
Chapter 6

Tautomerization of tropolone

6.1 Introduction

This Chapter addresses the application of the techniques discussed in the fore-

going Chapter 5. In particular, the construction of the Cartesian Reaction Plane

(CRP) Hamiltonian is demonstrated for the HAT in the electronic ground state

of tropolone [TRN(OH)]. TRN is a prototype system for HAT (similar to malon-

aldehyde). The tautomerization reaction of tropolone is depicted in Fig. 6.1a. The

minimum geometries have
	 �

symmetry while the transition state (not shown) has	 ��� symmetry. The two equivalent minima are interconverted by the permutation�
which permutes

	 � and
	 � , 	 	 and

	 � , 	 � and
	 �

,
�
� and

���
as well as cor-

responding hydrogens (cf. Section 2.2.1). Moreover, the Hamiltonian is invariant

with respect to space inversion
� � , where

�
denotes the identity. The symmetry

group
� � [10] with operations

� � � � �	� � � � � � , where
� � � � � � , is isomorphous

to
	 ��� , i.e., there are four one-dimensional irreducible representations,

�
� ,
�
� ,
� � ,

and
� � [10, 11, 40]. Eigenstates can either be gerade (+1) or ungerade (-1) with re-

spect to
�

and they can either be in-plane (+1) or out-of-plane (-1) corresponding
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Figure 6.1: (a) Tautomerization reaction of tropolone [TRN(OH)]. Minimum ge-

ometries are interconverted by the permutation
�

(cf. Section 2.2.1). (b) Allowed

in-plane IR transitions; responsible dipole components are indicated.
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Frequency
�
��
 �����

Figure 6.2: Fluoresence-dip IR spectrum of the OH stretch region of jet-cooled

TRN(OH) for transitions out of the gerade ground state level [159].

to the transformation with respect to
� � . For the fundamental transitions one finds

that in-plane states have either
�
� or

� � symmetry, and out-of-plane states have

either
�
� or

� � symmetry [40, 159]. There are 27 in-plane and 12 out-of-plane

normal mode vibrations. The four possible ground state � excited state IR transi-

tions for the in-plane modes are shown in Fig. 6.1b, they follow from the fact that�
and � transform according to

� � and
�
� , respectively [11]. The

�
coordinate

transforms according to
� � [11]. Thus, for the out-of-plane modes, group theory

allows only for transitions from the gerade ground state (
�
� ) into an ungerade out-

of-plane fundamental (
� � ), and transitions from the ungerade ground state (

� � )
into a gerade out-of-plane fundamental (

�
� ), since

� � 	 � � � �
� . The tunnel-

ing splitting between gerade and ungerade vibrational eigenstates is mode-specific

(cf. Section 2.2.2). Experimentally, this was first observed for the electronically

first excited state
� � [155, 156, 157, 158].

The electronic ground state
���

was investigated experimentally with high spec-

tral resolution [160, 159, 48, 40]. Tanaka et al. [160] measured the ground state

tunneling splitting of gaseous TRN(OH) by microwave spectroscopy and found� � � � � �� ��� ��� ���
	 
 � � � ��
 �
�
� � ��� . Concerning the interpretation of the OH

stretch region (cf. Fig. 6.2) there is a controversy in the literature: Frost et al.

[159] performed fluoresence-dip IR measurements and assigned the most intense

peak at 
 �	


�
��
 
�� ��� to be the OH stretch fundamental transition correspond-

ing to the gerade initial state and suggested that the peak with opposite symme-

try lies within unresolved absorption around � � 
 � ��� to the red. Redington et

al. [48] assigned the OH stretch doublet to be at 
 ��� � 
 � ���
and 
 � � � 
�� ��� ,

respectively; therefore, the tunneling splitting is
� � � � � 
�� ��� . The intense
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Method Ref. � =
� � ��� � �  � 
 � =

� � � � � 
�� ��� 

B3LYP/6-31+G(d) [114] 25.9 2161

B3LYP/6-31+G(d,p) 21.3 1778

G3(MP2) � � � [114] 30.1 2518� � � [114] 32.2 2693

MP2 � � � [40] 15.1 1271

MP4(SDQ) � � � � � [40] 29.3 2448� � � Ref. [162]; � � � multicoefficient correlation method; details see

Ref. [163]; � � � 6-311G(df,pd) for the
	 � � � � � � 	

fragment, and

6-311G(d,p) for the rest; ��� � MP2 geometry

Table 6.1: Comparison of barrier heights obtained by different quantum chemistry

methods for tropolone [TRN(OH)].

peak at 
 � 


�
��
 
 � ��� was attributed to a combination state transition. The assign-

ment was based on IR spectra obtained from vapor phase, solvated, and rare-gas

matrix-isolated samples of TRN(OH) and the deuterated species TRN(OD) and

on the measurements of Frost et al. [159]. In particular, an assigment of modes

was given guided by quantum chemistry calculations. The assignment is therefore

partly based on the harmonic approximation.

Several theoretical investigations of the electronic ground [75, 148, 161, 47]

and first excited state [76, 75, 148] were carried out. For instance, Vener et al.

[148] studied the HAT in terms of a 3D ab-initio PES in which only the
� � � � � �

�
fragment was considered. Tautermann et al. [114] determined the ground state

tunneling splitting in terms of the approximate instanton approach (cf. Section

3.1.3) to be � � � � � � � � � ��
. Redington [47] emphasized the importance of heavy

atom tunneling, i.e., the HAT is accompanied by a contortion of the molecular

skeleton. The issue was addressed in terms of an empirical model [47] (cf. also

Section 6.2.1).

From the theoretical view point another finding requires attention. The barrier

obtained by the present level of quantum chemistry [B3LYP/6-31G(d)] (cf. Chap-

ter 5) is
� � � � � � ��� [114]. Table 6.1 shows barrier heights obtained by various

different quantum chemical methods. Tentatively, the barrier is therefore well be-

low 
������ 
 � ��� . The inclusion of ZPE effects usually leads to a decreasing barrier,

because modes at the saddle point weaken. Thus, any IR transition into the OH

stretch according to the experimental assignment would be above the barrier.
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Figure 6.3: Selected full normal modes of TRN(OH) (cf. Tab. 6.2). Normal mode

frequencies are indicated.

6.2 A Cartesian reaction plane Hamiltonian for

tropolone

6.2.1 Intrinsic reaction path analysis

The IRP is a well-known means to characterize a chemical reaction [67] (cf. Sec-

tions 2.2.1, 3.1.3, and 5.1.1), but in general a chemical reaction does not necessar-

ily proceed along the IRP [164]. However, for tunneling in the semiclassical limit	 � � the least action principle leads to usually one dominating trajectory (cf.

Sections 3.1.2 and 3.1.3) that generally differs from the IRP, e.g., due to corner

cutting. The least action principle was successfully applied to various HAT sys-

tems [108, 114, 126], among them tropolone [114]: the theoretical value obtained

by applying the least action principle to the GT paths (cf. Section 3.1.3) yielded

� � � � � � � � � ��
. The GT paths [cf. Eq. (3.11)] are a two-dimensional superposition

of the direct tunneling direction [cf. Eq. (3.22)] and the IRP. In Section 5.1.2 the

differences between the IRP � ��� 

and its projection

�� �!� 

were discussed for the

special case of TRN(OH) and TRN(OD); the maximum root mean squared atom

displacement was found to be less than 0.025 Å for both species (cf. Fig. 5.3)

and the maximum energy difference along the paths was less than � � ��
�� ��� and

������
�� ��� for, respectively, TRN(OH) and TRN(OD). This leads to the conclusion

that the IRP lies approximately in the reaction plane for the considered molecules.

Table 6.3 shows frequencies of all full normal modes (FNM) � ��� �� together with

their IR intensities for TRN(OH). FNM are introduced in Section 5.2.2. Recall,

FNM correspond to the diagonalization of the full-dimensional Hessian at the

(right) minimum geometry. The normal modes are ordered by decreasing value

of the the corresponding normal mode frequency (different notation than in Refs.

[48, 40, 47].) Based on an empirical model, Redington et al. [48, 40, 47] assigned

a particular normal mode, that is, � ��� �� � (in the present notation; cf. Fig. 6.3) at

about � � � � � ��� to be the nascent tautomerization coordinate. This assignment
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TRN(OH)

in-plane out-of-plane

no. � ��� �� � � � � Inten.
�

no. � ��� �� � ��� � Inten.

1 3329 134 36 20 1030 1.2

2 3198 8.6 0 21 1013 0.3

3 3193 14.9 0 23 946 11.0

4 3186 12.0 0 25 878 10.6

5 3171 4.1 0 26 816 77.0

6 3163 6.5 0 27 772 79.9

7 1675 202 14 29 723 17.9

8 1664 2.8 7 31 597 0.3

9 1617 105 19 34 402 1.8

10 1540 124 19 35 376 0.0

11 1523 142 16 38 185 0.0

12 1480 212 26 39 115 1.05

13 1454 26.9 11

14 1349 57.9 4

15 1327 227 39

16 1294 39.4 12

17 1249 8.6 9

18 1245 7.5 11

19 1080 0.4 11

22 977 10.2 7

24 888 10.9 3

28 752 14.5 22

30 694 7.2 21

32 546 1.8 19

33 449 15.2 33

36 375 5.3 45

37 364 5.2 44

Table 6.2: Normal mode frequencies (in 
�� ���
) and IR intensities “Inten.” (in

� � � � � � ) for TRN(OH) [B3LYP/6-31+G(d)]. The dimensionless parameter
�

[cf.

Eq. (6.2)] measures the change of the hydrogen bond geometry. (Obtained by

Gaussian 03 [152].) The normal modes � ��� �� are labeled in decreasing order of

their frequency. Modes no. 1, 15, and 26 are the OH stretch, OH bend, and OH

out-of-plane mode, respectively.
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was motivated by the statement that mode no. 28 most closely suggests entrance

into the valley of the IRP. No numerical evidence was given for that statement

and it is not in accord with the stable limit theorem (cf. Section 2.2.1), since the

weakest in-plane mode � ��� �	 � is at 

�

�

�� ��� (cf. Fig. 6.3). Moreover, by inspecting

the displacements of right localized full normal modes along the IRP (
�

is the

IRC), � � ��� �� �!� 

� � � �!� 
 � � � 
 � � ��� �� �
(6.1)

one finds largest displacements for the modes � ��� �	 	 , � ��� �	 � , and � ��� �	 � (cf. Fig. 6.3).

