
Chapter 3

Classical trajectory approach for

tunneling

3.1 Introduction

3.1.1 The Makri-Miller model

This Chapter is concerned with an approach that accounts for tunneling by means

of classical trajectories [I]1. The approach is based on the well-known Makri-

Miller model for tunneling [29]. This model is presented in the present section

and related to other approaches. The classical trajectory approach is outlined in

Section 3.2, followed by a numerical test in Section 3.3.

To account for tunneling processes in multidimensional trajectory based sim-

ulations, Makri and Miller [29] proposed a simple method that is based on the

one-dimensional WKB result for the tunneling splitting
�

in a symmetric double-

well potential [16],
� � 	 �� ����� 
 � �	 �

� �
(3.1)

where � is the classical oscillation frequency of the particle in each of the wells

and
�

is the classical action integral from the left turning point � � � to the right

turning point
� � 
 � ,

� � � ���
� ��� � � � � 
 �

	 � � (3.2)

It was noted [29] that according to Eq. (3.1) one-dimensional tunneling can be

interpreted in an intuitive way: a classical particle oscillates back and forth in

the, say right, well; each time the turning point
� �

is encountered, there is a cer-

tain (typically small) probability
� ����� � � � 	 � for tunneling into the other well,

where the rate of such events is simply proportional to the oscillation frequency
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� . For small tunneling probability, the cumulated tunneling probability for the

time-interval � to
�

is the sum of the individual probabilities,

� � � 
 � �
� ��� � ������� � � � 	 � � (3.3)

where
� �

are the times at which the turning point
� �

is encountered. The function��� � 

is a staircase function with step-size

��� � � . Averaging over an ensemble

of trajectories with different phases yields a straight line the slope of which is

proportional to the tunneling splitting,

� � � 	
		 � � ��� � 
 � � (3.4)

The equation is the basis for a generalization to the multidimensional case. To

this end, it is assumed that tunneling proceeds along straight lines defined by a

tunneling direction � (normalized,
�

-dimensional vector; reasonable choices are

discussed below). A turning point is defined by the condition that the sign of the

momentum
�

projected onto direction � (i.e.,
� � � ) changes from plus to minus.

Each time
� �

when such a classical turning point
� � ��� ��

is encountered, the tunneling

probability is computed by,

�

� � � 
��	��
� 	
�
� ��� � � � ����� �� �

� � 
 � � � � ����� �� 
 � �
(3.5)

where
�
�
���

is the maximum length of the straight line path for which the square-

root is real. The cumulated tunneling probability is then given by Eq. (3.3) with

the replacement
� � �

�
. The multidimensional

� � � 

is still a staircase but with

varying step-size and step-height. However, due to the exponential factor only the

smallest
�

�
contribute to the sum. The tunneling splitting is given - in complete

analogy to the 1D case - by Eq. (3.4). The ensemble of trajectories is the invariant

torus corresponding to a certain eigenstate, i.e., a numerical implementation may

use adiabatic switching or normal mode sampling [99] (cf. Section 2.1.5). The

quasi-periodicity of the dynamics on the invariant torus ensures
��� � 


to be linear

also in the multidimensional case. However, when the initial condition are gen-

erated by an approximate method like normal mode sampling, the sampling error

leads to deviations from linearity [99].

For a multidimensional system the choice of the tunneling direction � is non-

unique. In the original paper, Makri and Miller proposed to use the shortest

straight-line connection between the caustics of the left and right invariant tori.

Their original proposal is illustrated in Fig. 3.1 for the SMC and ASMC case. For

the SMC case the tunneling direction always coincides with the large amplitude

coordinate . For the ASMC case does the tunneling direction not only depend on



3.1 Introduction 41

(a) (b) (c)

Figure 3.1: Tunneling directions as proposed by Makri and Miller [29]. Tunneling

is assumed to occur along straight lines parallel to the given arrows. Thick black

lines correspond to caustics of invariant tori. (a) SMC case, (b) ASMC with large

displacement, and (c) ASMC with small displacement.

the coupling strength, but also on the eigenstate of interest. Alternative choices

were discussed in the literature [100, 99, 101, 102].

It was shown that the Makri-Miller model can be used to determine (or es-

timate, at least) tunneling splittings for multidimensional systems. For instance,

full-dimensional calculations using realistic PES [43] or on-the-fly molecular dy-

namics [103] were carried out. Moreover, it was shown that the model can be used

to incorporate tunneling into classical trajectory simulations [102]. To this end, a

particle that hits a turning point was physically displaced along the straight line

tunneling direction with probability equal to
������� � � � 	 � .

3.1.2 Tunneling models based on multidimensional Wentzel-

Kramers-Brillouin theory

Takada and Nakamura [30] showed that there are two extreme cases of tunneling

in a SMC potential: (a) tunneling proceeds through the
	

region or (b) tunneling

proceeds through the
�

region. Case (a) and (b) correspond to small and large

coupling, respectively. The situation is sketched in Fig. 3.2. In case (a) the saddle

point falls into the
	

region. No trajectories can be defined in that region and

the action function is complex; especially, it is complex along the symmetry line.

Interestingly, in case (a) the MM is expected to perform best, because in the limit

case of vanishing coupling, the starting equation [Eq. (3.1)] of the MM is the

exact semiclassical result. On the opposite, in case (b) the MM is expected to

perform poorly, because there is a large effective barrier for all straight line paths.

In the
�

region the semiclassical wave function can be expressed as
 � � �&�#
���� ��� 
 � �	 ��� � � �&�#
 � �� � � �	�#
 � �
(3.6)

where
��� � � ��� and

� � � � �� [cf. Eq. (2.13)] satisfy the HJE [Eq. (2.15)]
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Figure 3.2: Tunneling mechanisms (schematic) for the SMC-PES. The saddle

point (=
�
) and the IRP (dash-dotted) is indicated. Thick solid and dashed lines

correspond to caustics of the allowed and forbidden regions, respectively. (a)

small coupling, and (b) intermediate coupling. The instanton (dotted) trajectory

is indicated. The LSLA trajectory (thin solid) starts from the take-off point � 
 on

an
	
� �

-caustic.
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and transport equation [Eq. (2.16)], respectively. Especially,
� �

satisfies the HJE

for the upside-down PES, � � � �
�



and
���

�

 � 	 ��� �

�



is the momentum of a

classical trajectory on the upside-down PES traversing position � . Here, vectors �

denote a position in the 2D space
� � �	� 
 .

It is assumed that there is a single point �
� � � � �&� � 
 on the symmetry line

�
where the exponent is stationary,� ��� � � �	� 
� � ����

���

� � � (3.7)

i.e., there is a particular trajectory with momentum perpendicular to the sym-

metry line at �
�
. [If more than one trajectory satisfies Eq. (3.7) then only

the one with smallest action contributes.] In the vicinity of �
�

on
�

, the ac-

tion
���

can be expanded into a second-order Taylor series with respect to
�
,

��� � � � � �	� 
 � ��� � � �	� � 

�
� � � � � �� � � �	� � 
���� � � � 
 �

, where
� � ��

is the second deriva-

tive with respect to
�
. The tunneling splitting can be determined by inserting

Eq. (3.6) into Herring’s formula for the SMC case [Eq. (2.62)], evaluating the

derivative with respect to � , inserting the truncated Taylor expansion for



, and

performing the Gaussian integral analytically in the semiclassical limit 	 � �
[30], � ��� ������� � � ��� � � �	� � 
 � 	 � � (3.8)

with the prefactor

� � 	 � 	� � �� � � �	� � 
 
 � � �� � � � � � �#� � ��� � � �	� � 
 � � (3.9)

where
��� � � ��� � � � is the momentum in � -direction. Thus, in this approach,

the tunneling splitting is dominated by a particular trajectory. This trajectory is

defined by the condition Eq. (3.7) and the boundary conditions of the field of tra-

jectories corresponding to the
�

region. This boundary conditions were discussed

in Section 2.1.3.

When the energy is kept in the HJE (2.15) [as opposed to Eq. (2.23)] then

there are � ,
	

, and
�

regions around each HU point. The equi-amplitude lines

of the
�

region smoothly connect to the equi-amplitude lines of the
	

regions,

i.e., the particular trajectory tangentially approaches a caustic of a
	

region at the

so-called take-off point � 
 . The situation is depicted in Fig. 3.2b. The trajectory

is suggestive of a tunneling path, but the trajectory connects to the
	

region and

the c-valued
�

of the
	

region does not define a field of trajectories, i.e., the path

is undefined there.

Takada and Nakamura [30] derived analytical expressions for the tunneling

splitting by making simplifying assumptions: Separability and linearity of the
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PES in between the HU point (cf. Fig. 3.2) and the take-off point � 
 . Then,

the tunneling splitting according to this locally separable linear approximation

(LSLA) is given by Eq. (3.8), where
��� � � �	� � 
 � ���������

is the action along the

path, HU point � take-off point � � � �	� � 
 . The derivation of the prefactor is

straightforward [30]. The LSLA can be applied for ground and excited states as

long as the invariant torus exists. An application to multidimensional systems

with
� 
 �

seems not to be feasible because it involves a search for the take-off

point in multidimensional space.

