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Abstract

This work develops concepts for quantum control of electron and nuclear dynamics in
atoms, ions, and aligned/oriented molecules by means of circularly polarized laser pulses.
The main goal is the generation of stationary electronic and nuclear ring currents in elec-
tronic and vibrational excited degenerate states, respectively. Here, the expectation values
of electronic and nuclear (pseudorotational) angular momenta are non-zero. The theory
of stationary ring currents in excited degenerate states of atomic and molecular systems
is developed first. As examples, I compute electronic ring currents in atomic orbitals of
the hydrogen atom and one-electron ions, in the first excited degenerate states |A 'Tl.)
of oriented AICI and BeO molecules, and in several excited states |n'FE,+) (n = 2,4,5)
of the aligned ring-shaped molecule Mg-porphyrin. These ring currents can be excited
by means of circularly polarized UV /visible optimized 7 laser pulses from electronic non-
degenerate ground states, where the direction of the ring current is determined by the
circular polarization. Likewise, nuclear ring currents in pseudorotational excited degener-
ate anharmonic bending states of aligned linear triatomic molecules FHF~ and 4CdH,
can be achieved by means of circularly polarized IR optimized 7 laser pulses. After the
end of the laser pulse, the electronic or nuclear ring current, circulating about the axis
of symmetry, persists throughout the lifetime of the excited state. In the course of these
investigations, I discovered a new type of hydrogen bonds, i.e. so-called toroidal bonds, in
which the protons are not located on the axis connecting two neighboring heavy atoms,
as usual, but are circulating toroidally about this axis. As a consequence, magnetic fields
are induced which may be even stronger than the strongest permanent magnetic fields
that can be produced with present-day technology. This approach is further extended
to control electron circulations and nuclear pseudorotations in superpositions of several
electronic and vibrational states, respectively. This control can be realized by means of
modified circularly polarized UV /visible and IR laser pulses for electronic and vibrational
excitations, respectively. Finally, the control of nonadiabatic orientation of AICI and BeO

molecules by means of short half-cycle linearly polarized laser pulses is also achieved.






Zusammenfassung

Diese Arbeit entwickelt Konzepte fiir die Quantenkontrolle von Elektronen- und Kern-
dynamik in Atomen, Ionen und ausgerichteten/orientierten Molekiilen durch zirkular po-
larisierte Laserpulse. Das Hauptziel ist die Erzeugung stationarer elektronischer und nuk-
learer Ringstrome in angeregten entarteten Elektronen- und Vibrationszustanden. Hier-
bei sind die Erwartungswerte der elektronischen und der die Pseudorotation betreffenden
nuklearen Drehimpulse von Null verschieden. Die Theorie der stationaren Ringstrome in
angeregten entarteten Zustanden von atomaren und molekularen Systemen wird zuerst er-
arbeitet. Als Beispiele werden elektronische Ringstrome in den Atomorbitalen des Wasser-
stoffatoms und der Einelektronenionen, in den ersten angeregten entarteten Zustanden
|AMIL) der orientierten AICI- und BeO-Molekiilen und in einigen angeregten Zustianden
In'E,1) (n = 2,4,5) des ausgerichteten Ringmolekiils Mg-Porphyrin berechnet. Diese
Ringstrome kénnen durch zirkular polarisierte UV /sichtbare optimierte m Laserpulse von
elektronischen nicht-entarteten Grundzustanden aus angeregt werden, wobei die Rich-
tung der Ringstréme durch die zirkulare Polarisation bestimmt wird. Ahnlich kénnen
nukleare Ringstrome in Pseudorotationszustanden angeregter entarteter anharmonischer
Biegezustande der ausgerichteten linearen dreiatomigen Molekiilen FHF~ und 4CdH,
durch zirkular polarisierte IR optimierte m Laserpulse erzielt werden. Nach dem Ende des
Laserpulses bleibt der elektronische oder nukleare Ringstrom, der um die Symmetrieachse
zirkuliert, innerhalb der Lebensdauer des angeregten Zustandes bestehen. Damit wird
auch eine neue Art von Wasserstoffbriickenverbindungen entdeckt, bei den die Proto-
nen nicht wie tiblich auf der Verbindungsachse zwischen den benachbarten Schweratomen
sitzen, sondern um diese Achse torusformig kreisen. Als Folge werden Magnetfelder in-
duziert, welche sogar starker sein konnen als die starksten permanenten Magnetfelder, die
mit heutiger Technologie produziert werden. Die Erweiterung dieser Methode ist die Kon-
trolle von Elektronenzirkulationen bzw. nuklearen Pseudorotationen in Superpositionen
von einigen Elektronen- bzw. Vibrationszustanden. Das kann durch modifizierte zirkular
polarisierte UV /sichtbare oder IR Laserpulse fiir Elektronen- oder Vibrationsanregun-
gen verwirklicht werden. Zum Schluss wird auch die Kontrolle der nicht-adiabatischen
Orientierung von AlICl- und BeO-Molekiilen durch kurze linear polarisierte Halbzyklus-

Laserpulse erzielt.
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Chapter 1

Introduction

This chapter contains a brief introduction to attosecond science (Section 1.1), followed by
highlights on quantum control of nuclear and electron dynamics (Section 1.2). Finally,

the goals and structure of this work will be presented in Sections 1.3 and 1.4, respectively.

1.1 Attosecond science

Attosecond science is a new emerging research field of physics and chemistry in the last
decade [1-6]. In this hot topic field, physcial processes are described on the attosecond
timescale (1 as = 107'%), on which the motion of the electron in atoms, ions, and molecules
plays an important role. The electron rest mass (m, = 9.109382 - 103! kg), charge
(¢ = —e=1.602176-10"1C), and spin (s = %h) define the atomic units of mass, charge,
and (half of) the angular momentum or action, respectively. The corresponding atomic
units of length and energy are Bohr radius ay = 4mwegh?/(mee?) = 5.291772 - 107" m
and Hartree energy E, = h*/(m.a?) = 27.21138¢eV, respectively. Thus, the atomic
unit of time, h/E, = 24.18884 as, is on the attosecond timescale. To put this time in
perspective: If the atomic unit of time is stretched so that it takes one second, one
second would take 1.3 billion years on the same scale, i.e. about twice the age of the first
complex multicelled lifeforms on the Earth. Furthermore, the electron motion is much
faster than nuclear vibrations and molecular rotations on femtosecond (1fs = 1071%s)
and picosecond (1ps = 107!%s) timescales, respectively. Thus, molecular rotation can
be considered frozen on fs- and as-timescales. Similarly, on the as-timescale, the nuclei
can be considered frozen (Born-Oppenheimer approximation [7,8]). A list of different

timescales with several examples is shown in Table 1.1.
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timescale SI unit and conversion examples

exasecond | 1Es =105~ 32-10%a |estimated total lifetime of the closed universe
petasecond | 1Ps =10%s~ 32-10%a age of the Earth and the Universe
terasecond | 1Ts = 10"s ~ 32000a age of Homo sapiens
gigasecond 1Gs =10s ~ 32a lifespans of humans and sequoia trees
megasecond 1Ms=10s ~ 11.6d orbital periods of Moon and inner planets
kilosecond 1ks = 10%s ~ 16.7 min Earth’s rotation around its own axis

second 1s heartbeat, 100 m sprint

millisecond Ims =10"3s blink of an eye, human reflex
microsecond lus=10"5s thunderbolt

nanosecond Ins=10""s access time of computer main memory
picosecond Ips = 107125 molecular rotation
femtosecond 1fs =107 nuclear dynamics, chemical reaction
attosecond las=10"18s electron dynamics
zeptosecond lzs =10"2's relativistic electron dynamics

Table 1.1: Overview of different timescales.

To monitor ultrafast electronic processes in atoms, ions, molecules [9], chemical reac-
tions, condensed-matter systems and on surfaces [10], e.g. ionization [11], electron tunnel-
ing [12], electron transfer [13], and electron circulation, sub-femtosecond laser pulses are
required. A review of attosecond spectroscopy can be found in Ref. [14]. The generation
of sub-femtosecond laser pulses was already predicted in 1994 [15,16]. In 2001, these
ultrashort attosecond laser pulses were produced experimentally by high harmonic gener-
ation (HHG), using visible (1.6eV) 7fs laser pulses [17,18]. Other applications of HHG
are the tomographic imaging of molecular orbitals [19-22], the probing of nuclear dynam-
ics and structural rearrangement of the molecule on the attosecond timescale [23,24], as
well as the monitoring of vibrational [25-27] and rotational [28-30] dynamics on fs- and

ps-timescales, respectively.

In the recollision model of HHG [31-34], the valence electron is steered by means of a
few-cycle infrared (IR) or visible laser pulse with field amplitude & and carrier frequency w
in three steps. First, an electron in the atom or molecule is ionized with zero initial velocity
(tunnel ionization [31,32,35-38] or above-threshold ionization (ATT) [33,39,40]). Second,
the electron accelerates in the electric field of the driven laser pulse and returns if the elec-
tric field is redirected. Finally, the electron recombines with the parent ion via stimulated

emission and a photon with energy Nhw is subsequently emitted, where N = 1,2,3,...
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is the harmonic order. For atoms and molecules with inversion symmetry, the selection
rule for electron recombination implies that only odd harmonics N = 1,3,5,... are al-
lowed for linearly polarized driven laser pulses while only harmonics N = kN, £+ 1
(k=0,1,2,...) are generated for circularly polarized driven laser pulses with sufficiently
long pulse duration, where Ny, is the symmetry number of the molecule [41]. For ben-
zene with Dgj, symmetry (Ng,, = 6), only photons of harmonics N = 1,5,7,11,13, ...
are emitted [42,43] (for 1D and 2D models of benzene, see Refs. [44,45]). The HHG for
nanotubes with different N, can be found in Refs. [46,47]. However, for short pulse
durations of circularly polarized laser pulses, other harmonics can also be observed. The
selection rule also implies, that there are no HHG for atoms and aligned linear molecules
with infinite symmetry number, N, = oo, driven by circularly polarized laser pulses.
The HHG driven by elliptically polarized laser pulses is demonstrated in Refs. [48,49].
The HHG spectra are usually calculated using Fourier transform of the expectation value
of either the dipole moment [50,51] or the dipole acceleration [52]. Recently, quantum
electrodynamical theory has shown that the intensity of the HHG spectrum is propor-
tional to the squared magnitude of the Fourier transform of the expectation value of the
dipole velocity [53]. This provides closest agreement of HHG results for dipole velocity
in Ref. [54]. These three HHG spectra (dipole moment, dipole velocity, and dipole accel-
eration) for the hydrogen atom have recently been compared [55]. In general, the HHG
spectrum shows a plateau and a subsequent cutoff region at high photon energies. The
HHG spectrum depends on the molecular orientation and has a structural minimum in
the plateau region, due to multi-center destructive interference [54,56-61]. Furthermore,
the HHG spectrum also depends on the symmetry of the molecular orbital [26,62-66]. For
atoms, the maximum energy of the emitted photon is given by Np..hw = I, + 3.17U,,
where I, and U, = €263 /(4m.w?) are the ionization potential and the ponderomotive en-
ergy, respectively [31,32]. For molecules, the energy of the emitted photon can exceed this
maximum, i.e. the cutoff of the spectrum of molecular HHG is larger [67-69], because the
ionized electron from the parent atom can recombine with another atom of the molecule.

This electronic process is called laser induced electron transfer (LIET) [67].

To achieve an attosecond laser pulse, a spectral filter is used to select high photon
energies in the HHG plateau and cutoff regions broadly, according to the inverse Fourier
transform of the laser pulse. A pulse duration of 80as can currently be achieved in
experiments [70]. The pulse duration of attosecond laser pulses can be measured and
controlled [70-74], see the review [75]. The polarization of the generated attosecond
laser pulse is often linear, but the generation of elliptically (or near circularly) polarized
attosecond laser pulses has also been predicted [76-78] and experimentally realized [79].
Of course, the laser frequency of few-cycle attosecond laser pulses is in extreme ultraviolet

(XUV) or X-ray regimes, for example the photon energy corresponding to the period of
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a laser cycle of 0.1fs is 41.4eV. However, the generation of intense few-cycle 3.7 fs laser
pulses in the deep ultraviolet (UV) regime (4.6 ¢V) with adjustable polarization by HHG is
experimentally realized [80]. We will show that these laser pulses with circular polarization

are useful for excitation of electronic ring currents in atoms, ions, and molecules.