For instance, �
� � � � � ��� �	 � � � � ��
 � �

�
����� � � �
, whereas �

� � � � � ��� �� � � �
� � �
� �

�
����� � � �
for mode 28. Thus, for mode no. 28, neither significant dis-

placement along the IRP nor significant contribution when the IRP approaches

the minimum can be found.

The change of the hydrogen bond geometry that is induced by a certain normal

mode can be quantified by the dimensionless value

� � � � ��� � � � � � � � � ��� � � � � � � � � � � � � � � � � (6.2)

where � ��� ��� � � 

is the bond length of the specified bond in geometry � and

� � ��� ���
is defined as the derivative

� � ��� ��� � � � ��� ��� � � �
� � � � ��� �� 


� � �����
� � � � (6.3)

with a normal mode vector
� ��� ��

. That is,
� � ��� ��� is the change of a special bond

length induced by motion along that mode in the vicinity of the right minimum

geometry � �
.

The dimensionless
�
-values are also given for the in-plane modes in Tab. 6.2;

for the out-of-plane modes
�

vanishes. Mode � ��� �� � is not among the modes with

largest influence on the hydrogen bond geometry. Instead, the two in-plane modes

with lowest frequency, mode no. 36 and 37, have the largest
�
-values.

There is a near degeneracy of modes � ��� �	 � ( 
 � � � � ��� ) and � ��� �	 � ( 
��

�
� � ��� ),

thus the interplay between full normal modes no. 36 and 37 in the vicinity of the

(right) minimum has to be analyzed carefully if one aims to obtain deeper insight

into the tautomerization coordinates: In the upper panel of the left column of Fig.

6.4 a cut of the full potential
�

of TRN(OH) along the normal mode directions � ��� �	 �
and � ��� �	 � is shown. The potential was obtained by Shepard interpolation; this was

discussed already in Sec. 5.1.2. The influence of mode no. 33 with a somewhat

larger frequency of

� �

 � � ��� is not considered, since a mixing of energetically

close modes is more likely. A projection of the IRP onto the two modes is also

shown (thick curve). In the scale of the viewgraph, the IRP is only slightly curved
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Figure 6.4: Comparison of Trn(OH) and Trn(OD) [B3LYP/6-31+G(d)]. Upper

row: Contour plot of the potential
�

for a cut along the full normal mode direc-

tions � ��� �	 � and � ��� �	 � (units �
�
� ��� � � � ). The contour line spacing is ����� � � ��� and

the maximum contour line is at � � ��� � � ��� . The projection of the IRP is given as

thick lines. Middle and Bottom row: Contour plot of densities of the first and sec-

ond excited states, respectively, with respect to the 2D potential
�

. Frequencies

(in � � ��� ) and IR intensities (parenthesized; in � � � � � � ) are given in the figures.

(Improved relaxation [26] on a 51 	 51 sine-DVR grid.)
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towards the weakest mode. This is a consequence of the near degeneracy of the

two weakest in-plane modes.

The first � � and second � � excited state with respect to the 2D PES
�

for

TRN(OH) are shown in the middle and bottom panel of the left column of Fig.

6.4. For a harmonic PES, the two excited states would be directed, respectively,

along the � ��� �	 � and � ��� �	 � axis. However, the calculation unveils, that the eigenstates

are tilted in a way such that the second excited one is directed along the IRP (thick

curve), while the first excited one, is almost orthogonal to the IRP. The frequency

difference is increased as compared to the harmonic modes, but - more importantly

- the tilting of the wave functions drastically changes the IR intensities: while for

the harmonic modes both IR intensities are about
� �

�
�
�  � , the IR intensity

of the state � � directed along the IRP is about 4 times larger than that for the

orthogonal state � � , i.e., IR intensity is enhanced for a vibration in direction of the

IRP. Since the IRP lies approximately in the reaction plane, so does the vibrational

direction corresponding to state � � .
The deuterated species, TRN(OD), is considered in the right column of Fig.

6.4 (selected normal mode frequencies are given in Tab. 6.5). For this species,

the harmonic frequencies of mode no. 36 ( 

� 
 � � ��� ) and 37 ( 
 �#� � � ��� ) show a

small isotope effect. The frequency difference is slightly decreased for the anhar-

monic case (values given in Fig. 6.4) as compared to the harmonic case. The pro-

jected IRP (thick curve) is more strongly tilted towards the lowest frequency mode

no. 37 as compared to the protonated species. Note, the difference of harmonic

frequencies is increased in TRN(OD) as compared to TRN(OH). The correlation

between IRP direction and vibrational direction of the wave function is less pro-

nounced compared to TRN(OH). The lowest state has a larger overlap with the

IRP curve than the second excited state. Again, vibration along the IRP enhances

the IR intensity.

Two observations are important: (i) the “competition” between the nearly de-

generated modes no. 36 and 37 is decided such that one mode (not necessarily

the lowest one) is tilted towards the IRP, and (ii) the spacial extent of the con-

sidered low frequency modes is of the same order of magnitude as the maximum

displacements of normal modes no. 36 and 37 along the IRP. (Recall, that these

modes are among the modes with largest displacement along the IRP.) The finding

suggests that excitation of the modes that are tilted towards the IRP will show a

pronounced enhancement of the tunneling splitting upon excitation. These modes

are referred to as reaction modes in the following. The almost orthogonal modes

are considered to be less relevant for the tautomerization process.
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6.2.2 Mode selection

The goal of this Section is the construction of a model of TRN(OH) with re-

duced dimensionality (reduced model) based on the CRP approach (cf. Chapter

5). In particular, the choice of relevant modes (cf. Sec. 5.2.2) is discussed. Re-

call, the CRP-Hamiltonian of a reduced model depends on model coordinates�
� � � � �

�	� � � � � � �	� � 
 , where
�

� � � � �



are the reaction plane coordinates and
�

is

the number of relevant modes
� �

. The relevant modes are orthogonal to the reac-

tion plane and a certain relevant mode is either symmetric or anti-symmetric with

respect to the molecular symmetry transformation
�

. Recall,
�

is the combina-

tion of the permutation of atoms
�

(cf. Section 6.1) and a rotation such that the

two symmetrically related minima are connected by a rotation free path (cf. Sec.

2.2.1).

A normal mode analysis of the reduced model with respect to, say, the right

minimum,
�

�
� ���	� �
�

�
�
� ���	� �� � � � � 
 , yields

� � �
unique reduced normal modes

(RNM) � � � � � ��
with corresponding

� � �
reduced normal mode vectors

� � � � � ��
of

dimension
� � �

(cf. Sec. 5.2.2). This is analogous to the full-dimensional case,

for which there are
� � � full normal modes (FNM) � ��� �� with corresponding�

-dimensional full normal mode vectors
� ��� ��

. It is important to note that RNM

and model coordinates span the same configuration space, i.e., these coordinates

are linear combinations of each other. The RNM are unqiuely defined by diag-

onalizing the Hessian at the (right) minimum, while the model coordinates are

convenient for expressing the CRP Hamiltonian.

In the following, it is assumed that the OH stretch region is dominated by var-

ious Fermi resonances with overtone and combination states. This is suggested

by previous experimental work [48]. Fermi resonances may be described within

perturbation theory. The states corresponding to the harmonic approximation with

respect to one minimum serve as zero-order (or unperturbed) states

 � � ��

with en-

ergy � � � �� , where � accounts for the collection of all quantum numbers. First-order

perturbation theory states, that the expansion of the new OH stretch level

 � ���
� in

terms of the old levels reads (without normalization),
 � ���
�

��
 � � �
�

� 
� �
� � �

� 
 � � �� � �

� � � 
 � � �� � �� � 
 � � �
� �

� � � �� � � � � �� � (6.4)

A state

 � � ��

corresponds to the fundamental, overtone, or combination excitation

of certain mode(s). Thus, a large expansion coefficient �

�
indicates the relevance

of the underlying mode(s).

The coupling matrix element vanishes for states with an odd number of ex-

cited out-of-plane modes due to symmetry. This includes binary combinations of

in-plane and out-of-plane fundamentals with one quantum per mode. For other
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normal overlaps

mode symmetric anti-symmetric
� � � � � � � � �

�
� � 	 � � � � � � � � �

� ��� �� 0.61

� ��� �� 0.30 0.87

� ��� �� 0.42 0.75 0.34

� ��� �� 0.31 0.63 0.28 0.49

� ��� �� � 0.26 0.53 0.68

� ��� �� � 0.31 0.35 0.33 0.68 0.32

� ��� �� � 0.38 0.41 0.29 0.63 0.29

� ��� �� 	 0.46 0.47 0.70

Table 6.3: Overlap [Eq. (6.5)] of selected full normal modes (FNM) and
�
�
-

modes. The
�
�
-modes are either symmetric or anti-symmetric with respect to the

molecular symmetry transformation
�

(see text). Only overlaps

 � � ��� are shown

for clarity. Modes with largest overlap are included in the model and are marked

by bold-face numbers.

states, the evaluation of the coupling matrix element �

�
requires the knowledge

of the full-dimensional Hamiltonian
��

. The corresponding cumbersome compu-

tations of high-dimensional matrix elements hamper a direct use of �

�
as order

parameter for the mode relevance. To proceed, consider all those states with en-

ergy in a
� � ��� 
�� ��� range around the harmonic OH stretch at 
�
 � 
 
�� ���

. This

range is motivated by the width of the experimental OH stretch band (vapor phase)

[48, 159].

All out-of-plane modes and some in-plane modes are excluded by this choice.

The CH stretch modes � ��� �� � � � � � � ��� �� correspond to fundamentals in the considered

energy range. However, the CH stretch modes are linear combinations of local CH

stretch modes and do not have any significant influence on the
	 � � � � � � � 	

fragment (vanishing
�
-values in Tab. 6.2). For that reason, irrespective of the

small denominator of �

�
, the CH stretch modes are considered to be non-relevant

for the description of the OH stretch coupling.

Several combination states corresponding to the modes � ��� �� � � � � � � ��� �� 	 reside

in the considered energy range. These modes were also considered by Redington

et al. [48] for the interpretation of the OH stretch region in terms of combination

transitions of observed IR transitions in the range �

�
��� � ��������
�� ��� . Therefore,

there should be RNM that closely resemble the FNM, i.e., the overlap [cf. Eq.

(5.36)] of certain pairs of RNM and FNM should be close to one.

