Appendix A

Mathematics of classical mechanics

A.1 Canonical transformations

Classical mechanics can be expressed by Hamilton’s integral principle [51, 64].
Consider a N-dimensional system described by the Lagrangian £(q, q,t). The
Lagrangian is defined by the difference of kinetic energy 7" and potential energy
V, L =T —V. Any continuos vector function q(t) is called a path. The classical
trajectories are those special kinds of paths that are extrema of the functional,
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A path is extremal if the variation 6 among all paths q(¢) from q(¢1) to q(¢2) with

boundary conditions dq(t1) = dq(t2) = 0 vanishes,

§S[q(t)] = 0. (A.2)

The Lagrangian and the Hamiltonian are connected by a Legendre transfor-
mation,

where the momentum p = 9L£/0q is canonical conjugated to the position q.
Note, momenta and positions are generalized. For each generalized position g;,
there is a conjugated momentum p;. For instance, a system with rotational sym-
metry may be conveniently expressed by using cylinder coordinates. Then, the
angular momentum L is the generalized momentum canonical conjugated to the
angle 6, a generalized position.

Hamilton’s principle can be recast into the form [51],

5/t2[Q-p—H(p,q,t)]dt=0- (A.4)
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Here, the positions q and momenta p are independent variables and the varia-
tions is performed with respect to both. This leads to the well-known Hamilton’s
equation of motion,

H . H

- §gi=-—, j=1,...,N. (A5)
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Consider an arbitrary transformation from the old variables (p, q) to new vari-
ables (P, Q),

P = P(p,q), (A.6)
Q = Q(p,q), (A7)

where the new variables are expressed as functions of the old variables. Config-
uration space coordinate transformations are only a special kind of such trans-
formations. For instance, in Appendix B transformations are discussed, that mix
momentum and position. The transformation is canonical if there is a new Hamil-
tonian A (P, Q, t) and Hamilton’s principle is satisfied in the new variables,

5/t2 [Q P H(P, Q,t)] dt = 0. (A.8)

t1
The simultaneous satisfaction of Equation (A.4) and (A.8) is only possible, if the
integrands differ only by the total differential dF'/dt of a function F' [51]. This
function is called the generator of the canonical transformation. Assuming, that
F is a function of the old and new positions and the time, F' = Fi(q,Q, 1), it
follows,

ap-Hpan=QP-APQn+TLY (g

Evaluating the total differential,

dF,(q,Q) oF . OF . OF
TR N E Qo Al

and collecting terms yields the transformation equations,

_ aFl (qa Qa t)
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P, = 00, (A12)
H = H+ %. (A.13)

By inverting the N Egs. (A.11) with respect to the @), and inserting the result in
the N Egs. (A.12) the transformation Egs. (A.6-A.7) is rediscovered. Moreover,
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the new Hamiltonian H is given by Eq. (A.13). Therefore, these 2- N +1 equations
are the reason why F7 is called the generator of the canonical transformation,
because the canonical transformation is uniquely characterized by this function.
There are more types of generator functions, all dependent on exactly N old and
N new variables. They are related to the present F' by corresponding Legendre
transformations. For instance, the generator F5(q, P, t) that depends on the old
positions and new momenta is given by,

Fy(q,P,t) = Fi1(q,Q) + P - Q, (A.14)

where Egs. (A.12) must be inverted with respect to the @), and inserted in the
right-hand side of Eq. (A.14). The transformation equations in this case read,

p, = 2B@P.) (A.15)
8qj
aFZ (q7 P7 t)
; _— Al
H = H+ % (A.17)

The remaining generator functions and transformation equations are given in a
similar way. However, in this work only the present generator functions are of
certain importance.
The F;-type generator function S (q, qo; ) of the dynamical transformation
is given by [51],
Sa(a, a5 ) = S[aa(t)], (A.18)

where the functional S is defines in Eq. (A.1) and qq(t) is a classical trajectory
that evolves from g, to q in time ¢. One can show that derivative with respect to q,
do, and ¢ yields, respectively, the final momentum p, the initial momentum (times
-1) —po, and the energy (times -1) — F [51].

There is another important class of canonical transformations that lead to the
notion of integrability. Consider a time-independent canonical transformation,
characterized by a F,-type generator function S(q, P), where the new momenta
P are constant. Hamilton’s equation of motion with respect to the new set of
coordinates (P, Q) reads,

: OH

P = —@—0, (A.19)
: OH

Q = o7 (A.20)

That is, the new Hamiltonian A = H(P) is a function of the constant momenta
alone. If each DOF corresponds to a vibration then the submanifold corresponding
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to fixed P is an invariant torus. Thus, one can choose the N actions J; associated
to the N irreducible curves C;, i.e., P = 1. The generalized positions become
angles, Q = ¢, and the integration of Eq. (A.20) yields,

gpj = w]- (I) t+ (,05-0), (A21)

where cp§.°) are integration constants and,

w;(I) = 8—Ij’ (A.22)
are the N fundamental frequencies as a function of the actions I. A system for
which a canonical transformation like the present one exists are called integrable.
Equation A.21 is equivalent to the time evolution of the phases of a set of NV
uncoupled harmonic oscillators, i.e., an integrable system is equivalent to a system
of harmonic oscillators.

A.2 Themethod of characteristics

The method of characteristics is a well known means to construct a submanifold
of phase space on which an action function S(q) is (piecewise) defined [52, 53].
Consider an initial manifold A¥~! of dimension [V —1 that is a submanifold of the
full 2V-dimensional phase space with the property that for each (p,q) € AV !
there is a function p = p(q) such that the energy F is fixed, H(p(q),q) = E,
and such that,

f p(a)dq =0, (A23)

p

for any closed path p in the projection of AN~ onto configuration space. [For
instance, in a two-dimensional system, the projection of A! onto configuration
space is a line and one may choose p(q) perpendicular to that line with magnitude
determined by the energy constraint.] Any (p,q) € AY~! can be regarded as
the initial condition of a classical trajectory. Propagating all points of the initial
manifold by a time step ¢ leads to a new manifold A" ~'. Maslov and Fedoriuk
[52] showed, that for this new manifold Eqg. (A.23) holds, too. Moreover, these
authors showed that for the joint N-dimensional manifold for the time interval
0<t<T,

AY =Uocrer A, (A.24)

a similar property holds, where there are certain branches p(”)(q) corresponding to
the different projections onto configuration space and for each branch Eq. (A.23)
holds. This implies, that there exists a function S(")(q) for each branch with
p{" = VS (q). A submanifold of phase space with these properties is called
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Lagrange manifold. Thus, the invariant tori discussed in Section 2.1.1 are special
types of Lagrange manifolds.

A.3 Derivation of the Hydroperoxyl-L agrangian

The Lagrangian of the hydroperoxyl anion HO; reads

1 1
L= imo (1'% + r%) + §mHi'§ — V(ri,72,13), (A.25)

where mo and my is the mass of an oxygen and hydrogen atom, respectively, and
M = myg + 2my is the total mass. Inserting Eqgs. (3.26-3.28) yields

_ 1 52 | -2
L= 5(2mo) (R +7 )
]. 52 .2 = .
+ §mH(R +s —|—2R-s>
— V(r,s). (A.26)

The PES V' only depends on the vectors r and s. Equation (3.29) holds if the center
of mass is assumed (without restriction) to be fixed at the origin. This implies

2
L= -(2mp) (%S2 + r2)
1 m%[ H
+ g (W“_Qﬁ) &
— V(r,s). (A.27)

And after rearanging terms one arives at Eq. (3.30).
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