1.2 Quantum control

Controlling electron and nuclear dynamics in different physical and chemical systems is an
important task for physicsts and chemists [81,82]. Highlights can be found in experimental
rewiews on coherent control in femtochemistry [83,84] and on femtosecond time-resolved
photoelectron spectroscopy [85]. Pioneering works on quantum control of nuclear dynam-
ics are pump-dump and optimal control of chemical reactions [86,87], coherent control of
unimolecular reactions [88], IR control of dissociation of vibrationally excited molecular
resonances [89], optimal control of selective vibrational excitation [90,91], of selective rota-
tional excitation using evolutionary learning algorithm [92], and of vibrational-rotational
excitations [93], see the review on optimal control theory [94]. Further examples include
population switching control in three-level systems via stimulated Raman adiabatic pas-
sage (STIRAP) [95], see reviews [96,97], control of molecular dissociation by chirped
IR laser pulses [98] and by IR+UV laser pulses [99], control of isomerization and hy-
drogen transfer by pump-dump IR 7 laser pulses [100-102] (for generalized 7 pulses, see
Ref. [103]), femtosecond control of unimolecular reactions and their transition states [104],
see the review on femtochemistry [105], selective preparation of enantiomers from a race-
mate [106-108] e.g. by means of circularly polarized 7 laser pulses [107], carrier envelope
phase (CEP) control of chemical reactions [109], optimal control of photoassociation of
ultracold molecules [110], IR+UV control of bond selective and spatial separation of
dissociation of hydrogen-bonded triatomic anions [111-113], and coherent control of in-

terferences of wavepackets (wavepacket interferometry) [114,115].

Quantum control of electron dynamics was established based on advances in the field
of control of nuclear dynamics. The first paper was published in 1989, in which the
phase-coherent control of photocurrent direction in semiconductors was devised [116].
In the following years, various control schemes for electrons were devised, for example
dipole switching control in molecules and in open systems [117,118], magnetization switch-
ing control in quantum rings [119], optimal control of population transfer in polyatomic
molecules [120], attosecond control of charge migration in small peptides [13], coherent
control of electric currents in superlattices and molecular wires [121,122], chiral control

of electron transmission (current transfer) through molecules [123,124], and coherent spin
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control of matrix isolated molecules by IR+UV laser pulses [125]. Quantum control of
HHG includes restricted optimal control of attosecond laser pulse synthesis from HHG
using chirped driven laser pulses [126], IR+UV control of HHG [127], CEP control of
HHG [22,68,70,72,128], optimal control of HHG by pulse-shaped laser pulses [129,130],
and control of polarization direction of HHG by phase-locked, orthogonal two-color laser
fields [131,132]. Finally, quantum control of ionization and dissociation includes strong
field control of landscapes (SFCL) involving multiphoton ionization of the K atom by
selective population of dressed states (SPODS) using pulse-shaped laser pulses [133,134],
optimal control of multiphoton ionization of Ky by ultrafast polarization shaping [135],
IR+UV control of electron localization in dissociation of Hj [136], IR+UV control of
photoelectron spectroscopy of electron tunneling in Hf [137], CEP control of photodis-
sociation of DJ [138,139], laser control of symmetry breaking of dissociation of Hy [140],
control of unidirectional rescattering of electrons in H atom [141], and CEP control of
directionality of ionization of the H atom [142] and the K3 molecule [143] by means of

circularly polarized laser pulses.

This work develops concepts for quantum control of electron and nuclear dynamics by
means of circularly polarized laser pulses. Specifically, optimized 7 pulses are used for the
control of unidirectional stationary electronic and nuclear ring currents about the axis of
symmetry with associated induced magnetic fields, while optimized 7/2 pulses are used
for the control of unidirectional electron circulations and nuclear pseudorotations. Note
that the electronic or nuclear ring currents are defined as the fraction of the electron or
nucleus passing through a perpendicular half plane (at fixed azimuthal angle) per time,
respectively. The electronic ring currents occur, in general, in electronic degenerate ex-
cited states, e.g. for atoms and ions [144], for oriented linear molecules [145,146], and for
aligned, ring-shaped, achiral molecules [147-152] with non-zero electronic angular momen-
tum. However, electron circulation can also be generated in two-dimensional nanosized
quantum rings by means of picosecond laser pulses. Examples of these laser pulses are
two shaped time-delayed half-cycle laser pulses (HCP) with perpendicular linear polariza-
tions [153], circularly polarized laser pulses [154,155], and optimized laser pulses designed
through optimal control theory [156]. Electron circulation in chiral aromatic molecules
can also be controlled by means of linearly polarized laser pulses, but the direction of the
circulation alternates periodically after the end of the laser pulses because the electronic
excited states are not exactly degenerate [157,158]. Recently, the generation of electron
circulation in the oriented LiH molecule about the molecular axis by means of two or-
thogonal linearly polarized laser pulses with phase shift of 7/2 has been predicted [159];
for coherent control of LiH, see Ref. [160]. For exciton (electron-hole pair) recurrence mo-
tion in ring-shaped aggregate complexes induced by circularly polarized laser fields, see
Ref. [161]. Electron circulation of coherent superpositions of high-lying Rydberg states
has already been demonstrated in Refs. [162-167]. This electron motion about the nu-
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cleus is very slow, i.e. on ps- to ms-timescales and can be described classically. Revivals
of localized Rydberg wavepackets are investigated in Refs. [168,169]. In general, elec-
tron circulation and electronic ring currents can be actively controlled by means of laser
pulses with adjustable laser parameters, e.g. amplitude of the electric field, pulse dura-
tion, and laser frequency. Furthermore, the electronic ring current depends, in general, on
the electronic state of the atomic or molecular system. In contrast to this active control,
there is also passive control of rather weak electronic ring currents induced by permanent
magnetic fields [170-185], see reviews [186-188]. Extension to magnetically induced rela-
tivistic ring currents was recently introduced [189]. Moreover, it has a unique structure
for a given molecule and depends linearly only on the strength of the time-independent
magnetic field. We note that light-induced electronic ring currents in degenerate states
and, in particular, their directions could be detected by HHG by means of elliptically po-
larized laser pulses [77], for HHG by a driven mesoscopic ring with a localized impurity,
see Ref. [190].

Similar quantum control for nuclear dynamics is the control of unidirectional in-
tramolecular rotation by laser pulses. This is an important topic in molecular engi-
neering [191-194]. Pioneering works on control of unidirectional chiral molecular mo-
tors, also called molecular rotors or propellers, by means of linearly polarized IR laser
pulses [195-199] (somewhat analogous to control of electron circulation in chiral aro-
matic molecules [157,158]) and by means of IR+UV laser pulses [200] have already been
developed. A complementary example is the control of nuclear pseudorotation in the
electronic excited state of the triangular molecule Nag(B) by means of linearly polarized
laser pulses [201-205]. The theory of pseudorotation in ring systems can be found in
Ref. [206]. However, the linearly polarized laser pulse induces interfering pseudorotations
with opposite (left and right) directions, i.e. the nuclei of Nag(B) circulate about three
equivalent minima of the potential energy surface (PES) of the electronic excited state
without control achieving the goal of unidirectionality. To solve this problem, we devel-
oped the control of unidirectional nuclear pseudorotation in the electronic ground and
vibrational (bending and pseudorotational) degenerate excited state of pre-aligned linear
triatomic molecules '**CdH, and FHF~ by means of a right or left circularly polarized IR
laser pulse, propagating along the molecular axis [207,208]. It is analogous to the quan-
tum control of electron circulation and electronic ring currents by means of circularly
polarized laser pulses [144-150]. The corresponding nuclei of the excited bent molecule
with a non-zero pseudorotational quantum number (I # 0) circulate anti-clockwise (I > 0)
or clockwise (I < 0) about the pre-aligned molecular axis, i.e. the probability of finding a
nucleus on this axis is zero. For FHF~, the hydrogen bond in the first pseudorotational
state, excited by means of a right or left circularly polarized optimized 7 laser pulse, is
no longer linear and is, thus, a new type of hydrogen bond, called a toroidal hydrogen
bond [208], see the review on hydrogen bonds e.g. Ref. [209].
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Finally, quantum control of molecular rotation is important for many applications de-
scribed above. For example, the molecule must be oriented or aligned during short elec-
tronic or vibrational excitations by means of circularly polarized laser pulses in order to
induce unidirectional electronic or nuclear circulations. The field-free alignment [210-214]
and orientation [113,146,215-217] of the non-polar and polar molecules can be controlled
nonadiabatically by means of a linearly polarized ultrashort HCP, respectively. Extensions
are e.g. field-free 3D alignment of polyatomic molecules by means of two linearly [218-221]
or elliptically [222] polarized laser pulses, see also Ref. [223], and adapative optimization
of field-free molecular alignment by means of an optimized laser pulse through an evo-
lutionary algorithm [224]. After the end of the laser pulse, there is a rotational revival
pattern, i.e. the rotational wavepackt dephases and rephases periodically at intervals of the
rotational revival time 7., [225], where the duration of the molecular alignment or orien-
tation is comparatively short, typically less than 0.1 7,.,. Furthermore, rotation-vibration
effects are also observed on longer timescales (ns-timescale) due to rotational-vibrational
coupling [226].

1.3 Goals of this work

This Section outlines four main directions of this work:

1. The first goal of this work is the laser control of unidirectional electronic and nu-
clear ring currents in atoms, ions, and molecules by means of circularly polarized
optimized 7 laser pulses. These ring currents then induce magnetic fields. The
concept, illustrated schematically in Fig. 1.1, is related to the inverse Faraday ef-
fect [227-229], i.e. the magnetic field is induced by the circularly polarized electric
field. Here, the electronic or vibrational (pseudorotational) degenerate state, rep-
resenting a stationary electronic or nuclear ring current, is excited selectively and
completely from the ground state by means of a circularly polarized UV /visible or
IR optimized 7 laser pulse, respectively. We have developed the theory of the laser
control of electronic ring currents in the hydrogen atom and one-electron ions [144],
oriented linear molecules AICI [145] and BeO [146], and aligned ring-shaped molecule
Mg-porphyrin [148] as well as the control of nuclear ring currents in the aligned lin-
ear triatomic molecule FHF~ [208]. In this work, the theory will be reviewed and
also extended to other applications, such as control of electronic ring currents in

different excited states of Mg-porphyrin.

2. The second goal is the derivation of analytic expressions for electronic and nuclear

probability and current densities, corresponding electric ring currents (defined as the
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circularly polarized laser pulse

Nﬁ”\\l/ induced
magnetic field

ring current
(electronic or nuclear)

Figure 1.1: Schematic illustration of the electronic or nuclear ring current and the induced magnetic

field by a circularly polarized laser pulse.

product of the electronic or nuclear ring current and the electron or nuclear charge,
respectively), mean ring current radii, and induced magnetic fields. This derivation
is carried out in particular for electronic ring currents in the hydrogen atom and
one-electron ions [144], and for nuclear ring currents in linear triatomic molecules
with Do, symmetry. Several expressions require evaluations of demanding inte-
grals involving Gaussian functions, associated Laguerre polynomials, and confluent
hypergeometric functions. Based on these analytic results, we choose atomic or
molecular systems with very strong electronic or nuclear ring currents which induce
very strong magnetic fields, even stronger than the strongest permanent magnetic

fields which can be generated in present-day experiments, ca. 90 T [230].

3. The third goal is the laser control of unidirectional electron circulation and nuclear
pseudorotation by means of circularly polarized laser pulses. The laser pulse excites
a superposition of several electronic or pseudorotational states, which represent
electron circulation or nuclear pseudorotation, respectively. After the end of the
laser pulse, the time-dependent electron or nuclear wavepacket circulates about
the axis of symmetry. In this framework, the electronic circulation in the aligned
molecule Mg-porphyrin by means of a circularly polarized optimized 7 /2 laser pulse
has been extensively investigated [147,149,150]. The nuclear pseudorotation in the
superposition of several bending and pseudorotational states of the aligned linear
triatomic molecule '*CdH; by means of a circularly polarized IR 50fs laser pulse
has been presented in Ref. [207]. In this work, the theory will be reviewed and
also extended to other applications, e.g. electron circulation in the hydrogen atom,

one-electron ions, and linear molecules.
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4. The fourth goal is the control of nonadiabatic orientation [113,146,215-217] of di-
atomic molecules AICl and BeO [146] by means of a HCP-like linearly polarized
ultrashort laser pulse. The molecular orientation or alignment is required for subse-
quent laser control of electron and nuclear circulation and ring currents in molecules.
However, the control of nonadiabatic alignment [210-214] of non-polar molecules,
e.g. Mg-porphyrin, FHF~, and "'#CdH,, is not investigated in this work.

1.4 Structure of this work

This work is organized as follows. Chapter 2 presents the theory of electronic ring cur-
rents and corresponding induced magnetic fields in electronic excited degenerate states
(Section 2.2). The following theory is that of laser control of electronic ring currents and
electron circulation by means of circularly polarized laser pulses (Section 2.3). Then, the
theory of nuclear ring currents and associated induced magnetic fieles in excited bending
and pseudorotational states of linear triatomic molecules is developed (Section 2.4), fol-
lowing the theory of laser control of nuclear ring currents and pseudorotation by means
of circularly polarized laser pulses (Section 2.5). At the end of this Chapter, the theory
of control of nonadiabatic molecular orientation is presented, in particular for polar di-
atomic molecules AICIl and BeO (Section 2.6). Applications of these theories are presented
in Chapter 3, i.e. for electronic ring currents and electron circulation in atomic orbitals
(Section 3.2), linear molecules AICl and BeO (Section 3.3), and ring-shaped molecule Mg-
porphyrin (Section 3.4), as well as for nuclear ring currents and pseudorotation in linear
triatomic moleculs FHF~ and "'*CdH, (Section 3.5). The conclusions of this work with
an outlook for future work are summarized in Chapter 4. Finally, evaluations of rather
demanding integrals involving Gaussian functions, associated Laguerre polynomials, and

confluent hypergeometric functions are documented in Appendix A.
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Chapter 2

Theory

2.1 Overview

In Section 2.2 we investigate electronic ring currents and corresponding induced magnetic
fields in electronic degenerate states in atoms, ions and aligned or oriented molecules
which can be excited by circularly polarized laser pulses described in Section 2.3. Then,
in Section 2.4 we extend the theory of electronic ring currents to nuclear ring currents and
corresponding induced magnetic fields in vibrational and pseudorotational states specifi-
cally for the aligned linear triatomic molecule ABA. The induction of nuclear pseudoro-
tation by means of a circularly polarized laser pulse is described in Section 2.5. Finally,
the orientation of a linear polar molecule by means of a linearly polarized laser pulse is

discussed in Section 2.6.

