
Chapter 4

Tunneling and the semiclassical

propagator

4.1 A quantum-semiclassical approach

4.1.1 Motivation

In the foregoing Chapter 3, tunneling was described in the energy domain by

means of classical trajectories with imaginary or complex momenta. The present

Chapter addresses the question whether tunneling may be described in the time

domain by means of the semiclassical propagator (cf. Section 2.3.2),

� � � � � � � � � � ��� 

� � � � � 
�� � � � � �
(4.1)

where
� �

is given by the prefactor of the r.h.s. of Eq. (2.83) multiplied by the

phase factor

 � 


. The sum over individual trajectories that connect
� �

and
�

by

a trajectory with propagation time
�

is explicitly included. In particular, these

classical trajectories have real positions and momenta.

The present work is concerned with bound systems. Autocorrelation func-

tions,
	 � � 
�� � 
 � 
 � ���� � � � � 
 � , of bound system with time-independent Hamiltoni-

ans can be expressed as 	 �
� 
�� �
�

	
� ������� � � � � ��� � (4.2)

where

	
� � � � � � 
 � � � are the absolute squares of the expansion coefficients of

� 
 �
in terms of eigenstates

�
� � . The Fourier transformation of

	 � � 

yields an energy

spectrum
� � � 
 . The semiclassical approximation to

	 �
� 

is given by	 � � � � �
� 
�� � 
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Figure 4.1: Illustration of the

quantum-semiclassical approach.

Three Gaussians
� 
�� �

are dis-

tributed over the � -range of a

double-well PES.

Fourier transformation of this autocorrelation function yields a semiclassical spec-

trum
� � � � � � � 
 leading to an alternative method for semiclassical quantization (cf.

Section 2.1.5). Unlike adiabatic switching, such method does not rely on the ex-

istence of invariant tori [130]. Instead of the van Vleck propagator [Eq. (4.1)] one

may also use the Herman-Kluk propagator (cf. Sec. 2.3.2). The corresponding

quantities are referred to as
	 � ��� � �
� 
 and

� � ��� � � � 
 .
Previously, Sun and Miller [92] obtained low lying vibrational levels of the

� 	 � dimer by computing
� � ��� � � � 
 . In particular, the ground state tunneling

splitting was obtained. Since only real-valued trajectories appear in the HK prop-

agator, these tunneling splittings are given in terms of over-barrier trajectories

[131]. It was shown, however, that semiclassical tunneling probabilities depend

upon unphysical parameters [132, 133, 134]. For instance, Kay [134] demon-

strated dependence upon a width parameter � that is related to the corresponding

HK parameter (cf. Section 2.3.2). Moreover, the semiclassical error increases

with the propagation time [131]. Subject of the remaining part of this Section

is a proposed means to overcome the considered deficiencies of the alternative

semiclassical quantization technique.

4.1.2 Quantization by harmonic inversion

Instead of Fourier transforming single auto-correlation functions, it was suggested

[36, 130, 135] to analyze 
 	 
 cross-correlation functions,	 � � � ����
�

�
� 
�� � 
�� � �� ����� � � � 
 � 
��
�
� �

(4.4)

where
�� ����� � �
� 
 is a semiclassical propagator and

� 
�� �
with � � � � 
 are initial

wave packets, by harmonic inversion. The harmonic inversion of
	 � � � ����

�

� � 

is the

solution to the non-linear fitting problem,	 � � � ����
�

�
� 

� �
�

	
� � ��� � ������� � � � � ��� � (4.5)

where
� 	 � � ��� � � � � � generally are complex fit parameters. While harmonic inver-

sion is a well-defined problem for a quantum propagator, the ansatz Eq. (4.5) is

based on the assumption, that the semiclassical time evolution – for short times –
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can be expressed by a propagator
� � ��� � � �� �
�

� � 	 � with an effective Hamiltonian��
�
� [130, 39]. For instance, Section 2.3.2 showed for the 1D HK propagator that

such an effective Hamiltonian comes out as the linear term of a Taylor expansion

with respect to time. A similar situation is assumed for the multidimensional case

without proof. However, in order to pose a sound harmonic inversion problem,

it is necessary to account for deviations of
��
�
� from hermiticity by allowing � �

to be complex-valued [37, 38]. Moreover, in order to simplify the discussion all

initial wave packets are assumed to be real. (This is without loss of generality for

time-independent real Hamiltonians.)