Under the assumption that the harmonic approximation is valid for the wave-

function in the allowed region one can extend the
�

region to the minima such that

� and
	

regions vanish (cf. Section 2.1.3). The PES is inverted, � � � � �	� 
 , and

the minima become hills. Consider the right minimum: a field of trajectories that

emanate from the right minimum in the infinite past can be defined [58]. Only

an extreme tunneling trajectory is considered, that satisfies Eq. (3.7) at certain

point
� �

(that may be different from the LSLA result). Such trajectory starts-off

from the symmetry line with momentum perpendicular to the symmetry line and

approaches the hill along the weakest mode [58]. Benderskii et al. [58] found a

splitting formula similar to Eq. (3.8), where
��� � �

�	� � 	 is the action along half of

the extreme tunneling trajectory. The extreme tunneling trajectory is called the in-

stanton. This name derives from a related method that determines the ground state

tunneling splitting from the semiclassical approximation to the partition function

[8, 87]. The instanton theory was also generalized to treat low vibrationally ex-

cited states [58, 104, 105].

Recently, Mil’nikov and Nakamura [59] gave an implementation of the instan-

ton theory that is applicable to multidimensional systems. The performance of the

new method was demonstrated, e.g., for malonaldehyde [106] and the formic acid

dimer [107]. A related approximate approach was introduced by Tautermann et

al. [108] (see below).

3.1.3 Other tunneling models

Tunneling paths are also discussed in the context of generalized transition state

(TST) theories [73, 67, 109]. Usually adiabatic separability of the intrinsic re-

action coordinate
�

and the remaining DOF
�

is assumed, where
���#� � 


form a

curvilinear coordinate system. It was shown that the effect of small IRP curva-

ture can be accounted for by an effective
�
-dependent mass

�
�	�
�!� 


[110] in the

adiabatic Hamiltonian,

����� � � � 

� �� � �
� ��� 
 � � �
� � � �!� 
 � � � ��� 
 � (3.10)
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where
� �

is the momentum conjugated to
�

and � � ��� 
 is the zero-point energy

(ZPE) of the
�

-modes. (A full-dimensional reaction path Hamiltonian with exact

kinetic energy and harmonic approximation with respect to the DOF orthogonal

to the reaction path was derived by Miller et al. [111].) Recall,
�

coincides at

the minimum with the weakest mode that is symmetrically available. The expo-

nent of the tunneling probability is given by an integral analogous to Eq. (3.2)

between the two inner turning points
� � �

on the IRP at energy � . The method

was termed the small curvature tunneling approximation (SCT). (A derivation of

a formal condition for this approximation to be valid can be found in Ref. [110].)

Undoing the introduction of the effective mass leads to tunneling paths that lie on

the concave side of the IRP and cross the symmetry surface at a position displaced

from the saddle point. This effect was already investigated by Marcus and Coltrin

[112] and it was termed corner cutting. The same effect can be found for the

instanton and LSLA paths (cf. Section 3.1.2).

For large IRP curvature the SCT breaks down and straight-line paths are fa-

vored leading to the large curvature tunneling approximation (LCT) (or sudden

approximation). The straight-line paths go from one turning point on one side of

the IRP to the other side, i.e., they cross a non-adiabatic region, the so-called reac-

tion swath. However, already Marcus and Coltrin [112] pointed out that the “true”

tunneling path should satisfy the least action (or Hamilton’s) principle of classi-

cal mechanics (cf. Appendix A.1). The formal justification for such a principle is

given by the multidimensional WKB theory (cf. Section 3.1.2): the solution of the

HJE in the
�

region is given by classical trajectories propagated on the inverted

PES. (Classical trajectories satisfy Hamilton’s principle by definition.)

Garrett and Truhlar (GT) [113] proposed to consider a family of paths param-

eterized by a parameter
�

( � � � � � ). If the case of two equivalent minima is

assumed, then the two turning points on the IRP can be denoted as
� � �

. The GT

paths are defined by

�� ��� � � 

� � � � � 
 � ��� 
�
� � � � � � � 
 � ��� � � � 
!� � � � � � 
 � � � � � � 
&
 � � � � � � (3.11)

where � �!� 

is the coordinate representation of the IRP [cf. Eq. (2.49)]. For

� � �
the GT path coincides with the IRP and corresponds to the the tunneling path in the

small-curvature limit; for
� � � the GT path is a straight line connecting the two

turning points and corresponds to the large-curvature limit. Recently, Tautermann

et al. [108] implemented such an approach numerically and determined tunneling

splittings. (The available computer power was insufficient in 1983, so GT had

to resort to further approximations.) The approach was checked against a fully

optimized tunneling path for the malonaldehyde molecule and it was concluded
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that the optimized GT path is a reasonable approximation. Note, in contrast to

the statement in Ref. [114], the family of GT paths covers a curved but two-

dimensional submanifold of the full-dimensional configuration space only.

3.2 The extended Makri-Miller model (EMM)

3.2.1 Motivation

In Section 3.1.2 it was noted that the straight-line approximation of the Makri-

Miller model may break down in a situation sketched in Fig. 3.2b. For any set

of fixed SMC parameters � , �� , � , and



such a situation is met for large enough�
, since the minima are at

� � �
�
� �� � � � � � �� 
 � 
 and the saddle point is at

� � � � 
 .
(However, for

�
too large, all invariant tori are destroyed.) The break-down of the

straight-line approximation motivates the use of the tunneling trajectories of the

TU theory [27, 60, 28] (cf. Section 2.1.4), because - unlike straight-lines - these

TU trajectories are related to approximate solutions of the multidimensional HJE

[cf. Eq. (2.20)]. Therefore, the objective of this Section is the derivation of an

extended Makri-Miller model (EMM) that accounts for tunneling by means of TU

trajectories. The new method is numerically tested in Section 3.3 and applied to

generic SMC-PES, model PES of the carboxylic acid dimer, and the
��� �� anion.

It is shown that the new model can also account for tunneling through the
�

region

as depicted in Fig. 3.2b. In particular, two questions are addressed:

(Q1) For which situations are the generalizations effective and lead to a signifi-

cant improvement of the results?

(Q2) Can vibrationally excited states be treated with the new method?

Q2 is of special importance in view of the the new developments concerning the

instanton theory [59, 106, 105, 107], which can treat tunneling splittings of ground

and singly excited states only.

The discussion primarily addresses the SMC case, because only in this case a

pronounced mode-selectivity (spanning orders of magnitude) can be anticipated.

The ASMC case is complicated by the dependence of the tunneling splitting upon

the phase of the wave function along the symmetry line (cf. Section 2.2.3). The

squeezed (SQZ) case is not interesting for the present purpose, because straight

line paths are well suited, especially the instanton is a straight line in this case.

3.2.2 Turning points and caustics

In a one-dimensional system turning points
� �

are uniquely defined by the energy� and PES
� ���#


via condition
� � � � 
 � � . In a multidimensional system classi-
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cally allowed and classically forbidden regions of configuration space are divided

by caustics. A caustic is a surface (or line in 2D) of points at which trajectories

cross from one branch of the momentum function to a neighboring branch (cf.

Section 2.1.3), i.e., a caustic is a property of an ensemble of neighboring trajecto-

ries. This ensemble is mathematically described by the Lagrange manifold (e.g.,

invariant torus) on which the branches of the momentum function are defined.

For non-separable potentials one cannot uniquely define the kinetic energy for a

particular coordinate, thus it is impossible to obtain the turning points [115].

Therefore, the following practical approximate definition for multidimen-

sional turning points is considered. Let �
�

be the
�

normal mode vectors corre-

sponding to the right minimum of a double-well system. For a harmonic system,

turning points are given by the condition

�
� � � � � � (3.12)

where
�

is the momentum vector. This condition is also reasonable for the mod-

estly anharmonic case (for instance, cf. Fig. 3.4).

3.2.3 Computational algorithm

The algorithm of the extended Makri-Miller model involves the following steps

[I]:

1. Initial conditions for an ensemble of trajectories according to the multidi-

mensional quantization rule [Eq. (2.36)] are selected either by adiabatic

switching or by normal mode sampling (cf. Section 2.1.5). All the trajecto-

ries are initially located either in the right or left well.

2. A trajectory of the ensemble is propagated in the R region for a certain

amount of time
�

. During this time the trajectory will hit classical turning

points
� � ��� �� . These turning points are determined by the condition �

� � � � � 0

[Eq. (3.12)].

3. Each time the trajectory hits a classical turning point
� ����� �� , the parity �

�
of the corresponding direction �

�
is flipped from +1 to -1. The trajectory

is then propagated in the forbidden region according to the equations of

motion (2.30-2.31).

4. The condition Eq. (3.12) is also used to determine non-classical turning

points outside the � -region: When the turning point condition is fulfilled

for a trajectory in the forbidden region then another parity �
�

of the corre-

sponding direction is flipped from +1 to -1. Both trajectories in the forbid-

den region, the one with �
� � � � and � � � �

� as well as the one with



48 Classical trajectory approach for tunneling

q

I

x

C1

(1)

(2)

C2

case (ii)

case (i)

T
r

Figure 3.3: Right well of Fig. 3.2 for an unspecified saddle point. Tunneling

trajectories emanating from two classical turning points, (1) and (2), are shown.