In Section 5.2.1 the space that is orthogonal to the reaction plane (i.e., the
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space of all possible relevant modes) was expressed in terms of eigenvectors
� �

of the projected transition state Hessian Eq. (5.7). The corresponding coordinates

were labeled
� �

. A necessary condition for the overlap Eq. (5.36) beeing large for

certain RNM/FNM pairs is that the projection of the FNM into the space spanned

by the model coordinates (the reduced space) is large. (Recall, all RNM span the

same space as the model coordinates.) Thus it is reasonable to consider overlaps

of FNM and the vectors
� �

, ��
�
� � � ��� �� � � � � (6.5)

The modes
� �

are labeled in the order of decreasing eigenvalues; the symmetric

modes are
� � � � � � � � � � � � and the the anti-symmetric modes are

� � � � � � � � � � 	 � � .
The overlap of the FNM no. 7 to 13 and the OH stretch mode � ��� �� with the
�
�
-modes is shown in Tab. 6.3. Modes with largest overlap are included in the

model and are marked by bold-face numbers. (For the OH stretch FNM no. 1, all
�
�
-overlaps are also shown in Fig. 6.6a.)

Additionally to the modes discussed so far, the full normal mode � ��� �	 � is also

taken into account, because its energy is very close to the first overtone of the

reaction mode (see below). A rather small coupling may lead to a mixing of

these states due their near resonance. Moreover, mode � ��� �� � is included in order to

check the assignment of Redington et al. (cf. Section 6.1). The overlap of mode

� ��� �� � and � ��� �	 � is largest with
�

-mode
� 	 � (anti-symmetric, overlap 0.96) and

� � �

(symmetric, overlap 0.97), respectively.

The preceding discussion leads to a 12D model with relevant mode vector,

� � � ��� � � ��� � � � � ��� � � � � � � � � � � � � �
� � � � � � � 	 � � � � � � � � � � � � � � 	 � 
 � � (6.6)

Thus, the vector of model coordinates is 12D and reads
�

� � � � �
� � � � ��� � � ��� � � � � � 
 .

The ZPE term [fourth term on the r.h.s. of Eq. (5.31)] corresponding to the

spectator modes lowers the barrier by �	


�

�� ��� . Note, this term only includes

the ZPE of modes that are not included directly into the model.

The 12 reduced normal modes (RNM) of the model are shown in Fig. 6.5;

Table 6.4 shows overlaps with full normal modes (FNM) and overlaps with the

directions of the reaction plane, � � and � � [cf. Eqs. (3.22-3.23)]. There are

three RNM, � � � ��� �� , � � � ��� ��
, � � � ��� �� � , with a comparatively large overlap with the

reaction plane (cf. 7th and 8th column of Tab. 6.4). RNM � � � ��� �� almost coincides

with the OH stretch FNM � ��� �� (overlap 0.97; 4th column of Tab. 6.4). The small

residual overlap with other modes leads to a decrease of the RNM frequency by

��� � 
 � ��� (-3 %). RNM � � � ��� ��
has a significant overlap with FNM � ��� �� � (overlap

0.72), which has OH bend character and shows the largest IR intensity. This

FNM is considered to be the “nominal” OH bend [48]. RNM � � � ��� �
� � has lowest

frequency and shows significant overlaps with FNM � ��� �	 	 , � ��� �	 � , and � ��� �	 � . This
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Figure 6.5: The reduced normal modes of the 12D model of TRN(OH). Frequen-

cies are indicated.
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full 12D

no. � ��� �� � ��� � Inten. overlap mode � � � ��� �� � � � � � � � �

1 3329 133.7 0.97 � � � ��� �� 3227 -0.64 0.31

7 1674 202.4 0.87 � � � ��� �� 1662 -0.01 0.00

8 1663 2.82 0.89 � � � ��� �	 1655 -0.15 0.04

9 1617 104.6 0.91 � � � ��� �� 1593 0.06 -0.01

10 1539 124.5 0.94 � � � ��� �� 1535 0.04 0.00

11 1522 141.9 0.85 � � � ��� ��

1500 -0.26 0.07

12 1480 212.0 0.83 � � � ��� �� 1461 0.17 -0.07

13

14

1454

1349

27.0

57.7

0.59

0.65
� � � ��� �� 1400 -0.04 0.00

15 1327 227.5 0.72 � � � ��� ��
1271 0.60 -0.11

28 752 14.5 1.00 � � � ��� �� � 753 -0.11 0.03

30 694 7.2 1.00 � � � ��� �� � 695 -0.03 0.00

33

36

37

449

375

364

15.2

5.3

5.2

0.41

0.70

0.56

� � � ��� �� � 392 0.32 0.94

Table 6.4: Comparison of normal modes of the full-dimensional system (“full”)

with the reduced normal modes of the 12D model (“12D”) for TRN(OH). Fre-

quencies � � (in 
 � ��� ), IR intensities (“Inten.”, in � � � � � � ), overlaps of the re-

duced normal modes with full normal modes [cf. Eq. (5.36)], and overlaps of the

reduced normal modes with the reaction plane directions,
� � � � � � � � � �� �

(“ � � ”) and� � � � � � � � � �� �
(“ � � ”), are given.
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Figure 6.6: Overlaps of the OH/OD stretch full normal mode (FNM) with
� �

-

modes for TRN(OH) and TRN(OD), respectively. The OH stretch FNM � ��� �� has

large overlap with
� � ; the OD stretch FNM � ��� �� has large overlaps with

� �
and

�
� . The large overlaps motivates the inclusion of these modes in the respective

models.

RNM is reminicent of the findings of Section 6.2.1; tentatively it is called the

reaction mode of the 12D model.

Reaction plane overlaps of the remaining RNM are markedly smaller. Most

modes have a clear FNM counterpart (overlaps

 � � ��
 ) and the RNM frequencies

are only slightly changed; due to the reduced dimensionality, RNM no. 8 has

significant overlap with two FNM, however. Modes � � � � � �� � and � � � � � �� � coincide

with the corresponding FNM � ��� �� � and � ��� �	 � , respectively. Moreover, these modes

almost coincide with the model coordinates
� � � � � 	 � (anti-symmetric) and

� � �
� � � (symmetric).

The 12D model of TRN(OH) was choosen according to resonance conditions,

which will change for the deuterated species TRN(OD). A comparison of isotope

effects concerning the OH/OD stretch is not attempted here. Instead the isotope

effect concerning low lying energy levels (e.g., ground state tunneling splittings)

is studied by discarding the FNM no. 7 to 13 and FNM no. 30. Thus, a 4D model

is considered with relevant mode vector

� � � � � � ��� � � � � ��� � � � � � � 	 � 
 � � (6.7)

The ZPE term [cf. Eq. (5.31)] lowers the barrier by �

�
��
�� ��� , which is an in-

significant change compared to the 12D model. The RNM are labeled � � � � ��
to � � � � �� . These modes correspond, respectively, to the OH stretch, OH bend,

nascent tautomerization coordinate (according to Redington et al.), and reaction

mode. The main difference as compared to the 12D model concerning the above

discussion is: (i) the OH stretch overlap is 0.92 with RNM frequency decreased
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full 4D

no. � ��� �� � ��� � Inten. overlap mode � � � ��� �� � ��� � � � � �

6 2421 81.8 0.92 � � � � �� 2269 0.69 0.42

18

21

22

1121

1002

967

43.9

22.2

41.0

0.37

0.63

0.43

� � � � �� 1074 0.55 0.20

27 748 12.1 0.96 � � � � �	 757 0.09 0.07

33

36

37

442

369

352

13.6

2.1

10.7

0.30

0.29

0.89

� � � � �� 389 0.46 0.88

Table 6.5: Same as Tab. 6.4, but for the 4D model of TRN(OD).

to 
 ��� 
 
 � ��� , and (ii) the OH bend overlap with FNM no. 15 is reduced to only

0.44 with RNM frequency �	

����
�� ��� . Frequencies of the remaining RNM, � � � � �	
and � � � � �� , are �

�

�
�� ��� and

�
�
� 
 � ��� , respectively.

The corresponding 4D model of the deuterated species, TRN(OD), involves

a different choice of relevant modes. This is illustrated in Fig. 6.6, where over-

laps of the OH/OD stretch FNM are shown for both species. For TRN(OH) only

one
�
�
-modes is selected (cf. previous discussion in this Section). (Note, differ-

ent symmetries are not allowed to be mixed.) For TRN(OD) the OD stretch is

dominated by two mode overlaps. Furthermore, like in the case of TRN(OH), the

nascent tautomerization coordinate of TRN(OD) (FNM no. 27) has a large over-

lap of � ��

�

with the anti-symmetric mode
� � � . This motivates to use the relevant

mode vector,

� � � � � � ��� � � � � ��� � � � ��� � � � � � � �
�
� � � � � 
 � � (6.8)

for the 4D model of TRN(OD). Recall, that one is free to choose linear combina-

tions of
�
�
-modes [cf. Eq. (5.18)] with same symmetry. A more refined linear

combination does not lead to a refined model, because of the limited dimension-

ality. (Left out modes have similar magnitudes of overlaps as the difference of

the magnitudes of the largest overlaps.) The ZPE term [cf. Eq. (5.31)] lowers the

barrier by 
�� � 
�� ��� . The four RNM (no. 1 to no. 4) correspond, respectively, to

the OH stretch, OH bend, nascent tautomerization coordinate, and reaction mode.

Properties of the reduced and full dimensional harmonic modes are compared in

Tab. 6.5. In particular, the RNM � � � � �� has a large overlap with the weakest in

plane FNM � ��� �	 � , which is reminiscent of the right column of Fig. 6.4.
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6.2.3 The IR spectrum: low lying states

This Section addresses the state-specific tunneling splittings of states below

������
�� ��� . The splittings are of the order of � to ����
�� ��� , i.e., an accurate de-

termination method is required. However, a direct diagonalization of the 12D

Hamiltonian (e.g., by the Lanczos method) is not feasible. An alternative method

is introduced that is based on a combination of improved relaxation (cf. Section

2.3.1) and diagonalization with a reduced basis set. The remaining spectrum - in-

cluding the OH stretch band - is obtained with lower accuracy by Fourier transfor-

mation of an appropriate dipole-dipole auto-correlation function in Section 6.2.4.