A means for numerical solution of Eq. (4.5) for a given interval
� � ���	� � � � ��� �

is the Filter Diagonalization Method (FDM) by Wall and Neuhauser [136] that

was improved by Mandelshtam and Taylor [37] (see Ref. [38] for a recent re-

view). The derivation of the method is subject of Section 4.1.3. The advantage

of FDM compared to a Fourier transformation is expressed by the informational

uncertainty principle [37]: if
�� is the mean level spacing in

� � ���	� � � � ��� � and the


 wave packets are sufficiently linear-independent, then the levels in that interval

can be determined provided that the propagation time
�

satisfies,� � � �



���
�� � (4.6)

Especially, when there are near degenerate levels (e.g., tunnel doublets) the mean

level spacing
�� is much larger than the minimal level spacing

� � � . Therefore,

FDM requires typically a much smaller propagation time as a Fourier transform,

where the propagation time has to exceed
� � � � �

� in order to resolve all levels.

Moreover, by increasing 
 the propagation time can be reduced further. There-

fore, only a comparatively short time interval is necessary for harmonic inversion

of
	 ���

�
�
� 


, which makes the method well suited for semiclassical quantization.

(Recall, the semiclassical error increases with time.)

A limiting case of the FDM applied to cross-correlation functions is the choice

of a complete basis set
� � 
�� � �

for the initial wave functions [36]. Then, as is

shown in Section 4.1.3, the FDM corresponds to a diagonalization of the Hamil-

tonian matrix
� 
 � � �� �
� � � � 
�� � � , where the effective Hamiltonian at

�)� � is tenta-

tively defined as � 	 � �� ����� � �
� 
 � � � � � � � � ��
�
� � � . Another limit results for a harmonic

PES, where the semiclassical cross-correlation function is exact. This motivates

a hybrid quantum-semiclassical approach for the treatment of multidimensional

systems. It was suggested [36] that the choice of an intermediate 
 introduces

quantum information into a semiclassical propagation. For instance, consider the

SMC PES Fig. 2.7 (top). One can distribute initial wave packets along the � -axis

in order to “diagonalize” that DOF while the harmonic PES along the
�
-axis (for

each fixed � ) is exactly accounted for by the semiclassical propagator.
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Tunneling splittings were extracted by the quantum semiclassical approach for

one and two-dimensional model PES [39]. However, it is shown in this work [II]1,

that the idea of introducing quantum information into a semiclassical propagation

is unsound. The reason is that the initial effective Hamiltonian
��
�
� � � is differ-

ent from the exact quantum Hamiltonian
��

. Thus, whether quantum effects are

accounted for by the quantum semiclassical approach depends on whether these

effects are present in the initial effective Hamiltonian.

4.1.3 Filter diagonalization method for cross-correlation func-

tions

The FDM is a means to solve the non-linear fitting problem Eq. (4.5) [136, 137,

37, 38]. Here, the version of Mandelshtam and Taylor [137, 37, 38] is used be-

cause it showed a reasonable accuracy even when the propagation time was quite

at the limit of convergence for some model systems [138]. The idea is to recast

the non-linear fitting problem posed by Eq. (4.5) into a linear one. The method

proceeds as follows:

1. Select 	 frequencies �
�

(� � � � � � � � 	 ) equidistantly spaced in the interval� � ���	� � � � ��� � with,

	 � ��	 � � � ��� � � ���	� 
 �
� � �

(4.7)

where
	

is the discrete step size and
� � � 	

is the total propagation time.

2. Define a Krylov base with
� � � � � � 
 � �

by:� 
 � � � � 
 � � �� � � � � ����� � ��	 � � � � 
�� ����	 
 � � (4.8)

where wave functions are distinguished by their argument (either time or

frequency).

3. Solve the generalized eigenvalue problem,

� ��� � ��� �
� �

(4.9)

where
� �� � is an integer,

�
are the eigenvectors, and

� � ������� � � � � 	 �
are the eigenvalues. The matrix elements read

� ��
�
� � �
�
�

� � 
�� � � � 
 � �� ��� 	 
 � 
��
�
� �
�
�

 � � (4.10)

The integer
�

is necessary in order to detect spurious eigenvalues; the issue

is detailed below.
1paper (II) of the publication list
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The propagated wave packets can be expressed in terms of the eigenstates� � � � and eigenenergies 	 � � of the corresponding Hamiltonian
��

. In the case of a

semiclassical propagation, the � � may also be complex. Inserting the expansion

with expansion coefficients � � into Eq. (4.8) unveils,� 
�� � � � 
 � � �
�

� �
� � �

�
� � � 
 � � � � (4.11)

with � � � 

� �� � � � ������� � � 	 � � � � �

 � ��� � � � ���
� �


 � ��� �
(4.12)

i.e., the contribution of each eigenfunction is weighted by a function
� � �

�
� � � 
 .