Case (i) and (ii) correspond to tunneling through the
	

and
�

region, respectively.

�
� � � � and �

� � � � , will be integrated in this case. And so on for more

than two dimensions.

5. When a trajectory, that is propagated in the forbidden region, crosses the

symmetry line
�

, the complex action � � of that trajectory is computed. The

action � � is given by the integral Eq. (2.35) along the trajectory from
� � � � ��

to the crossing point on the symmetry line. There may be several trajectories

that emanate from one classical turning point
� � ��� �� . Only that action � � is

kept, that has the smallest imaginary part.

6. The contributions of all non-classical trajectories with smallest action that

have emanated from classical turning points
� ����� �� at time

� � are summed up

according to: � �
� 
�� �
��� � � � ��� 
 � �

	 � � � � � � � � (3.13)

If the initial conditions correspond to an invariant torus then the ensemble

average,
� � �
� 
 �

, is a straight line. The tunneling splitting is given by [cf.

also Eq. (3.4)]: � � � 	
		 � � � �
� 
 � � (3.14)

For the case of a SMC PES the algorithm is illustrated in Fig. 3.3. Vectors of

the 2D space
� � �	�#
 are denoted as � . One may distinguish two important cases:

In case (i) a classical trajectory (solid) propagated in the R-region hits a turning
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point �
����� � “(1)” at the

	 � - � caustic. The emanating TU trajectory (dashed) resides

solely in the
	 � region and hits the symmetry line. In case (ii) a turning point “(2)”

of the
	 � - � caustic is touched giving rise to a TU trajectory in the

	 � region. This

trajectory hits several non-classical turning points at the caustics of the
	 � and

neighboring
�

regions. For instance, the third non-classical turning point � 
 of that

trajectory is located at the
� � 	 � caustic. A second parity is flipped at that point

giving rise to an additional TU trajectory that is propagated in the
�

region. This

trajectory then crosses the symmetry line. By this procedure, many TU trajectories

are generated for a single classical turning point �
� ��� � and several of them will cross

the symmetry line. Only the TU trajectory with smallest imaginary action is kept,

the contributions of the other trajectories are discarded. This is motivated by the

least action principle.

In the case of small � , when the saddle point falls into the
	 � region, the

TU trajectories in that region are expected to have smaller action than those that

propagate through the
	 � and

�
region. And vice-versa for the case of larger

� , when the saddle point falls into the
�

region. The situation in this case is

reminiscent of the LSLA approximation. Therefore one may call the second non-

classical turning point � 
 of the shown trajectory the take-off point. Compared to

the LSLA there are two important differences: (i) TU theory assumes separability

in the
	 � region, and (ii) the

	 � - � boundary is determined by the turning point

condition Eq. (3.12), i.e., the turning point condition is used for the classical

forbidden and allowed region. For the LSLA approximation the
	 � - � boundary

was approximated by a straight line continuation of the exact
	 � - � boundary. The

two approximations, (i) and (ii), need to be justified by numerical tests.

3.3 Numerical test of the extended Makri-Miller

model

3.3.1 Generic symmetric mode coupling potentials

The SMC Hamiltonian is given by Eq. (2.61). There are four parameters, � , � ,



,

and
�

. The set of parameters can be reduced without restrictions by introducing

dimensionless positions
� �� � �� 
 by

� � ��� �� � (3.15)� � ��� �� � (3.16)
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where ��� � �
�
� �� is the minimum position of � , and by dividing the SMC

Hamiltonian by �
� � =

� � �
�
� � �� . The new SMC Hamiltonian �� � ��� reads

�� � ��� � �
� ��

� � �� �� �
� � �� �� � ��

�
�
� ��

�
� 
 � � �� � � 
 �

� � �� � ��
�

�� � � �� � � � 
�� � � (3.17)

where the constant �
�
� is added and the oscillator DOF is shifted by � � � � . The

new parameters are defined by

� � 	 �� � � � �
�
� 	 
 � � � � � =

� � (3.18)� � 
 � � �
�
� 
 � 
 � �

(3.19)
� � � � � �

� �� � (3.20)

where

 � � � �

� is the harmonic frequency corresponding to the minima of the

original SMC Hamiltonian. The new Hamiltonian is used throughout this work

and was first introduced by Takada and Nakamura [30]. It depends on three param-

eters only. Formally, the parameter � corresponds to the reduced Planck constant

of the new SMC Hamiltonian. Moreover, it is related to the dimensionless mass

� by �
� � ��� � � where 	 � � . The remaining parameters, � and � , have the

same meaning as the original



and
�

, respectively. The harmonic approximation

for the one-dimensional double-well part ( � direction) of the PES of Eq. (3.17)

at the minima yields a dimensionless force constant of � �� � � . Thus, � � is the

ratio of the minimum force constant of the one-dimensional double well and the

force constant of the displaced harmonic oscillator. The oscillation frequency of

a harmonic oscillator with mass �
� � � and force constant � is ��� � � . The period� � � ��� � � (dimensionless time) defines a characteristic time scale. Subsequently,

the tilde is dropped,
� �� � �� 
 � � � �	�#
 , to simplify the notation.

An actual parameter set will be reported in the form
� � � � � � 
 . For each param-

eter set an ensemble of 100 trajectories was propagated to determine the tunneling

splitting
� �

, where � � � � � � � � 
 ; the quantum numbers
� �

and
� � correspond ap-

proximately to the DOF � and
�
, respectively. Each trajectory was propagated

for 125-250 	 � � . The numerical integration of the equation’s of motion were

performed using a symplectic trajectory integrator of fifth order [116] with a fixed

step size of typically ��� � 	 � � . The adiabatic switching method (cf. Sec. 2.1.5)

was used to determine the initial conditions corresponding to the set of quantum

numbers � . Fig. 3.4 shows turning points obtained by the turning point condi-

tion [cf. Eq. (3.12)] for the parameter set
� � ��
 � � � � � � � �

� 

; the projection of the

torus unveils a moderate distortion with respect to the rectangular shape. The ap-

proximate turning point condition leads to a slight disagreement between turning
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Figure 3.4: Approximate turning points of the ground state ensemble of the

SMC Hamiltonian [Eq. (3.17)] with dimensionless parameters
� � � � � � 
 �� � � 
 � � � � � � � �

� 

. The turning points are generated by the condition Eq. (3.12)

and are connected by a thick black line. A fraction of an individual trajectory

inside the � -region is also shown (dashed). The approximate turning point con-

dition leads to a slight disagreement between turning points and exact caustics of

the invariant torus corresponding to the ensemble of trajectories.
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� � � � � � (ground state)� � � � 
 QM � � � MM EMM inst � � � LSLA � � �� � � � � � � ��� 
 5.73(-9) 2.31(-9) 6.80(-9) 6.4(-9) 5.8(-9)� � � � � � � � ��� 
 1.65(-8) 2.23(-8) 2.44(-8) 1.9(-8) 1.5(-8)� � � � � � � �
� 


4.55(-9) 8.71(-11) 5.12(-9) 5.2(-9) 6.8(-9)� � � � � � � 
 � 
 1.49(-8) 7.30(-9) 1.03(-8) 1.7(-8) 1.6(-8)� � � � � � � �	� 
 2.15(-8) 5.78(-8) 2.82(-8) 2.5(-8) 2.1(-8)� � � � � � � � ��� 
 1.75(-8) 4.37(-11) 3.74(-8) 2.0(-8) 2.9(-8)� � � � � � � � 
 ��� � 1.19(-4) 1.61(-4) 1.90(-4) 1.46(-4) 1.16(-4)� � � Ref. [30]��� � � � � � ���
Table 3.1: Ground state tunneling splitting (

� � � � � � ) for the SMC Hamiltonian Eq.

(3.17). Results for the EMM are compared with quantum (QM), MM, LSLA, and

instanton theory (inst) results (cf. list of acronyms). The parameters correspond

to the case sketched in Fig. 3.2b. Except for the last row, the parameter � is 0.04.

Values are reported as
� � � � 
 which means

� � ��� ��� .

points and exact caustics of the invariant torus corresponding to the ensemble of

trajectories. Other parameter sets discussed in the present Section correspond to a

less pronounced distortion, i.e., the turning point conditions is appropriate.

The case of intermediate coupling is considered first (cf. Fig. 3.2b). Table 3.1

shows tunneling splitting obtained by the present EMM and various alternative

methods. The instanton theory and the LSLA were briefly reviewed in Section

3.1.2. The numerical exact quantum mechanical (QM) results were obtained by a

direct diagonalization of the Hamiltonian on a grid. These results as well as the

semiclassical results for the instanton theory and LSLA are taken from Ref. [30]

where the computational details can also be found. The MM results were obtained

within this work; the sampling parameters were the same as for the EMM.

