Chapter 5

The reaction plane approach

5.1 Reaction coordinates

5.1.1 Overview

Chapter 3 and Chapter 4 were concerned with methods to describe tunneling pro-
cesses by means of classical trajectories. Classical trajectories (also those of the
TU theory) are obtained by ordinary differential equations (ODE) with respect to
time. The solution of these ODE requires only the knowledge of the PES at a cer-
tain position. Moreover, the individual trajectories are independent of each other
facilitating a parallelization of corresponding computer codes. These features al-
low for the combination with on-the-fly quantum chemistry calculations (see, for
instance, Ref. [103]).

In this Chapter the reduction of complexity of the underlying PES of the tun-
neling reaction is discussed making a quantum mechanical (as opposed to semi-
classical) treatment possible. Reduction of complexity means to select relevant
DOF. The reaction path concept of chemistry is the most prominent example for
such a reduction [67]. A full-dimensional reaction path Hamiltonian was derived
by Miller et al. [111, 142]. This Hamiltonian relies on curvilinear coordinates
(s,q), where s is the intrinsic reaction coordinate and q are the orthogonal DOF.
For small reaction path curvature an adiabatic approximation is reasonable and
corner cutting, a multidimensional effect, can be treated by introduction of an ef-
fective mass [cf. Eqg. (3.10)]. If the reaction path curvature is too large then the
reaction swath has to be taken into accounted (cf. Section 3.1.3). Moreover, the
orthogonal DOF g may become non-unique for distances away from the reaction
path that are larger than the radius of curvature. Yet the path concept may be
reasonable for the semiclassical description of tunneling by resorting to the least
action principle of classical mechanics (keywords: LSLA, instanton theory, GT
paths; cf. Sec. 3.1.2 and Sec. 3.1.3).
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Figure 5.1: The OCCO-H fragment of tropolone [TRN(OH)]. (a) Overlay of min-
imum X (filled circles) and saddle point Xy (open circles) geometry. Coor-
dinate origin is the center of mass. (b) Atom displacement corresponding to di-
rection w; (anti-symmetric). The displacement of the remaining atoms is small.
(c) Dito for direction w, (symmetric). The results were obtained by Gaussian 03
[152] with the DFT(B3LYP) method and the 6-31+G(d) basis set.

A large reaction path curvature indicates large couplings among the reactive
and orthogonal DOF. Thus, a reliable quantum mechanical treatment requires the
explicit consideration of more than one DOF. In the reaction surface Hamilto-
nian approach (and variations thereof), instead of the intrinsic reaction coordi-
nate, few internal coordinates (i.e., bond lengths and angles) serve as relevant
DOF [143, 144]. For fixed relevant DOF, the remaining DOF are optimized such
as to minimize the energy. For instance, the approach was applied to malonalde-
hyde [145, 146, 147], tropolone [148], and the formic acid dimer [119, 120] with
up to three internal DOF.

The kinetic energy operator of the forementioned approaches has a rather com-
plicated form making a numerical treatment difficult. A simple structure of the
Kinetic energy operator is obtained by adopting a formulation based on Cartesian
coordinates (cf. Section 2.2.1), e.g., the Cartesian reaction surface (CRS) Hamil-
tonian by Ruf and Miller [42]. The CRS Hamiltonian relies on the selection of few
atomic Cartesian coordinates that perform large amplitude displacements upon re-
action. For instance, in tropolone [cf. Reaction (R1) in the Introduction] the planar
(y, z) coordinates of the reacting hydrogen are a reasonable choice. The remain-
ing Cartesian DOF are considered to perform only small amplitude displacements
and the full PES is approximated by a second order Taylor expansion with respect
to the small amplitude DOF. A number of successful applications document that
the method is reasonable [149, 150]. However, there may be significant couplings
between small amplitude coordinates and large amplitude coordinates and a com-
plete separation between these two does not necessarily yield the most compact
representation of the PES. For tropolone, the situation is illustrated in Fig. 5.1.
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Panel (a) shows an overlay of the minimum geometry (C; symmetry) and saddle
point geometry (Cs, symmetry). A significant motion of the the heavy atoms upon
approaching the saddle point geometry is visible; especially the oxygen-oxygen
distance is shortened. The chemical bonding has significantly changed between
the two considered geometries, i.e., the PES seen by the two oxygens differs also
quite strongly. Thus, the conventional choice of the (y, z) coordinates leads to a
strong coupling of large amplitude (H-atom) and small amplitude coordinates.

