Inhaltsverzeichnis

1	Einl	leitung		1
2	Star	nd der	Forschung	5
	2.1	Einige	Vorbemerkungen zur Dissoziation von Wasser $\ . \ . \ .$	5
		2.1.1	Dissoziation über den Ã-Zustand $\ldots \ldots \ldots \ldots$	6
		2.1.2	Dissoziation über den $\tilde{B}\text{-}Zustand$	9
		2.1.3	Dissoziation über höhere Zustände	13
	2.2	Vibrat	ionsanregung und selektive Dissoziation von HDO	15
		2.2.1	Theoretische Arbeiten zur selektiven Dissoziation $\ . \ .$	16
		2.2.2	Experimentelle Arbeiten zur selektiven Dissoziation $\ .$.	20
		2.2.3	Infrarotanregung mit kurzen Laserpulsen	21
3	Erze	eugung	g und Vermessung ultrakurzer Lichtimpulse	23
	3.1	Erzeug	gung ultrakurzer Lichtimpulse	23
	3.2	Metho	den der Frequenzkonversion	26
	3.3	Verme	ssung der Laserparameter	30
	3.4	Spezie	lle Erzeugungs- und Konversionstechniken	33
		3.4.1	VUV-Erzeugung durch Vierwellen-Differenzfrequenz-	
			Mischung	34
		3.4.2	Spektrale Verbreiterung und Impulsverkürzung mit	
			Hohlfasern	38
		3.4.3	MIR-Erzeugung in BBO und MLN	43
	3.5	Beschr	reibung der Lasersysteme	47
		3.5.1	VUV-Lasersystem	47
		3.5.2	Multipass-Lasersystem	50
		3.5.3	Multicolor-Lasersystem	53

4	Nac	hweis	und Analyse photoinduzierter Reaktionen	57
	4.1	Nachw	eismethoden	57
		4.1.1	Zeitaufgelöste Ionisation	58
		4.1.2	Zeitaufgelöste Fluoreszenz	60
	4.2	Datena	auswertung	62
		4.2.1	Optische Bloch-Gleichungen	62
		4.2.2	Numerische Integration und Faltung	65
		4.2.3	Grenzen des verwendeten Verfahrens	67
5	Mes	ssergeb	onisse und Interpretation	69
	5.1	Zweifa	rben-Ionisationsexperimente	69
		5.1.1	Einphotonen-Dissoziation im VUV	70
		5.1.2	Multiphotonen-Ionisation im UV $\ldots \ldots \ldots \ldots$	75
	5.2	Dissoz	iation über den \tilde{B} -Zustand \ldots	83
		5.2.1	Voranregung/Abtastung mit 2.4 μ m	85
		5.2.2	Voranregung/Abtastung mit 3.6 μ m	91
		5.2.3	Höhe der Infrarot Voranregung	106
	5.3	Dissoz	iation über den $\tilde{\mathrm{C}}\text{-}$ und $\tilde{\mathrm{D}}\text{-}\mathrm{Zustand}$	110
		5.3.1	Dissoziation mit 248 nm (\tilde{C} -Zustand)	111
		5.3.2	Dissoziation mit 244 nm (\tilde{D} -Zustand)	118
6	Zus	ammer	nfassung und Ausblick	123
\mathbf{A}	Anł	nhang		126
	A.1	Phaser	nanpassung in einachsigen Kristallen	126
	A.2	Flugze	eitmassenspektrometer	128
	A.3	Veröffe	entlichungen	130