2.2 Electronic states

2.2.1 Time-independent electronic Schrodinger equation

The time-independent treatment of electronic states is based on the time-independent

non-relativistic electronic Schrodinger equation (TISE)
H,|U,) = E|W,) (2.1)

where F; is the eigenenergy of the stationary (time-independent) electronic state |¥;) with

the corresponding set of electronic quantum numbers (7). The electronic Hamiltonian H,;
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of the arbitrary atomic or molecular system contains the kinetic operator of the electrons,
the repulsive Coulomb potential between nuclei, the attractive Coulomb potential between

nuclei and electrons, and the repulsive Coulomb potential between electrons, that is

. h2 N )
i, = — v 2.
l 2me ngl r'n ( )
2 N’ Z Zg N N’ N 1

(&
— Y D) PN
47T€0 a,B=1 |R RB‘ n=1a=1 |I'n a’ n,m=1 |I'n - rm‘
B>« m>n

where r,, (n =1,...,N) and R, (o = 1,..., N’) are the positions of N electrons and N’
nuclei with charges Z, (o = 1,..., N'), respectively. The second and last terms in Eq.
(2.2) vanish for an atom or ion with one nucleus (N’ = 1) and for the one-electron system

(N = 1), respectively.

Including electronic spin, the electronic states
Vi) = [Wosng) (2.3)

with sets of orbital quantum numbers ¢ and spin quantum numbers S = 0, 1 55 Ly g, 2,
Mg = —=5,—-S+1,...,5 — 1,5 are the common eigenstates of the spin-free electronic

Hamiltonian H,; (Egs. (2.1), (2.2)) and the spin operators S2, S,

S2w) = S(S+ 1)R,) (2.4)
S.|W;) = Mgh|W;). (2.5)

In this work, only singlet states (S = Mg = 0) for many-electron systems are considered

for which the electronic ground states are singlet states.

2.2.2 Electronic wavefunction

The exact electronic configuration interaction (CI) wavefunctions W¢(qq, ..., qy) of the
singlet state |¥;) = |V s—oms—0) (Eq. (2.3)) depending on all space and spin variables
an = (tn,00) = (Tn, Yn, 2n,0n) (n=1,...,N) of N electrons can be written as a linear
combination \IliCI = Y1 Ci Py of the configuration functions ®; with the same symmetry

properties as the state |U;), i.e

WO = CHFOIT 4y Y SOl a4 (2.6)
a=1 b=N/2+1

where ®'F" and “®? are the restricted Hartree-Fock (HF) wavefunction and singly excited

configuration functions with corresponding coefficients C&F and Sngi respectively. The
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sum in Eq. (2.6) includes, in principle, also more, e.g. doubly excited configuration func-

tions [231]. The simple approximation of CI wavefunctions (Eq. (2.6)) are wavefunctions

CCRNT I S SR 2.1
a=1 b:N/2+1

including only the singly excited configuration functions (CIS) [117,118,120,231-233]. In

this work, this CIS approximation is mainly used.

The CIS wavefunction of the electronic singlet ground state ¥§’° is equal to the
restricted HF wavefunction ®f*(qq,...,qn) (CJf =1, “CY; = 0). It is given by the

Slater determinant

vt = offr (2.8)
= lpia @18 ... onpa onpfl
pi(r)alor)  ei(r)Bor) ... enpr)alon)  enpa(r)s(on)
b pi(ra2)afo)  @i(r2)Bo2) ... @np(r2)a(o)  n/(ra)b(o)
pi(ry)afon) @i(rn)Blon) ... enplry)alon) ena(ry)blon)
where ¢, (a = 1,...,N/2) and «a, [ are occupied spatial atomic or molecular orbitals

(AO or MO) and spinors, respectively. The CIS wavefunctions of the electronic singlet
excited states UF'¥ (i > 0) are (C§F = 0,i > 0)

N/2 o
vt = N N et et (i > 0) (2.9)
a=1 b=N/2+1
where
1
B = —= (... @ B ] e @B ) (2.10)

V2
are the so-called singlet configuration state functions (CSF) [117,118,120, 231,233, 234]
in which an electron with spin « or (8 is excited from an occupied orbital p,a or ¢,
to an unoccupied orbital ¢y or ¢,3, respectively. The normalization conditions for CIS
excited states |UF1S) (Eq. (2.9)) are

N2
> > el =1 (2.11)
a=1b=N/2+1

For the special case in which an electron is excited from different occupied orbitals ¢,
(a = 1,...,N/2) to the only unoccupied orbital ,, the CIS wavefunction (Eq. (2.9))
reduces to
N/2
LSS W G (2.12)
a=1

i,—b
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For another special case in which an electron is excited from the only occupied orbital
¢, to different unoccupied orbitals ¢, (b = N/2+1,...,00), the CIS wavefunction (Eq.
(2.9)) becomes

LSS W OL 15 (2.13)
b=N/2+1

If the CIS excited state is dominated by the transition of an electron from an occupied
orbital ¢, to an unoccupied orbital g, then it is simply equal to the singlet CSF (Eq.

(2.10))
gols = Sph, (2.14)

i,a—b

2.2.3 Electronic probability density

The one-electron probability density p;(r = ry) of the stationary eigenstate |¥;) is given
by

pi(r) = N/.../\\I/i|2daldq2...qu (2.15)

where the symbol [ ... [ indicates integration over the other N —1 spacer, (n =2,..., N)
and all spin variables o, (n =1,..., N) of N electrons [235].

For the CIS approximation (Eq. (2.7)), the one-electron probability density of the
electronic singlet ground state (i = 0) is (cf. Eq. (2.8))

pCI8(r) = N/.../|\IJOCIS]2daldq2...qu (2.16)
- N/.../@ngFdaldqg...qu
N/2

= 2 Z ‘90(1’27
a=1

i.e. it is equal to the sum of the probability densities of the occupied spatial orbitals ¢,
multiplied by 2 for two electrons occupying each orbital [235]. The one-electron probability
densities of the CIS excited states (i > 0) (Eqgs. (2.9) and (2.10)) are derived, using the
normalization condition (Eq. (2.11)) and Eq. (2.16), according to

pC18(r) = N/.../|\I/ZCIS|2d01dq2..-qu (2.17)
N/2 0

-y 3 s, (SCZi)*N/.../ Spb (DY) *doydqs .. . dqy
a,c=1b,d=N/2+1
N2 s

N/2
= > > SCSJ (chi>* (25ac5bd D sl 4 Sacprpl — (5bd90a90:>

a,c=1b,d=N/2+1 r=1
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N/2
— I5(r) + 3 Z SCab,i (ch,i)* (Oucop0l — ObaPal)

a,c=1b,d=N/2+1

. N/2 N/2 -
_ e S (zwcs,m) w-z( 3 !SOZ,AQ) o
b=N/2+1 \a=1 a=1 \b=N/2+1
00 N/2 N/2 00
+ > (ZS (*Cq) ) Poor— D ( Y. Cui (ch,i)*) Paipl.

b,d=N/24+1 \a=1 a,c=1 \p=N/2+41
b£d a#c

The one-electron probability density of the excited state |¥$5) (i > 0) is, therefore,
equal to the density of the ground state |U§7%) plus those of the unoccupied orbitals
wp with weights ZN/ 2 SC'b ;|? minus the densities of the occupied orbitals o, with weights
2o N2 Jrl| a7i| , plus the additional interference contributions of the probability densities
of the mixed orbitals. For the special approximations of the CIS excited wavefunctions,

Egs. (2.12), (2.13) and (2.14), the corresponding electronic probability densities are

N/2 N/2
P15 = pST () + |ee]® — Z\SCb! lpal®> = > %Ce, (FCL)* pal, (2.18)
a{;;:cl
piat(r) = pd" )+ Y0 1CLP esl* — el + Z CL L (FCL ) ey, (2.19)
b=N/2+1 bd=N/2+1
bAd
Pty () = pT () + |esl® = lal?, (2.20)

respectively.

2.2.4 Electronic current density

The one-electron current density j;(r = ry) of the state |U;) is given by

i) = N/ /xpw* VAV, dovdgs . .. day (2.21)

2me

where the symbol [ ... [ has the same meaning as in Eq. (2.15) and V = V,. The current
density of the CIS singlet ground state [W§7®) can be derived from Egs. (2.8) and (2.21),

S8y = 2m N / / (VSIS0 (WGTS) — (W55 VUSTS) dovdqs .. day (2:22)
= N/ /chFV(cDHF) (@) Vo) doda ... day
me
if N/2 .
= — > (pVes — ¢iVea)
€ a=1
N/2

= 2 2—31 Jea(r)
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where

ih

— £ _ ot 2.2
o (0aVs — s Vpa) (2.23)

Joa(T)
is the electronic current density of the orbital ,. Thus, the current density of the ground
state is equal to the sum of the electronic current densities of the occupied orbitals ¢,
multiplied by 2 for two electrons occupying each orbital. The derivation of the current
densities of the CIS excited states |[U1%) (i > 0) (Egs. (2.9) and (2.10)) from Eq. (2.21)
is analogous to the derivation of the probability densities (Eq. (2.17)), i.e

ih
i) = SN / / (TETSTWES) — (WS VTS dodas . day (2.24)
N/2

= >y ey

2m€ a,c=1b,d=N/2+1

N / . / (29 ()" — (0)*V %01) donda ... day

N/2

= jgls Z Z ch,i (ch,i)*

2m€ac 1b,d=N/2+1

(ac (L6 Vg — 0gVp) = ba (PaVor — 02V 04))

0o N/2 N/2 00
A OEDY (ZISC” |2) Jou(r )—2_:1( > |502,¢|2> Jea(r)

b=N/2+1 \a=1 b=N/2+1

ih s N/2s Sd
o 2 | 200 (L)) (e Vei—viVie)
Me 4 a-n/2+1 \a=1
btd
ih & .- Svb Svb
Z Z Ca,i ( Cc,i)* (%V@z - SOzVSOa) .

b=N/2+1

B 2me

e
This result is analogous to the result of the probability density (Eq. (2.17)), i.e. the current
density of the excited state |[W¢19) (i > 0) is equal to the current density of the ground
state |¥§75) plus those of the unoccupied orbitals ¢, with weights SN2 CY ;|? minus the
current densities of the occupied orbitals ¢, with weights 35y 5,1 [%CY ;|*. There are also
additional interference contributions of the current densities of the mixed orbitals. The
approximations of CIS excited wavefunctions, Eqs. (2.12), (2.13) and (2.14), lead to the

corresponding electronic current densities

N/2
JiSEE) = 35 (r) e, (r ZISCb % i (r (2.25)
ih N2
——— >, (02 (paVer — 0tV )
Qme a,c=1 ' '

aFc
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s @) = jg"r) + Z 1°CL 1P Jpy (X) = Jia (x) (2.26)
b=N/2+1
ih& . .
; > 8O (PCL) (@ Ve — 05V o)
Me 4 4=N/241
b£d
Jas, ) = J5E) 4 g, (r) = e (1), (2.27)

respectively.

2.2.5 Electronic ring currents

For the real wavefunction ¥; = U}, the electronic current density j;(r) (Eq. (2.21)) van-
ishes exactly because the term ¥, VU — UV, = U,VV¥, — U, VY, is equal to zero. Each
non-degenerate state can be represented by real orbitals, therefore the current densities
of non-degenerate states are always zero. In particular, each singlet ground state, i.e.
| X 1S) for atoms or atomic ions, |X 'Y) for linear molecules, and | X 'A) for non-linear
molecules, is not degenerate. Thus, the electronic current densities of the singlet ground

states are always zero, i.e.

jo(r) = i§¥(x) = o, (2.28)

cf. Egs. (2.21) and (2.22).
If there are orbitally degenerate states, i.e. if two or more eigenstates |U;), |¥;), ... with
the same spin quantum numbers S, Mg have the same eigenenergies F; = E; = .. ., then all

possible linear combinations |¥;), |¥;), ... of the orbitally degenerate states |¥;), |¥,), ...
are again stationary electronic eigenstates with the same spin quantum numbers S, Mg
and the same eigenenergies E; = Ej = ... =FE = F; = .... Thus, the electronic
probability densities (Eq. (2.15)) and current densities (Eq. (2.21)) of the new degenerate

states |W,), |¥;), ... are also stationary.