All geometries X (mass-weighted) of the molecule span a N-dimensional vec-
tor space (cf. Section 2.2.1), where N is the total number of DOF (i.e., N = 45
in tropolone). Thus, instead of Cartesian coordinates of individual atoms one may
alternatively choose any orthonormal set of N-dimensional vectors to describe
large amplitude coordinates of the molecular geometry. Moreover, for a symmet-
ric double well system the displacement vector X  — X7g can be partitioned into
the two symmetry components, where the normalized vectors are denoted w; and
wy, for the anti-symmetric and symmetric component, respectively. These vectors
were already defined in Section 3.3.2. The atom displacements corresponding to
these vectors are shown in panel (b) and (c) of Fig. 5.1. Coordinate w; [panel
(b)] is similar to the y coordinate, while coordinate ws [panel (c)] describes a
concerted motion of the hydrogen together with the oxygens. This coordinate
describes a collective motion of atoms. The two coordinates span a plane that
was called reaction plane by Yagi et al. [43]. The reaction plane is subject of the
following Section.

5.1.2 The Reaction Plane

The reaction plane coordinates were introduced by Takada and Nakamura [75]
in order to derive a simple SMC PES fit. The method was applied to carboxylic
acid dimers in Section 3.3.2. Yagi et al. [43] used the reaction plane as a guide
for the relevant region of configuration space in their full-dimensional treatment
of malonaldehyde. Moreover, the concept was implicitly used by other authors as
well [151]. The aim of this Chapter is to derive a Cartesian Hamiltonian, where the
reaction plane coordinates are the large amplitude coordinates while the remaining
DOF are considered to perform small amplitude displacements with respect to
the reaction plane. To this end, in Section 5.2, a reformulation [V]* of the CRS
framework of Ruf and Miller [42] is given. The present Section addresses the
relevance of the reaction plane for a chemical reaction.

For the definition of the reaction plane directions, wy and ws, the recipe of
Ref. [75] is used (cf. Section 3.3.2). Thus, the distance between X and X, is
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minimal with respect to rotation of the right minimum geometry and vice-versa.
The same applies for X and X;g. The two directions w; and w, defined in
Eqg. (3.22) and (3.23), respectively, are orthogonal, w; - wo = 0, because they
transform according to different irreducible representations. There seems to be
no proof that the minimum criterion is equivalent to the requirement that X  and
X, are connected by a rotation free path. Moreover, the minimum criterion only
applies to the planar case. In the non-planar case, the minimization procedure
would involve the three Euler angles, but only one angle can be fixed. In order
to keep the reaction plane unique, the definition can be based on the IRP, because
it is a rotation free path connecting the two minima and the saddle point. Thus,
for given Xg it is in principle possible to obtain the left and right minimum via
solution of Eq. (2.49).

For the planar case, the minimum criterion implies that w is exactly orthogo-
nal with respect to infinitesimal rotations of Xz, X, and X [V]. Likewise, for
w,, With respect to X and Xy5. This can be shown as follows [V]: Let R(«) be
the rotation matrix with rotational axis perpendicular to the molecular plane. The
corresponding infinitesimal rotation matrix R = éR(«) is defined as the linear
term of the Taylor series expansion,

OR ()
o«

R(a) =1+ a+...=1+0Ra—+.... (5.1)

a=0

Let £ be a small angle. Then, because the distance |Xz — X,| is minimal with
respect to rotations generated by R X, it follows,

9 2
—_— (XR + €5RXR — XL)
Oe e=0

= 2(Xgp—X;) SRXz=0 (5.2)

i.e., the direction w is orthogonal to an infinitesimal rotation of Xz. The same
holds for X;, and X. Concerning direction w,, one can repeat the line of argu-
ments also for the geometries X and Xrs.

The generator of the infinitesimal rotation, R X, is a function of the geometry
X. Thus, local rotational invariance as considered above does not guarantee global
rotational invariance of the reaction plane. However, for large enough molecules
the total change of the generator for displaced geometries is rather small, because
a significant change is mostly confined to the reacting atom(s). On the opposite,
the reaction plane is obviously inappropriate for molecules with only few atoms.