Abbildungsverzeichnis

2.1	Absorptionsspektrum und Potenzialkurven der angeregten	
	Zustände von Wasser in C_{2v} -Symmetrie	6
2.2	Absorptionsspektrum und Potenzialkurven der angeregten	
	Zustände von Wasser in C_S -Symmetrie	7
2.3	PES von H_2O für \tilde{A} -Zustand	8
2.4	PES von H_2O für \tilde{X} -Zustand und \tilde{B} -Zustand	10
2.5	PES von H_2O für \tilde{A} -Zustand und \tilde{B} -Zustand	11
2.6	Absorptionsspektrum und Potenzialkurven der angeregten	
	Zustände von Wasser in Abhängigkeit vom Bindungswinkel	14
2.7	Verzweigungsraten für verschiedene Ausgangszustände von HDO	17
2.8	Ausbeute des H + OD Kanals bei der Photodissoziation von	
	vibronisch angeregtem HDO	19
3.1	Schematischer Aufbau eines Lasersystems mit regenerativem	
	Verstärker	25
3.2	Schematischer Aufbau eines Lasersystems mit Multipass-	
	Verstärker	26
3.3	Autokorrelations messung durch Selbst-Diffraktion $\ . \ . \ . \ .$	32
3.4	Schema der nahe-resonanten Vierwellen-Differenzfrequenz-	
	Mischung in Argon	34
3.5	Puls dauer und Energie der erzeugten Pulse bei 155 nm $\ .$ $\ .$.	36
3.6	Druckabhängigkeit des Spektrums der VUV-Impulse	37
3.7	Spektral verbreiterter Laserimpuls bei 400 nm; Füllgas: Kryp-	
	ton; Gasdruck: 500 mbar; Faserdurchmesser: 130 μm \ldots .	39
3.8	Einkopplungeffizien z $\eta_m(w/a)$ als Funktion des normierten Fo-	
	kalradius w/a	41
3.9	Impulsdauer der komprimierten Laserimpulse bei 400 nm	42

3.10	Kreuzkorrelation der komprimierten Laserimpulse bei 800 nm	
	und 400 nm	42
3.11	Transmission durch 1 cm Beta-Barium Borat (BBO) \ldots .	43
3.12	Transmission durch 1 cm Lithium-Niobat (LNB)	44
3.13	Spektrum der erzeugten MIR-Strahlung	46
3.14	Aufbau am VUV-Lasersystem	48
3.15	Aufbau am Multipass-Lasersystem	50
3.16	Aufbau am Multicolor-Lasersystem bei Erzeugung von 1.6 $\mu {\rm m}$	
	bis 2.4 μ m	54
3.17	Aufbau am Multicolor-Lasersystem bei Erzeugung von 3.6 $\mu {\rm m}$	
	und 3.9 μ m	56
41	Schema: Molekularstrahlapparatur mit TOF-Detektion	60
4.2	Schema: Fluoreszenz von OH und OD	61
4.3	Transiente Signale bei unterschiedlichen Lebensdauern T_1	68
1.0	Transferite Signale Set unterschiedheiten Lebensdauern 11	00
5.1	Schematische Darstellung des Pump-Abtast Experimentes im	
	VUV an Wasser	71
5.2	Schematische Darstellung des Pump-Abtast Experimentes im	
	VUV an Toluol	72
5.3	Transientes Ionensignal an Toluol	73
5.4	Transiente Ionensignale an H_2O , HDO und D_2O	74
5.5	Schematische Darstellung des Pump-Abtast Experimentes mit	
	Multiphotonen Ionisation von Wasser	76
5.6	Zwei Massenspektren bei unterschiedlichen Verzögerungszeiten	77
5.7	HDO ⁺ Ionensignal. Puls dauer des Pumpimpulses: 15 fs \ldots .	78
5.8	HDO ⁺ Ionensignal. Puls dauer des Pumpimpulses: 30 fs $\ .\ .\ .$	79
5.9	Darstellung der Schwingungsenergien von H_2O , HDO und D_2O	83
5.10	Schematische Darstellung der Anregung und des OH-Nachweises	84
5.11	Transiente OH/OD-Fluoreszenzsignale aus HDO, Dissoziati-	
	on: 256 nm	86
5.12	Transiente OH/OD -Fluoreszenzsignale aus HDO, H_2O und	
	D_2O , Anregung: 2418 nm, Dissoziation: 256 nm $\ldots \ldots \ldots$	87
5.13	Schematische Darstellung des Pump-Abtast Experimentes mit	
	$2.4 \ \mu$ und $256 \ nm$	88