In the present work, we consider non-zero electronic ring currents and associated
induced magnetic fields in atoms, ions, and molecules. Note that the electronic ring
current, defined as the fraction of the electron passing through the perpendicular half
plane per time, should not be confused with the electronic current density j;(r) (Eq.
(2.21)) and the electric ring current, which, in the case of electrons, is the product of the
electronic ring current and the electron charge, cf. Eq. (2.55), whereas for nuclei, it is the
product of the nuclear ring current times the nuclear charge, cf. Eq. (2.327). In order to
obtain non-zero stationary electronic current density j;(r) # 0, an orbitally degenerate
state |¥;) = |V,snmy) must be suitably chosen, cf. Ref. [236]. The condition j;(r) # 0
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implies that the wavefunction of the degenerate state |¥;) be complex. For example, the

linear combinations
1
V2

of two real orbitally degenerate states |V,) and |¥,) with the same spin quantum numbers

V) = (1We) £4[W,)) (2.29)

S, Mg satisty the condition given above, i.e. the wavefunctions W are complex. They have

non-zero electronic current densities, derived from Eq. (2.21)

h
2me

jer=11) = + N/.../(\IJIV\Ify — U, V,)doydqs ... day.  (2.30)

Hence, the complex wavefunctions U1 (Eq. (2.29)) represent stationary electronic ring
currents about the axis of symmetry, i.e. the z-axis. Note that the sign &+ determines the
direction of the electronic ring current. Nevertheless, the electronic probability densities
of the degenerate states |Vy) (Eq. 2.15)

N
pi(r=r11) = 5/.../(|qfx|2+ 0, %) dovdqs ... day (2.31)
are independent of the sign +.

The complex wavefunctions U4 (Eq. (2.29)) can be constructed using non-degenerate

real orbitals as well as degenerate complex ones, e.g.

or = jﬁ (o £ig,), (2.32)

where ¢, and ¢, are the degenerate real orbitals. The current density of the orbital j,(r)

is zero for the real orbitals, and non-zero for the complex orbitals such as ¢, i.e.

) th
Jﬂoi <r> = 2m

CALIECALE (2.33)

e

h
= iTme (0 Vioy — 0, V) # 0.

For atoms, atomic ions, and linear molecules, there is axial symmetry, i.e. the orbitals

in the complex representation can be rewritten as (Eq. (2.32))
ov, = P e (2.34)

where ¢ and My = 0,+£1,£2, ... are the azimuthal angle and magnetic quantum number,
respectively, and ¢y, is independent of ¢. The angular momentum operator
0

Lo = —ihgs (2.35)
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has the eigenvalues Myh = 0,4+ h,£2h,.... The current density of the orbital y,; is
calculated using the Nabla operator in spherical
0 10 1 0
V = —e +-—— =€ (2.36)

or r8989+ rsinf 0¢
or cylindrical coordinates (p = rsin0)

0 10 0

- i —e,, 2.37
\ apep+pa¢e¢+aze ( )
ie.
. Zh * *
Jou, (¥) = 5 (soMLVwML - wMLVsoML) (2.38)
_ MLh ‘SOML|2
= —— ey
Me p

Note that the cylindrical coordinate p and electronic probability density p(r) should not be
confused. The current density of the non-degenerate real (M = 0) or degenerate complex
orbitals (M, # 0) is zero and non-zero, respectively. Furthermore, it is proportional to the
magnetic quantum number M. Its ¢-component is the only one which does not vanish,
and it is independent of ¢. Thus, the orbital ¢y, (Eq. (2.34)) represents the stationary
toroidal electronic ring current about the axis of symmetry (z-axis). The direction of the
electronic ring current of the orbital ¢,;, is determined by the sign of My, but it has no

influence on the electronic probability density p(r) (Eq. (2.15)).

If the CIS degenerate complex wavefunctions W79 (Eq. (2.9)) consists of several CSFs
(Eq. (2.10)) described by the excitations of an electron from an occupied degenerate
complex orbital ¢, to an unoccupied degenerate complex orbital ¢, then the current
density j$1°(r) (Eq. (2.24)) has non-zero contributions from the current densities of the
occupied and unoccupied complex orbitals. For example, if the wavefunction II, of a
linear molecule is governed by an electronic transition from an occupied complex orbital
T, = 7€ to an unoccupied complex orbtial 4, = 0,.e%? (Eq. (2.14)) where 7, and
4. are independent of ¢, then the corresponding current density (Eq. (2.27)) is derived,
using jo(r) =0 (Eq. (2.28)) and Eq. (2.38),

a6 = (28~ ) e (239
The ring current has two contributions of the spatially separated electronic ring currents
with opposite directions, say the positive electronic ring current of the orbital 6, plus the
negative one of the orbital 7, which is mathematically equivalent to the positive one of
the orbital 7_ (Eq. (2.38) and |, |* = |¢_ur, |?) because the occupied orbital m_ still
remains in the CIS wavefunction. Note that the electronic current density of this type
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of state |II,) is not proportional to the magnetic quantum number Mj. These so-called

bidirectional electronic ring currents are, however, not studied in this work.

Here, we consider only the CIS singlet degenerate excited states |¥$%) in which the
dominant electronic excitations are the transitions from different occupied real orbitals
Y, to an unoccupied complex orbital ¢+ or from an occupied complex orbital ¢, to
different unoccupied real orbitals ¢,. The corresponding electronic current densities are
thus (Eqgs. (2.25)-(2.27))

Jgisg):t(r> - j@bi(r)v (240)
Jiai (@) = —Jen(r) = jo(r). (2.41)

These expressions have rather simple forms with just one term, i.e. the electronic current
density of the CIS degenerate state |[UE19) is equal to the electronic current density of
the only unoccoupied or occupied complex orbital pps or .+ (Eq. (2.33)), respectively.
For atoms, atomic ions, or linear molecules, it is proportional to the magnetic quantum
number M, (Eq. (2.38)), and the degenerate states |¥;) represent the stationary unidi-
rectional electronic ring currents about the axis of symmetry where the current direction

is determined by the sign of M.

Now, let us specify the degenerate states (Eq. (2.29)) and degenerate orbitals (Egs.
(2.32) and (2.34)) in complex representation for atoms, atomic ions, linear molecules and
non-linear molecules. First, for atoms and atomic ions with spherical symmetry, the
electronic states |P), | D), |F'), ...are 3-, 5-, and 7-fold orbitally degenerate, respectively.
The simplest degenerate states are thus |P) states which can be represented in real or
complex forms. The real degenerate states are well-known as |P,), |P,), and |P,), and
the corresponding complex representation of | P) states can also be written as |Fy) = |P.)
(M}, = 0) and, according to Eq. (2.29),

1

V2

which possess magnetic quantum numbers M; = 41. For the special case for which

|Pr) = [Pu) = (1) £1|By)) (2.42)

the |Py;) state has the dominant contribution of the electronic transition from different

occupied real orbitals such as ns orbitals to an unoccupied orbital pyq, i.e.

1 )
e = _— - :l: Z = D 6:‘:7/(]3’ 243
b+ DP+1 \/5 (p py) P+1 ( )

where p, and p, are the degenerate real orbitals (Eqs. (2.32) and (2.34)), see Fig. 2.1, and
P41 is independent of ¢, the electronic current density is (Eqgs. (2.38) and (2.40))

.C1S _ L h [P 2.44
JPily"pil(r) - E P €s, ( )
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a)

4e 4o

Figure 2.1: a) Real p,, p,, and complex py = (p, £ ip,)/v/2 (Eq. (2.43)) degenerate orbitals for atoms
and atomic ions (here: 2p,, 2p,, and 2p4 orbitals for the hydrogen atom); b) real 7, m,, and complex
T4 = (mpim,)/V2 (Eq. (2.47)) degenerate orbitals for linear molecules (here: 17, 1m,, and 174 orbitals
for BeO molecule for which the Be nucleus is located behind the O nucleus (red)); c) real e,, e,, and
complex ey = (e, £ ie,)/v/2 (Eq. (2.50)) degenerate orbitals for non-linear molecules (here: 4ey,, 4eyy,
and 4eg4 orbitals for Mg-porphyrin). All orbitals are drawn in the x/y plane; the z-axis is perpendicular

to the plane of the figure. Red arrows indicate the directions of the electronic ring currents.

which is proportional to M; = £1. For electronic transitions from an occupied orbital
p+1 to different unoccupied real orbitals such as ns orbitals, the corresponding current
density of the state |Pyq) is (Egs. (2.38) and (2.41))

CIS ( _ :I:i |pi1‘2 (2 45
Py, pri— I‘) - me p €os . )

which has exactly the same form as Eq. (2.44). Analogous considerations hold for the
other degenerate states such as |Dyy, ) (Mp = +1,£2), |Fy,) (Mp = £1,4£2,43), ...
with dominant electronic transitions from different occupied real orbitals to an unoc-
cupied complex orbital such as dy, = CZMLeiML‘Zs (M, = £1,£2), fu, = fMLeiMW
(M = £1,42,43), ..., or vice versa, respectively. The corresponding electronic current
densities of the states | Dy, ), |Far, ), - .. are given by Eq. (2.38) and they are proportional
to Mp. Note that the states with M = 0, for example |S), |Fy), | Do), |Fo), ... do not

have any electronic ring currents.
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Next, let us consider linear molecules with cylindrical symmetry, i.e. molecular symme-
tries Ciop and Doop, the electronic states |II), |A), |®), ... are orbitally twofold degenerate
whereas the states |X) are orbitally non-degenerate. For example, the complex represen-
tations of the |II) states are (Eq. (2.29))

1
NG

where |II,) and |II,) are the corresponding real representations of the |II) states. These

M) = (T £ 4[I1)) (2.46)

complex states |I1..) have non-zero magnetic quantum numbers My = +1. If the electronic
transitions from different occupied real orbitals no to an unoccupied complex orbital 74,

1.e.

1 .
Ty = —=(m tin,) = Fpe®? (2.47)

V2
are dominant, or vice versa, where 7, and 7, are the real representations of the complex
orbitals 7 (Egs. (2.32), (2.34)), see Fig. 2.1, and 7 is independent of ¢, then the
electronic current density of the state |I11) is calculated as (Egs. (2.38), (2.40), (2.41))
ho|mel?
me p
The current density is proportional to My = +1. This derivation can be easily extended
to other degenerate states such as |[Ay) (M = £2), |®4) (M = £3), ... with dominant

electronic transitions from different occupied real orbitals no to an unoccupied orbital

S (0) = 3l () =

es. (2.48)

such as 04 = &eﬂi‘z’, Oy = qgiei?’id’, ..., or vice versa, respectively. The current densities
of these states are given by Eq. (2.38), and they are propotional to M. Only the states

|X) (Mg =0) do not have any electronic ring currents.

Finally, for non-linear molecules with high molecular symmetries C,,,, Cpp, Dy (0 >

3), Dpa (n > 2), Ty, T; and Oy, orbitally twofold degenerate states |E) can be written

as |E,) and |E,) states in real representation. The corresponding complex states are the
same as Eq. (2.29), i.e.

P2 = (B £ilE). (2.9

For dominant electronic transitions from the unoccupied real orbials to an occupied com-

plex orbital ey, i.e.

1 .
er = 7 (e L iey), (2.50)

or vice versa, where e, and e, are the degenerate real orbitals (Eq. (2.32)), see Fig. 2.1,
the current density of the state |EL) is (Egs. (2.33), (2.40), (2.41))

oS (r) = %95 (r) = il(eIVey—eyVex), (2.51)

‘]Ei —e4 ‘]Ei exr—
F Me

h
iS5 (r) = %5 (r) = F5,- (e;Ve, —e,Vey), (2.52)

JEi,He; JEj:,eﬂ:"
e
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depends on the symmetry of the initial and final real orbitals. For example, the excited
state [4'E,, ) of Mg-porphyrin with D, symmetry has the dominant electronic transition
3ag, — 4e,., but the excited states [3'E, ) and |5'E,;) have the dominant electronic
transitions 2by, — 4e,_ and 3e,y — 2by,, respectively. This difference in transition
symmetry is that the real a (a4, asg, a1y, @2,) and b (byg, bag, b1y, bay,) orbitals have different
symmetry properties, i.e. different eigenvalues +1 and —1 of the symmetry operator 6’4(z)

for molecules with Dy, symmetry,

Cy(z)a(z,y,z) = a(-y,z,2) = a(z,y,2), (2.53)
Ci(2)b(z,y,2) = b(—y,z,2) = =b(zx,y,z), (2.54)

respectively. Thus, in contrast to a orbitals, the direct product of both symmetries b and
e+ = 1/v/2(e, Fie,) yields the opposite symmetry ex = 1/v/2(e, +ie,). The z-component
of the angular momentum for non-linear molecules is not conserved, thus there are no
magnetic quantum numbers M;. FEach state |ELy) has a different expectation value of
L. (Eq. (2.35)). Hence, the formulas for electronic current densities (Egs. (2.51) and
(2.52)) do not contain the factor M. The sign + determines, however, the direction of
the electronic ring current. The |E.) states represent the stationary symmetric electronic
ring currents about the axis of symmetry. These ring currents are no longer toroidal.
Note that only the non-degenerate states |A), |B), |A"), |A”) do not have any electronic

ring currents.