In principle it is possible to obtain ground and excited states directly by the

MCTDH approach with improved relaxation (cf. Section 2.3.1). However, expe-

rience shows that the relaxation leads to a localization of the states in one of the

minima, i.e., the states relax to a superposition of gerade and ungerade states. To

overcome this problem a symmetrization/anti-symmetrization procedure of SPF

was implemented in the MCTDH package [140]. Unfortunately such procedure

is not applicable, when anti-symmetric modes are present, because SPF of both

symmetries are necessary to describe the full-dimensional wave function. To this

end, a method is presented that uses localized states as non-orthogonal basis for

the diagonalization of the Hamiltonian.

The states

 � � � � ��

(

 � � � � ��

) corresponding to the harmonic approximation to the

right (left) minimum serve as initial states for MCTDH improved relaxations (cf.

Section 2.3.1). The relaxations yield new relaxed states

 ��� � � � � ��

and

 ��� � � � � ��

, re-

spectively. These states form an optimized basis for the diagonalization of the

Hamiltonian. The left and right states are not orthogonal, thus eigenstates and

eigenvectors of the Hamiltonian can be obtained by solving the generalized eigen-

value problem, � �
�

�
� � � � � �

� � � � � �� � � � � �
� � � � � �� � � � � � � � ��

� � � � � � (6.9)

where � � � or 
 ,
� � � � �� � � � � � 
 ��� � � � � �� � �� � 
 ��� � � � � � ��

�

�
is the Hamiltonian matrix,

� � � � �� � � � � � 
 ��� � � � � �� � 
 ��� � ��� � � ��
�

�
is the overlap matrix, and � � ��

� � � are the expansion co-

efficients for the eigenstate no. � ,
 � � � � �� � � � �
� � � � � �

� � � � 
 ��� � � � � �� �
(6.10)

with eigenenergy �
�
. The present procedure requires less single particle functions

than the attempt to compute the gerade and ungerade states directly by improved

relaxation.

Table 6.6 shows the primitive basis and the mode combinations that were used

for the improved relaxation. The number of SPF for the combined modes � � to
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no. coord.
� � � � �

�����
� � � �
����� comb.

1 � � 31 -3.0 3.0 � �
2 � � 31 -2.0 4.0 � �
3

� � 19 -1.5 1.5 � �

4
� � 19 -1.5 1.5 � �

5
� 	 19 -1.5 1.5 � 	

6
� � 19 -1.5 1.5 � 	

7
� � 19 -1.5 1.5 � �

8
� �

19 -1.5 1.5 � �

9
� � 19 -1.5 1.5 � �

10
�
� 19 -1.5 1.5 � �

11
� �

19 -2.0 2.0 � �

12
� � � 19 -2.0 2.0 � �� � � in �

�
� ��� � � �

Table 6.6: Primitive basis and mode combinations (indicated by indentical �

�
’s)

used for the MCTDH calculations (cf. Sec. 2.3.1). The sine-DVR representation

was used, where the grid extends from
�
����� to

�
����� with

�
grid points.

state
� � ��" 
 � � � � � 
 � ��� 
 crit. pop.� � � � � � � � � � � � � � � �

��� � � � � � � � � ��
 � � � � �
��� � � � � � � 
 ��
 � � � � �
� � � � � � � � � � � � � � �
� � � � � � � � � 
 � � � � �

Table 6.7: Parameters for MCTDH improved relaxation. The 10 relaxed states
 ��� � � � � � � ��
with � � � � � ��� � ��� � � � � � � � (see text) were used as basis for solving Eq.

(6.9).
�

is the relaxation time,
� � is the energy change for the last relaxation

step, and “crit. pop.” is the maximum critical population.



128 Tautomerization of tropolone

� � are 6 / 6 / 4 / 4 / 4 / 4. All 10 right and left harmonic states below ����� 
�� ���

were included; for completeness Table 6.7 shows the used relaxation time, en-

ergy convergence, and critical population of each individual state. The relaxed

states are perturbed harmonic oscillator states. The labeling scheme is
� �

, where

� � � � � �� is the corresponding harmonic mode and � is the number of quanta in that

mode. The ground state is labeled as “gs”; combined states do not appear below

������
�� ��� . The basis is symmetry adapted; gerade and ungerade superpositions

can be formed, 
 ��� � � � � ��
�

 ��� � � � � �� � 
 ��� � � � � �� �

(6.11)

with appropriate normalization.

A ground state tunneling splitting of
� � � � � � 
�� ��� was found by solving Eq.

(6.9) with the present basis of 10 relaxed states. In order to check the accuracy

(and as a prerequisite for Section 6.2.4) the gerade and ungerade ground state were

also determined by performing the improved relaxation directly for these states.

The initial states were constructed by using the gerade and ungerade eigenstate

of an appropriate 1D Hamiltonian for the � � DOF. The states were converged to� � � � � ����
�
 � ��� . The tunneling splittings was found to be
� � �


 �
�

�� ���

and the energy of the gerade ground state obtained by direct improved relaxation

was 
 � 
 
 � ��� higher than the energy of the state obtained by relaxing

 ��� � � � � �

� � .

The reason for this small deviation is that the present diagonalization method

would correspond to a direct improved relaxation with twice as many SPF per

anti-symmetric DOF.

Compared to the experimental tunneling splitting,
� � � � � �� � � ��
 �

�

�� ��� [160],

the present result is about 3 times too large. Two errors contribute to this overes-

timation: (i) results of Ref. [114] suggest the barrier to be about 
���� � � 
���
�� ���

higher and (ii) the inclusion of out-of-plane modes typically decreases the tun-

neling splitting (cf. Section 2.2.3). Recently, the last issue was demonstrated for

malonaldehyde [165].

The results (i.e., eigenenergies and IR intensities) of the diagonalization pro-

cedure are shown in Table 6.8 (indicated as “H-12”). The symmetry of the states

is either gerade (“+”) or ungerade (“-”). The labeling of states is
� �

� , where
�

is the RNM number and � is the number of quanta in that mode (cf. also Tab.

6.7). The Eigenenergies are given with respect to the gerade ground state level
 �
� � . A pronounced mode selectivity is found for the states � � � corresponding to

mode � � � � � �� � : the splitting increases to �

�

�� ��� for the fundamental ( � � � ) and to

�
� 
�� ��� for the first overtone ( � � � ). According to Section 6.2.2, this mode most

closely resembles the reaction mode, i.e., that mode, that vibrates in the direction

of the IRP. The magnitude of the splitting of the remaining states is almost un-

changed compared to
� �

. The order of the gerade/ungerade levels of states ��� ��
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IR Intensity (
�
�
�
�  � )

final

state
�� �

�
� � �

( 
�� ��� )

��� � 
�� 
 �� � 
��

H-12 H-4 D-4 H-12 H-4 D-4 H-12 H-4 D-4

� � �� �
�
�� 
 357 354 363 7.1 6.7 4.1 14.0 10.6 5.9

� � �� �
�
��



371 372 364 8.8 5.2 5.6 6.2 6.4 4.0

� � � � �
�
�
�



697 690 728 0.6 0.6 1.0 0.7 0.9 0.2

� � � � �
�
�
�



737 744 737 0.0 0.1 0.1 0.5 0.3 0.7

��� �� 696 0.2 6.0

��� �� 699 6.4 0.2

��� �� � 
 �� 
 752 752 756 0.7 1.7 3.3 14.6 20.7 21.3

��� �� � 
 �� 
 750 749 757 15.6 21.5 12.3 0.6 1.1 3.3

Table 6.8: Excitation energies ( �

�
) and IR intensities for the 12D model of

TRN(OH) [“H-12”], for the 4D model of TRN(OH) [“H-4”], and for the 4D model

of TRN(OD) [“D-4”]. The labeling of states is
� �

� , where
�

is the RNM number

and � is the number of quanta in that mode and
�

specifies the symmetry; paren-

thesized values refer to the 4D models. The ground state tunneling splittings are:� � � 
�� ��� (H-12), 
 � � 
�� ��� (H-4), and � � �	��
 � ��� (D-4).
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Figure 6.7: Densities
� 
 � �

of selected states of the 4D model of TRN(OH). The

transition frequency (in 
 � ��� ) and the symmetry (
�

) is indicated. The states were

obtained by energy screening. (Note, there are different
�

-axis labels.)

are reversed. Mode � � � � � �� � almost coincides with model coordinate
� � � � � 	 � ;

this model coordinate shows anti-symmetric coupling. For excited states of modes

with anti-symmetric coupling the order of gerade/ungerade states can be reversed

(cf. Section 2.2.3) [57].

IR transitions can be characterized to be of one of the four types: gerade-

gerade ( � � � ), gerade-ungerade ( � � � ), ungerade-gerade ( � � � ), and

ungerade-ungerade ( � � � ). All four possible types of IR transitions are sym-

metrically allowed for in-plane fundamentals (cf. Fig. 6.1). For transitions into

the states ��� �� (corresponding to the nascent tautomerization coordinate) and ��� �� ,

the intensity for the � � � and � � � transitions is significantly larger than for

the � � � and � � � transitions, i.e., the � transition dipole is significantly

weaker than the
�

transition dipole [40]. On the opposite, all possible transitions

into the states � � �� have significant intensity. This indicates that these states are

more strongly perturbed compared to the corresponding harmonic states. The in-

tensity for transitions into the overtone states � � � � is weak. In particular, there

is no Fermi resonance between the very close lying states � � � � and ��� �� . Recall

that the investigation of this possibility was the reason for treating mode � ��� �� � as

relevant.

Table 6.8 also shows results for the 4D models of TRN(OH) and TRN(OD)

[cf. Section 6.2.2]. These values were obtained by Lanczos diagonalization,

i.e., the eigenvalues are numerically exact. Comparing the 12D and 4D results

for TRN(OH) one finds only marginal changes of the excitation frequencies; the

ground state tunneling splitting is increased to 
 � � 
 � ��� (the change is about the

accuracy of the present method). IR intensities change more strongly, but no qual-

itative changes occur. The finding suggest that, concerning the low lying energy

levels, the 12D and the 4D model almost agree. Moreover, since the 4D results are

numerically exact, it confirms the applicability of the method used for obtaining

the 12D eigenvalues.
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Figure 6.8: Experimental IR spectrum of TRN(OH) vapor at
� � � 
 � � � � �

and� � �	


�
��
�

near � � � 
 � ��� (taken from Ref. [40]). All values in 
�� ��� . Cold

bands are marked by numbers; “*” marks hot bands and “w” marks transitions

due to water vapor. The calculation centers on the peaks at � �
�

�� ��� (cf. Tab.