The saddle point is given by �
��� � � � � � � � � 
 . Therefore, at fixed values of� , the tunneling splitting increases for decreasing � . This can be seen in the first

and second ( � � � � � ) and in the third to fifth column (

 � � � � ), respectively. The

results obtained for the instanton theory as well as for the LSLA agree reasonably

well with the QM results; the order of magnitude is correctly reproduced for all

parameter sets shown in Table 3.1. The deviations of the instanton results are

between +12% and +23%; the LSLA deviates between -10% and +66% from

the QM results. The results obtained with the EMM are also reasonable with

maximum deviation +114% for
� � � � � � � � ��� � � � �

� 

. Other deviations are between -

30% and +60%. Nevertheless, even for the worst deviation the order of magnitude
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of the splittings is reasonably reproduced. This has to be contrasted to the MM

results. While results for several parameters are reasonable as well, there are

parameter sets for which the deviation is few orders of magnitude. For instance,

the splitting obtained with parameter set
� � � � � � � � ��� � � � �

� 

is about three orders of

magnitude too small. For the parameter set
� � � � � � � �

� � � � � � 
 the tunneling splitting

is about 2 orders of magnitude too small.

For each action � � that is computed for a classical turning point �
� � � �� there is

a unique point �
��� �� on the symmetry line (or surface, in more than 3 dimensions)�

. For the MM �
��� �� is determined by a straight line starting from �

����� �� , and for

the EMM �
��� �� is the point at which a trajectory in the forbidden region crosses

�
.

According to Section 2.2
������� � � � � � 	 � is the exponential part of a semiclassical

wavefunction at �
��� �� . In Fig. 3.5 scatter plots of the tunnel probability

� 	 �
� � � � � � 
 � ������� � � � � � 	 � (3.21)

vs. position on the symmetry line
�

(where � � � on
�

) for the semiclassical

methods, EMM and MM, are compared with the density
� 
 � � �	� 
 � � of the QM

symmetric ground state along the symmetry line. The maxima of the EMM and

QM data are normalized to one, i.e., the pre-exponential factor is assumed to vary

only slowly along
�

compared to the exponential part. The data of the MM is

normalized by the normalization constant obtained for the EMM. This is justified,

because both methods only yield the exponential part of the wavefunction. The

SMC parameters are � � � � �
�

and

 � � � �

�
; results for three values of � are

shown.

In the upper panel ( �
� � � � � ) the saddle point is located at

� � � � ��� . Due

to corner cutting (cf. Section 3.1.3) the maximum of
� 
 � �

at
� � � � � � does not

coincide with the saddle point where the energy is lowest along the symmetry

line. The scatter plot of the EMM appears to be shifted systematically by about

� � � ��� to the right; despite this small shift, for
� 
 � it agrees quite well with

the numerically exact results. For
� � � there are two branches of the scatter

plot. This can be attributed, respectively, to trajectories that tunnel from the
	 �

into the
�

region and to trajectories that tunnel from the
	 � into the

�
region.

Two approximation contribute to this observation: (i) the turning point condition

yields only approximate caustics in the forbidden (and allowed) regions, and (ii)

the TU theory assumes separability in the
	

regions. The scatter plot of the MM

shows a single branch that rises to about the maximum of the QM curve. Note that

MM and EMM are normalized by the same constant. The maximum of the MM

data is only about 4% lower than the maximum of the EMM data, but the MM

sampling deviates strongly from the QM results. This is not surprising, because

there are no trajectories in the
�

region. However, for the tunneling splittings only
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Figure 3.5: SMC Hamiltonian [Eq. (3.17)] with � � � � �
�
, � � � � � and three dif-

ferent values of � (indicated): The quantum mechanical (QM) density
� 
 � � �	� 
 � �

(dimensionless) along the symmetry line
�

(
�

dimensionless) is compared with

scatter plots of the tunneling probability
� 	 �

� � � � ���#
 [cf. Eq. (3.21)] computed with,

respectively the extended Makri-Miller (EMM) and Makri-Miller (MM) model.

The position of the saddle point is indicated by arrows. All curves are normalized

(see text). The MM does not account for tunneling through the
�
-region; this leads

to a break-down of the MM for �
� � � 
 � and � � � � �

�
.
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Figure 3.6: SMC Hamiltonian [Eq. (3.17)] with parameters
� � � � � � 
 �� � � �

� � � � � � � � � � � 
 : Trajectories (dimensionless positions) calculated according to

the extended Makri-Miller model (EMM). Only the trajectories that propagate

through the
�
-region contribute to the splitting. These trajectories correspond to

the maximum of the scatter plot in Fig. 3.5 (lower panel).

the magnitudes of
� ����� � � � � � 	 � matter, therefore the magnitude of the MM

tunneling splitting agrees with the exact result (cf. Table 3.1).

In the middle panel of Fig. 3.5 ( �
� � � 
 � ) the saddle point is located at� � � � � ; the maximum of the QM curve is at

� � � � 
�� . The EMM scatter plot

agrees with QM result (systematic shift of 0.025) quite well; the second branch

at about
�
� � almost vanishes. Conversely, the MM results show a drastic devi-

ation. Especially, the maximum of the MM is 84% smaller than the EMM max-

imum. Therefore, this situation indicates the onset of a breakdown of the MM

approximation. Upon a further increase of � the MM scatter values become very

small as compared to the EMM values. For instance, this is shown in the lower

panel of Fig. 3.5 ( �
� � � �

�
). Here, the saddle point is at

� � � � � and the QM

maximum is at
� � � � �
� , respectively. The EMM scatter plot agrees quite well

with the QM results (systematic shift of 0.01). Clearly, in this case only the EMM

yields the correct order of magnitude of the tunneling splitting (cf. Table 3.1).

Calculated trajectories for the
� � � �

� � � � � � � � � � � 
 parameter set are shown in Fig.

3.6. Schematically, the same situation was drawn in Fig. 3.2 [case (ii)].

Table 3.2 shows tunneling splitting obtained for the case of small � (cf. Fig.

3.2a). Values reported as
	 � are obtained for the EMM by taking only that frac-

tion of tunneling trajectories in the sum Eq. (3.13) that tunnel exclusively through
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� � � � � � (ground state)� � � � 
 QM MM EMM
	 �� � � � � � � � � 
 1.02(-4) 1.03(-4) 1.31(-4) 0.94(-4)� � � � � � � ��� 
 5.28(-5) 4.89(-5) 6.83(-5) 4.61(-5)� � � � � � � � � 
 2.47(-5) 1.76(-5) 2.62(-5) 1.65(-5)� � � � � � � ��� 
 9.07(-6) 3.48(-6) 8.01(-6) 3.19(-6)� � �

� � � � � � 
 1.29(-4) 1.38(-4) 1.44(-4) 1.03(-4)� � �
� � � � � � 
 1.00(-4) 1.15(-4) 1.54(-4) 9.95(-5)� � �
� � � � 
 � 
 5.20(-5) 2.53(-5) 6.56(-5) 2.25(-5)

Table 3.2: Same as Tab. 3.1 but for the case of small � sketched in Fig. 3.2a.

The parameter � is � � ��� . Splittings reported for
	 � refer to the contribution to

the tunneling splitting due to trajectories that tunnel exclusively through the
	 �

region.

� �� � � � � � 
 QM MM EMM
	 �� � � � 
 6.63(-9) 1.02(-10) 9.54(-9) 2.34(-11)� � � � 
 2.01(-7) 3.35(-8) 1.77(-7) 2.01(-8)� � � � 
 3.08(-6) 1.35(-6) 2.90(-6) 1.40(-6)� � � 
 
 3.16(-5) 2.36(-5) 4.41(-5) 3.28(-5)

Table 3.3: Same as Tab. 3.2 but tunneling splitting of ground and excited states

for parameter set
� � ��
 � � � � � � � �

� 

.

the
	 � region. For the small coupling case both methods, EMM and MM, are

reasonable. While the MM typically yields a slight underestimation for the shown

parameter sets, the EMM yields overestimations for some parameter sets. The	 � values are typically very close to the MM results. Thus, the MM underesti-

mation can be attributed to the missing of
�
-region tunneling [for instance, for� � � � � � � ��� � � � �
� 
 ], but the overestimation is also due to

�
-region tunneling. How-

ever, these deviations are small in view of exponential accuracy.

Finally, the mode-selectivity of the tunneling splitting is addressed. For the

symmetric coupling case at hand, the tunneling splitting are supposed to increase

by increasing quantum numbers. In Tab. 3.3 this is shown for the parameter set� � ��
 � � � � � � � �
� 


. Only excitations of the
� � quantum number are shown. For the

ground state
� � � � 
 the MM yields a tunneling splitting that is almost 2 orders of

magnitude too small, while the EMM value is very close to the numerical exact

value. For increasing
� � quantum number the underestimation by the MM also
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Figure 3.7: Schematic geometries of the formic acid dimer (FAD). (a) minimum

(
	 ��� ), (b) transition state (

� ��� ), and (c) geometry (
	 ��� ) considered in Ref. [117].

decreases. Comparison with the
	 � -values unveils that tunneling through the

�
re-

gion is contributing considerably to the tunneling splitting for the ground and first

excited state. Thus, the tunneling mechanism changes from
�

region tunneling

to
	

region tunneling upon excitations. A more detailed study of the application

of the EMM to a system with pronounced mode selectivity is studied in Section

3.3.3.