Concerning the non-planar case, with the reaction plane defined by the IRP
geometries, there seems to be no argument that would support strict rotational in-
variance of the reaction plane with respect to particular geometries. If the reaction
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plane is orthogonal to infinitesimal rotations or not in the non-planar case depends
on the system at hand.

It was shown that the least action principle applied to the GT paths (cf. Section
3.1.3) yields reasonable semiclassical tunneling splittings for molecules like mal-
onaldehyde [108, 114], tropolone [114], and various carboxylic acid dimers [126].
Direction w is essentially the straight line part of the family of GT paths. Based
on these observations, the physical relevance of the reaction plane can be estab-
lished, when it is possible to show that the IRP (the other extremum of the family
of GT paths) lies approximately in the reaction plane. To be specific, consider the
projection of the IRP onto the reaction plane,

X(S) = [(X(S) - XTS)) : Wl] wi + [(X(S) - XTS)) : W2] Wy + XTS- (53)

The difference between the IRP and its projection can be expressed by the root
mean squared (RMS) atomic displacement,

1 W2
o(s) = m%(x@)—x(s)), (5.4)

where lower case letters refer to non-mass weighted coordinates. The smaller o (s)
the closer is the IRP to the reaction plane. Of course, this property will depend
upon the molecule at hand. In anticipation of the following Chapter, the issue is
demonstrated for the case of tropolone [TRN(OH)].

The present quantum chemical calculations were performed using the Gaus-
sian03 software package [152]. The level of theory was DFT/B3LYP/6-31+G(d).
Single point energies, gradients, and Hessians for a total of 330 ab initio points
(using symmetry relations) were calculated on a grid around the projected IRP
(with 0.1 ag amu'/? as typical displacement of individual points). Given the ab-
initio points the potential energy U, and the first and second derivatives can easily
be interpolated (and extrapolated) by a modified Shepard scheme [153]. The de-
tails are summarized in Appendix C.

Fig. 5.2 shows a contour plot of the potential along the reaction plane to-
gether with the projection of the IRP X(s). The potential energy along the IRP
for the protonated [TRN(OH)] and deuterated [TRN(OD)] species, respectively,
is shown in Fig 5.3a. The difference between the IRP and its projection is shown
in Fig. 5.3b in terms of o(s), the RMS atom displacement [cf. Eq. (5.4)]. The
solid and dashed curves were calculated within the Shepard interpolated potential
U(X) by direct solution of the ordinary differential equation (2.49). A fifth-order
Runge-Kutta integrator was used and the calculation was started at the transition
state plus a small displacement in direction of the normal mode with imaginary
frequency. The displacement was 0.005 aqamu'/2. The filled squares and cir-
cles were obtained using the Gonzalez-Schlegel method [154] (implemented in
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Figure 5.2: Tropolone [TRN(OH)]: Contour plot of the potential cut along the
reaction plane spanned by w, and w,, (in ag amu'/?). The contour line spacing is
500 ¢m ! and the maximum contour line is at 6000 ¢m~t. The thick black line
is the projection of the IRP onto the reaction plane X(s) [cf. Eq. (5.3)], and the
barrier is 2161 e¢m~! [B3LYP/6-31+G(d)].

Gaussian 03 [152]). The results obtained within these two methods do agree for
both species. (However, the Gonzalez-Schlegel method is insufficient to deter-
mine the IRP in the vicinity of the minimum, but there the Shepard interpolated
PES is rather accurate.) The RMS difference vanishes by definition at the transi-
tion state and the minimum geometries. It reaches a maximum at s = 0.74 [0.97]
of 2.3 [2.0] - 1072 A for TRN(OH) [TRN(OD)], i.e., the mean displacement is
only a few per cent of a typical bond length. The mean displacement accounts
for a maximum energy difference along IRP and projected IRP of about 120 cm !
[100 cm~!]. Thus, if some DOFs orthogonal to the reaction plane are taken into
account, they may well be described in harmonic approximation for each fixed
value of the reaction coordinates w; and w,. Apparently, the reaction plane is of
physical relevance for TRN.
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Figure 5.3: Results for isotopomers of tropolone (TRN): (a) Energy along the IRP
for the protonated and deuterated species, respectively. Filled squares and dots
correspond to a Gaussian 03 IRP calculation using a 0.01 aq amu'/? step size to-
gether with the VeryTight convergence criterion. The solid and dashed lines were
obtained by solving the Eq. (2.49) for the Shepard interpolated full-dimensional
potential. (b) Root mean squared atom displacements [Eq. (5.4)] of the IRP ge-
ometries X(s) and those geometries, that are projected onto the reaction plane
spanned by the Cartesian directions w; and wy [legend equivalent to (a)]
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5.2 TheCartesan reaction surface Hamiltonian