This function has a main maximum at �
� � �

� (
� � � ) with

� % � � � � � � � � 
 � �
�

�
� and many considerably lower submaxima. The first subminimum is at	 � � � �

� 
 � ���
. Together with the definition of

�
(
� � � � � �

� ) and� � � 	
this yields:

� � � � � � � �
. Let

�� be the mean level spacing in the interval� � ���	� � � � ��� � , then, if
� � �� , each basis function

� 
�� � � � 
 � picks out approximately

one eigenfunction. This is the informational uncertainty principle [cf. Eq. (4.6)]

for 
 � � . It suggests that for a single initial wavepacket 
 � � and propaga-

tion times that satisfy the relation,
� � � � ��� � �� , the solution of the generalized

eigenvalue problem Eq. (4.9) will yield all eigenvalues in the interval
� � ���	� � � � ��� � .

Loosely speaking, the eigenvalue problem converges. However, according to its

derivation, the principle is only a rule of thumb.

The propagation time can be reduced by using more initial wave packets


 
 � . Assuming, that the 
 Krylov vectors
� 
�� � � � 
 � belonging to a certain

�
�

are linearly independent, one would expect, that these vectors form a base for

diagonalizing at most 
 eigenfunction in the interval
�
. This leads to the informa-

tional uncertainty principle Eq. (4.6) for arbitrary 
 .

The numerical solution of the generalized eigenvalue problem Eq. (4.9) is

hampered by the fact, that in general the Krylov base function are linearly depen-

dent. This leads to spurious eigenvalues. Part of the spurious eigenvalues can be

removed by singular value decomposition (SVD) [136], i.e., eigenvalues of
�
�

below a certain threshold are neglected. In this work a relative threshold, denoted

as � � � � , was used; all eigenvalues below � � � � times the maximum eigenvalue

are removed. An alternative way to solve the generalized eigenvalue problem is

to resort to regularization [139, 38].

SVD (or regularization) cannot remove all spurious eigenvalues. Another sign

of a spurious eigenvalue in a bound system is a large imaginary part. Moreover,

spurious eigenvalues can be identified by solving the generalized eigenvalue prob-

lem Eq. (4.9) for different values of the integer
�

[37]. Additionally, in this work

eigenvalues are neglected if (i) the absolute difference of
� � � and

� � �
values
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exceeds the threshold � � � � or (ii) the imaginary part is larger than
� �

�
�

times the

absolute value of the real part. This still does not remove all spurious eigenvalues.

However, for a plot of � vs. propagation time
�

the “good” eigenvalues are on a

line while the spurious eigenvalues are erratically scattered (see below).

4.2 Numerical investigation of the quantum-

semiclassical approach

4.2.1 The square quartic Hamiltonian

The objective of this Section is a numerical and analytical analysis of the quantum-

semiclassical approach suggested in Ref. [36]. To this end, the square-quartic

Hamiltonian (in recast form; cf. Sec. 3.3.1),

�� � �
� �� � �� � �

�
�� � � � � � � � �

�
�
� � �� � � �

�
�

(4.13)

was used as model system. (This form was chosen, because it depends only on

one parameter.) The eigenstates
� � �� � and eigenlevels � �� can be characterized by

their symmetry as gerade (+) and ungerade (-). According to Section 2.3.2, the

HK error operator at
�
� � of this Hamiltonian (with HK parameter � ),

�� � � � �� � 
� � � � � �
� �

(4.14)

is a constant [II]. Thus, for short times, the HK propagation is governed by the

Hamiltonian
�� � � �� �

�
[cf. Eq. (2.94)]. The eigenstates of

��
and

�� �
are

identical, while the eigenlevels of
�� �

are shifted by �
�
. Therefore, harmonic

inversion of any cross-correlation function
	 ���

�
�
� 


yields shifted eigenlevels � �� ��
as long as the


 �
� � 

error is small enough. Surprisingly, this means, that a

propagation based on pure real-valued classical trajectories yields eigenlevels that

are split due to tunneling. Note, this finding is an exact result.

For a practical application it is necessary to know how small
�

must be in order

to be able to determine eigenlevels. Here, the determination of tunneling splittings

is of special interest because they are strongly affected by the semiclassical error.

To be definite, two parameters of � were considered. The six lowest eigenlevels

of the corresponding models are shown in Tab. 4.1 (obtained by numerical exact

diagonalization). Model A with � � � � � 
 has two levels below the barrier. The

magnitude of the ground state tunneling splitting of this model was rather at the

limit of being determined with the present technique. Model B with � � � � ���
is intermediate between Model A and the case with no level below the barrier.

For a harmonic frequency

 �

[cf. Eq. (3.18)] at the minimum of 
�������
�� ���
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(A) � � � � � 
 (B) � � � � ���
exact gauss exact gauss� �� 0.3402 0.3402 0.5587 0.5588� �� 0.3430 0.3430 0.6583 0.6584� �� 0.8823 0.8824 1.4270 1.4276� �� 0.9724 0.9724 2.0452 2.0469� �� 1.3154 1.3159 2.8717 2.8805� �� 1.6261 1.6270 3.7939 3.8153

Table 4.1: Eigenvalues (in units of the dimensionless barrier height �� � � �
�
� ) for

the one-dimensional square-quartic Hamiltonian [cf. Eq. (4.13)] with dimension-

less parameter � � � � � 
 (Model A) and parameter � � � � ��� (Model B). Numeri-

cally exact (“exact”) and approximate values (“gauss”) are given (see text).

