
Chapter 1

Introduction

1.1 Motivation

Hydrogen bonds are of fundamental interest in chemistry and biology [1], because

they contribute to the structure and function of many molecules. For instance,

the structure of macromolecules, such as DNA and proteins, is determined by

hydrogen bonding, and steps of enzymatic reactions rely on the formation and

breaking of hydrogen bonds. Such reactions often include the hydrogen atom

transfer (HAT) between a hydrogen donor and acceptor site. HAT is ubiquitous in

chemistry and the understanding of its properties has drawn considerable attention

[2, 3, 4, 5]. In particular, time-resolved non-linear spectroscopy has emerged as a

powerful tool for the investigation of its reaction dynamics [4, 5, 6].

The de Broglie wave length of a hydrogen with kinetic energy equal to typi-

cal vibrational energies is of the same order of magnitude as lengths of chemical

bonds. Thus, in general, quantum effects are non-negligible in HAT. For instance,

a hydrogen may tunnel through a barrier [7]. The impact of tunneling on HAT

ranges from tautomerization reactions of triatomics and polyatomics [8] to en-

zymatic reactions [9]. An important experimental tool for the identification of

tunneling effects is isotope substitution.

The invariance of the Hamiltonian of an isolated molecule with respect to

permutations of identical atoms gives rise to symmetrically equivalent minima

[10]. The tunneling between such symmetrically equivalent minima is coherent

[8] and leads to a splitting of energy levels. Coherent tunneling was observed for

molecules possessing intra-molecular hydrogen bonds. Prototypical molecules

are malonaldehyde and tropolone [8]. Both were addressed by means of mi-

crowave spectroscopy and high-resolution IR spectroscopy [11]. In particular, it

was found that tunneling splittings are state-specific, i.e., there are certain vibra-

tional modes of the molecule that either promote, suppress, or have no effect on
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the tunneling splitting. Coherent tunneling was also found for molecules having

two or more intramolecular hydrogen bonds [12, 13]. Especially, evidence for co-

herent tunneling in the hydrogen bond network of calix[4]arenes was established

[13] by using nuclear magnetic resonance (NMR) spectroscopy [14].

If the system size is increased (i.e., there are many internal degrees of freedom

(DOF) or there is coupling to the environment) or if the minima have an energy

bias then tunneling becomes incoherent and can be characterized by a tempera-

ture dependent rate of conversion [8]. The most significant effect of incoherent

tunneling is the deviation of the rate from the Arrhenius law for low enough tem-

peratures. Incoherent tunneling was found by using NMR spectroscopy, e.g., for

porphyrine and naphthazarin [8]. Moreover, incoherent tunneling was found to

contribute significantly to enzyme catalysis [9]. The cis-trans isomerization of

formic acid in rare gas matrices is also subject to incoherent tunneling [15]. A

rather strong dependence of the tunneling rate on the host atoms (Ar, Kr, Xe) was

found.

Theoretically, an isolated polyatomic molecule (or macromolecule) constitutes

a many particle system, where the electrons and nuclei interact via the Coulomb

forces. The time-evolution is governed by the Schrödinger equation of quantum

mechanics [16]. The large proton-electron mass ratio, ���
�
����� �	��

� , allows

for an adiabatic separation of electronic and nuclear motion [17]. This Born-

Oppenheimer separation leads to the concept of potential energy surfaces (PES).

The nuclear Hamiltonian consists of the kinetic energy of the nuclei plus the PES.

Excitations of electrons give rise to different PES. For certain nuclear configura-

tions these PES may come close to each other and the Born-Oppenheimer separa-

tion breaks down [18].

Near a certain stable configuration of the nuclei (a minimum or saddle point),

when the Born-Oppenheimer separation is valid, the nuclear motion can be de-

scribed by the harmonic approximation. In this approximation there are certain

modes of vibration, where a single mode behaves as a one-dimensional harmonic

oscillator [19]. If the amplitudes of vibrations get larger, non-harmonic effects are

non-negligible. In particular, there is a non-vanishing coupling among vibrational

modes. If energy is initially stored in a certain vibration of a special bond, then

this energy is distributed among the other modes during the course of time. This

general effect of a multidimensional anharmonic systems is called intramolecular

vibrational energy redistribution (IVR) [20, 21, 22].

The experimental findings and theoretical considerations suggest that a reli-

able numerical simulation of HAT in polyatomic molecules (or macromolecules)

requires the treatment of many coupled DOF. The numerical effort for an numeri-

cally exact solution of the Schrödinger equation scales exponentially with respect
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to the number of DOF. In contrast, the numerical solution of Newton’s (or Hamil-

ton’s) equation of motion only scales linearly with the number of DOF. In par-

ticular, the dynamics of macromolecules can be addressed by classical molecular

dynamics techniques [23]. However, if quantum effects, such as tunneling, are

significant a classical simulation is inappropriate.

The inclusion of quantum effects into a simulation that is based on classical

(or classical-like) trajectories is one of the ultimate goals of modern computa-

tional chemistry. Several approaches have been discussed in the literature; a re-

cent overview can be found in Ref. [24]. Several approaches rely on semiclassical

mechanics, a mathematically well-defined approximation to quantum mechanics.

The essential finding is, that quantum effects, such as tunneling and interference,

can be described by associating complex phases to classical trajectories, where

the phases depend solely on properties of the classical trajectory.

Alternatively, efficient propagation techniques have been developed that are

heading towards a direct solution of the Schrödinger equation by means of a re-

stricted ansatz for the wave function [25, 26]. These techniques are currently ap-

plicable to systems of moderate size (say, 1 to 25 DOF), when the full-dimensional

PES is known.