6.8 and Fig. 6.10); the experimental peak at � �#� 
�� ��� is due to transitions into an

out-of-plane mode.

Densities of low lying states obtained for the 4D model of TRN(OH) are

shown in Fig. 6.7. Upon excitation the states corresponding to the reaction mode,
 �� � , delocalize and spread towards the barrier region. This is in contrast to the

states corresponding to the nascent tautomerization coordinate (cf. state

 �	 � );

these states are almost orthogonal with respect to the reaction plane.

For the protonated species, TRN(OH), the present 12D model predicts two

bright peaks in the IR spectrum at �

�

 � 
 
 � ��� and � � � 
 � ��� (cf. Tab. 6.8). The

experimental IR spectrum was measured with high resolution in the region be-

tween 
 ����
�� ��� and ������
�� ��� by Redington et al. [40]. The spectral region near

� � ��
 � ��� is shown in Fig. 6.8. Two transitions from the vibrational ground state

were identified (“cold bands”) by comparing spectra for different temperatures

[40]. The peaks have rotational substructure. The doublet near � �#� 
�� ��� was

assigned to the H out-of-plane mode ( � ��� �� � ). The sharp doublet at � �
�

 � ��� has

a splitting of � � � � � � � � � �� � � � ��
�� ��� and was assigned to correspond to the up-

per component of the transitions into the mode corresponding to the nascent tau-

tomerization coordinate. This assignment was based on an empirical model [47].

However, the lower component was not found in the spectra of TRN(OH) vapor

[40]. In a previous work, this component was assigned to a peak near �

�

�
 � ���
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Figure 6.9: IR spectrum of Ne-Matrix isolated samples of the deuterated species

TRN(OD) at
� � � �

for transitions below 
 ����
 � ��� (taken from Ref. [166]).

All values in 
�� ��� . Transition due to the protonated species TRN(OH) are marked

by “h”.

in Ne-matrix isolated TRN(OH).

A direct assignment of peaks calculated within the 12D model is hampered

by the complicated substructure of the experimental spectrum. However, the cou-

pling of mode � ��� �� � to the tautomerization process appears to be insignificant, i.e.,

based on the present model this mode must be excluded from being a “nascent”

tautomerization coordinate. In contrast, fundamentals and overtones correspond-

ing to the reaction mode show a large mode-specificy of the tunneling splitting.

The 12D model predicts a “doublet of doublet” (i.e., quartet) structure of the cor-

responding fundamental transitions (cf. Tab. 6.8). There are two broad peaks

at, respectively, 
�� � � � 
�� ��� and 


�

 � � 
 � ��� in the experimental spectrum of Ne-

matrix isolated samples of TRN(OH) [166]; these peaks are marked “h” in Fig.

6.9. The substructure of these peaks is presently unknown, but according to the

present model they are candidates for a tunneling “quartet”.

The effect of deuteration (“D-4” values in Tab. 6.8) significantly decreases

the splitting of the modes corresponding to the reaction mode. The ground state

tunneling splitting of the deuterated species is reduced to � � �	��
�� ��� . The exper-

imental ground state tunneling splitting was estimated by Jackman et al. [167]

to be
� � � � � �� � � � � � � � 
 � � � � ��� 
�� ��� . The measurement refers to TRN(OD)

solved in
� 	 	 � 	 ; the value for gaseous TRN(OD) is presently unknown. The

present theoretical value ( � � � � 
 � ��� ) for the 4D model of TRN(OD) appears to

be consistent at least. In the Ne-matrix isolated IR spectrum of TRN(OD) there is

only one broad peak at 
�
�� � � 
�� ��� (cf. Fig. 6.9). This finding, too, is qualitatively

consistent with the present theoretical prediction (cf. Tab. 6.8).
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Figure 6.10: Overview of the computed IR spectrum of the 12D model of

TRN(OH) at
� � � �

.

6.2.4 The IR spectrum: !
"#"#"%$ !�&'"#"�(*) �,+ range and OH

stretch region

The remaining part of the spectrum can be obtained by Fourier transformation of

the dipole-dipole autocorrelation function [168],

� � � � 
 �
� � � �

� � �

 	 � �

� ��- � �
� � � 
� 	 � � �
� 
 
�� � � � 
 �� � �� � �
� 
 �� � � � 
 � 
 �� � � (6.12)

where
�
� � � is the number density of molecules,

�� �$� � 

is the dipole operator in the

Heisenberg picture with space direction
� ���

or � (for in-plane transition), and

� �
� 
/. ����� � � �10 � 	�0 � is a Gaussian window function to account for the limited

time interval on which the correlation function is known. The parameter
	

was

� � � . The determination of the gerade and ungerade ground states was described

above. The dipole-dipole correlation function was computed by performing a

MCTDH propagation for a 
3254 time interval. The dipole function was approx-

imated according to Eq. (5.32)]. The primitive basis is given in Tab. 6.6; the

number of SPF were 7 / 7 / 5 / 5 / 5 / 5. The maximum critical population for all

four necessary propagations was
� � � ��687
9 	 . This is similar to other applications

of the MCTDH approach [150].

Figure 6.10 shows an overview of the computed IR spectrum at
�;: � �

. To

this end, the spectra corresponding to transitions from the gerade and ungerade

ground state, respectively, were weighted with the appropriate Boltzmann factor.

The resolution is limited by the finite propagation time expressed by the window
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12D Model Exp.

state �
��� � � � ��� 0 � �� � ��� � � � � ��� �� � 1655 1662 1632 1634.2� � low inten. 1655 1616 1616

�
� 1585 1593 1581.1 1581.1

� � 1540 1535 1565.0 1565� � 1475, 1490 � � � 1500 1498.9 1498.9� � 1450 1461 1431 1432.3� � 1405 1400 1413.6, 1315 � �
	 1413.6, 1317.8 � �
	

 � 1150, 1170 � � 	 1271 1273.5 1272.3

�
� 	 comparison of IR spectra obtained from vapor phase, solvated and

rare gas matrix-isolated samples and MO computations [48];

� � 	 Ne matrix-isolated samples at
� : � �

[166];

� � 	 resolved tunneling doublets;

� �
	 RNM no. 8 has significant overlap with two FNM (cf. Tab. 6.4)

Table 6.9: Fundamental transition energies (in �
� 9 � ) of modes in the
687 7 7��

6 � 7 7 �
� 9 � range. Values for the harmonic approximation to the 12D model of

TRN(OH) ( � � � 0 � 	�
) and values ( �

�
) obtained by inspecting symmetry resolved

Fourier transforms � ������� [cf. Eq. (6.12)] with FWHM
. 
 ��� 9 � are compared

with experimental observations. The displacement vectors of corresponding nor-

mal modes are depicted in Fig. 6.5.
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Frequency
����� 9 � �

Figure 6.11: IR spectrum of Ne-matrix isolated samples of the protonated species

TRN(OH) at
� : � �

between
6 6 � 7 �;6 � � 7 �
� 9 � (taken from Ref. [166]). All

values in �
� 9 � . Peaks marked with “f”, “b”, and “t” correspond to, respectively,

fundamental transitions, binary combination transitions, and ternary combination

transitions (assignment according to Ref. [48]).

parameter
	 : 6�� �

corresponding to a full-width half-maximum (FWHM) of

about 
 �
� 9 � . Three regions are indicated by capitals, A, B, and C. Region A

corresponds to Tab. 6.8 and was already discussed in Section 6.2.3. The RNM

no. 2 to 9 reside in Region B; an assignment is given in Tab. 6.9. The values

were obtained by inspecting � � ����� and � 9 ����� independently. The limited res-

olution permits the conclusion that the energy levels are only slightly perturbed

as compared to the harmonic case (cf. Tab. 6.4). Harmonic and anharmonic

values do reasonably well correspond to the assignment of experimental peaks.

The left column of the experimental section corresponds to assigments that were

made by comparison of IR spectra obtained from vapor phase, solvated, and rare

gas matrix-isolated samples of TRN(OH) with MO computations [48]; the right

column corresponds to Ne matrix-isolated samples.

In the theoretical spectrum, the tunneling splitting of states

 �� � and


 �� � (OH
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bend) can be resolved to be about
6 � ��� 9 � and � 7 �
� 9 � (including the ground

state splitting), respectively. The splitting of the other states is possibly unre-

solved. Note, the two corresponding RNM no. 6 and no. 9 have largest overlaps

with the reaction plane among the modes in the energy range
687 7 7 � 6 � 7 7 ��� 9 �

(cf. Tab. 6.4). However, the overlap of RNM no. 9 is artifically increased due to

the reduced dimensionality. This is discussed below.

Experimentally, no tunneling splittings were assigned to mid-IR states [48].

However, there appear several peaks with significant intensity in the experimental

spectra, and some of them were assigned to transitions into combination states of

three (!) combined modes (ternary states) involving out-of-plane modes [48]. As

an example, the spectral region between
6 6 � 7 � 6 � � 7 ��� 9 � is shown in Fig. 6.11

(from Ref. [166]). Fundamental transitions (“f”), binary combination transitions

(“b”), and ternary combination transitions (“t”) according to Ref. [48] are indi-

cated. The moderate anharmonic shift of the calculated values ( �
�

in Tab. 6.9)

as compared to the values obtained by harmonic approximation ( � � � 0 � 	� ) suggest

a significantly lower intensity of transitions into combined states. (Recall, in the

harmonic case the intensity of such transition vanishes identically.) The present

calculation indicates that some of these peaks may be due to tunneling, instead.

State

 �� � corresponds to the OH bend. Experimentally, the OH bend was

assigned to be at
6 � � ��� � �
� 9 � and it has the largest IR intensity. A tunneling

splitting of the OH bend was not assigned. The overlap of the RNM � � � 0 � 	�
with

the FNM � � � 	� � , the “nominal” OH bend, is 0.72 (cf. Tab. 6.4), i.e., there is residual

overlap with other full normal modes. The overlap of the RNM with the reaction

plane is � 7 � � 7�� 7 � 6 6 � [cf. Tab. 6.4]; the overlap of the FNM no. 15 with the reaction

plane is � 7 � � 6���7 � 7 � � . This means, the overlap of the FNM is reduced as compared

to the RNM. In other words: the reduction procedure confines the OH bend more

to the reaction plane. It is expected that this effect leads to an artificially reduced

frequency and enhanced tunneling splitting of the OH bend. The true behavior of

the OH bend cannot be predicted based on the present model.