3.3.2 Carboxylic acid dimers

The formic acid dimer (FAD) is the most simple carboxylic acid dimer. The

monomers are held together by two hydrogen bonds. The minimum (
	 ��� ) and

transition state (
� ��� ) geometry of gaseous FAD is shown in Fig. 3.7 [117]. Per-

mutation of corresponding atoms leads from one minimum geometry to an equiv-

alent minimum geometry. The symmetry of the transition state may be changed

by polar solvents to have
	 ��� symmetry [117] (cf. Fig. 3.7c). However, the issue

seems to depend on the method of quantum chemistry used [117].

FAD was thoroughly investigated by experimental and theoretical tech-

niques. Recently, the ground state tunneling splitting of FAD [more precisely��� 	 � � � 
 � ] was measured by Madeja and Havenith [12] to be 0.00286 
�� ���
.

Theoretical studies addressed the reaction mechanism. In the gas phase, the struc-

ture of FAD was found to keep approximately
	 ��� symmetry along the IRP [118]

indicating a concerted transfer as suggested by the transition state geometry. Shida

et al. [119] investigated a 3D model of FAD; their tunneling splitting value of

0.004 
�� ��� corresponds rather well with the experimental finding. The barrier

height was

�

 �
�
��� �

�  � and the step wise transfer mechanism was found to con-

tribute about 20% to the tunneling splitting. Vener et al. [120] obtained a much

larger tunneling splitting of � � 
 
 � ��� for a similar barrier of

�
� � � �	� � �  � . For el-

evated temperatures (or excitation energies) the reaction mechanism may change

[121, 122] or not [123]; a clarification considering also the limit
� � � was not

achieved, yet.

For the present purpose a concerted HAT for FAD is assumed, i.e., the tran-
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sition state has
� ��� symmetry. Thus, the PES is of the SMC type (cf. Section

2.2.3). This coupling type is also relevant for, e.g., tropolone and malonaldehyde.

(For the step wise HAT two equivalent saddle point geometries do exist and the

PES has no longer the SMC shape.) Along the IRP first the monomers approach

each other and then the hydrogen transfer takes place [122]. This means, one may

vary the IRP curvature by substituting the two hydrogens,
� � and

� �� by, e.g.,

fluorines or phenyl rests. In terms of SMC parameters: the coupling strength �

can be varied by choosing different substituents.

A simple method was proposed to determine the necessary SMC parameters

[75]. Let � �
be the 


�#���
	
dimensional mass-weighted vector corresponding to

the geometry of one minimum (denoted as right), where
� �
	�� ��� is the number

of atoms (cf. Section 2.2.1). The center of mass (COM) is at the origin. Likewise,

let ��� and � 
 � correspond to the other minimum (denoted as left) and the sad-

dle point geometry, respectively. The left ( � � ) and right ( � �
) minimum is only

unique up to an arbitrary rotation. This is removed by rotating � � around � �
in

order to minimize the distance
� � �

� ��� � [75]. Correspondingly, the saddle point

geometry � 
�� is rotated around the center geometry, ��� � � � �
�
��� 
 � � , in

order to minimize
� ��� � � 
 � � . Then, the two vectors,

� � � � �
� ���� � �
� ��� � � (3.22)

� � � ��� � � 
 �� ��� � � 
 � � � (3.23)

span the so-called reaction plane. The reaction plane is also considered in Chapter

5. The vector � � corresponds to the direct tunneling direction, i.e., the straight

line connecting both minima and the center geometry; the vector � � points from

the saddle point towards the center geometry. The saddle point of the SMC-PES

is at
� � � � 
 where

� � � � � � is a ratio of geometry displacements,

� � � ��� � � 
 � �� � �
� ��� � � (3.24)

The frequency parameter � is a frequency ratio, � � �
 � � �
 � (cf. Sec. 3.3.1). The

frequencies �
 � and �
 � correspond to � � and � � , respectively, and are determined

by weighting the contribution of each normal mode with a component into the � �
and � � direction, respectively,

�
 �� � � � � � � � � � 
 � � �� � � � � � � � (3.25)

where
�
�

with � � � � � � � � � � � are the
� �



� ���
	

dimensional normal mode

vectors of the (right or left) minimum and � � are the corresponding normal mode
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molecule FAD FFAD BAD � � �� � =
� (kJ/mol) 47.6 49.1 40.2

� � � � � (kJ/mol) 1.2 1.5 1.5����� (Å) 2.77 (2.44) 2.75 (2.43) 2.69 (2.42)��� � (Å) 1.00 (1.22) 1.00 (1.21) 1.00 (1.21)� � � (Å) 3.91 (3.58) 3.80 (3.50) 3.89 (3.63)� ��� (Å) 1.09 (1.09) 1.34 (1.33) 1.49 (1.49)� ��� � 1.28 1.19 1.82� � � � ��� � ( 
�� ��� ) 3298 3350 3107�
�

� ��� � ( 
 � ��� ) 203 (497) 173 (382) 119 (199)�
 � � ��� � ( 
�� ��� ) 1480 1181 1236�
 � � ��� � ( 
�� ��� ) 471 439 377

SMC parameters (dimensionless)� � �
 � � � � � =
� 0.0477 0.0371 0.0477� � �
 � � �
 � 0.318 0.372 0.305

� � � � � 0.129 0.164 0.169� � � B3LYP/6-31+G(d) geometry; ��� � cf. Eq. (3.24)

Table 3.4: Parameters for carboxylic acid dimers [MP2/6-31+G(d)]: formic acid

dimer (FAD), fluoro formic acid dimer (FFAD), and benzoic acid dimer (BAD).

The parameters are explained in the text. Parenthesized values correspond to the

saddle point geometry. ���	� is the
� �� � � � distance, � � � is the

	 �	 � 	 	 distance,� � � is the
	 	 � � � distance, and �
�	� is the

� � � � � distance.
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frequencies. The SMC parameter � is given by � � �
 � � � � � =
� (cf. Section 3.3.1),

where
� � =

� is the zero-point-energy (ZPE) corrected barrier height.

Various parameters of FAD are reported in Table 3.4. All results were obtained

in this work by the Gaussian 98 package [124] within the MP2 method using the

6-31+G(d) basis set. Results for a number of different levels of theory and basis

sets were also reported in Ref. [118]. Among them, barrier heights
� � =

� deviate

by several
��� �

�  � and no rigorous convergence was achieved. The present value,� � =
� � �

� � � �	� � �  � , is assumed to be a reasonable estimate at least. However,

a very recent high-level quantum chemistry calculation [DFT/aug-cc-pVTZ with

CCSD(T) corrections] points towards a lower barrier of 


 � � ��� � �  � [107].

The most prominent geometrical feature is the decrease by 0.33 Å of the ���	�
and � � � distances (definition: see caption of Tab. 3.4) for the saddle point ge-

ometry compared to the minimum geometry. Conversely, the � � � distances do

not change, and the two monomers approach each other as a whole. The dimen-

sionless parameter
�

[cf. Eq. (3.24)] is 1.28. This value is intermediate between

tropolone and malonaldehyde with
� � � � � 
 [75] and

� � � � � [74] (in the present

notation), respectively.

There are parameters for two derivatives of FAD in Tab. 3.4, too: the fluoro

formic acid dimer (FFAD) and the benzoic acid dimer (BAD). In these compounds

the two hydrogens,
� � and

� �� (cf. Fig. 3.7) are substituted by either two fluo-

rine atoms (
�

) or two phenyl rests (
	�� � � ). Both molecules, FFAD and BAD,

are planar. The barrier height of FFAD is only slightly increased by 1.5
�	� �

�  �
as compared to FAD, while for BAD it is 7.4

��� �
�  � lower. (Note, the BAD

barrier height was obtained by using the MP2 method together with the B3LYP-

DFT optimized geometry.) The variation of the geometrical parameters of the

carboxylic ring is moderate among the species. Most prominent is the decreased

inter-monomer distance � � � for FFAD (3.80 Å) as compared to FAD (3.91 Å)

and BAD (3.89 Å). In all three compounds the monomers move as a whole when

approaching the saddle point, which can be deduced from the almost unchanged� � � bond length.

The dimensionless geometrical parameter
�

for FFAD (1.19) is only slightly

smaller than that for FAD (1.28). For BAD (1.82) it is significant larger, be-

cause the difference between mass-weighted minimum geometry � �
and center

geometry ��� is primarily due to the displaced hydrogens, while the difference

between saddle point geometry � 
 � and ��� is due to the displacement of the two

monomers. Obviously, the monomers are considerably heavier for BAD leading

to larger mass-weighted distances than for FAD and FFAD.