1.2 Objective

The present work pursues two objectives. The first objective is a comparison

of semiclassical and quantum mechanical exact results concerning state-specific

tunneling splittings. The determination of state-specific tunneling splittings is a

rather precise test for any theory of tunneling. In particular, two different ap-

proximate semiclassical methods are examined. The first method is based on the

work of Takatsuka et al. [27, 28]. This method accounts for tunneling by means

of trajectories that are propagated in the classically forbidden region (i.e., “un-

der the barrier”). In earlier, related approaches, tunneling was assumed to occur

along predefined paths, for instance, straight lines in the widely used Makri-Miller

model [29]. The new method is an intuitive extension that is founded on the multi-

dimensional extension of Wentzel-Kramers-Brillouin (WKB) theory [16, 30]. So

far, the new method was not applied to the case of state-specific tunneling. Thus, a

detailed investigation should unveil advantages and disadvantages of the method.

The requirement of a comparison with quantum mechanical exact results confines

the analysis to few DOF.

The second semiclassical method was considered to be a hybrid quantum-

semiclassical approach. Semiclassical correlation functions can be obtained by

performing wave packet propagations based on the semiclassical approximation
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to the quantum mechanical propagator [31]. Several types of semiclassical prop-

agators exist; special interested was drawn by those propagators that rely on the

propagation of Gaussians (so-called coherent states), because these propagators

are numerically convenient to handle [32, 33]. In particular, the propagator of

Herman and Kluk [34] is widely used. This propagator was inspired by the frozen

Gaussian method of Heller [35]. The essential idea is to resemble the propaga-

tion of a wave packet by propagating many Gaussians along classical trajectories.

Mandelshtam [36] proposed to analyze semiclassical cross-correlation functions

by high-resolution spectral techniques, such as harmonic inversion [37, 38]. A

cross-correlation function relies on the correlation of two or more wave packets.

It was argued that this can be viewed as being intermediate between an exact

quantum mechanical diagonalization and a pure semiclassical propagation. And

the extraction of tunneling splittings was demonstrated for simple analytical mod-

els [39]. This work takes up the idea, analyzing first the reason why tunneling

splittings can be obtained by a semiclassical propagation and then investigates the

application to a realistic anharmonic system.

The second objective of this work is the description of coherent tunneling

in intra-molecular HAT of polyatomic molecules by means of numerical simula-

tions. A prominent example for such a reaction is the tautomerization of tropolone

[TRN(OH)],
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Tunneling splittings corresponding to the tautomerization reaction of such

molecules are state-specific (see above) and the intra-molecular hydrogen bond

introduces a considerable anharmonic coupling into the PES. It was pointed out

[40], that the HAT in TRN(OH) [and similar molecules] is accompanied by a sig-

nificant reorganization of heavy atoms. A similar conclusion was drawn for mal-

onaldehyde [41]. This important observation was termed heavy atom tunneling

[40]. Moreover, vibrational enhancement of HAT in TRN(OH) reveals features

of similar processes in enzymatic reactions [40]. Thus, with certain restrictions,

polyatomics, such as TRN(OH), may be considered as a reasonable test case for

larger systems.

The comparison of semiclassical and exact results (Objective no. 1) showed

that a quantitative treatment requires a quantum rather than a semiclassical ap-

proach. To this end, the multi-configuration time-dependent Hartree (MCTDH)

approach [25, 26] is employed. For this approach to be efficient, a product rep-

resentation of the PES is necessary. Moreover, the anharmonicity of a PES with
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two minima hampers a full-dimensional treatment, i.e., it is necessary to select

relevant DOF. Both requirements are achieved by using the Cartesian-Reaction-

Plane Hamiltonian (CRP) approach. This approach was derived as part of this

work and is a variant of the related approach by Ruf and Miller [42]. The PES

is treated exactly on the so-called reaction plane [43] and a second order Taylor

expansion is used for the orthogonal DOF. The input necessary for a construction

of the PES can be obtained by quantum chemistry calculations [44, 45, 46].

Using the considered approaches, the state-specific tunneling of TRN(OH) is

analyzed. In particular, the findings of Redington et al. [47] concerning the tau-

tomerization mechanism are discussed in terms of the newly developed CRP ap-

proach. Furthermore, the coupling mechanism hidden underneath the OH stretch

band, that is expected to be dominated by Fermi resonances of the OH stretch

local mode with other modes [48], is addressed.

1.3 Outline

A brief discussion of basic theoretical concepts is given in Chapter 2. More spe-

cific discussions are paged out to the corresponding Chapters. Chapter 3 and 4

are both concerned with semiclassical mechanics.Chapter 3 introduces and tests

the newly developed method that is based on the work of Takatsuka et al. [27, 28]

(see above). The theoretical foundation of the theory is multidimensional WKB

theory (cf. Section 2.1). Moreover, the multidimensional WKB theory facilitates

a general understanding of state-specific tunneling and is therefore of particular

importance for the present work.

In Chapter 4 the hybrid quantum-semiclassical approach [36] is discussed (see

above). In this approach, tunneling is described by purely real-valued trajectories

by means of a semiclassical approximation to the quantum mechanical propagator

(cf. Sec. 2.3.2). Furthermore, the filter diagonalization method is introduced.

The second objective is addressed in Chapter 5 and 6. Chapter 5 introduces

the newly developed CRP approach. In particular, the similarities and differences

to the Cartesian-Reaction-Surface (CRS) of Ruf and Miller [42] is detailed. An

application to the tautomerization of tropolone (TRN) is given in Chapter 6. A

12D model is constructed and analyzed in terms of the well-established multi-

configuration time-dependent Hartree approach (cf. Sec. 2.3.1). Additionally, a

semiclassical investigation is given.

In Chapter 7 the work is summarized and an outlook for future investigations

is given.



6 Introduction


