and the Hamiltonian are connected by a Legendre transformation,

$$
\begin{equation*}
H(\mathbf{p}, \mathbf{q}, t)=\dot{\mathbf{q}} \cdot \mathbf{p}-\mathcal{L}(\mathbf{q}, \dot{\mathbf{q}}, t) \tag{A.3}
\end{equation*}
$$

where the momentum $\mathbf{p}=\partial \mathcal{L} / \partial \dot{\mathbf{q}}$ is canonical conjugated to the position \mathbf{q}. Note, momenta and positions are generalized. For each generalized position q_{j}, there is a conjugated momentum p_{j}. For instance, a system with rotational symmetry may be conveniently expressed by using cylinder coordinates. Then, the angular momentum L is the generalized momentum canonical conjugated to the angle θ, a generalized position.

Hamilton's principle can be recast into the form [51],

$$
\begin{equation*}
\delta \int_{t_{1}}^{t_{2}}[\dot{\mathbf{q}} \cdot \mathbf{p}-H(\mathbf{p}, \mathbf{q}, t)] d t=0 \tag{A.4}
\end{equation*}
$$

Here, the positions \mathbf{q} and momenta \mathbf{p} are independent variables and the variations is performed with respect to both. This leads to the well-known Hamilton's equation of motion,

$$
\begin{equation*}
\dot{p}_{j}=-\frac{H}{\partial q_{j}}, \quad \dot{q}_{j}=\frac{H}{\partial p_{j}}, \quad j=1, \ldots, N . \tag{A.5}
\end{equation*}
$$

Consider an arbitrary transformation from the old variables (\mathbf{p}, \mathbf{q}) to new variables (\mathbf{P}, \mathbf{Q}),

$$
\begin{align*}
\mathbf{P} & =\mathbf{P}(\mathbf{p}, \mathbf{q}), \tag{A.6}\\
\mathbf{Q} & =\mathbf{Q}(\mathbf{p}, \mathbf{q}), \tag{A.7}
\end{align*}
$$

where the new variables are expressed as functions of the old variables. Configuration space coordinate transformations are only a special kind of such transformations. For instance, in Appendix B transformations are discussed, that mix momentum and position. The transformation is canonical if there is a new Hamiltonian $\tilde{H}(\mathbf{P}, \mathbf{Q}, t)$ and Hamilton's principle is satisfi ed in the new variables,

$$
\begin{equation*}
\delta \int_{t_{1}}^{t_{2}}[\dot{\mathbf{Q}} \cdot \mathbf{P}-\tilde{H}(\mathbf{P}, \mathbf{Q}, t)] d t=0 \tag{A.8}
\end{equation*}
$$

The simultaneous satisfaction of Equation (A.4) and (A.8) is only possible, if the integrands differ only by the total differential $d F / d t$ of a function F [51]. This function is called the generator of the canonical transformation. Assuming, that F is a function of the old and new positions and the time, $F=F_{1}(\mathbf{q}, \mathbf{Q}, t)$, it follows,

$$
\begin{equation*}
\dot{\mathbf{q}} \cdot \mathbf{p}-H(\mathbf{p}, \mathbf{q}, t)=\dot{\mathbf{Q}} \cdot \mathbf{P}-\tilde{H}(\mathbf{P}, \mathbf{Q}, t)+\frac{d F(\mathbf{q}, \mathbf{Q})}{d t} \tag{A.9}
\end{equation*}
$$

Evaluating the total differential,

$$
\begin{equation*}
\frac{d F_{1}(\mathbf{q}, \mathbf{Q})}{d t}=\sum_{j} \frac{\partial F}{\partial q_{j}} \dot{q}_{j}+\sum_{j} \frac{\partial F}{\partial Q_{j}} \dot{Q}_{j}+\frac{\partial F_{1}}{\partial t} \tag{A.10}
\end{equation*}
$$

and collecting terms yields the transformation equations,

$$
\begin{align*}
p_{j} & =\frac{\partial F_{1}(\mathbf{q}, \mathbf{Q}, t)}{\partial q_{j}}, \tag{A.11}\\
P_{j} & =-\frac{\partial F_{1}(\mathbf{q}, \mathbf{Q}, t)}{\partial Q_{j}}, \tag{A.12}\\
\tilde{H} & =H+\frac{\partial F_{1}(\mathbf{q}, \mathbf{Q}, t)}{\partial t} . \tag{A.13}
\end{align*}
$$