(typical for OH stretch) the barrier heights corresponding to model A and B are,

respectively,

�
�	� � 
 � ��� and

�#� ����
 � ��� . (For comparison: for a 2D SMC model

of malonaldehyde � was 0.10.)

As initial wave packets a set
� � 
�� � �

of 
 � �

�
Gaussians equidistantly spaced

in the interval
� � � � � � � � � � was chosen. The momenta were zero and the width was

� ��� � � � � . The set is sufficient to diagonalize the below barrier levels of both

models; eigenlevels obtained from the solution of the corresponding generalized

eigenvalue problem are also given in Tab. 4.1. The formally arbitrary parameter
� of the HK propagator was chosen to equal � � � � (cf., for instance, Ref. [94]).

The trajectory sampling method was discussed in Section 2.3.2;
� � ��� � trajecto-

ries were sampled for the propagation of each single wave packet. A fifth-order

symplectic integrator [116] with fixed step size
	

typically ��� � 	 � � was used. The

characteristic time
� � � ��� � � was defined in Sec. 3.3.1. Plots of

� � � � vs. prop-

agation time
�

obtained from harmonic inversion by FDM of the HK propagated

cross-correlation function
	 ���

�
�
� 


were investigated. The choice of the set
� � 
�� � �

ensured that the FDM converges rapidly.

Figure 4.2 shows results obtained for both models, A and B. The exact levels

are indicated by straight lines. The semiclassical error manifests itself by a devia-

tions of
� � � � from the exact value and by the appearance of spurious levels. For

both systems the number of spurious eigenvalues increases with time because of

the increasing noise. A value of � � � � � ��� �
�

was necessary to get reasonable

results in the semiclassical calculations. System A (cf. Fig 4.2a and b) has two

split levels below the barrier. Fig. 4.2b shows the lowest split level, �

�
and � � ,

of system A in more detail. From Fig. 4.2b it is clear that the small splitting of
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Figure 4.2: One-dimensional Hamiltonian Eq. (4.13): Frequencies � � � � 
 in units

of the barrier height vs. propagation time
�

in units of
� � obtained by harmonic

inversion of the �

�
	 �

�
HK-propagated cross-correlation matrix. (a) model A

( � � � � � 
 ), (b) model A (enlarged), and (c) model B ( � � � � ��� ). Solid lines

indicate the exact energy levels and the dashed line indicates the barrier. The

FDM parameters (cf. Section 4.1.3) are 	 � �
, � center

� � � � (the center of the

energy window), � TOL

� � � �
�
, � TOL

� � � � � ��� � 	 , � TOL

� � � ��� � � .
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the lowest level can only be obtained until � � � � � , whereas the first excited state

splitting (cf. Fig. 4.2a) is almost exact for times up to about � � � � � . Several higher

levels can be resolved for an even longer time.

In model B the situation is qualitatively equivalent to model A. The splitting of

the levels below the barrier can be obtained for about � � � to � � � � � . Most higher

levels can be obtained even within a longer interval. Thus, for the present choice of

initial Gaussians and the HK-parameter � , the tunneling splitting can be obtained

for few characteristic periods in the present models resembling a reasonable range

of parameters � . In all cases the splitting was obtained for
�
� � , since it is present

in the level structure of the effective Hamiltonian as was shown analytically.

It is important to note that the reason why it is possible to obtain tunneling

splittings from semiclassical correlation functions is not related to the choice of

the diagonalizing basis set. Implicitly, this was shown already because the HK

propagation for short times is governed exactly by the Hamiltonian
�� �

that devi-

ates from the exact Hamiltonian
��

only by the constant
�
. However, since it is

somewhat against intuition, a more direct evidence is appreciable. To this end,

consider a single initial wave packet
� 
 �

propagated according to the HK propa-

gator (propagation parameters as before). At any instant of time
�

it is possible

to express the time evolved wavepacket
� 
 � � in terms of the exact eigenfunctions� � �� � as: � 
 � � � �

�
�
�
�
����� � � ��� �� �
� 
�� � � �� �� �

�
�
�
�
����� � � ��� �� �
� 
�� � � �� � � (4.15)

with � �� � � � �� � 
 � and complex time-dependent phases � �� �
� 
 . For an exact

quantum propagation one would have � �� � � 
 � � �� � , where � �� are the exact

eigenvalues of the Hamiltonian Eq. (4.13). The semiclassical error of the HK

propagation will manifest itself especially for phase differences �
�
� 
 � � �� � � 
 �

� �� �
� 
 of state pairs, that are split by tunneling. These phase differences are given

by the logarithm of the normalized expectation value of
���� � � �� � � � �� � (times � � )

[II]:

� �
� 
�� � � � ' � � 
 � �� � 
 � �� 
 � �� � 
 � � (4.16)

According to Eq. (2.94) it follows that �
� � 
 � � � � � � 
 �
� � 


, where
� � � is the

exact tunneling splitting.