5.2.1 Reformulation for general Cartesian reaction coordi-
nates

The original formulation of the CRS Hamiltonian by Ruf and Miller [42] is al-
ready general enough to include the reaction plane coordinates considered in the
previous Section. Here, the CRS Hamiltonian is derived for generic reaction co-
ordinates v; and v, with corresponding vectors v; and v,. There are at least two
reasonable choices. First, one may choose (v1, v9) to equal certain atomic coordi-
nates, for instance, the position (y, z) of the reactive hydrogen atom in TRN (cf.
Sec. 5.1). This is identical to the choice of Ruf and Miller [42]. Second, one may
choose (vy, v9) to equal the reaction plane coordinates (wq, w9) discussed in Sec.
5.1.2 [V]. Both choices are discussed below. Note, an extension to more than two
reaction coordinates is easily possible. Moreover, an extension to the asymmetric
case is also possible: a reaction plane can be defined by the two (non-equivalent)
minima and the saddle point. An additional orthogonalization of the vectors w
and w, would be, however, necessary for the asymmetric case.

The reaction coordinates are assumed to be orthogonal to the 3 infinitesimal
translational vectors, and they are assumed to be orthogonal to the 3 infinitesimal
rotational vectors corresponding to the saddle point geometry X s (i.e., rotations
and rotation-vibrational couplings are neglected). For two generic reaction coor-
dinates there is a (N — 2)-dimensional subspace of the space of all geometries
X, where N is the number of DOF, i.e., N = 3 N, for a molecule with N,
atoms. A basis for this subspace can be obtained, e.g., by considering a projection
of the full-dimensional Hessian at the saddle point geometry onto the subspace.
Let U(X) be the full-dimensional PES, then the full-dimensional Hessian at the
saddle point is given by,

(f) - 82U
K;j' (Xers) IX:0K; |x. . (5.5)
The projector onto the subspace is given by I — P, where I is the identity matrix
and P is the projector onto the space spanned by v; and vy,

P =v] v +vs Vo (5.6)
A diagonalization of the projected matrix,
(I - P)KO(Xs) (I - P), (5.7)

yields N eigenvectors; the set of eigenvectors is denoted as
{v1,va,e1,...,enx_o}. There are 8 eigenvectors with vanishing eigenvalue: two
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correspond to the reaction coordinate vectors v; and v,, the others correspond
to the 3 infinitesimal translations, and to the 3 infinitesimal rotations with
respect to the saddle point geometry. For convenience, the set of eigenvectors is
ordered such, that the 6 translational/rotational vectors are ex_7,...,ex_o. The
remaining N — 8 vectors e; are the normal modes of the saddle point with respect
to the subspace. Coordinates corresponding to the eigenvectors e; including
rotation and translation are denoted as @;. For system with two symmetrically
equivalent minima, the eigenvectors e; and the associated coordinates (); are
either symmetric or anti-symmetric with respect to the molecular symmetry
transformation 7" (cf. Section 2.2.1).

Any geometry X can be expanded in terms of the set of eigenvectors discussed

so far,
N-2
X =Xrs +v1v1 +v2vo + Z Qjej, (5.8)

J=1

where the saddle point geometry serves as reference, i.e., the coordinates
(v1,v9,Q1, - ..,Qn_2) describe displacements from the saddle point geometry.