In addition, there are orbitally threefold degenerate states |T') specifically for non-
linear molecules with higher molecular symmetries T}, T, O, and I,. The real represen-
tation of these |T) states are |1,), |T,) and |T) (similar to the |P) states of atoms and
atomic ions), which can be converted into the corresponding complex forms |1y) = |T%)
and |T.) = 1/v2(|T,) +i|T,)) (cf. Eq. (2.42)). The molecules with highest molecular
symmetry [, for example the Cgy molecule, also have orbitally fourfold and fivefold de-
generate states |G) and |H), respectively, but these states |T'), |G), |H) are not further
studied in this work.

The electric ring current I in the degenerate state |¥1) (Eq. (2.29)) can be calculated

using the simple formula

I = —e//ji(r)-ds, (2.55)

where the integral is over the half plane perpendicular to the z/y plane at fixed arbitrary
azimuthal angle ¢ with domains p € [0,00), z € (—00,00) in cylindrical coordinates
(dS = dpdzey) or r € [0,00), 6 € [0,7] in spherical coordinates (dS = rdrdfe,),
and the z-axis is the axis of symmetry, see Fig. 2.2. If the electronic current density is

zero (j(r) = 0), e.g. for all non-degenerate states, then the electric ring current is also
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Figure 2.2: Magnitude (blue torus) and direction (red arrow) of the electronic current density j(r)
about the axis of symmetry (z-axis). The surface S indicates the area through which the electric ring

current I (Eq. (2.55)) is evaluated.

zero (I = 0). For atoms, atomic ions, and linear molecules, ji(r) - dS is independent
of the azimuthal angle ¢ (cf. Egs. (2.38), (2.39), (2.44), (2.45), (2.48)), thus the electric
ring current is also independent of ¢. For non-linear molecules without axial symmetry,
j+(r)-dS generally depends on ¢ but the integral in Eq. (2.55) for an arbitrary stationary
current density j(r) does not depend on ¢. This ¢-independence of the electric ring current

can be proved using the general continuity equation

0

ap(r,t) +Vj(r,t) = 0 (2.56)
where p(r,t) and j(r,t) are the time-dependent electronic probability density and time-
dependent electronic current density, respectively. For stationary states, the probability
density p(r,t) = p(r) (cf. Eq. (2.15)) and the current density j(r,t) = j(r) (cf. Eq. (2.21))
are independent of the time ¢, thus the time-dependent continuity equation (Eq. (2.56))

reduces to the time-independent continuity equation

Vj(r) = 0. (2.57)
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Next, we integrate Eq. (2.57) over the volume V' (dV = pdpd¢pdz) with domains
p € [0,00), ¢ € [p1, 2] (1 < B2), z € (—00,00) and use Gauss’ theorem (dS = dpdze,)

///Vj<p,¢,z)dv (2.58)
| [io622)-as = [ [io.0n.2) - a8

with the fact that the surface integrals for = — +o0o and p — oo are zero due to the

wavefunction and current density vanishing in these infinite domains. Eq. (2.58) yields
1é1) = —c [ [i(p.01,2)-as (2.59)

- —e//j(p,¢2,z) ds
I(2)

Eq. (2.59) shows that the electric ring current I, (Eq. (2.55)) of the stationary current
density ji(r) is independent of the azimuthal angle ¢. Finally, in the CIS approxima-
tion, the mean period T of an electron occupying a degenerate orbital about the axis of

symmetry is calculated according to

T = — . (2.60)

2.2.6 Induced magnetic fields

From electrodynamics we know that the electric ring current I (Eq. (2.55)) or electronic
current density ji(r) (Eq. (2.30)) of the degenerate state |Vi) (Eq. (2.29)) induces a
magnetic field B4 (r). The well-known Biot-Savart law

B.(r) = “Oe///Ji =T gy (2.61)

v —r/|3

is strictly valid only for time-independent electronic current density also within relativistic

theory [237-239]. Using the cylindrical coordinates (p, ¢, z), we have

r = pcospe,+psinge,+ ze, (2.62)
= pe,+ze;
and (Ap = ¢ — ¢')
' = pcosd’ e, +p'sing e, + 2 e, (2.63)
= pey+7ie,

= pcosApe, —p'sinApes + 2’ e,,
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Figure 2.3: Position vectors r, r’ and r — r’ (red arrows) (Eqgs. (2.62), (2.63), (2.68)) and electronic
current density j+(r’) (blue arrow) (Egs. (2.71)-(2.74)) in a cylindrical coordinate system (e,,e4,€.).

where the transformations for basis vectors between Cartesian (e,,e,,e,) and cylindrical

(e,, €4, €,) coordinate systems

e, = cos¢e,+singe, (2.64)
e, = —singe, +cospe, (2.65)

and between two distorted cylindrical (e,, ey, e,) and (e,, ey, e,) coordinate systems

ey, = cosA¢ge,—sinAgpey (2.66)
ey = sinAge,+cosAgey (2.67)

are illustrated in Fig. 2.3. Egs. (2.62) and (2.63) yield (Az = z — 2/)
r—r = (p—pcosAgle,+ p'sinApe,+ Aze, (2.68)
and

3/2

r—1']? = (p2 + p* — 2pp  cos A + (Az)z) (2.69)
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The decomposition of ji(r’) in cylindrical components is
J£ () = Jpx(t)ey + jy(rey + jus(re., (2.70)

where the p- and z’-components j, 1 (r') and j.4(r) vanish only for atoms, atomic ions,
and linear molecules (cf. Egs. (2.38), (2.39), (2.44), (2.45), (2.48)). Using the transforma-
tions for basis vectors e, ey and e, (Egs. (2.66) and (2.67)), the current density ji (1)
(Eq. (2.70)) becomes

je(r) = (Upr(r)cosAp+ jyi(r')sinAg)e, (2.71)

+ (Jorx (') cos Ap — jya(r')sin Ag) ey + jou(r)e,
= Jox(r)ep + Jox(r')eg + jox(r')es,

where the components of j.(r') with respect to the distorted cylindrical coordinate system

(e,, €4, €,) are

Jpt() = Galf)cos Ap + g () sin Ag (272
Jor(r") = Jua(r')cosA¢ — jyi(r')sinAg (2.73)
jz:l:(r/) - jz’:l:(r/)a (274)

see Fig. 2.3. The vector product of j.(r') (Eq. (2.71)) and r — 1’ (Eq. (2.68)) with use of

the usual rules for basis vectors e, x e, = ey, e, X e, = e, and e, x e, = e, leads to

(@) x(r =) = (or(t)Az — jor(v))p'sin Ad)e, (2.75)
(ja () (p— pl 05 AG) — Gpa(r) A2)ey
(i ()0 50 A — g (1) (p — o c03 AG) e
= (Jpa(r)Azcos A¢p — jyi(r)Azsin Ag — jyu(r')p' sin Ag)e,
+(Joa (v )(p — p' cos AP) — jya(r)Azcos A
—je+(r')Azsin Ag)e,
() — Gy ()pcos G + jya(t)psin Ad)e..
In general, e.g. for non-linear molecules, the induced magnetic field B (r) at the position

r (Eq. (2.61)) can be evaluated numerically, together with Egs. (2.69), (2.75) and the
volume element dV' = p' dp’ d¢’ d=’.

However, for atoms, atomic ions, and linear molecules, the expressions in Eq. (2.75) can
be simplified considerably since the p’- and z’-components of ji (r') vanish, i.e. jyo(r') =0
and j,4(r') = 0, and the ¢'-component of j.(r’) is independent of ¢', i.e. jyu(r) =
Jo+(p',2"). In this case, we obtain from Eq. (2.75)

je(@) x (r=1") = jusr(p,2)(Az(cos Ape, —sin Apey) + (p — pcos Ad)e,). (2.76)
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Then, we apply Egs. (2.69), (2.76) and the Biot-Savart law (2.61), and notice that the
integral

/27r sin A¢
0 (p?+p? —2pp cos Ap + (Az)?)

5 o’ (2.77)

o /vb—% sin A¢
¢ (p? + p = 2pp' cos A + (Az)2)/?
¢ in A
_ sin A¢ 5 A0
¢—2m (p? + p'2 — 2pp’ cos Ag + (Az)?)
sin A¢

B /—” (2 + p2 — 2pp' cos Ag + (Az)2)*?

dA¢

dA¢ = 0

after replacing the cyclic domain [¢ — 27, ¢| by [—m, 7| is zero because the integrand is
an odd function with respect to A¢. Thus, the induced magnetic field B4 (r) for atoms,

atomic ions, and linear molecules is given by (Eq. (2.61))

e o oo .
Bor) = —L5 [ pdp [ s a2 (2.78)
/27r (z —2)cosApe, + (p' — pcos Agp)e,
0

dA
(0% + p2 = 2pp' cos A + (2 — 2)2)*? ’

where the cyclic domain [0, 27] replaces [¢ — 27, ¢] (cf. Eq. (2.77)). The induced magnetic
field B4 (r) is independent of the azimuthal angle ¢ (cylindrical symmetry) and has no

¢-component.

Now we focus on the calculation of the induced magnetic field B.(z) along the axis of
symmetry, i.e. r = ze, (Eq. (2.62)), first for the general case, i.e. for non-linear molecules.

Using p = 0 and setting ¢ = 0 arbitrarily for the z-axis, we have (Eq. (2.69))

3/2

r—r']? = (p’2 + (Az)Q) (2.79)
and (Eq. (2.75))
je() x (r=1") = (Jpe(r)Azcosd + jyr(r)Azsing' + jo(r')p sing'e,
—(Joe(r)p cosd + jya(r)Azcos @ — jyi(r)Azsing')e,
—{—j¢/i(r/)pl e,. (280)

Since |r — r'|* (Eq. (2.79)) no longer depends on ¢/, the integration over ¢ in Eq. (2.61)

can be carried out.

Next, we show that the integrals of the p- and ¢-components of jo(r') x (r —r’) (Eq.
(2.80)) over ¢' with domain ¢’ = [0, 27| are zero. In general, e.g. for non-linear molecules,

the components j,4(r'), jy+(r') and 7.4 (r") depend on all cylindrical coordinates p’, ¢’
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and 2. For molecules with symmetry number n > 2, the electronic current density is

periodic with respect to the azimuthal angle ¢/, i.e.
j=(p ¢ 2) = js (p', ¢+ QWT, z’) (m=0,4+1,£2,...), (2.81)
n

thus their p'-, ¢’- and z’-components are also periodic. The periodic current density

j=(p ¢, 2") (Eq. (2.81)) can be expanded in terms of the sinus and cosinus functions, i.e.

je(r) = ao¢(ﬂ'72')+§:(aki(ﬂ',zl)008(/’f¢')+bki(P'>Z')Sin(/f¢')) (2.82)

k=1

> k
= aps(p,?) + Z (aki(p’, 2') cos (k:gb’ + 27r;n>

k=1

+by(p, ') sin (kgb’ = 27Tkm>>
n

= Qo+ (pla Z/) + Z (ak:t(p/7 Z,) COS(ngb,) + bki(Pl7 Z,) Sln(k¢,)) )
k=n,2n,...
i.e. the coefficients a1 (p’, z’) and by (p’, 2') must be zero for k # n,2n,3n,... (n > 2).
Hence, the current density ji(r') contains the ¢/-independent term ag(p’, z’) and terms
of the trigonometric functions cos(k¢’) and sin(k¢’) (k = n,2n,3n,...). The integrals for
n>2

/O%ji(r') cos(¢)dg' = apsr(p',2) /027r cos ¢'d¢’ (2.83)

+ i (a (0, 7)) /27r cos(kg') cos ¢’ dg' + by (p', 2") /27T sin(k¢') cos ¢’ d¢’) =0
k=n,2n,... = ’ 0 ke ’ 0

and

21 21

/0 je(t)sin(¢) d¢' = ape(p, ) /0 sin ¢'de’ (2.84)

. (a (o, ) / 7 cos(ke) sin ¢ g’ + i (4, ) / 7 sin(kg!) sin ¢ d¢’> _
k=n2n,... o ’ 0 ke ’ 0

vanish because all trigonometric integrals in Eqs. (2.83) and (2.84) are zero due to the or-
thogonality of the trigonometric functions. Thus, the integrals of the p- and ¢-components
of ju(r') x (r — 1) (Eq. (2.80)) over ¢ are zero.

The induced magnetic field B4 (z) along the z-axis for non-linear molecules using Eqs.
(2.61), (2.79), (2.80), (2.82)—(2.84) is given by

_ Moe ¢'i Jo=(p,2) /
Bi(z) = ——/— ; p/ Ptz )" dz'e, (2.85)
where
—_— IR
Jo+(p/s2) = Jox(p' ¢, 2") Ao/ (2.86)

27 Jo
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is the ¢’ component of the electronic current density jy 1 (r') averaged over the azimuthal
angle ¢'. There are no p- and ¢-components of the induced magnetic field B.(2), i.e. it
is directed towards the z-axis. Only the averaged current density m determines
the value of B4 (z). For atoms, atomic ions, and linear molecules with infinite symmetry
number n — oo, the ¢’-component of the electronic current density jy+(r') does not
depend on the azimuthal angle ¢’ (cf. Eqgs. (2.38), (2.39), (2.44), (2.45), (2.48)), i.e. for
n — oo all coefficients a4 (p', 2') and b1 (p', 2') (k = 1,2,3,...) must be zero (Eq. (2.82)).
Thus, it yields jy+(p/, 2') = jo+(p, ') (Eq. (2.86)) and

_ e [ o [ j¢’i(p/72/) !
B.i(z) = 5 ) P dp /_OO (p’2+(z—z’)2)3/2 dz'e, (2.87)

which can also be obtained from Eq. (2.78), using p = 0.