ABBILDUNGSVERZEICHNIS

5.14	Verteilung der Zerfallskanäle $OH(X) + H, OH(A) + H$ und	
	Zerfälle ohne OH	89
5.15	Schematische Darstellung der Pump-Abtast Experimente mit	
	256 nm und 1.6 μ bzw. 2.0 μ	90
5.16	Transiente OH/OD-Fluoreszenzsignale aus HDO, Anregung:	
	3630 nm	92
5.17	Transiente OH/OD-Fluoreszenzsignale aus HDO, Anregung:	
	3630 nm	93
5.18	OH/OD-Fluoreszenzsignal bei Zweiphotonen-Dissoziation im	
	Energieintervall von 9.3 eV bis 9.9 eV	94
5.19	Transiente OH/OD -Fluoreszenzsignale aus HDO und D_2O ,	
	Anregung: 3630 nm	95
5.20	Transiente OH/OD-Fluoreszenzsignale aus HDO, Anregung:	
	3630 nm und 3910 nm	97
5.21	Fluoreszenzsignal bei Zweiphotonen-Dissoziation und	
	Einphotonen-Absorptionswirkungsquerschnitt von $9.3~{\rm eV}$	
	bis 9.9 eV \ldots	99
5.22	Verteilung von OH/OD(X)-, OH/OD(A)- und O-Fragmenten	
	bei H_2O und D_2O	100
5.23	Schematische Darstellung des Pump-Abtast Experiments mit	
	3.6 μ m und 259 nm	101
5.24	Schematische Darstellung des Pump-Abtast Experiments mit	
	3.6 μ m und 252 nm	102
5.25	Schematische Darstellung des Pump-Abtast Experiments mit	
	3.6 μ m und 264 nm	103
5.26	Schnitte durch die PES der Abbildungen 2.4 und 2.5 bei den	
	Bindungswinkeln 135° und 165°	104
5.27	Berechnete Besetzung der Vibrationsniveaus 110 und 030	107
5.28	Berechnete Besetzung der Vibrationsniveaus 100 und 020	108
5.29	Schematische Darstellung des Pump-Abtast Experiments am	
	\tilde{C} -Zustand	111
5.30	Transiente OH-Fluoreszenzsignale aus H_2O , Dissoziation: 248	
	nm	112
5.31	Transiente OH/OD-Fluoreszenzsignale aus einer Mischung	
	von H_2O , HDO und D_2O , Dissoziation: 248 nm $\ldots \ldots \ldots$	113

5.32	Transiente OD-Fluoreszenzsignale aus D ₂ O, Dissoziation: 248
	nm
5.33	Darstellung der heterogenen Prädissoziation als Rotation um
	die a-Achse
5.34	Schematische Darstellung des Pump-Abtast Experiments am
	$\tilde{D}\text{-}\mathrm{Zustand}$
5.35	Transiente OH-Fluoreszenzsignale aus H ₂ O, Dissoziation: 244
	nm
5.36	Transiente OH/OD-Fluoreszenzsignale aus einer Mischung
	von H ₂ O, HDO und D ₂ O, Dissoziation: 244 nm $\ldots \ldots \ldots 120$
5.37	Transiente OD-Fluoreszenzsignale aus D ₂ O, Dissoziation: 244
	nm
A 1	
A.1	10F mit einfachem Beschleunigungsfeld
A.2	Wiley-McLaren-TOF mit zwei Beschleunigungsfeldern 129

Tabellenverzeichnis

2.1	Dissoziationsenergien von Wasser
2.2	Korrelationstabelle für den Übergang von H_2O zu HDO 14
2.3	An HDO durchgeführte Experimente zur selektiven Dissozia-
	tion (nach vibronischer Anregung)
3.1	Am VUV-Lasersystem verfügbare Laserparameter 50
3.2	Am Multipass-Laser system verfügbare Laser parameter $\ .$ 52
3.3	Am Multicolor-Lasersystem verwendete Laserstrahlung 56
5.1	Einige verwendete Laserwellenlängen und korrespondierende
	Energien
5.2	In Abschnitt 5.2.2 betrachtete Prozesse und deren Reaktions-
	zeiten
5.3	Übergangsdipolmomente von HDO
5.4	In Abschnitt 5.3 betrachtete Prozesse und deren Reaktionszeiten 122