In the CRS framework small displacements AX = X — X, with respect to a
so-called reaction surface X, are considered,

N—-2

AX =D (Q; — Q¥)e;. (5.9)

j=1

The displacements are orthogonal to the space spanned by v; and v, and the
reaction surface is parameterized by the reaction coordinates, i.e., Q§ref) =
Qg.“’f) (v1,v9). The Taylor expansion of the PES with respect to the reaction sur-
face reads,

U(X) = U(Xo) + GO (X,) - AX + %AXT KO(Xo) AX +...,  (5.10)

where Gz(.f) = 0U/0X, is the full dimensional gradient and the Hessian is defined
according to Eq. (5.5). For small displacements of the Q a truncation of the Taylor
series after the harmonic term is reasonable. The truncated PES is denoted V' in
the following. The 3 translational DOF can be discarded without loss of general-
ity; the 3 rotational DOF can be discarded under the assumption, that the infinites-
imal rotational vectors do only slightly change on the plane spanned by the reac-
tion coordinates. The PES is then expressed as, V = V' (v1, v2, Q1, ..., Qn_s).
The potential values, gradients, and the Hessians on the reaction surface can be
obtained by quantum chemistry calculations [44, 45, 46, 124, 152].
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Fixed reference

The choice Qg.ref) = const; corresponds to a reaction surface that is independent of
(v1, v9) and was termed the fixed reference case [42]. [This kind of reference has to
be distinguished from the choice of X g as reference in Eq. (5.8).] Formally, due
to this choice, the reaction surface becomes a plane. The special case Qg.ref) =0
is important for the formulation of the Cartesian Reaction Plane Hamiltonian; in
this case, the PES reads

V(v1,02,Q) = U(vi,v2) ZF v1,v2) Qi + ZKW (v1,v2) Qi @, (5.11)

where U(v1,v9) = U(Xp), and the force F; acting on mode ; and the Hessian
K;; are related to the full-dimensional quantities by, respectively,

E(UI:UQ) = _G(f)(Xo)'ei, (512)
Kij(v,v) = el KO(X()e;. (5.13)

Flexible reference

With a flexible reference, Qg.ref) = Qg“’f) (v1,v9), Xo describes a generally non-
planar surface. This facilitates the selection of the region of the configuration
space that is relevant for the reaction. Inserting Eq. (5.9) into Eg. (5.10), and
multiplying terms out, yields the PES of the CRS Hamiltonian with respect to the

flexible reference,

V(vi,v2,Q) = Ul,UQ ZF v1,v9) Qi + ZKZJ v1,v2) Qi Qj, (5.14)

with abbreviations,

F g T 1 T T
U = U+ZFjQ§.ef’+§ZKijQ§ef>Q§.ef>, (5.15)
J (4]

F = Fi+y K;Q, (5.16)

where all quantities are considered to be (v;, v5)-dependent and evaluated with
respect to X,.

5.2.2 Selection of relevant modes

The PES of the CRS Hamiltonian of the previous Section and the exact PES agree
only up to second order terms with respect to Q, but the CRS Hamiltonian is full-
dimensional. Thus, for any numerical treatment, it is necessary to select certain
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modes out of the set {(),} that are especially important and to introduce a further
approximation for the remaining modes. The selection procedure depends on the
choice that was made for the reaction coordinates. The goal is to formulate a
reduced dimensional CRS Hamiltonian (& = 1),

192 10 z”: 10?

AT 5.17
2002 2002 23q,% + V(v 02,0), ( )

IA{CRS =
k=1
where q = (q1, - - -, ¢,) iS a set of relevant coordinates.

The choice of Q-modes is formally arbitrary, i.e., one may switch to another

-equivalent- set of modes by a linear transformation,

Q=AQ, (5.18)

where A is an orthogonal transformation matrix that does not mix modes with
unequal symmetry. It is assumed in the following, that the vector Q' can be ex-

pressed as,
Q = ( (sl ) , (5.19)

where the vector q accounts for the set of relevant modes and the vector S =
(S1,.--,Sy) with N = n 4+ n’ + 8 accounts for the set of irrelevant modes.
The set of reaction coordinates plus the relevant modes, {vy, v2,q1,.-.,qn}, iS
called model coordinates; the irrelevant modes are denoted as spectator modes.
Moreover, to simplify the notation, the prime (’) is dropped.