For example, the excited state |II;) of the linear molecule with dominant electronic
transitions from occupied no orbitals to an unoccupied orbital w1 has the electric ring
current (Egs. (2.48), (2.55))

eh [oodp [
Lo= w0 [0 o) ds (2:88)

Me

and the induced magnetic field (Egs. (2.48), (2.78))

h o0 [e'e)
B.(r) = 3L /O a [ malp (2.89)

4mm,

/QW (z —2")cos Ape,+ (p) — pcos Ag)e,
0

dA
(P2 + p? —2pp' cos AP + (z — Z/)2)3/2 ¢

and for p =0 (Eqs. (2.48), (2.87))

h 00 fo%e) / 7 \|2
Bi(Z) — :Fluoe / pl dp// |7T:l:(p ) ¢ ’ < )| dZ/ e, (290)
2me Jo U0 e (0P 4 (2= )

where the orbital density |71 (p, ¢, 2)|? is independent of the azimuthal angle ¢.

For the calculation of the approximate induced magnetic field, the ¢-component of the

electronic current density in the current loop model is given by

where [ = —ejy < 0, R and (0,0, Z) are the electric ring current, the ring current radius
and the position of the center of the current loop, respectively. The formula for the

induced magnetic field B (z) along the z-axis (Eq. (2.85)) is thus simplified to

ol R?
+ 3/2
2 (R + (- 2))

Bi(z) = e, (2.92)
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and for z = Z, i.e. the induced magnetic field at the center of the current loop is [240]

I
B.(Z) = i%ez. (2.93)

In the case in which an electron with angular momentum L, = m.R?w circulates in the

current loop, the electric ring current is calculated clasically as

e ew el
] = —— — _ - 2.94
T 2m 21 R2 (2.94)

where T and w = 27/T are the period and the angular velocity, respectively.

2.2.7 Mean ring current radius

For non-zero electronic ring currents, there are different versions for the calculation of the

mean ring current radius

R = (p); = PR (2.95)
_ —1\—1 _ Iy

fo = S ) s 250
_ - -1/2 Iy

R72 - <p >j - \/—effp‘2ji(r)-ds (297)

where the index j means that the distribution in the integral is the electronic current
density j+(r) instead of the electronic probability density pi(r). Since the mean radius
R = (p) = (U;|p|¥;) = [ [ [ ppi(r)dV can also be calculated for non-degenerate states
without carrying electronic ring currents, the mean radius R and the mean ring current
radii Ry, R_; and R_, are, in general, different. For atoms, atomic ions, and linear
molecules the mean ring current radii Ry, R_; and R_, of the degenerate orbital (I # 0)
are smaller than the mean radius R of the same orbital because the electronic current
density contains the additional factor 1/p (cf. Eqgs. (2.38), (2.39), (2.44), (2.45), (2.48)).
Nevertheless, for large ring-shaped molecules the mean radius of the w-conjugated orbitals
is similar to the mean ring current radius of the corresponding electronic ring currents,
i.e. in this case (p) ~ Ry ~ R_; ~ R_,. For the calculation of the approximate induced
magnetic fields and electric ring currents in the current loop model, the mean ring current
radius R_; and R_5 should be used instead of R; because the induced magnetic field at
the center of the current loop and the electric ring current are inversely proportional to
R (Eq. (2.93)) and R? (Eq. (2.94)), respectively.
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Mg-porphyrin

Figure 2.4: A right (+) circularly polarized laser pulse impinging on the aligned ring-shaped molecule
Mg-porphyrin and propagating along the axis of symmetry (z-axis). The arrows indicate the central

sequence of laser cycles as they would be “seen” by the molecule when the pulse passes by.

2.3 Electron dynamics

2.3.1 Circularly polarized laser pulses

A right (4) or left (—) circularly polarized laser pulse propagating along the axis of
symmetry is the natural choice for the electronic excitation from the non-degenerate
ground singlet state, i.e. | X 1S) for atoms and atomic ions, | X '3) for linear molecules,
and | X 'A) for ring-shaped molecules, to the degenerate excited singlet state, i.e. |'P,)
or ['P_) for atoms and atomic ions, |'TI,) or ['II_) for linear molecules, and ['F,) or
|'E_) for ring-shaped molecules, respectively. These degenerate states carry anti-clockwise
(4) or clockwise (—) electronic ring currents with non-zero z-components of the angular
momentum (ﬁz) # 0. The laser-driven dynamics is illustrated in Fig. 2.4 schematically

for the aligned ring-shaped molecule Mg-porphyrin.

Note that for molecules, the propagating axis of the circularly (¢) polarized laser pulse
is chosen such that it is parallel to the axis of symmetry of the molecule, i.e. the non-polar
or polar molecule has to be pre-aligned or pre-oriented along the z-axis by means of a

linearly (1) polarized laser pulse, respectively, see Section 2.6.
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Starting from the time-dependent right (4) or left (—) circularly polarized vector

potential centered at the time t. and propagating along the z-axis

P sin(we(t — ) + 1)
A(t) = —;Z Su(t —te) | Feos(we(t —te) +ne) | (2.98)
0

we derive the time-dependent right (+) or left (—) circularly polarized electric field
d

E..(t) = 1 A (t) (2.99)
cos(we(t —te) + 1) sin(we(t — te) + 1)
- gcsn(t - tc) + Sin(wc(t - tc) + nc) + U‘TZ Sn(t - tc) + COS(WC('[I - tc) + 770)
0 0

with amplitude &. and laser frequency w.. We will show in Section 2.3.2 that the phase 7,
is irrelevant for circularly polarized laser pulses, and is set to zero in all of the applications

discussed here.

The laser envelope s,(t) is given by

cos” (%) for |t — t.| < &
0 for |t —t.| > ‘e

st —t,) = (2.100)

where n > 0 and ¢, . are the exponent of the trigonometric envelope and the total pulse
duration, respectively [241]. Thus, the initial and final times of the laser pulse are set
to tg = t. — tp./2 and t; = t. + t,./2, respectively. The full width at half maximum
(FWHM) 7 of s2(t), i.e. s2 (7/2) = 3, is

ntpe
T = fuly, (2.101)
T
where
fn = 2arccos (Q_ﬁ). (2.102)

The FWHM 7 is denoted as the effective pulse duration of the laser envelope. The
corresponding Gaussian envelope centered at the time ¢. with the same effective pulse

duration 7 is
s(t—t,) = e 2@t/ (2.103)

for t € (—o00,00). We have shown that for the same effective pulse duration 7 the trigono-
metric envelope s, (t —t.) (Eq. (2.100)) converges to the Gaussian envelope s(t —t..) (Eq.
(2.103)) as n tends to infinity, i.e.

s(t—t.) = lim s,(t—t.), (2.104)

n—oo
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and we determined that the deviation between the trigonometric envelope for n = 20
and the Gaussian envelope is already very small, i.e. max(s(t) — sq90(t)) = 0.0077 [241].
Trigonometric envelopes are advantageous because of their finite pulse durations and will
be used in the following applications, in particular for n = 2 and n = 20. The Fourier

transform of the trigonometric envelope s, (t) for n > 0 is [241]

1 oo , 2~ =12 /xT 1
bu(k) = —/ su(t)e®dt = . )f (n+ lT - (2.105)

where I'(x) is the Gamma function. Again, §,(k) converges to the Fourier transform of

the Gaussian envelope §(t) [241]

L eikQTQ/(Bln@))' (2106)

n=o0 2, /In(2)

(k) = lim su(k) — \/127 | stetar =

The FWHM &, of §2(k), i.e. 52 (k,/2)/82(0) = 3, and the spectral width ', = k,h
must be solved numerically because the corresponding equation is non-linear and includes
polynomials and trigonometric functions whereas the corresponding spectral width I' = xkh
of the Gaussian envelope, where x is the FWHM of §%(k), can be solved analytically, i.e.
the relation between the spectral width I' and the effective pulse duration 7 of the Gaussian

envelope is
7 = 4ln2h ~ 2.773h, (2.107)

and the corresponding relations for trigonometric envelopes, e.g. for n = 2 and n = 20,
are [241]

Q

Tyr 3.295h (2.108)
Ty ~ 2.826%. (2.109)

Furthermore, the spectral width of the trigonometric envelope converges to that of the

Gaussian envelope, i.e.

I = limI, (2.110)

n—oo

because of the convergence of §,(k) (Eq. (2.106)).

The electric field (Eq. (2.99)) satisfies the condition of the far-field approximation of
Maxwell’s equations automatically [141,242,243], i.e.

/OO E.(t)dt = 0. (2.111)

—0o0

Using the dimensionsless variables y = t/7, y. = t./7 and m. = w.7 where y and y.

are times in units of 7 and m./(27) is approximately equal to the number of laser cycles
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during 7, the electric field (Eq. (2.99)) can be rewritten as

cos(me(y — ye) + ne)
E(y) = &3y —ye) | Esin(me(y —ye) + 1) (2.112)
0

d Sin(mc(y - yc) + 776)
+ECC (dy Sy — ?/c)> F cos(me(y — ye) + ne)
0

where

(2.113)

~ _ cos” ((y_yc)fn) f0r|y_yc| < i
$n(Y — Ye) -
0 for |y —ye[ > 57
Thus, for laser pulses with many laser cycles (m, > 1) the second term of the electric
field (Egs. (2.99) and (2.112)) can be neglected and the condition (2.111) is approximately
valid whereas for few-cycle laser pulses the second term of the electric field must be
included. Moreover, for n > 2 the electric field (Egs. (2.99) and (2.112)) is continuously

differentiable [241].

The time-dependent intensity is calculated as [244]
I(t) = cgo|Eex(t)] (2.114)

which is independent of the polarization sense. For laser pulses with many cycles (m, > 1)

the time-dependent intensity is approximately given by

I(t) = ceoE?s%(t). (2.115)
The corresponding peak values are I,4z.. = cgo max |E..()]? and Lyupe &~ c£0E2 (m, >
1). The FWHM of the intensity is denoted as the effective pulse duration of the laser
pulse 7. and for laser pulses with many cycles it is approximately equal to the effective
pulse duration of the laser envelope 7 (Eq. (2.101)). In the following applications for
the induction of electronic ring currents in the electronic excited degenerate states, the
effective pulse durations 7. should be shorter than the vibrational periods in the excited
states, thus we can assume that the nuclei are frozen during the Franck-Condon (FC)

electronic excitations by means of the right or left circularly polarized laser pulse.

2.3.2 Time-dependent electronic Schrodinger equation

The laser-driven electron dynamics for fixed nuclei is described by the time-dependent

non-relativistic electronic Schrodinger equation (TDSE) within the electric dipole ap-
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proximation
L0 3
zh& |W(t)) = He(t)|¥(t)) (2.116)

where ]:Iel(t) is the time-dependent electronic Hamiltonian

~

Ha(t) = Hy—M- E.(t). (2.117)

H,, E..(t) and M are the time-independent electronic Hamiltonian (Eq. (2.2)), the time-
dependent right (+) or left (—) circularly polarized electric field (Eq. (2.99)) and the

electric dipole operator
N N’
M = —e) r,+ Y, Z.Rq, (2.118)
n=1 a=1

respectively. Since the z-component of the electic field E.(¢) (Eq. (2.99)) is zero, the

interaction term becomes
—M-E..(t) = —M,E. ,(t)— MyEci’y(t) (2.119)

where M,, M, and E.4 ,(t), E.,(t) are the z- and y-components of the dipole operator
M and electric field E.4 (%), respectively. Thus, the interaction term (Eq. (2.119)) is
independent of the z-component of the dipole operator M,.

The time-dependent electronic state |¥(¢)) in Eq. (2.116) can be expanded in terms
of electronic eigenstates |¥;) of Hy (Eq. (2.1)) with electronic quantum numbers i =
0,1,2,... and corresponding eigenenergies F;, i.e.

tmazx

W(t) = ;Ci(t)\%emf‘”“/h (2.120)

where C;(t) and 4,,,, + 1 are the time-dependent coefficients of electronic states |¥;) and
the total number of electronic states included in this epxansion, respectively. The initial

condition at the initial time ¢, is given by
[W(to)) = [Wo) (2.121)

where |¥y) is the electronic ground state, for example | X 1S) for atoms and atomic ions,
|X ') for linear molecules, and | X 'A) for ring-shaped molecules. The time-dependent
electronic state |¥(t)) (Eq. (2.120)) does not include any continuum states describing the
ionization because we have assumed that the ionization potentials are very high compared
to the small excitation energies of target degenerate states carrying electronic ring currents

and the maximum intensity of the laser pulse ;4. is well below the Keldysh limit [36].
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Inserting the ansatz (Egs. (2.120) and (2.121)) into the Schrédinger equation (Egs.
(2.116) and (2.117)) yields the equivalent set of differential equations for the time-

dependent coefficients

mjtoi(t) = S H B0 (=0,1,2. i) (2.122)
7=0

with initial condition
Ci(to) = doui (1=0,1,2,...,imaz) (2.123)

and time-dependent matrix elements

Hij(t) = =My Ee(t)e ™70 (G5 =0,1,2,...  imaz), (2.124)

where
wii = EJ;E (i,7=0,1,2,.. . imas) (2.125)

and
M; = (U;M|T) (5,5 =0,1,2,. .. imaz) (2.126)

are the transition frequencies and the transition dipole matrix elements, respectively.