Figure 6.12 shows the OH stretch Region C in more detail. The anharmonicity

of the PES leads to the development of a broad structured band with a width of

about
� 7 7 ��� 9 � . The IR intensity of the OH stretch local mode is shared among

various states. The individual states cannot be resolved due to the finite propaga-

tion time. There is a maximum of the gerade and ungerade transitions at, respec-

tively, ��� � � � � �
� � � 9 � and ��� � � � � �

� � � 9 � . A splitting of each single peak

cannot be resolved. Compared to the � � � 0 � 	� harmonic normal mode frequency

of
� ��� � � � 9 � the OH stretch band maxima are red-shifted by about

� � 7 � � 9 � .
The experimental OH stretch frequencies according to the assignment of Reding-

ton [48] are at
� 6 � 6 � � 9 � and

� 687 � � � 9 � ; the assignment of Frost et al. [159]
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Figure 6.12: The OH stretch region computed for the 12D model of TRN(OH).

Transitions with gerade and ungerade initial state are shown separately. Lines are

drawn to guide the eye. The OH stretch tunneling splitting
� � is indicated.

was
� 6 �

�
� 
 ��� 9 � (from the gerade ground state). Thus, the theoretical prediction

seems to be about � � 7 � � 9 � too low. There are two effects that contribute to this

underestimation of the OH stretch frequency: (i) Table 6.4 unveils that by going

from the full-dimensional system to the 12D model the OH stretch frequency was

decreased by
687 � � � 9 � , thus inclusion of more modes would shift the OH stretch

of the 12D model to the blue. (ii) The quantum chemical barrier height of the

present model is � 6 � 6 � � 9 � obtained for the B3LYP/6-31+G(d) method. Barrier

heights obtained by more sophisticated quantum chemical methods are shown in

Tab. 6.1. For instance, Tautermann et al. [114] found a barrier of � � 6 � � � 9 � by

using the G3(MP2) method [162]. No rigorous convergence was achieved yet but

the trend points toward a higher barrier as that obtained within the present quan-

tum chemistry method. A higher barrier will largely effect those DOFs that are

connected with the reaction plane and therefore shift the OH stretch further to the

blue. However, the magnitude of that effect is difficult to judge. A simple linear

scaling of the potential by the factor 1.17, to account for the expected higher bar-

rier (say, � � 6 � � � 9 � ), would yield an approximate
� 6 � 6 �

shift of the frequencies,

i.e., the computed OH stretch would shift to around
� 7 � � � � 9 � .

The computed OH-stretch tunneling splitting is tentatively assigned to be� ��� ��� 7�� � � � � 9 � . The nature of the underlying eigenstates is unknown,

however. This issue is addressed in the following Section, Section 6.2.5. More-

over, it is necessary to investigate which mode contributes most (i.e., shows a large
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mixing with the local OH stretch) to the development of the OH stretch band. This

investigation of the coupling mechanism is addressed in Section 6.2.6.

Compared to the experimental value for the OH-stretch splitting,
� � �

� � 	� �

� 7 �
� 9 � , of Redington et al. [48] there is a surprising agreement. However, note,

the experimental assignment of the splitting is unclear. In particular, Frost et al.

[159] did not observe a splitting and concluded that the “missing” component re-

sides within unresolved absorption in a range of about
6 � ��� 9 � to the red. More-

over, a slightly higher barrier would have a significant influence on the computed

splitting. The present calculation confirms the experimental finding in so far, that

a comparatively small OH-stretch splitting is predicted (in view of the excitation

energy).

6.2.5 Semiclassical analysis

In the foregoing Section, the maxima corresponding to transitions from the gerade

and ungerade ground state, respectively, were interpreted as the tunnel doublet of

a perturbed OH stretch mode. However, the OH stretch transition is above the

barrier, which is � 6 � 6 ��� 9 � for the present quantum chemical method [B3LYP/6-

31+G(d)]. Barrier heights obtained within various other methods (cf. Tab. 6.1.)

suggest that the conclusion is general. Moreover, the ZPE is
� � ��� : ��� � � �
� 9 � .

Thus, the energy of classical ensembles corresponding to ground and excited

states is above the barrier. This requires special treatment for the application of

the Makri-Miller model (cf. Section 3.1.1). The present section proposes an in-

terpretation of the observed effects in terms of dynamical tunneling [69, 169].

Consider an ensemble of trajectories with initial conditions generated by nor-

mal mode sampling (cf. Section 2.1.5). All trajectories are initially located in the

right-hand well and the energy is scaled to the energy of a certain state of the 12D

model. The ensemble averaged power spectrum (cf. Section 2.1.5) corresponding

to the ground state and the first-excited OH stretch is shown in Fig. 6.13. The

power spectrum requires a choice of an observable � � � � ; here the observable is

� � � ��� ��� ��� ��� � � � � � � (6.13)

where
��� � and

��� � are the momenta corresponding to the two reaction coordinates

� � and � 0 and
� � � is the momentum corresponding to the coordinate � � � � � .

(Any other choice is equally well suited, but may differ in peak intensities.) A

symplectical integrator of fifth-order with fixed step-size of
7 � ���	� was used and

the propagation time was
6
�
� � � �

. The peaks (or bands) correspond to the funda-

mental frequencies of the system and linear combinations thereof. The OH stretch

region is characterized by a broad band. A pronounced broadening is also found
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Figure 6.13: The 12D model of TRN(OH): Power spectra for ensembles of 100

trajectories corresponding to the ground state (solid) and the first-excited OH

stretch (dashed). The spectra are normalized. The initial conditions were ob-

tained by normal mode sampling. The underlying observable � � � � is defined in

Eq. 6.13.

for peaks corresponding to the reaction mode and the OH bend, respectively. The

appearance of broad peaks indicates that the classical dynamics is of the mixed

type, i.e., regular and irregular trajectories exist close to each other. Comparing

the two spectra (the spectra are normalized), a marginally pronounced broadening

is found for the ensemble of the first-excited OH stretch and one observes a shift

of the band maximum from about
� 687 7 �
� 9 � (ground state) to about � 
 7 7 ��� 9 �

(first excited OH stretch). This shift is reminicent of Fig. 6.12, where the band

maximum is at about � �
�
7 �
� 9 � .

The ground state energy is
� � 6 � ��� 9 � with respect to the minima. Thus, com-

pared to the barrier height of � 6 � 6 �
� 9 � the ground state level is
� � ��� ��� 9 �

above the barrier, i.e., there is no barrier preventing the trajectories of the consid-

ered ensembles from reaching the other (left) well. Figure 6.14 shows the fraction

of trajectories
� � � � � that are in the right well after time

�
for ensembles of 1000

trajectories corresponding to the considered states. For the ground state ensem-

ble there is a slight decay; after

�
� 7 �	� the fraction has dropped to about 90 %.

For the first excited OH stretch there is a comparatively fast equilibration (equal

distribution over both wells) of the ensemble within about
6 7 7 �	� .

The numerical observations may be explained, when assuming the existence

of right (and left) localized invariant tori (cf. Section 2.1.1). These invariant
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Figure 6.14: The 12D model of TRN(OH): Classical survival probability
� � � � �

for the fraction of trajectories that are in the right-hand well after propagation

time
�
. Results for a ground state (solid) ensemble and the first-excited OH stretch

(dashed) are shown.

tori are regular regions of phase space embedded in an otherwise irregular phase

space [49]. A certain invariant torus corresponds to the ground state and the first

excited OH stretch. The normal mode sampling method generates trajectories

that are close to the particular invariant tori [99]; some trajectories may also be

on these tori. Trajectories that are close to a torus but in the irregular region

of phase space stay for a certain time close to the torus but then wander away

[64] and eventually cross the symmetry line leading to a equilibration of
� � � � � .

The irregular region of phase space increases with increasing energy. The power

spectrum of the considered scenario would look like the one found in Fig. 6.13.

If there is a right localized regular regions of phase space, then there is always

a symmetrically equivalent left localized regular region of phase space and vice

versa [170]; both regions are mapped onto each other by the symmetry transform�
(for a Cartesian Hamiltonian; cf. Sec. 2.2.1). The two corresponding ener-

getically degenerate left and right localized semiclassical wave functions form

zero-order states for quantum mechanics. In quantum mechanics, the gerade

and ungerade superposition of both zero-order states leads to split energy lev-

els [170, 69, 169]; since the splitting is a quantum effect it is due to a classical

forbidden process, namely tunneling (cf. Section 2.2.2).

On the opposite, all irregular regions of phase space are expected to be invari-

ant with respect to
�

, because Arnold diffusion prevents a trapping of trajectories
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Figure 6.15: The 12D model of TRN(OH): Cumulated tunneling probability� � � � � � for an ensemble of 2000 trajectories corresponding to the first-excited OH

stretch. The maximum propagation time was
�
�
��� : �

� �	� . The deviation from

linearity is due to the approximate nature of the normal mode sampling method.

[64]. As a consequence, there are no irregular regions with tunneling splittings

[170]. Thus, the appearance of a tunneling splitting suggests that there are corre-

sponding zero-order states localized on regular regions of phase space [170, 171].

The low lying states of the 12D (and 4D) model of TRN(OH) appear in split

pairs (cf. Tab. 6.8). Visual inspection of the states of the 4D model (cf. Fig. 6.7)

unveils that these states are regular. The same is anticipated for the 12D model.

If these states were localized on a delocalized invariant torus (i.e., a torus that is

invariant with respect to
�

), there would be a local maximum of the density along

the symmetry surface for a gerade state, because the momentum at the symmetry

line is smaller than at the minima. This consideration supports the assumption that

there are right and left localized invariant tori corresponding to the low lying levels

shown in Tab. 6.8. The absence of an energy barrier implies, that the splitting is

due to dynamical tunneling [69, 169]. Moreover, the power spectrum suggests,

that the ensembles generated by normal mode sampling with energy rescaling

are reasonable approximations to the invariant tori. This justifies the application

of the semiclassical Makri-Miller model (cf. Section 3.1.1) in order to calculate

semiclassical tunneling splittings for the low lying states. On the other hand, no

such conclusions can be made for the OH stretch, because the shape of the wave

function is not known. Tentatively, the Makri-Miller model is also applied to the

OH stretch.
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state gs � � 	 6 � � � � �
�
� � � � �

� ��� � 	�
2.7

. � 7 � � 	 � � 	 � � 	 � � 	 . 6 �
� � � � 	�

6 32 6 7 6 6 8

state
� � � � 
 � 687 � 6 6 � 6 � � 6 � 0� ��� � 	� � � 	 � � 	 . � 7 2 3 14 40� � � � 	�
6 5 17 6 6 19 27

� � 	 ground state; � � 	 splitting � 
 �
� 9 �
Table 6.10: Mode-specific tunneling splittings (in ��� 9 � ) obtained for the 12D

model of TRN(OH): Quantum mechanical (QM) values
� ��� � 	�

and values
� � � � 	�

obtained by the Makri-Miller method with a modified sampling scheme (see text).