Generic reaction coordinates

Generic reaction coordinates include atomic reaction coordinates as discussed in
Section 5.2.1. Therefore, one may, for instance, identify (v, vs) with the planar
position of the reactive hydrogen atom of TRN or similar molecules. For generic
reaction coordinates the choice of a flexible reference is preferred. Thus, the
starting Equation is Eq. (5.14). A reformulation of this Equation is necessary.
Let Q@ = QO (vy, vy) be such that V (v, v5, Q@) is minimal among all Q for
any fixed value of the reaction coordinates, i.e., Q) satisfies,

F=YK;QY. (5.20)
J

With this definition the linear and harmonic term of the PES can be joined in a
displaced harmonic term,

V(Ula V2, Q) = U(Ul, UQ) — EQ(’Ul, '02)
b S Kyln)@ - o0)@ - Q) (521
,J
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where the so-called reorganization energy ,
Ul, UQ Z KZ] V1, U2 Q(O) (522)

is introduced.
In analogy to Eq. (5.19), the vector Q(®) can be divided according to

q©
QO = ( S0 ) . (5.23)

Formally, the coupling between model coordinates and spectator modes is as-
sumed to be negligible. Then, the number of actual DOF of the PES can be re-
duced by setting,

S = SO (v, vy). (5.24)

This choice is preferred among all other possible choices, because even when there
is a small coupling that is not strictly negligible, the energetics of the reduced
dimensional PES is still equivalent to the full-dimensional one, i.e., the barrier
height is the same. The reduced-dimensional PES reads,

V(Ulav27q) = ‘/eﬁ'(vlaUQ) ES(UIJUQ) Esq(vaQ)
- ZF" V1, V2)gi + ZKq vi,v2)diqj,  (5.25)

with abbreviations,
1

ES = 221{55;0)5(0) (5.26)
ESt = Z,JK-S-‘]S-(O) ¢\, (5.27)
Ff = Z eq, (5.28)
Ver = U+%Zhwf. (5.29)

The superscript “S” (“q”) for K ;"; (Kfj) means to keep only that rows and columns
of K;; that correspond to spectator modes S; (relevant modes ¢;). Likewise, the
superscript “Sq” means to keep only that rows of matrix K ;; that correspond to
spectator modes S; and that columns that correspond to modes ¢;. The reorgani-
zation energy consists of a direct term Eq. (5.26), corresponding to the reorgani-
zation of the spectator modes, and a cross-term Eq. (5.27) corresponding to the
coupling of spectator modes and relevant modes.

The second term on the r.h.s. of Eq. (5.29) corresponds to the zero-point
energy (ZPE) of the spectator modes. It is computed by diagonalizing K* for
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each value of (vq,v,) yielding a set of n’ frequency functions w? = w? (v1, vy).
The inclusion of this term into the reduced-dimensional PES is motivated by the
adiabatic approximation; the change of frequencies of many modes may lead to a
contribution to the potential, that would have been neglected otherwise.

Reaction plane coordinates

The minima and the transition state geometries are points on the reaction plane.
Therefore, the choice of a fixed reference, ™" = 0, is reasonable. This implies,
Xo(wr, we) = Xrs + wiwy + wows. Let @ denote the projection operator onto
the n-dimensional subspace spanned by the relevant modes q. Diagonalization of
the matrix,

I-P-Q) KV, I-P-9Q), (5.30)

for each fixed value of (w1, wy) yields n' non-vanishing eigenvalues w? (wy, we)
for the spectator modes as a function of the reaction plane coordinates. The PES
in terms of the model coordinates is given by Eq. (5.11) with S = 0 plus an
intuitive ZPE term (see above),

V(wlanaq) 'LU1,U]2 ZF UJ1,U}2

1 o 1
5 ZKij(wl,wg) q; q]' + 5 Zhwi(wl,wg). (531)
i 7

For all three extremal points of the reduced PES, q = 0 holds. Furthermore, ne-
glecting the ZPE term, the energetics of the reduced PES, e.g., the barrier height,
is identical to the full PES by definition of the reaction plane. This is a very im-
portant feature of the present formulation, which distinguishes it from the choice
of atomic reaction coordinates according to Ref. [42], because one does not need
to include relaxed spectator modes in order to yield the same PES energetics as in
the full dimensional case (see, for instance, Ref. [150]).