By inverting the N Eqs. (A.11) with respect to the Q_{j} and inserting the result in the N Eqs. (A.12) the transformation Eqs. (A.6-A.7) is rediscovered. Moreover,
the new Hamiltonian \tilde{H} is given by Eq. (A.13). Therefore, these $2 \cdot N+1$ equations are the reason why F_{1} is called the generator of the canonical transformation, because the canonical transformation is uniquely characterized by this function. There are more types of generator functions, all dependent on exactly N old and N new variables. They are related to the present F by corresponding Legendre transformations. For instance, the generator $F_{2}(\mathbf{q}, \mathbf{P}, t)$ that depends on the old positions and new momenta is given by,

$$
\begin{equation*}
F_{2}(\mathbf{q}, \mathbf{P}, t)=F_{1}(\mathbf{q}, \mathbf{Q})+\mathbf{P} \cdot \mathbf{Q}, \tag{A.14}
\end{equation*}
$$

where Eqs. (A.12) must be inverted with respect to the Q_{j} and inserted in the right-hand side of Eq. (A.14). The transformation equations in this case read,

$$
\begin{align*}
p_{j} & =\frac{\partial F_{2}(\mathbf{q}, \mathbf{P}, t)}{\partial q_{j}} \tag{A.15}\\
Q_{j} & =\frac{\partial F_{2}(\mathbf{q}, \mathbf{P}, t)}{\partial P_{j}} \tag{A.16}\\
\tilde{H} & =H+\frac{\partial F_{2}(\mathbf{q}, \mathbf{P}, t)}{\partial t} \tag{A.17}
\end{align*}
$$

The remaining generator functions and transformation equations are given in a similar way. However, in this work only the present generator functions are of certain importance.

The F_{1}-type generator function $S_{\mathrm{cl}}\left(\mathbf{q}, \mathbf{q}_{0} ; t\right)$ of the dynamical transformation is given by [51],

$$
\begin{equation*}
S_{\mathrm{cl}}\left(\mathbf{q}, \mathbf{q}_{0} ; t\right) \equiv S\left[\mathbf{q}_{\mathrm{cl}}(t)\right] \tag{A.18}
\end{equation*}
$$

where the functional S is defi nes in Eq. (A.1) and $\mathbf{q}_{1}(t)$ is a classical trajectory that evolves from \mathbf{q}_{0} to \mathbf{q} in time t. One can show that derivative with respect to \mathbf{q}, \mathbf{q}_{0}, and t yields, respectively, the fi nal momentum \mathbf{p}, the initial momentum (times $-1)-\mathbf{p}_{0}$, and the energy (times -1) $-E[51]$.

There is another important class of canonical transformations that lead to the notion of integrability. Consider a time-independent canonical transformation, characterized by a F_{2}-type generator function $S(\mathbf{q}, \mathbf{P})$, where the new momenta \mathbf{P} are constant. Hamilton's equation of motion with respect to the new set of coordinates (\mathbf{P}, \mathbf{Q}) reads,

$$
\begin{align*}
\dot{P}_{j} & =-\frac{\partial \tilde{H}}{\partial Q_{j}}=0 \tag{A.19}\\
\dot{Q}_{j} & =\frac{\partial \tilde{H}}{\partial P_{j}} \tag{A.20}
\end{align*}
$$

That is, the new Hamiltonian $\tilde{H}=\tilde{H}(\mathbf{P})$ is a function of the constant momenta alone. If each DOF corresponds to a vibration then the submanifold corresponding
to fi xed \mathbf{P} is an invariant torus. Thus, one can choose the N actions I_{j} associated to the N irreducible curves \mathcal{C}_{j}, i.e., $\mathbf{P}=\mathbf{I}$. The generalized positions become angles, $\mathbf{Q}=\boldsymbol{\varphi}$, and the integration of Eq. (A.20) yields,

$$
\begin{equation*}
\varphi_{j}=\omega_{j}(\mathbf{I}) t+\varphi_{j}^{(0)} \tag{A.21}
\end{equation*}
$$

where $\varphi_{j}^{(0)}$ are integration constants and,

$$
\begin{equation*}
\omega_{j}(\mathbf{I})=\frac{\partial \tilde{H}}{\partial I_{j}}, \tag{A.22}
\end{equation*}
$$

are the N fundamental frequencies as a function of the actions \mathbf{I}. A system for which a canonical transformation like the present one exists are called integrable. Equation A. 21 is equivalent to the time evolution of the phases of a set of N uncoupled harmonic oscillators, i.e., an integrable system is equivalent to a system of harmonic oscillators.