The effective frequencies, �
 � and �
 � , were obtained by the projection of nor-

mal mode frequencies onto � � and � � , respectively [cf. Eq. (3.25)]. Direction
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� � ( 
�� ��� )
molecule QM MM EMM Exp. GT path

FAD 3.69(-3) 3.20(-3) 5.45(-3) � � � 2.86(-3) 2.2(-3)

FFAD 3.55(-5) 2.05(-5) 4.55(-5) 5.3(-4)

BAD 1.20(-3) 0.64(-3) 1.41(-3) � � � 0.22(0) 2.2(-3)� � � Ref. [12]; ��� � Ref. [125] (seleno-indigo doped BAD crystals)

Table 3.5: Tunneling splittings for carboxylic acid dimers (PES parameters and

molecule acronyms: see Tab. 3.4) obtained by quantum mechanical (QM), Makri-

Miller model (MM), and extended Makri-Miller model (EMM) calculations. Ex-

perimental values (Exp.; if available) and values obtained by the approximate

method of Tautermann et al. [126] based on optimizing Garret-Truhlar (GT) paths

(cf. Sec. 3.1.3) are also given.

� � corresponds to an effective (i.e., including all modes with a certain overlap)

inter-monomer vibration. The frequencies �
 � decrease by going from FAD to

BAD; this behavior is similar to that of the minimum normal modes of the inter-

monomer vibration �
� and it is mainly a mass effect. The frequencies �
 � corre-

spond to direction � � which includes mainly the hydrogen motion. The effective

frequency �
 � of FFAD and BAD is rather different from the parent compound. No

such difference can be anticipated from inspecting the anti-symmetric OH stretch

frequencies � � � .
The dimensionless SMC parameters are also given in Tab. 3.4 for the three

species. The two reactive degrees of freedom are the antisymmetric stretch of

the two OH bonds ( � � � ) and the inter-monomer vibration ( � � ), respectively (for

corresponding frequencies cf. Tab. 3.4). The minimum geometry antisymmetric

OH stretch turns into the imaginary frequency normal mode at the TS. The two

reactive DOF were excluded from the zero-point energy difference
� ��� � � , which

is less than
� ��� � �  � in all cases.

The tunneling splitting
� � obtained for the three methods QM, MM, and

EMM, respectively, is given in Tab. 3.5. For FAD, the numerical exact result

( 
 � � 
 � ��� � 	 
�� ��� ) corresponds well with the experimental value (
� � ��� � ��� � 	 
�� ��� ).

In view of the simplicity of the underlying model, this is rather surprising. Prob-

ably it indicates, that the effective barrier height is reasonable. The semiclassical

methods, MM and EMM, yield the same order of magnitude as the QM. There is a

48% overestimation by the EMM. For the remaining species the findings for com-

paring MM and EMM are similar. Both methods reproduce the QM values in view

of exponential accuracy. The significant deviation of the experimental BAD value
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Figure 3.8: Same as Fig. 3.5 but for the SMC parameters
� � � � � � 
 �� � � 
 �	� � � � � � 
 � � � �

�
��� 
 for the formic acid dimer (FAD). All curves are normal-

ized (see text). The difference between the maximum of the wave function and

the saddle point (arrows) indicates pronounced corner cutting. The situation is

intermediate between the upper and middle panel of Fig. 3.5 and shows the onset

of the break-down of the Makri-Miller model.

from the theoretical predictions was explained by the fact that the experiment was

performed for doped crystals of BAD [126].

Recently, Tautermann et al. [126] determined tunneling splittings of various

carboxylic acid dimers using an approximate version of the instanton method. The

values are given in the last column of Tab. 3.5 and marked as “GT path” (cf. also

Section 3.1.3). The quantum chemistry was performed by a hybrid approach using

a combination of B3LYP/6-31+G(d) and G2(MP2) theory. The barriers for FAD,

FFAD, and BAD are, respectively, 
 � � � , 
�� � � , and 
 � � � ��� �
�  � . Nevertheless, the

values agree with the ones obtained in the present - very simple - model within

one order of magnitude; the largest deviation is found for FFAD. The present SMC

model and the Garrett-Truhlar (GT) path results predict that the tunneling splitting

of FFAD drops significantly as compared to FAD and BAD. (No explanation for

this observation was given in Ref. [126].) Concerning the SMC model, inspection

of Tab. 3.5 unveils that the reason is the decrease of the projected frequency �
 � ;
this leads to smaller � , and larger � and � as compared to FAD. The effect is

compensated for in BAD by the substantial decrease of �
 � , which relates to an

effective inter-monomer vibration.

The parameters of FAD (and derivatives) do not lead to predominate tunnel-

ing through the
�

region, and the MM yields a reasonable ground state tunneling

splitting. Analogous to Fig. 3.5, in Fig. 3.8 the numerical exact density along
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minimum (
	 �

) saddle (
	 ��� )

� � � (Å) 0.9619 1.1491

� �	� (Å) 1.5270 1.6991
�
� �	� (deg.) 97.34 42.3

Table 3.6: Geometrical parameters of
��� �� [129].

the symmetry line,
� 
 � � � � �	� 
 � � , is compared to scatter plots of

������� � � � � � 	 �
vs.

�
for the two semiclassical methods. The wave function along the symme-

try line shows a significant corner cutting: the maximum of the QM density is at

about
� � � � � whereas the saddle point is at 1.28. In other words, the tunneling

wavefunction tries to prevent movement of the monomers. The EMM maximum

is at about
� � � � � , i.e., the magnitude of the corner cutting is underestimated by

the semiclassical theory. Concerning a comparison between EMM and MM, the

situation is intermediate between the upper and middle panel of Fig. 3.5. Thus,

tunneling in FAD (and derivatives) is in the turn-over region from
	

to
�

region

tunneling. The MM tunneling splitting ( 
 � � � � ��� � 	 
 � ��� ) is closer to the exact

value ( 
 � � 
 � ��� � 	 
�� ��� ) as the EMM result (
� �
�
� � ��� � 	 
 � ��� ). The overestima-

tion of the EMM is due to the contribution of the two branches that correspond to

trajectories that traverse the
	 � � �

and
	 � � �

regions, respectively (cf. also Fig.

3.5).

3.3.3 Hydroperoxyl anion
�����

�

Among the non-rigid triatomics of the form
��� � , the hydroperoxyl anion

��� ��
has a rather low barrier for HAT and the distances of heavy atoms differs consid-

erably for the minimum and saddle point geometry [127]. Therefore, the IRP has

a large curvature which is an indication for a truly multidimensional HAT. Chan

and Hamilton [127, 128, 129] obtained an accurate PES fit on the QCISD(T)/6-

311++G(2df,pd) level of theory. The geometrical parameters are shown in Ta-

ble 3.6 and the barrier height is � �
��� �

�  � ( � 
 � � 
 � ��� ). The 31 lowest vibrational

eigenstates were obtained by the same authors. The fundamentals are 
 � � � � � 
�� ���
(OH stretch), ������� � � 
�� ��� (HOO bend), and ��� 
 � ��
�� ��� (OO stretch). As ex-

pected, the tunneling splittings are considerably mode-specific; for instance, for

the OO stretch fundamental the splitting is
� � ��� � � 
�� ��� while for a combination

excitation with one quantum, respectively, in the OO stretch and HOO bend it is

� � � � � � 
�� ��� . Thus, the hydroperoxyl anion is very well suited as a test case for

the newly developed EMM, because the tunneling splittings differ by orders of

magnitude among different eigenstates.
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Both, MM and EMM, are formulated for Cartesian coordinates. For the MM

this is because the straight line paths are defined as Cartesian vectors; for the

EMM this is because the parities of motion are associated to Cartesian momenta.

Guo and Thompson [101] applied the MM to hydrogen peroxide (
��� � �

) and

used the torsional angle as tunneling coordinate instead of a straight line. This was

possible, because a single internal coordinate was (assumed to be) responsible for

the tautomerization. However, a generalization is hardly possible when more in-

ternal non-Cartesian coordinates have to be considered. In order to apply MM and

EMM to a small molecule like the hydroperoxyl anion, it is therefore necessary to

describe the molecule in a Cartesian coordinate system. Two rotational DOF can

be removed by confining the motion to a plane. The coordinate vectors � , � , and
� as defined in Fig. 3.9 are employed. The positions of the two oxygen atoms, � �
and � � , and the position of the hydrogen atom, � 	 , can be expressed as:

� �
� � � �

�
(3.26)

� �
� �

�
�
�

(3.27)

� 	 � �
�
� � (3.28)

Assuming (without restriction) that the center of mass of the triatomic is fixed at

the origin, it follows:

� � � � �� � � (3.29)

where � � and
�

are the mass of a hydrogen and the total mass of the triatomic,

respectively. The Lagrangian of the systems reads (cf. Appendix A.3):

� � �� � �

�
� � � ��

�
	� �
�
�� � � � �


 	
�
�
� � � � �

�

��

(3.30)

where � � is the oxygen mass and
� � � �

�



is the PES of the hydroperoxyl anion.

The configuration space
� � �

�



of this Lagrangian is 4D. This means, because there

are three internal coordinates, an individual trajectory is only unique up to an

arbitrary rotation around the 4D origin
� � �����

�
���$


. (This corresponds to a

rotation around the 6D center of mass.)