The QM values are compiled from Tab. 6.8, Tab. 6.9, and Fig. 6.12.

The Makri-Miller model was not applied directly to the normal mode sampling

ensembles: those trajectories, that crossed the symmetry line during a fixed given

maximum propagation time
�
�
��� : �

� �	� were discarded. Thus, the ensembles

consisted only of trajectories that are localized in the right-hand well for at least

time
�
�
���

. The larger
�
�
���

, the closer are the trajectories initially to invariant

tori. The tunneling direction � was choosen to coincide with the straight line

connecting the two minima � � . Recall, the minima are at ��� � � ���	� 	� �
� � ���	�
	0 ��� :

7 � . Thus, concerning both, the symmetric and anti-symmetric modes, the present

choice of � is consistent with the original proposal of Makri and Miller [29] (cf.

Fig. 3.1a and 3.1c).

The cumulated tunneling probability
� � � � � � corresponding to the first-excited

OH stretch is shown in Fig. 6.15. Note, there are deviations from linearity, be-

cause the ensembles do not exactly correspond to the associated invariant torus

[99]. The slopes were determined by using linear regression of the computed data,

i.e., a least squares fit of a function
���

� � � . The deviation from linearity leads

to a non-vanishing
�

in the present case. This fitting procedure is reasonable,

because all points are equivalent. (The time origin is arbitrary.)

The semiclassical tunneling splittings are given in Tab. 6.10. The general find-

ings are rather similar to those already reported in Chapter 3: the semiclassical

tunneling splittings agree with respect to exponential accuracy. The enhancement

of the tunneling splitting upon excitation of the reaction mode is also reproduced

qualitatively. More important is the result concerning the semiclassical OH stretch

tunneling splitting. The magnitude clearly agrees with the exact quantum mechan-

ical value. This observation suggests that the OH stretch is split by a classical

forbidden process.
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6.2.6 Coupling mechanism

This Section addresses the coupling mechanism that leads to the broad structured

absorption in the OH stretch region of the 12D model (cf. Sec. 6.2.3). In harmonic

approximation (i.e., without any kind of mode coupling and anharmonicity) there

is only one state above � 7 7 7 ��� 9 � that can be reached by an IR transition from

the ground state: the state corresponding to the fundamental excitation of the OH

stretch local mode. Thus, the OH stretch band must be due to couplings of the

local OH stretch with other modes. The primary goal is to identify the modes

with strongest coupling to the OH stretch.

The selection of relevant modes of the 12D model in Section 6.2.2 was mo-

tivated by the first-order perturbation theory expression Eq. (6.4); modes corre-

sponding to combination states in a � � 7 7 ��� 9 � range were included (width of

the experimental OH stretch region). In the present Section the choice of relevant

modes is scrutinized in view of the full anharmonicity of the Hamiltonian.

The states � ��� � � 	�
( � ��� � � 	�

) corresponding to the harmonic approximation to the

right (left) minimum form a complete basis. Moreover, in the absence of anhar-

monic couplings, these states would be the eigenstates of the Hamiltonian. For this

reason, the harmonic states serve as reference, i.e., in the following the coupling

among harmonic modes is investigated. This choice of reference is in accord with

the usual interpretation of IR spectra, that is based on the harmonic approximation

(for instance, see Ref. [48]).

The harmonic Hamiltonian for the right-hand modes reads [III],

�� �
� 	� :����
	 � ����
� ��� 	�

�
6
��� �

(6.14)

where


� ��� 	�
is the number operator of harmonic mode � located on the right-hand

side. Likewise, one can define


� ��� 	� for the left side, where in Eq. (6.14) “R” is

replaced by “L”. Here, the expectation value of


� ��� 	� is defined by the real part of

the half-space integral [III],� 
� ��� 	��� � :������ �"! �$#�% �'& 
� ��� 	� � �
(6.15)

Equivalently,

� 
� ��� 	� � � can be defined for the left half-space. The consideration of

right and left expectation values is necessary, because otherwise the population

of, for instance, a right-localized OH stretch would correspond to a very high

population of various left-localized modes.

The expectation value of the full Hamiltonian


�
can be divided according to,� 
� � :

� 
� ��� 	��� � �
� 
� ��� 	�(� � �

� 
�*) � � (6.16)
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where the Hamiltonian


� )
contains the anharmonic part of the full Hamiltonian.

The contribution of


�*)
is expected to be especially large in the barrier region. In

Eq. (6.14) together with Eq. (6.15) one can identify the energy expectation value

without zero point energy of right mode � , as� 

� ��� 	� � � : 	 � � � 
� ��� 	� � � (6.17)

and analogous for the left energy

� 

� ��� 	� � � .

Consider the state corresponding to the single excited local OH stretch mode

localized at the right-hand side: � ��� � � 	� � . (The notation was introduced in Section

6.2.3.) The time evolution of this state with respect to the full Hamiltonian


�
leads to preferential energy flow in those modes, that are coupled to the local OH

stretch mode. Thus, the energy flow pattern yields information about the coupling

among modes.

The actual time-evolution of the intial state � ��� � � 	� � was performed using the

MCTDH method. The primitive basis and mode combination is given in Tab. 6.6.

The number of SPF per combined mode was 9 / 8 / 4 / 4 / 4 / 4. The propagation

interval was
� 7 7�� � and the maximum critical population was � � 687�9*0 .

Figure 6.16a shows the probability for finding the hydrogen in a right-hand

configuration [i.e., the expectation value of � � �	� � : � � �
� ��� � �
� � � � ]. The delo-

calization of the time-evolved state among the two sides is very fast; after
687 7
� �

the fluctuations around equilibrium are less than
7 � 6

. Also shown in Fig. 6.16a

are results obtained for a classical ensemble (cf. Fig. 6.14); the ensemble was

generated by normal mode sampling with energy rescaling. Fluctuations around

equilibrium are less pronounced for the classical ensemble.

The total energy
���

�
� :

� � �	� ���

� � � �
� � � is constant with respect to time. It can

be divided according to (cf. Eq. 6.16),

���
�
� : � ��� � � � ��� � �
� � � ��) �
� � : ����� ��� � (6.18)

where
� ��� � : ��� � � ��� 9 � is the constant zero-point energy (ZPE) of the har-

monic modes,
� ��� � �	� � is the sum of the energy (without ZPE) in all harmonic

modes,
� ��� � �
� � : � ���

� 

� ��� 	� � � �

� 

� ��� 	� � ��� �

(6.19)

and
� ) �	� � : � � �	� ���


� ) � � �	� � � is the energy of the anharmonic part of the Hamil-

tonian. Additionally to the energy that is bound in certain harmonic modes there

is also some energy bound in the interaction among harmonic modes. For the

present case this interaction is attractive, i.e., the anharmonic contribution is neg-

ative indicating a lowering of mode energies due to the anharmonicity of the PES.
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Figure 6.16: Results for the 12D model of TRN(OH). The initial wave packet is

the harmonic oscillator state corresponding to a singly excited OH stretch. (a)

Time-evolution of the expectation value � � �
� � : � � �
� ��� � �
� � � � . (b) Energy flow

for specific modes (indicated) as well as sums of the harmonic
� ��� � �	� � and anhar-

monic
� ) �
� � contributions [cf. Eq. (6.18)]. (c) Same as before, but for remaining

modes (from bottom to top): mode no. 11, 2, 8, 10, 4, 3, 6, 5, and 7. The curves

are shifted by steps of
� 7 ��� 9 � (except for curves corresponding to mode no. 11,

2, and 8); the energy is
� :;7

at � :;7
for all curves.
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The initial harmonic energy is
� ��� � �
� : 7 � : � ��� � ��� 9 � , because the

inital state is the (right-localized) OH stretch. The initial anharmonic energy is� ) �	� : 7 � : � � � �
� 9 � . The time-evolution of
� ��� � �	� � is shown in Fig.

6.16b (indicated as “harmonic”). The equilibration process (cf. Fig. 6.16a) is

accompanied by pronounced fluctuation of
� ��� � �	� � . After about

� 7 � � the fluctu-

ation amplitude significantly decreases and the curve approaches a plateau above� � 7 7 ��� 9 � . Thus, roughly there is a � � 7 �
� 9 � energy contribution flowing from

the anharmonic part into the harmonic part. Compared to the initial harmonic en-

ergy this is less than 8 %. This observation justifies the use of harmonic modes in

order to study the coupling.

The energy flow of individual modes is also shown in Fig. 6.16 [panel (b) and

(c)]. In view of the fast equilibration, for each mode � the sum of left and right

contribution, i.e.,

� 

� ��� 	� � � �

� 

� ��� 	� � � , is shown. The OH stretch energy decays

to a plateau above
� 7 7 �
� 9 � within roughly � 7 7 � � . A single exponential fit of

a function
� �	� � : � � � 0 � 	� ��� � � 6 � � ��� 9��	��
 � to the curve leads to a life-time of

� � � � � � . For times smaller than
� 7 � � there are oscillations with considerable

amplitude and period of about 
 � 6 � � � ; this oscillation period correspond to a

frequency of about � � 7 7 �
� 9 � . The oscillations are due to the fact, that the OH

stretch is an anharmonic mode. (For instance, the same behavior would be found,

when applying the definition of
� ��� 	� to a Morse oscillator.)

The initial OH stretch energy dissipates into the remaining modes. After
� 7 7 � �

the energy contribution of the OH stretch, OH bend and reaction mode is, respec-

tively,
� � 7 �
� 9 � , � � 7 �
� 9 � , and

� � 7 ��� 9 � (cf. Fig. 6.16b), where the slope of the

former two is almost zero, while the slope of the OH bend is negative. The other

modes acquire between � 7 �
� 9 � and
� � 7 ��� 9 � energy in the same time period

(cf. Fig. 6.16c). The OH bend curve has a maximum of
6 � � 7 ��� 9 � (about one

quantum) at � � � � and shows pronounced fluctuations during the first
6 � 7 � � . The

energy content of the reaction mode is about
� � 7 �
� 9 � after

687 7 � � ; the energy

content of the remaining modes less than � � 7 �
� 9 � after
687 7 � � . The mean rate of

energy flow is therefore significantly larger for the OH bend and reaction modes

than for the remaining modes. Yet the energy content of the remaining modes is

significant.