The dipole function of the reduced model can be approximately expressed in a
similar manner. For numerical convenience, only the first derivative with respect
to the reaction plane is employed while the dipole function is treated numerically
exact on the reaction plane. The approximation reads

Gk (5.32)

q=0

ou (full)
0

fo (W1, w2, q) = N(fuu)(wl,wmq q 0+Z o

where p™ is the full-dimensional dipole function and o = X, Y, Z is the Carte-

sian component of the dipole vector.
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Reduced normal modes

In this Section generic reaction coordinates (including atomic and reaction plane
coordinates) are considered. The model coordinates - except v; and v, - are ar-
bitrary in the sense, that any linear combination of them will yield exactly the
same results. There are three sets of coordinates, however, that are unique, these
are - as in the full-dimensional system - the normal modes of the reduced n + 2-
dimensional system at the two symmetrically related minima and at the transi-
tion state. These normal modes are called reduced normal modes. By neglecting
changes of the ZPE, which are small, one can compute, e.g., the reduced normal
modes of the right minimum geometry by diagonalizing the Hessian

R KD (Xz) R, (5.33)

where R is the projector onto the space span by the model coordinates
(v1,v9,41,---,qs). The corresponding n + 2 reduced normal modes are denoted
Y{IMAP) with k = 1,..., n+2 in the following. Recall that the vectors v, and v,
are both N dimensional. Likewise, the vectors e; are N dimensional according to
their definition by diagonalization of Expr. (5.7). Thus, the (n + 2)-dimensional
model coordinates define a (n + 2)-dimensional subspace that is embedded in the
full N dimensional space. This subspace is denoted the reduced space.

While for setting up the Hamiltonian it is most convenient to use model coor-
dinates, all physically relevant quantities should be related to the unique reduced
normal modes. Additionally, to analyze the connection of the reduced dimen-
sional model with the full-dimensional system, one has to investigate overlaps
of reduced normal modes with full normal modes. Full normal modes that cor-
respond to the right minimum geometry are given by the diagonalization of the
Hessian K(Xg); these modes are denotes yJ(f). The task of computing overlaps
between reduced and full normal modes can be achieved by defininga N x (n+2)-

matrix B that transforms from the reduced space (vy, vo, g1, - - - , ¢) back into the
full N dimensional Cartesian space:
B=(vivaqi-..dyn), (5.34)

where the vectors v, etc., i.e., those vectors that span the so-called reduced space,
constitute the columns of the matrix. This matrix always exists by definition and
the property,

B"B=1, (5.35)

holds because the constituting vectors are orthonormal by definition.

There is overwhelming evidence, that molecular spectra may (at least partly)
be understood in terms of harmonic transition frequencies corresponding to nor-
mal modes [19]. Thus, a reduced model should be characterized by overlaps with
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certain full normal modes being close to one. Let y](f) withj =1,...,N —6
be the full normal modes corresponding to the right configuration Xz, and let )y
be the reduced normal modes corresponding to the right minimum configuration

vy s 7, q = 0). Then the projection of reduced normal mode £ onto full
normal mode j is given by:

v = () B (5.36)

A practical method to achieve the goal of a large overlap is discussed in the fol-
lowing Chapter.

5.3 Summary

The CRS-Hamiltonian of Ruf and Miller [42] was generalized to account for
generic reaction coordinates. In particular, two choices were discussed: (i) atomic
reaction coordinates (as in Ref. [42]) and (ii) reaction plane coordinates. A re-
duced Hamiltonian according to choice (i) requires the inclusion of relaxed spec-
tator modes in order to maintain the PES energetics. In contrast, the minima and
the saddle point are points on the reaction plane. Thus, the PES energetics is
correctly reproduced by any Hamiltonian based on choice (ii), no matter what
approximation is applied for the treatment of the spectator modes.

The reaction plane coordinates were first introduced by Takada and Naka-
mura [75]. Yagi et al. [43] used the reaction plane as a starting manifold for the
generation of points for a full-dimensional treatment of malonaldehyde. In their
approach, the whole PES is approximated by a modified Shepard scheme (that
was also used in the present work). The main advantage of the present method is,
however, the fact that the PES can be written as a sum of products of function of
the reaction coordinates (w1, ws) times the remaining coordinates q. This makes
an efficient application of the MCTDH approach possible [25] (cf. Sec. 2.3.1).

The reaction plane coordinates were also used by other authors. For instance,
Hayashi and Mukamel [151] constructed a PES for malonaldehyde by using Tay-
lor expansions at the two minima and the saddle point including partial derivatives
of order three and higher, which are numerically demanding to obtain on an ab-
initio level. In contrast, the present approach only relies on atmost second order
derivatives and treats the PES on the reaction plane numerically exact.
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