The vibrational eigenstates are labeled as � � � � � � � � ��� 	 
 , where the quan-

tum numbers correspond to the OH stretch (
� � ), HOO bend (

� � ), and OO stretch

(
� 	 ). The Cartesian description leads to a fourth DOF in Eq. (3.30) that corre-

sponds to rotations in the plane. The corresponding angular momentum is set to

zero in the following considerations. The MM and EMM initial conditions for

the ensembles of trajectories corresponding to an vibrational eigenstate � were

obtained by normal mode sampling with energy rescaling, where the energy was

chosen to be the mean of the exact QM levels. The normal mode analysis with

respect to a 4D minimum,
� � � ���	� � �

�
� ���	� � 
 , yields three vibrational normal modes
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Figure 3.9: Definition of co-

ordinates used for the hy-

droperoxyl anion.

plus an infinitesimal rotation vector. The normal modes are only guaranteed to be

orthogonal to the infinitesimal rotational vector that corresponds to the minimum;

for a displaced geometry there is a slightly different rotational vector. Therefore,

for each trajectory the angular momentum was removed. In order to fix the en-

ergy, the momenta were scaled. This is similar to the usual procedure of energy

rescaling (cf. Section 2.1.5). The trajectories were integrated by a fifth-order sym-

plectical integrator [116] with a fixed step-size of � �
�
����" . The energy was bound

within a typical maximum tolerance of � � � 
 � ��� .
Power spectra (cf. Section 2.1.5) for ensembles of 100 classical trajectories

for, respectively, the ground state
� � � � � � 
 at total energy

� ���
��
�� ��� and state� � � � � � 
 at total energy ��������
 � ��� are shown in Fig. 3.10. The state
� � � � � � 


was chosen as a typical example for a highly excited state. In both spectra one

may identify three main peaks that correspond to quasiperiodic motion with the

three fundamental frequencies. For the ground state spectrum these peaks are

narrow. This indicates, that phase space points on (or very close to a) certain

invariant torus are sampled. Comparison with the exact QM fundamentals (dashed

vertical lines) shows, that this certain invariant torus almost coincides with the

ground state invariant torus. Conversely, in the spectrum of state
� � � � � � 
 the main

peaks are broadened and posses a substructure. The significant shifts of the peak

maxima with respect to the QM fundamentals are due to the anharmonicity of the

potential. Thus, for the state
� � � � � � 
 one expects the normal mode sampling to be

less efficient. Nevertheless, the appearance of three main peaks indicates, that an

invariant torus corresponding to the QM state exists at least approximatively.

For the MM the tunneling direction is defined such, that the OO distance vec-

tor
�

� is held fixed for the tunneling process, i.e., at each point
� � �

�



the tunneling

direction is preliminary given by:

� � � � � � �
� �

�
�
�

� � (3.31)

The choice was also used for malonaldehyde in Refs. [100, 103]. If the hydrogen
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Figure 3.10: Results for the
� � �� model Lagrangian [Eq. (3.30)] with the PES of

Chan and Hamilton [128, 129]: Power spectra
� � � 
 [cf. Eq. (2.40)] for the ground

state
� � � � � � 
 and excited state

� � � � � � 
 , respectively. The power spectra were

obtained by propagating ensembles of 100 trajectories and Fourier transformation

of � � � 
 �@?
�
�
�
�
� 


with Gaussian broadening
� � ��� � � � � 	 � � and

	
= 5 ps. The

propagation time was 14.5 ps. Fundamentals are indicated as dashed lines.

is located in the left well (i.e., � � �
� � ) then a straight line along � � � � leads

automatically to a
	 ��� configuration of the triatomic. This configuration is a point

on the symmetry surface
�

that is defined by � � �
� � .

Clearly, the molecule rotates along a straight line defined by Cartesian direc-

tions as given by Eq. (3.31). This is, because only the hydrogen moves along these

straight lines and the complementary counter-rotation of the OO axis is missing.

Due to the mass ratio of about 1:16 between hydrogen and oxygen the error intro-

duce by the straight line approximation may be small. However, the magnitude of

this error is unknown a-priori.

The rotational error may be reduced by considering a modified tunneling di-

rection that is given by:

� � � � � � � � � � � � � � � � 
 �� � � � � � � � � � � � � 
 � � � (3.32)

where
� � � � � � � � �



is the infinitesimal rotational vector at the (turning) point� � � � � �



. With definition Eq. (3.32) the rotation in the vicinity of the turning point

is removed. A complete rotation free path may be obtained by solving the ordinary

differential equation:
	
�	 � � � � � � � ��� 
 � �

(3.33)

where � ��� 

is a 4D vector as a function of the coordinate

�
along the curved path.

The tunneling direction Eq. (3.32) is considered to be � dependent, such that
�

is evaluated at each point on the path while � � � � is held fixed.

In the present study the MM tunneling integral [Eq. (3.5)] was computed in

two ways: (i) by following a straight line tunneling path defined by the direction
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Figure 3.11: Results for the
��� �� model Lagrangian [Eq. (3.30)] with the PES of

Chan and Hamilton [128, 129]: Cumulated extended Makri-Miller model (EMM)

tunneling probabilities
� ��� � 
 �

[Eq. (3.13)] for the ground state
� � � � � � 
 and excited

state
� � � � � � 
 , respectively (ensemble of 1000 trajectories).

Eq. (3.32) and (ii) by following the curved and rotation free path as defined by

the ODE (3.33). In both cases turning points are given by the zeros of
� � � � � ,

where
�

is the 4D momentum. For the ODE this defines the initial condition for

the path, too.

In analogy to Eq. (3.32) the EMM turning point condition [cf. Eq. (3.12)]

was modified, such that for each point
� � �

�



the set of vectors
� � � � � � � � � � � � � 	 � is

Schmidt orthogonalized. Here, � �� correspond to the normal mode direction of the

three fundamental vibrations at the minimum. The procedure guarantees, that for

a turning point
� � � � � � with Schmidt-orthogonalized normal mode vector � � , the

parity of motion is flipped to -1 for a direction that is orthogonal to the rotational

direction at the turning point. The generalized trajectories are then generated for a

reduced space, that is spanned by the three Schmidt-orthogonalized normal mode

directions � � . Therefore, this is a generalization of the condition used for the MM

tunneling directions and turning points. Especially, the straight line generated by

direction Eq. (3.32) can be expressed as a linear combination of the � � . The

integration of a generalized trajectory is stopped, when the symmetry line
�

has

been reached, i.e., when � � �
� � .

For each vibrational level � ensembles of 1000 classical trajectories were

propagated (see above). The fixed step-size was � �
�
� ��" ; for the accurate deter-

mination of turning points the step size was reduced to � � �
�
����" . The propagation

time was
� � ����" which corresponds to about 5 times the vibrational period of the

weakest mode. In Fig. 3.11 cumulated EMM tunneling probabilities
� � �
� 
 �

for,

respectively, the ground state
� � � � � � 
 and state

� � � � � � 
 are shown. Correspond-

ing power spectra were shown in Fig. 3.10. Compared to the ground state
� � �
� 
 �

there is an oscillation superimposed on the approximate linear increase of
� ��� � 
 �

for state
� � � � � � 
 . This can be attributed to the sampling method, i.e., the trajec-
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Figure 3.12: Results for the
��� �� model Lagrangian [Eq. (3.30)] with the PES

of Chan and Hamilton [128, 129]: Point cloud plot of the tunneling probabil-

ity at the symmetry surface (
	 ��� configuration) for two vibrational eigenstates

(indicated) obtained by the Makri-Miller model (MM) and the extended Makri-

Miller model (EMM). The local density of points at
� � � �

� � � �



is proportional

to
� ? � � � � 
 � � � , where � � is the action obtained for a path from the

�
-th turning

point to the point
� � � �

� � �	�



on the symmetry surface. The saddle point (“=
�
”) is

indicated; the minimum is not a point on the symmetry surface, but the minimum

bond length values (cf. Tab. 3.6) are given for comparison and marked by “Min”.

tories are only near the invariant torus [99]. Only those states are considered, for

which the linear regression of the data points yields a relative standard deviation

of less than 1 %; in particular, this leads to an exclusion of the states with
� � � � .

The sampling error of the tunneling splitting was estimated by performing five

distinct runs for the
� � � � � � 
 level; the relative standard deviation was 8 %.