Unlike the absolute energy content of each individual mode, which will equili-

brate to the same value, the mean rate of energy flow vs. time is a measure for the

coupling strength. It is not surprising that there is a significant coupling of the OH

stretch to the OH bend and reaction mode because these three modes have marked

overlaps with the reaction plane (cf. Tab. 6.4). However, a particular important

finding of the present section concerns the significant coupling of the remaining

modes to the OH stretch.
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One may interpret the local OH stretch harmonic state as a bright state as

is usual in the context of intramolecular vibrational energy redistribution (IVR)

[21, 20, 4]. A similar approach was used in a theoretical study of the IVR in ben-

zene [172]. This interpretation is suggested by the fact, that the mean energy of the

singly excited harmonic OH stretch is almost unchanged as compared to the har-

monic case; the anharmonic energy contribution,
� ) �
� : 7 � , is only

� � � ��� 9 � .
Therefore, the present initial state is a well defined zero-order state [21, 20]. Fur-

thermore, since the harmonic ground state is very similar to the corresponding

superpositions of gerade und ungerade ground states the oscillator strength for

transitions into the harmonic OH stretch is large, while it is very small for transi-

tions into combination states involving the OH stretch. This is the definition of a

bright state. However, the IR transitions induced by a time-dependent laser field

would probably excite a different bright state, yielding energy redistribution and

time scales.

Assuming the present initial state is a bright state, then there are two channels

for the decay of the OH stretch. Channel (1) is the direct dissipation of energy into

the remaining modes and channel (2) is a dissipation via the OH bend, which has

a maximum at � � � � and slowly decays afterwards. These findings are reminicent

of the cascaded energy redistribution in phthalic acid monomethyl ester [173],

where the energy redistribution of the OH stretch (experimental lifetime ��� 7 � � )
was found to originate from a cascaded process involving the OH bend mode.

However, the decay times should be compared with caution, since the initial states

are different.

6.2.7 Chlorine substitution

For TRN(OH) it was found that tunneling is significantly promoted by exciting

the reaction mode, where the reaction mode is mainly a superposition of the two

in-plane modes with lowest frequency (cf. Fig. 6.4). A perturbation may alter

the tautomerization mechanism. Such a perturbation is introduced, e.g., by a sym-

metrical substitution of hydrogen by chlorine � ����� at the
�
� and

���
position of

tropolone (cf. Fig. 6.17a). The name of this compound is 3,7-dichlorotropolone

[DCTRN(OH)].

The effect of halogen atom substitution on the mode specific tunneling split-

tings was investigated by Sekiya et al. [158] for the first electronically excited

state � � of symmetrically substituted tropolones. Concerning the compound DC-

TRN(OH), it was found that 	 &� , that is, the absolute difference between the

ground state tunneling splittings of � � and � � , was significantly increased to� ��

� 9 � in DCTRN(OH) compared to
6 � 

� 9 � in TRN(OH). Furthermore it
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Figure 6.17: (a) Chemical structure of 3,7-dichlorotropolone [DCTRN(OH)].

(b) Minimum geometry of the OCCO-H fragment of DCTRN(OH) [B3LYP/6-

31+G(d)]. Bond lengths (in Å) and one angle (in degree) are given. Values for

TRN(OH) in parenthesis. (c) Same as (a) but for the saddle point geometry of the

OCCO-H fragment of DCTRN(OH).

was found that upon excitation of the
��� � � � ��� �

bending mode the splittings

are
� 7 

� 9 � and

� � 

� 9 � for TRN(OH) and DCTRN(OH), respectively. Here,

the relative change of the splitting was more pronounced for the parent compound.

The results are not directly applicable to the electronically ground state, because

mode characters and barriers are likely to differ significantly. However, the ex-

perimental observations suggest that there may be a considerable change in the

tautomerization mechanism upon chlorine substitution.

In this Section the differences of the tautomerization in TRN(OH) and DC-

TRN(OH) is analyzed. The analysis is analogous to the case of TRN and based

on the CRP approach. The quantum chemical calculations (potential energies,

gradients, Hessians, and IRP) are based on the DFT method (B3LYP functional)

and the 6-31+G(d) basis set. The quantum chemical barrier 	 � =� : � 6 6 � 

� 9 � of

DCTRN(OH) is virtually unchanged as compared to the parent compound where

it is � 6 � 6 

� 9 � . The same is true for the geometry of the OCCO-H fragment

which is shown in Fig. 6.17 for, respectively, the minimum geometry (panel b)

and the saddle point geometry (panel c). Especially the geometrical parameters of

the hydrogen bond, e.g., the O-O distance and the two H-O distances, only differ

by few 1/100 Å. The passiveness of the hydrogen bond upon chlorine substitution

is also reflected by normal modes that are localized at the hydrogen bond: Normal

mode frequencies of the OH stretch (
� � 6 � �
� 9 � ) and H out-of-plane (

� � � ��� 9 � )
modes only slightly differ from the corresponding values of the parent compound

(cf. Tab. 6.2). The OH bend (
6 � � � �
� 9 � ) is blue-shifted by about

687 7 �
� 9 � ,
which can be attributed to the larger mixing with CH bends of the ring.

The characters and frequencies of the remaining normal modes change more

strongly because these modes do involve displacements of ring atoms. The chemi-
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Figure 6.18: Full normal modes of DCTRN(OH): The three weakest in-plane

normal modes c �ed 	�Hf , c �Fd 	� � , c �Fd 	� � (chlorine modes), and the
��� � � � ��� �

-bending

mode c �ed 	� � . Frequencies are indicated and the dimensionless value g measures the

change of the hydrogen bond induced by each mode [cf. Eq. (6.2)].

cal effect of chlorine - as a more electronegative element than hydrogen - is to pull

electron density out of the ring. This leads to a significant change of force con-

stants. Furthermore, the comparatively large chlorine mass leads to several modes

below
� 7 7 

� 9 � . The three in-plane modes with lowest frequency are shown in

Fig. 6.18 together with the
��� � � � ��� �

-bending mode. The character of the

first mode no. 36 is a down (up) shift of the chlorines accompanied by an opposite

shift of the seven-membered ring and the OCCO-H fragment in order to keep the

center of mass fixed. Mode no. 35 involves a rotation of the chlorines accompa-

nied by a counter rotation of the remaining atoms, and mode no. 33 is a squeezing

mode of the molecule. The change in hydrogen bond geometry induced by these

three modes is rather insignificant as compared to, e.g., the
��� � � � ��� �

-bending

mode, which is also shown in Fig. 6.18. This statement can be quantified by the

dimensionless value g [cf. Eq. (6.2)] that is given in the same figure.

The RMS atom displacement along the IRP [cf. Eq. (5.4)] is below
7 � 7 � � ˚� ;

the maximum energy difference between the IRP and its projection onto the re-

action plane is below
6 � 7 ��� 9 � [B3LYP/6-31+G(d) level of theory]. Thus, the

application of the CRP approach is reasonable. A minimal 3D model is obtained

by treating only the OH stretch normal mode as relevant. Recall, the reaction

plane DOF are included by definition. Overlaps and frequencies of reduced and

full normal modes are given in Tab. 6.11.

For TRN(OH) the weakest in-plane modes no. 36 and 37 have the two largest

g values of, respectively, 45 and 44 (cf. Tab. 6.2), and the reaction mode is a

superposition of these modes. For DCTRN(OH), the stable limit theorem states

that the IRP approaches the minimum along the weakest in-plane mode, mode no.

36 (cf. Fig. 6.18). However, the theorem is valid only in the immediate vicinity

of the minimum and the g -value of FNM no. 36 is significantly lower than the
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full 3D

no. � �ed 	� �
����� Inten. overlap mode � � � � 	� �

����� � � � 0
1 3317 123 0.91 c � � � 	� 3045 0.64 0.32

8

10

11

1514

1428

1405

58

333

172

0.30

0.43

0.43

c 0 � � � 	 1328 0.68 0.16

29

31

33

469

435

275

1.3

21

0.8

0.30

0.83

0.37

c � � �
� 	

430 0.35 0.93

Table 6.11: Comparison of normal modes of the full-dimensional system (“full”)

with the reduced normal modes of the 3D model (“3D”) for DCTRN(OH). Fre-

quencies � � (in ��� 9 � ), IR intensities (“Inten.”; in ���
�
�	�
�
), overlaps of the re-

duced normal modes with full normal modes [cf. Eq. (5.36)], and overlaps with

the reaction plane are given (cf. Tab. 6.4).

g -value of FNM no. 31, which has the largest g -value among all FNM of DC-

TRN(OH). Moreover, Table 6.11 unveils that the RNM with lowest frequency has

a pronounced overlap with FNM no. 31; this FNM is very similar to the reaction

mode of TRN(OH) (cf. RNM no. 12 in Fig. 6.5). A diagonalization (using the

Lanczos algorithm) of the 3D Hamiltonian of DCTRN(OH) [B3LYP/6-31+G(d)]

yields a ground state tunneling splitting of 	 � : � � � �
� 9 � ; the gerade (ungerade)

energy levels corresponding to the fundamental and first overtone state of RNM

no. 3 are
� � � � � � � � ��� 9 � and

� � � � � � � � ��� 9 � , i.e., the tunneling splittings are,

respectively, � � �
� 9 � : ��� � 	 � and
� � �
� 9 � : 6 � � � 	 � . For TRN(OH) the en-

hancement was, respectively,
� � � and

6 � � � times the ground state splitting, i.e.,

the relative enhancement of the tunneling splitting is similar to TRN(OH). (Un-

like the suggestion of the experimental finding concerning the excited electronic

state [158].) The consideration of the anharmonic PES is essential for the present

finding. It is found that the reaction modes of TRN(OH) and DCTRN(OH) have

similar frequency, show similar mode-specificy upon excitation, and have similar

displacement vectors. Thus, concerning the reaction mode, the present investiga-

tion unveils that the tautomerization mechanism of TRN(OH) and DCTRN(OH)

is similar.