Again, since E., , = 0 (Eq. (2.99)) the matrix elements (Eq. (2.124)) are rewritten as
Hij(t) = —(MijuFeso(t) + My Eepy(t)e @00 (G5 =0.1,2, ... ippas) (2.127)

and are independent of the z-component of the transition dipole matrix elements M;; ..
Note that for symmetry reasons (atoms, atomic ions, aligned linear and ring-shaped
molecules), the diagonal elements of the z- and y-components of the dipole matrix are zero,

M;; » = M;;,, = 0, thus all diagonal matrix elements H;;(t) are also zero, i.e. H;;(t) = 0.

The electronic transition from the state |U;) to the state |¥;) is dipole-allowed if the
corresponding x- or y-components of the transition dipole matrix element are non-zero,
i.e. M. # 0 or M, # 0, respectively. Thus, such electronic transitions [1S) < [ Py),
'P.)y « |'Dy), |'P.) < ['D_y), |'"Py) < |'Dy),... for atoms and atomic ions,
'Y« [MIL), '37) « |MIL), ML) < AL, ML) < [*AL),... for aligned lin-
ear molecules with molecular symmetry Cy, and [*A;,) < ['E.L), [*As,) < ['E.),
'Big) < ['Euz), |'Bag) < ['Euz), ['Ar) < ['Ege), ['An) < ['Egs), ['Bra) < ['Egs),
|'Ba,) < |'"E,s) for aligned ring-shaped molecules with molecular symmetry Dy, are
allowed whereas other electronic transitions in electric dipole approximation are forbid-
den. For example, the dipole matrix element (Eq. (2.126)) of the dipole-allowed elec-

tronic transition |Wy) < [Uy) (|¥,) is the total symmetric state), such as |1S) < |1 Py),
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[15+) — |'I4), and ['Ay,) < |'E,4), using Eq. (2.29), is evaluated as

(UMW) = = (0, M]T,) % i, M],)) (2.128)

-5

= ﬁ (s | M| V) e, £ i<\1jt8|My’\Py>ey>
<\Pt8|Mx|\Ijﬂc>

:T +2
0

where for symmetry reasons (Wi |M,|V,) = (Uu,|M,|¥,). Since (Vi|M[|¥;) =
(W |M|WL)*, it is the conjugate form of Eq. (2.128), i.e.

<\I’t5‘Mm“Ijx>

N
0

(W[ M| Wy) (2.129)

where (U | M,|V,) = (W, |M,|Vys) is real.

The differential equations (Eq. (2.122)) with initial condition (Eq. (2.123)) are then
solved by means of the Runge-Kutta method of fourth order (Simpson rule) [245] with
a small time step size of At = las. Note that the total number of electronic states
tmaz + 1 should be large enough such that the numerical results converge well. Finally,

the time-dependent populations of electronic states |¥;) are calculated as

Pt) = |G (=0,1,2,. . ima)- (2.130)

Next, let us show that the time-dependent populations P;(t) for atoms, atomic ions,
aligned linear and ring-shaped molecules are independent of the phase 7, of the circularly
polarized laser pulse (Eq. (2.99)), which is now defined as E..(t,7.). Using the unitary

matrix

cosn. —sinn. 0
D(n.) = | sinnp. cosm. 0 |, (2.131)
0 0 1

the time- and phase-dependent electric field E..(t,7.) (Eq. (2.99)) is equal to the product
of the unitary matrix D(4n.) and the vector of the electric field without phase E . (t,7. =
0), i.e.

Ece(t,n.) = D(Eno)Ecs(t,n. = 0), (2.132)



2.3. ELECTRON DYNAMICS 39

since
cos”n. Fsinn. 0 cos(we(t —t.))

D(£no)Ecs(t,n. =0) = Esult —te) | +sinn. cosn. 0 +sin(w,(t — t.))

0 0 1 0

cosn. Fsinn. 0 sin(we(t — t.))

+—$,(t —t:) | £sinn. cosm. 0 F cos(we(t —t.))
) 0 0 1 0
(2.133)

cos(we(t — t.)) cosn, — sin(w.(t — t.)) sin 7,
= Esp(t —te) | £cos(we(t —t.))sinn, £ sin(w.(t — t.)) cosn,
0
sin(we(t — t¢)) cos ne + cos(we(t — tc)) sinm,
+i $n(t —te)| £sin(w.(t — t.))sinn, F cos(w.(t — t.)) cosn,
0

cos(we(t — te) +1c)
= Esult —te) | £sin(w(t —t.) +ne)
0

. sin(we(t — t.) + 1)
—|—w—c Sn(t —te) | Fcos(we(t —t.) +ne)
0

= Ec:l: (t, 77c)

Then, the time- and phase-dependent matrix elements H;;(¢,n.) (Eq. (2.124)) are rewrit-

ten as

Hij(t,n.) = —MJD(£ne)Eex(t, ne = 0)e 710 (2.134)
cosn. Fsinn. 0
= —(Mijz, Mijy, M) | £sinm. cosne 0 | Bex(t,ne = 0)e i)
0 0 1
M;; . cosn. &= M;j, sinn,
= - :FMij,;t sin Ne + Mij,y COS )¢ : Ecj: (t, Ne = O)G_iwji(t_to)
0
where its z-component is zero because of zero z-component of the circularly polar-

ized electric field. For example, for right (+) circularly polarized electric field, the

matrix elements for the electronic transitions |¥;) = |U,,) < |¥;) = |¥;4) and
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|W;) = |U,45) < |Vg) = |V ), using Eq. (2.128), are

Mij,z‘ COS )¢ + Mij,y sin Ne
Hij(t,ne) = —| —Mjjsinn, + My, cosn. | - Eer(t,ne = 0)e~wiilt=to)  (2135)
0

(U, ML) COS 1) + 251N 1),
i,ts x| *j,x

= — \/§ —sin Ne + i cos Ne . Ec+ (t, Ne = O)Q—iwji(t—to)
0
(Ve M) [
- ptsl x| * g . _ —iwji(t—to) Line
= - ~Ei (t,n. =0)e " e
\/§ 7
0

= _Mij : Ec+(t7 Te = 0)67Wji(t7t0)emc
HZ](t, Ne = O)Binc

and
Hy(t,n.) = Hi(t,ne = 0)e ™, (2.136)

respectively. The differential equations (Eq. (2.122)) for the time- and phase-dependent
coefficients C;(t,n.), Cj(t,n.), Cr(t,n.), ... of the electronic states |U;) = |V, ), |¥;) =
W5 1), [We) =Wk ), ..., respectively, are

_d i }
ih - Cilt, 1) = S Hy(t, 1 = 0)Cy (1 n)e™ + 3 Hun(t, 10 = 0)Ci(t, o)™ 4+
J k
(2.137)
d .
ih 2. Cy(tne) = Z (e = 0)Cy(t, e + - (2138
ih%c’“@’ ne) = D Hyilt:ne = 0)Ciltne)e™™ + -, (2.139)

Multiplying e” and e~ in Eqgs. (2.138) and (2.139) yields the corresponding differential

equations

d ~ .
J k

d
hdtC(t ne) = Z it ne = 0)Ci(t,me) 4+ -+, (2.141)

Ld o~ ~
Zhﬁok(tvnc) = ZHki(t7776_ )C(t 7]0) ) (2142)
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where Ci(t,n.) = Ci(t,n.), Cj(t,ne) = C;(t,ne)e™, Ci(t,ne) = Ci(t,n.)e ", .... Since
these coefficients are just the solutions for 7, = 0, i.e. Ci(t,n.) = C;(t,m. = 0), Cj(t,m.) =
C;(t,ne. = 0), Cr(t,n.) = Ci(t,me = 0), ... (Egs. (2.137)-(2.142)), we obtain the time-
dependent coefficients C;(t,n.) = Ci(t,n. = 0), C;(t,n.) = Ci(t,n. = 0)e~", Cy(t,n.) =
Ci(t,n. = 0)e, ... of the electronic states |U;) = [, s), |¥;) = [V 1), Vi) = [Ty ),

..., and the corresponding populations are independent of the phase 7., i.e.

Pi(t,n:) = |Cit,ne)|* = |Ci(t,n. = 0)]* = Pi(t,n. = 0) (2.143)
Pi(t,n.) = |Ci(t.ne)|* = |Cj(t,n. = 0)e™™|* = |Cj(t,ne. = 0)] = Py(t, . = 0) (2.144)
Py(t,ne) = |Ck(t.ne)|* = |Ci(t, ne = 0)e™[* = [Ck(t, e = 0)* = Pi(t,n. = 0) (2.145)

SN

respectively. It can be shown for other electronic states with different symmetries, for
example [' Do), ['S7), [*AL), |'Byy), - . ., that the populations of all electronic states are

independent of the phase 7. of the circularly polarized electric field (Eq. (2.99)).

2.3.3 Three-state model

For the dominant electronic transition from the ground (total symmetric) singlet state
|Wo) to the excited degenerate state |¥,) or |[¥_) by means of a circularly polarized
laser pulse, the effective pulse duration 7 should be chosen such that the corresponding
spectral width I' (estimated from Egs. (2.107)—(2.109) depending on the exponent n of
the trigonometric envelope) is smaller than the energy gap between the target state |¥.)
and neighboring states with the same symmetry. In this case, the ansatz for the time-
dependent electronic state |¥U(t)) (Eq. (2.120)) reduces to approximately three dominant

contributions of |¥y) and |V.) states, i.e.

W(t)) =~ O()(t)|\:[/0>€_iE0(t_t0)/h+C+(t>|\1[+>€_iE+(t_t0)/h+O_(t)|\11_>€_iE7(t_t0)/h‘
(2.146)

Inserting this ansatz into the differential equation (2.122) for the time-dependent coeffi-
cients Cy, C';, and C_ yields

z’htho(t) = Ho ()C4(t) + Ho_ (t)C_(2), (2.147)
mjtq(t) = Hoo(t)Co(t), (2.148)
Lo ) = Howo) (2.149)

dt



42 CHAPTER 2. THEORY

Note that the electronic transition |V, ) < |¥_) is dipole-forbidden. Using Eqs. (2.124),
(2.128), and (2.129) for the matrix elements H,;(¢) and dipole matrix elements M;; with

v SRR (2.150)

respectively, we obtain
z’hjtco(t) = M ((Beta + 1Bt y)Cr(t) + (oo — iBesy) C-() 17, (2.151)
mjt@(t) = —~M(Eu, — iF.s,)Co(t)e™ ") (2.152)
ihi(]_(t) = ~M(Eery +iF.4,)Co(t)e™ "), (2.153)

where w = w9 = w_¢ (Eq. (2.125)) is the transition frequency. For the right circularly
polarized laser pulse with resonant frequency w. = w, zero phase 7. = 0, and many laser
cycles (m, > 1), i.e. the second term of the electric field (Eq. (2.99)) is neglected, the

differential equations are simplified to

d to | .

ihaCo(t) = —ME.s, <t —ty — g)(@(t)e—mnc/uc_ (t)e-ﬂwte%w@to”nc/?)) ,(2.154)
d tpe -

haCalt) = —MEasy (1=t = 5 ) Coft)el”, (2.155)
d the , .

ih%C'_(t) — _MEs, (t - 1; ) Cy(t) 2t =Gt ttne/2) (2.156)

where t. =ty + t,./2 was used. Applying the rotating wave approximation (RWA), i.e.
neglecting the rapidly oscillating terms e*2%! (cf. Refs. [246-249]), we obtain

d p,c —
ih=Colt) = —MEesy (t —to— 3 > Oy (t)e el (2.157)
d lpec ;
th=Ce(t) = —Méesn <t —to— g > Co(t)e"re/?, (2.158)
z’hjt()(t) ) (2.159)

Starting from Cy(tg) = 1, C(ty) = 0, and C_(ty) = 0, the analytical solutions for the

time-dependent coefficients and the corresponding populations are

ME, [t t
Co(t) = cos (5/ Sn (t’ — tp — p’c) dt’) (2.160)
h to 2
M C ¢ / t C / ]
C.t) = isin( hg / Sn (t —to — ;)dt)ewtwﬂ (2.161)
to
C_(t) =0 (2.162)
and
M C ¢ / t C /
Py(t) = cos2( £ / Sn, (t —tyg— 2 )dt) (2.163)
h to 2
ME, [t the\ ..,
P.(t) = sin2< : Sn (t’ —to — g’ )dt) (2.164)
to

P(t) = 0 (2.165)
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for tg <t <ty = to + t,., respectively. Equations (2.163)-(2.165) describe a transfer
of population selectively from the ground state |Wy) to the excited state |V, ) (|J¥_)) by
means of a right (left) circularly polarized laser pulse, neglecting any population of the
|W_) (]Wy)) state. For the laser pulse with n = 2, denoted as the reference pulse, the
integral, using Eq. (2.100), becomes

¢ t t t'—t 1
/ S5 (t’—to— ”) dt' = / cos? [ O ) ar (2.166)
to 2 to , 2

= == cos? x dx
T J-3
t—tg 1
t c 1 . tpe 2
- % <Z + 45111(295)) —E? ! 2)

t—ty ty. . t—ty 1
= 0+Lsm 21 0 _ - )
2 4m lpe 2

At the final time ¢y = ¢y + ¢, ., the integral yields

¢ tpe tpe
/ ! S9 (t/ - to - p,) dt/ = L. (2167)
to 2 2

If the population is completely transferred from the ground state |¥) to the target state
“I/+>, l.e.