The relation for �
�
� 


was investigated for the two models and individual Gaus-

sians out of the set
� � 
 � � �

. The eigenstates
� � �� � of the below barrier levels can

be expressed in terms of the set of 
 � �

�
Gaussians as,� � �� � � �

�
� �� � � 
 � � � (4.17)
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where � �� � are the corresponding expansion coefficients. Using this equation the

expectation value of
��

can be expressed as,

� � 
�� � �� � 
�� � � � �
� � � �
� � �� �
� � � �� � � 	 ��

�
� �
� 
 	 ��� �
� 
��

(4.18)

where
� 
�� �

is an individual Gaussian out of the set
� � 
�� � �

. Thus, the expectation

value only depends on a single column of the cross-correlation function, i.e., only

the propagation of a single Gaussian contributes.

The plot of
� � � �
� 
 for the lowest levels �

�
and � � of model A in Fig. 4.3a

shows, that the behavior of �
�
� 


depends on the initial position of the Gaussian.

The results for the first four Gaussians exhibit an approximately linear increase

until roughly � � � � � ; for longer time the deviations from linearity become very

prominent. The last Gaussian with position � � � � � 
 already deviates very

strongly from linear increase for � � � � � .
For the excited pair of levels, �

�
and ��� , of model A the findings are similar

(cf. Fig. 4.3b). Most Gaussians show an approximately linear increase for times

up to � � � � � and deviations for longer time. The Gaussian with initial position

� � � � ��
 deviates considerably already for � � � � � from the exact linear increase.

The plot of
� � � �
� 
 of the lowest levels �

�
and � � of model B (cf. Fig. 4.3c)

shows linear increase with time up to roughly time � � � � � for most Gaussians; the

Gaussian with � � � � � 
 deviates most rapidly from linear increase for times larger

then � � � � � .
To summarize: In all cases

� � � � � 
 deviates very strongly from linear increase

for times larger then
� � . However, since each curve in Fig. 4.3 is obtained for

a single HK-propagated Gaussian, the linearity for short times supports the state-

ment, that the spectrum of
�� �

includes the levels below the barriers in split pairs.

For time
� � � this was already shown analytically above. The strong deviations

from linear behavior for times
� 
 � � clearly show that the eigenfunctions of

�� �

differ considerably from the exact eigenfunctions. The nature of this deviation

cannot be deduced from the present numerical calculation: there may be an over-

all shift of the eigenvalues still being split due to tunneling. If the magnitude of

the splitting or the mean of the pair of split eigenvalues is shifted substantially

for times
� 
 � � , one would expect a decrease in accuracy when applying har-

monic inversion, since in its derivation a time independent Hamiltonian
��
�	� was

assumed. From the viewpoint of FDM this moving frequencies look like noise;

but in contrast to white noise the kind of noise introduced by the HK-propagator

is a systematic deviation.

Note that there is no simple relation between Gaussian parameters and the de-

viation from the exact behavior. For instance, in Fig. 4.3a and 4.3c the Gaussians
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Figure 4.3: One-dimensional model Hamiltonian Eq. (4.13): Real part of �
�
� 


,
� � � �
� 
 [Eq. (4.16)] for selected initial Gaussians. (a) model A ( � � � � � 
 ) levels

� � , (b) model A levels � � , and (c) model B ( � � � � ��� ) levels � � . The initial

position � � is indicated, the momentum
� �

is zero and � � � � � � � . The harmonic

approximation to the minima of the wells yields �
harm

� ��� � ��� (A) and
� ��
 (B),

respectively. The solid line indicates the exact linear function. The expectation

value of energy with respect to the Gaussians are (largest position � first) 0.67,

0.38, 0.39, 0.80, 1.11 for model A and 1.19, 0.90, 0.91, 1.32, 1.63 for model B

(in units of the barrier height). For remarks on the energy dependence: see text.

(Note the different scale of the time axes.)
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with initial position closer to the barrier deviate more rapidly from the exact re-

sult, while this statement is not true for Fig. 4.3b. Furthermore, there seems to

be no general rule correlating the deviations and the energy of the Gaussians (cf.

caption of Fig. 4.3).