In Table 3.7 mode-specific tunneling splittings obtained by diagonalizing the

Hamiltonian (QM; taken from Ref. [128]) are compared with semiclassical results

obtained within, respectively, the MM and EMM. For the MM results obtained for

the two definitions of tunneling paths (discussed above) are also given. The dif-

ferences of these MM results is negligible. Thus, the rotational error may be ne-

glected. Comparing the MM results for, e.g., the fundamental of the OO vibration� � � � � � 
 with the QM, one finds an underestimation of almost one order of mag-

nitude. Conversely, the EMM result for that vibrational state corresponds quite

well to the QM result. The same finding applies to overtones of the OO vibration
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� �� � � � � � � ��� 
 � � � � � � � � ��� 

state + - QM MM � � � MM � � � EMM

(0,0,0) 0.0 0.0 — 0.00003 0.00003 0.00002

(0,0,1) 709.8 709.8 0.0002 0.00004 0.00004 0.0003

(0,1,0) 1066.7 1066.7 0.0009 0.001 0.001 0.004

(0,0,2) 1408.7 1408.7 0.001 0.0001 0.0001 0.002

(0,1,1) 1753.4 1753.4 0.01 0.01 0.01 0.03

(0,2,0) 2084.3 2084.3 0.03 0.1 0.1 0.2

(0,0,3) 2092.5 2092.5 0.004 0.0007 0.0008 0.007

(0,1,2) 2426.2 2426.3 0.08 0.1 0.1 0.1

(0,2,1) 2745.3 2745.6 0.3 1.2 1.2 1.1

(0,0,4) 2756.8 2756.8 0.02 0.005 0.005 0.03

(0,3,0) 3063.5 3064.1 0.6 3.4 2.8

(0,1,3) 3081.2 3081.5 0.3 0.9 0.7

(0,2,2) 3388.2 3390.2 2.0 7.1 5.6

(0,0,5) 3398.9 3399.1 0.2 0.06 0.2

(0,3,1) 3692.5 3698.3 5.8 10.3 9.9

(0,1,4) 3714.9 3716.1 1.2 3.9 3.2

(0,4,0) 4000.4 4011.0 10.6 14.2 13.5

(0,2,3) 4010.6 4013.5 2.9 10.4 9.2

(0,0,6) 4017.1 4020.0 2.9 0.3 0.6

(0,3,2) 4285.0 4316.4 31.4 10.1 9.5

(0,1,5) 4323.9 4328.1 4.3 8.9 6.7

(0,4,1) 4562.1 4606.9 44.8 9.9 9.2

(0,2,4) 4600.0 4620.9 20.9 10.8 8.6

(0,0,7) 4608.3 4624.3 16.0 1.6 2.4

(0,5,0) 4826.9 4916.3 89.4 7.7 7.4

(0,3,3) 4895.2 4919.6 24.4 6.1 5.0

(0,1,6) 4907.2 4931.4 24.2 9.5 8.9� � � straight lines with direction given by Eq. (3.32)��� � rotation free path given by Eq. (3.33)

Table 3.7: Mode specific tunneling splittings
� � obtained for the

��� �� model

Lagrangian [Eq. (3.30)] with the PES of Chan and Hamilton [128, 129]. Quan-

tum mechanical (QM) results from Ref. [128] (energies � �� and splittings) are

compared with results calculated by the Makri-Miller model (MM) with two dif-

ferent definitions of the tunneling direction (see text) and results calculated by the

extended Makri-Miller model (EMM).
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up to state
� � � � � � 
 . For the fundamental of the OH bend vibration,

� � � � � � 
 , the

tunneling splittings is overestimated by the EMM. The same applies for the states� � � � � � 
 and
� � � 
 � � 
 . Also the MM yields overestimated tunneling splittings for

the two states
� � � � � � 
 and

� � � 
 � � 
 .
In Fig. 3.12 the magnitude of the tunneling action � � at the symmetry sur-

face
�

is visualized for the two states
� � � � � � 
 and

� � � � � � 
 by point-cloud plots

for the EMM and MM, respectively. The local density of points is proportional

to
? � � � �� �

�


, where � is a point on the symmetry surface: higher density

corresponds to smaller action and, thus, larger tunneling probability. For state� � � � � � 
 the maximum of the EMM and MM is at
� � � � � � ���



�

� � � � � � � � � 
 and� � � 
 � � � � � 
 , respectively. Thus, the EMM prefers tunneling at shorter � � � val-

ues that are closer to the transition state. This is clearly the reason for the larger

tunneling probabilities leading in turn to a larger tunneling splitting. For state� � � � � � 
 the finding is qualitatively equivalent, but the shift is less pronounced. In

this case, however, the effect contributes to the overestimation. Overestimation by

the EMM were also found in Section 3.3.1 and 3.3.2. However, it was shown for

the generic PES that the EMM in all cases yields a reasonable order of magintude

for the splitting, while the MM may break down. It is shown below, that a simi-

lar conclusion can be drawn for the present
��� �� molecule concerning different

states.

In order to visualize the performance of the EMM as compared to the MM

more globally, the semiclassical results are plotted vs. the QM results in Fig.

3.13 on a double logarithmic scale. The EMM results do systematically overes-

timate the QM results for splittings smaller than about
� 
�� ��� ( ��� � � � � � � � 
 ).

The MM results deviate typically much stronger from the QM values than the

EMM results. The log-values for all splittings � � 
�� ��� were fitted by a linear

function, � � � 
 � � �
� � � with � � � ��� � 


. For the MM and EMM it was

found
� � � � 
�� � � � � � � � � � � � 
 � � � � 
 and

� � �
� � � � � � � � �

� � � � � � 
 , respectively.

For an exact correlation one would expect
� � � � 
 . Thus, the difference between

the EMM and QM results is mainly the constant factor ���
�
	 � � � � � . In particu-

lar, a calibration of the results would be reasonable if certain exact splittings are

known. The correlation of the MM tunneling splittings with the QM splittings

appears to be more erratic. There is a significant deviation from slope 1 and the

results can not be corrected by simply introducing a constant factor. For states

with splittings larger than about
� 
�� ��� there are also underestimations by the

EMM. These states are rather highly excited, i.e., the normal mode sampling is

less efficient which is most likely a major source of error. Moreover, the quan-

tum spectrum is dominated by a 2:3 Fermi resonance between the OH bend and

the OO vibration [127]. This leads to a perturbation of the spectra that cannot be
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Figure 3.13: Results for the
��� �� model Lagrangian [Eq. (3.30)] with the PES of

Chan and Hamilton [128, 129]: Mode-specific tunneling splittings
� �

(logarith-

mic). Values (cf. Tab. 3.7) obtained by MM and EMM vs. exact QM result. The

solid line corresponds to perfect agreement. Stronger deviations for larger split-

tings are due to less accurate trajectory sampling for elevated energies and Fermi

resonances (see text).
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Figure 3.14: Results for the
� � �� model Lagrangian [Eq. (3.30)] with the PES of

Chan and Hamilton [128, 129]: Mode-specific tunneling splittings
� �

(logarith-

mic) obtained by the EMM: values for tunneling with one (“1”), two (“2”), and

(“3”) negative parities, and the sum (“sum”) [cf. Tab. 3.7] are shown.

accounted for by the present semiclassical methods.

Finally, the results are analyzed with respect to the number of parities that were

flipped. Fig. 3.14 shows EMM tunneling splittings for selected fundamentals and

overtones [cf. Tab. 3.7] and tunneling splittings that were obtained by keeping

only those � � in the sum Eq. (3.13) for which there were, respectively, one (“1”),

two (“2”), or three (“3”) negative parities when the TU trajectory crossed the

symmetry line; the sum (“sum”) corresponds to the values given in Tab. 3.7. The

case of three negative parities is irrelevant. Surprisingly, both cases with one and

two parities contribute by almost equal amounts (in a logarithmic sense). For the

SMC PES (cf. Section 3.3.1) the Makri Miller tunneling direction � � � � � � � 
 �
becomes equivalent to one of the normal modes for � � � . For the hydroper-

oxyl anion, however, the normal modes do not coincide with the definition of the

straight line direction [Eq. (3.32]. Thus, the reason for the better performance of

the EMM for the hydroperoxyl anion can be attributed to the more physical (still,

however, crude) treatment of the connection condition of the semiclassical wave

function across the � ,
	

, and
�

regions.

3.3.4 Conclusion

An extension [I] of the Makri-Miller model [29] was introduced, where tunnel

processes are described by means of trajectories that are propagated in the for-

bidden region (i.e., “under the barrier”). The equations of motion of theses tra-
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jectories were given by Takatsuka and Ushiyama (TU theory; cf. Section 2.1.4)

[27, 60, 28, 61, 62]. A turning point condition [Eq. (3.12)] based on normal modes

was introduced and shown to be reasonable for the present applications. In order

to scrutinize the the extended Makri-Miller model (EMM) it is necessary to com-

pare with quantum mechanical exact results. To this end, applications to systems

with two and three dimensions were shown for which exact results are present.

The numerical investigation of generic SMC-PES [cf. Eq. (3.17)] showed that

for increasing coupling � straight-line tunneling paths may underestimate tun-

neling probabilities by orders of magnitude. TU trajectories propagated on the� � � � � � 
 sheet were shown to be necessary in such cases. For SMC fits to car-

boxylic acid dimers it was found, however, that both, MM and EMM, yield rea-

sonable results, because corner cutting is very pronounced for these molecules.

The EMM was also applied to an ab-initio PES of the
� � �� anion [127]. For

moderate excitation energies the EMM performs systematically better than the

MM for the description of tunneling in this molecule. In particular, a calibration

in order to correct the tunneling prefactor seems reasonable (but was not attempted

here). Tunneling with one and two parities was found to be almost equally im-

portant (in a logarithmic sense). Concerning this molecule, the main advantage of

the EMM is the more physical description of the connection of the semiclassical

wave function across the different regions.

Ben-Nun and Martı́nez [103] implemented the Makri-Miller model into ab-

initio molecular dynamics simulations with on-the-fly calculation of the PES. This

would also be possible for the present EMM. However, the numerical complexity

is increased. First, significantly more tunneling trajectories are calculated and

several of them are discarded. Second, the solution of Hamilton’s equation of

motion for the TU trajectories will typically require a smaller step size than the

calculation of the PES along a straight line.
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