A. 2 The method of characteristics

The method of characteristics is a well known means to construct a submanifold of phase space on which an action function $S(\mathbf{q})$ is (piecewise) defi ned [52, 53]. Consider an initial manifold Λ^{N-1} of dimension $N-1$ that is a submanifold of the full $2 N$-dimensional phase space with the property that for each $(\mathbf{p}, \mathbf{q}) \in \Lambda^{N-1}$ there is a function $\mathbf{p}=\mathbf{p}(\mathbf{q})$ such that the energy E is fixed, $H(\mathbf{p}(\mathbf{q}), \mathbf{q})=E$, and such that,

$$
\begin{equation*}
\oint_{p} \mathbf{p}(\mathbf{q}) d \mathbf{q}=0 \tag{A.23}
\end{equation*}
$$

for any closed path p in the projection of Λ^{N-1} onto confi guration space. [For instance, in a two-dimensional system, the projection of Λ^{1} onto confi guration space is a line and one may choose $\mathbf{p}(\mathbf{q})$ perpendicular to that line with magnitude determined by the energy constraint.] Any $(\mathbf{p}, \mathbf{q}) \in \Lambda^{N-1}$ can be regarded as the initial condition of a classical trajectory. Propagating all points of the initial manifold by a time step t leads to a new manifold Λ_{t}^{N-1}. Maslov and Fedoriuk [52] showed, that for this new manifold Eq. (A.23) holds, too. Moreover, these authors showed that for the joint N-dimensional manifold for the time interval $0 \leq t \leq T$,

$$
\begin{equation*}
\Lambda^{N}=\cup_{0 \leq t \leq T} \Lambda_{t}^{N-1} \tag{A.24}
\end{equation*}
$$

a similar property holds, where there are certain branches $\mathbf{p}^{(r)}(\mathbf{q})$ corresponding to the different projections onto confi guration space and for each branch Eq. (A.23) holds. This implies, that there exists a function $S^{(r)}(\mathbf{q})$ for each branch with $\mathbf{p}^{(r)}=\boldsymbol{\nabla} S^{(r)}(\mathbf{q})$. A submanifold of phase space with these properties is called

Lagrange manifold. Thus, the invariant tori discussed in Section 2.1.1 are special types of Lagrange manifolds.

A. 3 Derivation of the Hydroperoxyl-Lagrangian

The Lagrangian of the hydroperoxyl anion HO_{2}^{-}reads

$$
\begin{equation*}
\mathcal{L}=\frac{1}{2} m_{O}\left(\dot{\mathbf{r}}_{1}^{2}+\dot{\mathbf{r}}_{2}^{2}\right)+\frac{1}{2} m_{H} \dot{\mathbf{r}}_{3}^{2}-V\left(r_{1}, r_{2}, r_{3}\right) \tag{A.25}
\end{equation*}
$$

where m_{O} and m_{H} is the mass of an oxygen and hydrogen atom, respectively, and $M=m_{H}+2 m_{O}$ is the total mass. Inserting Eqs. (3.26-3.28) yields

$$
\begin{align*}
\mathcal{L} & =\frac{1}{2}\left(2 m_{O}\right)\left(\dot{\mathbf{R}}^{2}+\dot{\mathbf{r}}^{2}\right) \\
& +\frac{1}{2} m_{H}\left(\dot{\mathbf{R}}^{2}+\dot{\mathbf{s}}^{2}+2 \dot{\mathbf{R}} \cdot \dot{\mathbf{s}}\right) \\
& -V(\mathbf{r}, \mathbf{s}) . \tag{A.26}
\end{align*}
$$

The PES V only depends on the vectors \mathbf{r} and \mathbf{s}. Equation (3.29) holds if the center of mass is assumed (without restriction) to be fi xed at the origin. This implies

$$
\begin{align*}
\mathcal{L} & =\frac{1}{2}\left(2 m_{O}\right)\left(\frac{m_{H}^{2}}{M^{2}} \dot{\mathbf{s}}^{2}+\dot{\mathbf{r}}^{2}\right) \\
& +\frac{1}{2} m_{H}\left(\frac{m_{H}^{2}}{M^{2}}+1-2 \frac{m_{H}}{M}\right) \dot{\mathbf{s}}^{2} \\
& -V(\mathbf{r}, \mathbf{s}) . \tag{A.27}
\end{align*}
$$

And after rearanging terms one arives at Eq. (3.30).