4.2.2 The two-dimensional case

Application of the present quantum-semiclassical method to the important SMC

Hamiltonian [cf. Eq. (3.17)] showed that the extraction of tunneling splittings is

possible for a two-dimensional system, too [39]. This Section gives the interpre-

tation of that observation based on the technique of inspecting �
�
� 


developed in

the previous Section [II]. The SMC parameter set
� � � � � � 
 � � � �

�
�
� � � 
 
 � � � ��� 


corresponding to malonaldehyde [30, 74] was used. Malonaldehyde has a rather

large ground state tunneling splittings which facilitates its determination.

The 1D square-quartic Hamiltonian with � � � � ��� has two split levels below

the barrier. The set of 
 � �

�
Gaussians of the previous Section suffices to

diagonalize these levels. A set
� � �
�� � � of 
 � �

�
2D Gaussians was chosen as

initial wave packets. The � positions were equivalent to the 1D set
� � 
 � � �

(cf.

Section 4.2.1) while the the
�

positions were chosen in order to minimize the

potential part of the SMC Hamiltonian for fixed � . The width in both directions

was equivalent to the 1D case, namely � � � � � � � .

Results obtained by numerically exact and HK propagation are compared in

the following. The exact propagation was performed by using a 2D DVR grid

and the short-iterative Lanczos integrator (implemented in the MCTDH package

[140]). The HK propagation parameters are equivalent to the 1D case. Fig.

4.4 shows the harmonic inversion plot for exact and HK-propagation for the

present SMC Hamiltonian, respectively. The definition of the characteristic time� � � ��� � � is adopted here. For the exact propagation the ground state level (cf.

Fig. 4.4b) and the lowest excited levels (cf. Fig. 4.4a) converge before � � � . A

diagonalization of
��

SMC with 
 � �

�
Gaussians does not yield this accuracy.

For the HK-propagation the ground state splitting (cf. Fig. 4.4d) is present for

about
� � � ; after that time no splitting can be identified. However, the accuracy of

the semiclassical ground state levels is considerably lower than in the exact case.

The ground state levels appear to be shifted to higher energies and the splitting

varies slowly with time; the average splitting is larger than in the exact case. The

principal finding for the excited levels are similar: one observes a considerable

lower accuracy and an overall shift of the levels to higher energy values.

For the evaluation of the expectation value of
��

(cf. Sec. 4.2.1) it is more
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Figure 4.4: Two-dimensional SMC-Hamiltonian Eq. (3.17) with parameters for

malonaldehyde
� � � � � � 
 � � � �

�
�
� � � 
 
 � � � ��� 
 : Frequencies � � � � 
 in units of the

barrier height vs. propagation time
�

in units of
� � obtained by harmonic inver-

sion of the �

�
	 �

�
cross-correlation matrix. Upper row: exact propagation, lower

row: HK-propagation, right column: ground state energy region enlarged. The

FDM parameters (cf. Section 4.1.3) are 	 �

 , � center

� � � 
 , � TOL

� ��� �
�
,� TOL

�


� ��� � 	 , � TOL

� � � ��� � � .
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Figure 4.5: Two-dimensional SMC-Hamiltonian Eq. (3.17) with parameters for

malonaldehyde
� � � � � � 
 � � � �

�
�
� � � 
 
 � � � ��� 
 : Real part of �

�
� 

[Eq. (4.16)],

� � � � � 
 , for selected initial Gaussians. The initial positions are indicated; the

other parameters are
� � � and � � � � � � despite that Gaussian marked with

�

were the parameters are
� � � � � � 
 � � � � � �
� �

�
� � � 
 . The expectation values of the

energies are (in units of the barrier height): 1.62, 1.16, 1.23, 0.91. (Remarks: see

text)

convenient to express the eigenstates
� �� �� � of the SMC Hamiltonian as,� �� �� � � ��

� �
� � �� �� �

�
�

� � � � � ����
� � � � � � �� � � � (4.19)

where �� �� �
�
�

� � are expansion coefficients and
� � � � �� � � with � � � � � are harmonic

oscillator basis functions centered at � � � (
� � � ). The basis was chosen such

that the width of the ground state Gaussian equals the HK parameter � . Then,

the evaluation of matrix elements
� � � ����

�
� � � � � �� � � �� � � � � � � 
 � 
 � is very efficient (cf.

Appendix B).

Fig. 4.5 shows
� � � �
� 
 for several initial Gaussian wave packets

� 
 �
. The

parameters are given in the figure caption. For the first two Gaussians shown,

with initial positions
� � � � � � � � �

� 

and

� � � � � � � � � � � 
 , � � � �
� 
 increases linearly

until � � � � � ; for proceeding time the deviations from a linear increasing is evident.
� � � � � 
 of the third Gaussian with initial position

� � �
�
�
� � � 


 
 deviates from the

exact straight line right from the beginning, stays approximately linear until � � � � � ,
and shows a more prominent deviation for proceeding time. The result for the

fourth Gaussian with initial position
� � � �

 � � �

�
�



shows a linear increase up to

� � � � � . The energy of this Gaussian is below the barrier (cf. caption of Fig. 4.5

for energies of the Gaussians), a property which was achieved by changing the

parameters of the Gaussian to
� � � � � � 
 � � � � � � � �

�
� � � 
 . There is no significant

correlation between deviation from the exact result and energies above or below
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Figure 4.6: Contour plot of the two-dimensional potential
� ���$��� 


of 3,7-

dichlorotropolone (see text for details of the quantum chemistry calculations). The

coordinates
���$��� 


describe the hydrogen position in the molecular plane relative

to the transition state. The remaining DOF are relaxed; the zero-point energy is

included (cf. Sec. 5.2). The contour line-spacing is
� ����
 � ��� . The barrier height

is �	� �#� 
 � ��� . Positions of the Gaussians are indicated; the other parameters are
� � � � � � � and

� � � � (in a.u.).

the barrier. The findings are reminiscent of the 1D case shown in Fig. 4.3: the

actual deviation from the exact result depends on the initial Gaussian as well as

on the propagation time. In the 2D case the strong deviations from the exact result

for times larger than the characteristic period
� � is evident and can be interpreted

as a corresponding change in the effective Hamiltonian
�� �

of the HK-propagator.

Concerning the ground state, that is clearly split by tunneling, comparison of

Fig. 4.4 and 4.5 shows that the time interval for which a tunneling splitting can

be obtained is not much larger than the time for which there are split eigenval-

ues in the effective Hamiltonian. This is reminicent of the 1D case discussed

before. Moreover, FDM relies on the full time interval
� � � � � . This explains why

the splitting can be obtained when there is already a strong deviation from linear

behavior for some Gaussians in Fig. 4.5. The present finding suggest, that FDM

extracts tunneling splittings from the effective Hamiltonian. This is in contrast to

the notion of a quantum-semiclassical method [36]. In fact, FDM combined with

semiclassical propagation is a pure semiclassical method.

There are anharmonic terms proportional to �
�

and �
� �

in the SMC-PES. For

the one-dimensional case the �
�
-term leads to a constant energy shift of the effec-

tive Hamiltonian for
� � � . The 2D error is not known analytically. However,

the one-dimensional findings suggest that the semiclassical error becomes more

pronounced for higher anharmonic terms. For instance, a � � -term leads to an error
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Figure 4.7: Same as Fig. 4.4 but for a 2D model for the 3,7-dichlorotropolone

tautomerization (cf. Fig. 4.6). The FDM parameters are 	 � �
, � center

�
����� cm

���
, � TOL

� ��� �
�

, � TOL

�
��� cm

���
,
�

TOL

� � � ��� .

operator that is proportional to the position operator at
��� � , i.e., there appears an

unphysical additional linear term in the effective PES. Higher order anharmonic

terms are likely to appear in a realistic PES that is constructed ab-initio by em-

ploying modern quantum chemistry techniques. For instance, consider the 2D

PES for the tautomerization reaction of 3,7-dichlorotropolone shown in Fig. 4.6.

The coordinates
���$��� 


refer to the position of the reactive hydrogen in the molec-

ular plane. The PES was obtained by Gaussian 98 [124] using the DFT method

(B3LYP functional) and the 6-31+G(d,p) basis set [141]. For fixed
� � � � 


, the

remaining DOF were relaxed [141] and the zero-point energy was included (cf.

Sec. 5.2). Here, the PES serves as an example for a realistic model (concerning

the anharmonicities).

The parameters of the initial Gaussians (cf. figure caption of Fig. 4.6) were

manually optimized in order to minimize the necessary propagation time for con-

vergence of the lowest levels. Two of the Gaussians were placed near the minima

and the others were placed along a straight line connecting the minimum and

transition state. The width was chosen similar to the width of a ground state wave

packet. A set of 
 � �

�
Gaussians was sufficient for that purpose. The num-

ber of sampled trajectories per propagated wave packet was � � ��� � ; the integrator

step-size was � � � ��" . The numerical exact propagation was performed by using a

short-iterative Lanczos scheme with a DVR grid [140].
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The FDM results for the exact and HK-propagated cross-correlation matri-

ces, respectively, are shown in Fig. 4.7. The time is given in units of the period� � � 	 � � � � ��� � �	
 � 
���" with zero-point energy � � ��� . For the exact propaga-

tion, the ground state levels �

�
and � � (cf. Fig. 4.7b) converge within � � 
 � � .

The lowest excited levels (cf. 4.7a) converge within � � 
 � � � � � � ; even the three

close lying levels above � � ����
 � ��� are resolved. For the HK-propagation, the

ground state levels (cf. Fig. 4.7d) do not converge to the exact result. One finds a

number of frequencies scattered in the vicinity of the exact levels, but no splitting

appears. Figure 4.7c shows similar findings for the excited levels: while there are

frequencies scattered around the exact levels, the splitting of the first excited level

and the splitting of the three levels above � � ��� 
 � ���
cannot be resolved. The

accuracy of the semiclassical results is poor in comparison with the exact result.

The reason for the large deviation from the exact result is clearly the increased

anharmonicity of the potential. Due to this anharmonicity,
��
�
� (cf. Sec. 4.1.2)

does not only deviate from
��

for
� � � but does also exhibit a fast deviation from

the exact Hamiltonian with increasing time. Although the exact result converges

within less than
� � this period seems to be too large for an accurate semiclassical

extraction of the tunneling splitting using the present set of Gaussians. Note, in

order to identify spurious eigenvalues, the determined energy levels must be stable

for times of the order of the characteristic period.

Apparently, the amount of (systematic) noise in the HK-propagated cross-

correlation matrix is much higher than that in the cross-correlation matrices of the

simple models that were discussed before. Nevertheless, the ground state energy

in units of the absolute barrier height is 0.67, a value that is intermediate between

those considered in the one-dimensional model A and B and the two-dimensional

SMC model, respectively. Therefore, taking this as a simple measure, the different

systems should be comparable. Due to the high amount of noise, a change of � TOL

may have a significant influence on the semiclassical spectrum. This is similar to

the analysis of noisy experimental data, a topic that takes considerable attention

in applications of the FDM [38]. The semiclassical spectrum for different values

of � � � � is shown in Fig. 4.8. For � � � � larger than ��� �
�

the splitting of the

ground and first excited state gets stabilized. The finding suggests that tunneling

is present in the effective Hamiltonian, but splittings cannot be reliably predicted.

4.2.3 Conclusion

It was supposed that the action of the Herman-Kluk propagator
�� � ��� � is gov-

erned by an effective (generally non-Hermintian and time-dependent) Hamilto-

nian
��
�
� � � , �� � � � � � � � ��� � � �� �
� � � � � 	 � [36]. Ankerhold et al. [98] showed, for
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Figure 4.8: Semiclassical levels obtained by FDM. Same as Fig. 4.7, but for

different parameters � � � � of the SVD. (a) � � � � � ��� �
�

(b) � � � � � ��� � 	 (c)

� � � � � ��� ��� .
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the one-dimensional case, that
��
�
� � � is generally different from the exact quantum

Hamiltonian
��

. Yet
��
�	� � � may involve tunneling. For instance, for

� � � it differs

from the square-quartic Hamiltonian only by a constant (cf. Section 4.2.1).

It was shown in Ref. [39] for one- and two-dimensional model potentials

that tunneling splittings can be obtained by the combination of HK propaga-

tion and harmonic inversion of cross-correlation functions for multiple Gaussians

(quantum-semiclassical approach). This was attributed to the assumed quantum

aspect that is introduced in a semiclassical propagation by using more than one

wave packet. (For an infinite number of wave packets this refers to a diagonaliza-

tion.) It was suggested, that distributing Gaussians along DOF for which tunneling

is important may lead to an efficient combination of quantum and semiclassical

techniques (quantum-semiclassical approach). However, the present study sug-

gest that the quantum effect “tunneling” is not introduced by the set of Gaussians,

because split energy levels are present for short times in
��
�	� � � . This renders the

view of a quantum semiclassical method [36] unsound. In particular, even for a

complete basis the effective Hamiltonian at
��� � ,

��
�
� � � , - instead of the quantum

Hamiltonian
��

- is diagonalized.

It is known that semiclassical results concerning non-classical effect may de-

pend upon so-called arbitrary parameters [134, 133, 132]. For instance, the set

of Gaussians used for the square-quartic Hamiltonian was chosen to diagonalize

the low lying eigenlevels, but infinitely many (even non-Gaussian) basis sets do

diagonalize these levels within the same accuracy. Quantum mechanically, the

actual choice is irrelevant as long as only the same low lying levels are concerned.

However, for a HK propagation certain basis set may be superior compared to the

one used. This can be illustrated by re-inspection of Fig. 4.3 or Fig. 4.5: the

time-interval for which
� � � �
� 
 is almost linear depends on the initial conditions

of the Gaussian. (This is reminiscent of the findings in Ref. [133], for instance.)

The choice of an optimized set would mean to decrease the influence of the error

operator on the HK propagation (cf. Sec. 2.3.2). The error operator, however,

is generally unknown. Thus, the present method has the same drawbacks as any

other semiclassical method. In particular, semiclassical eigenenergies may be ob-

tained for rather large systems but quantum effects cannot be introduced simply

by adding enough Gaussians.
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