Py(ty) = COSQ<M§;;W>:O (2.168)
Py (ty) = sin2(M§Chtp’c):1 (2.169)
P_(ty) = 0, (2.170)
then the condition
Wht”| = (2.171)

must be satisfied. If the laser amplitude &, and the pulse duration ¢, . are chosen such that
the condition (2.171) is fulfilled, then the laser pulse is denoted as a right (left) circularly
polarized 7 laser pulse. On the other hand, the half population transfer from the ground
state W) to the excited state |W, )

Py(ty) = cos? (M;ZO) = ; (2.172)
P.(t;) = sin® (Mg;_fi”’c> = ; (2.173)
P.(t;) = 0, (2.174)
yields the condition for a right (left) circularly polarized 7/2 laser pulse
L (2.175)

n 2
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Figure 2.5: Time-dependent populations Py(t) (red), Py (¢) (blue), P_(t) (green) (Egs. (2.163)—(2.165))
of three states |Ug), |¥4), |P_) starting from Py(to) = 1, P (to) = 0, P_(to) = 0 for a right circularly
polarized (a) m (Eq. (2.171)) or (b) /2 (Eq. (2.175)) laser pulse (n = 2).

Inserting condition (2.171) or (2.175) in Eqgs. (2.163)—(2.165) for the complete or half
population transfer by means of a right circularly polarized 7 or 7/2 laser pulse (n = 2),
respectively, yields the corresponding time-dependent populations FPy(t), P.(t), P_(t)
(Egs. (2.163)—(2.165)) of three states |W¥q), |V,), |¥_), shown in Fig. 2.5. The state after
the end of the laser pulse (¢t > tf) is stationary for 7 laser pulses and non-stationary for
7/2 laser pulses. This non-stationary state is the superposition of |¥g) and |V, ) or [¥_)
states, depending on the laser polarization, i.e. hybrid state. In this case, the electronic

probability and current densities after the end of the laser pulse are no longer stationary.

Without applying the rotating wave approximation, the differential equations (2.154)—
(2.156) must be solved numerically, e.g. by means of the Runge-Kutta method. Never-
theless the resulting populations Py(t), Py (t), P_(t) differ from the approximative pop-
ulations (Egs. (2.163)—(2.165)) slightly for right or left circularly polarized laser pulses
(with many cycles) whereas the corresponding difference is larger for linearly polarized
laser pulses because the non-zero xz-component of the resonant linearly z-polarized elec-
tric field is proportional to cos(wt) = (e + ¢“*)/2 and multiplying this factor with
et (cf. Eq. (2.152)) yields (1 + €?*)/2. In other words, the term e*“! occurs in the
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differential equation for the time-dependent coefficient C,(t) whereas it does not occur
in the differential equation for C (¢) (Eq. (2.155)). Thus, we do not find any observable
fast-oscillations with double frequency 2w in the time-dependent population Py (t) of the
|W ) state excited by the right circularly polarized laser pulse, even beyond the rotating
wave approximation. Because the population P_(t) is negligible during the excitation,
there are also no observable fast-oscillations in the population Py(t) of the | W) state (cf.
Eq. (2.154)). Finally, there are fast-oscillations observed in the population P_(t) of the
|W_) state, but they are marginal.

Beyond the three-state model as well as the rotating wave approximation, the differen-
tial equations (2.122) must be solved numerically, for given laser parameters, in particular
the effective pulse duration 7, the laser amplitude &., the exponent of the trigonometric
envelope n (n = 2 or n = 20), and the laser frequency w,; in the following applications,
the phase 7. is set to zero for simplicity. The effective pulse duration 7, is chosen such
that it is shorter than the vibrational periods in the electronic states and larger than the
time corresponding to the maximal spectral half-width I',,,,/2 (cf. Egs. (2.107)-(2.109)),
i.e. minimal energy gap between the target state |W.) and neighboring states with the
same symmetry. For given n and 7., there are only two remaining laser parameters &,
and w,.. Starting from the reference values of &, and w, for the m or m/2 resonant laser
pulses (Egs. (2.171) or (2.175), and w. = w9 = w—_g), both parameters £. and w, are then
reoptimized to yield the optimal complete or half population transfer from the ground
state | W) to the target state |Wy).

2.3.4 Electron circulation

Starting from the (stationary) ground state |¥g) at the initial time ¢(, the electronic state
|¥(t)) (Eq. (2.120)) in the presence of the time-dependent electric field E.y (¢) (to < t < ty)
is no longer stationary. The corresponding time-dependent electronic probability and

current densitites in the atomic or molecular space are (extension of Egs. (2.15) and
(2.21))

o(r,t) = N/.../|\If(t)|2daldq2...qu (2.176)
j(r,t) = 227: N/.../(\If(t)V\If(t)*—\If(t)*V\If(t))daldqg...qu. (2.177)

Using the ansatz for the time-dependent electronic state |U(¢)) (Eq. (2.120)), we obtain
from Eqgs. (2.176) and (2.177)

tmax tmax

prt) = Y Bpi) + 3 CHOC 0e B mipy @) (2178)

i,5=0
J#i
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tmazx imazx

i) = 30 P)jix) + 37 Cr(E)C;()e BT (x) (2.179)
=0 oy
where
pij(r) = N//‘I’j‘lf] doidqs . .. dgy (2.180)
h
Julr) = o N/.../(\I/jv\p;* CWIVY,) dovdds . .. dqy, (2.181)

respectively. The time-dependent electronic probability and current densities (Egs.
(2.178) and (2.179)) are the sum of the time-independent electronic probability densities
pi(r) (Eq. (2.15)) and current densities j;(r) (Eq. (2.21)) of the states |¥;) weighted by
their time-dependent populations P;(t) plus the additional inference terms, respectively.
After the end of the laser pulse, the coefficients C;(t) and the corresponding populations
P,(t) are time-independent, i.e. C;(t) = C;(ty) and P,(t) = Pi(ty) for t > ty. For t > ty,

we obtain

p(rt) = 30 Bltp() + 30 GO 1) BB () (2.182)
=0 Z}J;ZO

e t) = 3 R(t)3i(x) + X Ci(ty)Cyty)e " EmmU= (), (2.183)
=0 i,j=0
i

i.e. the first term is time-independent and the inference term is time-dependent due to

the time-dependent exponential factor.

However, if the population of the target state |V ) at the final time ¢ is approximately
equal to 1, e.g. excited by a right circularly polarized reoptimized 7 laser pulse from the
ground state |¥y), then the interference terms in Eqgs. (2.182) and (2.183) for t > t; are
negligible because the populations of the other states are approximatley zero. In this case,

we have the stationary electronic probability and current densities, i.e.

p(r,t) ~ pi(r) (2.184)
i, t) =~ ji(r) (2.185)

for t > t;, together with the corresponding stationary electric ring current I (Eq. (2.55))
and the induced magnetic field B (r) (Eq. (2.61)). Thus, the electronic ring current of
the excited state |W,) persists after the end of the laser pulse until the excited state
|V, ) decays, e.g. by the spontaneous emission where the lifetime of the state |V, ) (ns
timescale) is typically longer than the pulse duration (fs timescale) and the mean period

of an electron (as timescale).

On the other hand, if the ground |¥) and target |V, ) states are approximately half
populated at the final time ¢y where the populations of the other states are negligible,
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e.g. excited by a right circularly polarized reoptimized /2 laser pulse, then we have the
non-stationary electronic probability and current densitites, using w = w,g = (E. — Ey)/h
(Eq. (2.125)) and jo(r) = 0 (Eq. (2.28)), and assuming Cy(t;) ~ 1/v/2 (Eq. (2.160)) and
Cy(ty) ~i/v/2 (Eq. (2.161)), i.e
1 Ciw(t—

5 (po(r) + p+(r)) + Re (z el tO)pM(r)) (2.186)

;.ﬁ(r) + Re ( w=jo (v )) (2.187)

Q

p(r,t)

Q

j(r,t)

for ¢ > t,.
Using the CIS approximation of the wavefunctions ¥y ~ U§T¥ = O (Eq. (2.8))
and U, ~ U{5, = 0% (Eqs. (2.10) and (2.14)), i.e. dominated by the transition of

an electron from an occupied orbital ¢, to an unoccupied orbital ¢, (for example the
LUMO-HOMO transition), we obtain (Egs. (2.20), (2.27), (2.28), (2.180), (2.181))

1 - —iw(t— *
plet) = o150+ 5 (ool — [eal?) + VERe (i i) (2188)

. 1. ) .
jet) & 5 (e (1) = Jpu(r) + V2Re (i) g0, (r) (2.189)
for t > t;, where
Joapy(r) = 5 (Lo Vo, — aVy) . (2.190)

e

The difference of the electronic density is defined as

Ap(r,t) = p(r,t) — p(r,to) (2.191)
and can be used for the graphical representation. Since p(r,ty) ~ p§%(r), we obtain
1 *
Aplrt) = 3 (el = [@al?) + V2Re (i e grep, ) (2.192)

for t > t;.

For example, if the state |¥, ) has the dominant electronic transition from an occupied
non-degenerate real orbital ¢, = ¢} to an unoccupied degenerate complex orbital ¢, =
(b +i0by) /V2 (Eq. (2.32)), then the time-dependent probability and current densities
for t > ty, using Eq. (2.33), are

1 1 )
Ap(r,t) =~ 1@ ( @2,;,) D) @2+ a (o sin(w(t —to)) — ppy cos(w(t —to))) (2.193)
) h 11
j(r,t) =~ 5 [2 (052 Vory — 0oy Vore) = (00, Voa — 0aVippa) cos(w(t — to)) (2.194)

— (0byVoa — 0a Vi) sin(w(t —to))| -
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For the special case ¢, = @€' (Eq. (2.34)) in which @, is real and independent of
the azimuthal angle ¢, i.e. p, or m, orbitals in atoms, atomic ions, or linear molecules,
respectively, then the densities (2.193) and (2.194), using ¢, = V2 @pcos ¢ and @y, =
V2 @y sin ¢, are simplified to

1., 1 o
Ap(r,t) ~ @ =5 ¢+ V2eady sin(w(t —ty) — ¢) (2.195)
h Py
jr,t) =~ ‘pb . i sin(w(t —to) — ¢) ey (2.196)

V2p
%Vsob\;ﬁsobv% cos(w(t — to) — )

for t > t; where p = rsin# is the cylindrical coordinate. Eqgs. (2.195) and (2.196) demon-

_|_

strate that the non-stationary electronic probability and current densities are periodic in
wt — ¢, i.e. after the end of the laser pulse (¢ > t;), the electron in the hybrid state (su-
perposition of |Wy) and |W,) states) circulates about the axis of symmetry periodically.
In contrast to the stationary current density in atoms, atomic ions, and linear molecules,
the p- and z-components of the circulating current density j(r,¢) do not vanish (last term
in Eq. (2.196)) and are also periodic in wt — ¢. The corresponding ¢-component of the
current density j(r,t) (2.196) is

Jo(r,t) =~ QnZep [@5 + V2 0@y sin(w(t — to) — gb)} . (2.197)

Hence the electric current also depends on wt — ¢, i.e. it depends on the choice of the half

plane Sy at the azimuthal angle ¢. The corresponding time- and angle-dependent electric

current is (extension of Eq. (2.55))

1(6,1) = —6//J - dS, (2.198)

= —e/ d,o/ Jo(r,t)dz
0 —00

[2+ — \/ghme sin(w(t — ty) — ¢)/0 " /(: Pa(p, 2)@o(p, 2) dz

where I, is the electric current of the state |¥,) and the corresponding factor % is due to
the half population of this state. The last term of Eq. (2.198) is periodic in wt — ¢, i.e the
corresponding strength is largest for ¢ = w(t — to) + 7/2 and ¢ = w(t — to) + 37/2 with

opposite signs. The time- or angle-averaging electric ring current is thus approximately

Q

equal to I, /2. Furthermore, the corresponding time-dependent non-relativistic induced
magnetic field B(r,t) (extension of Eq. (2.61))

_ Hoe j )y x(r—-r) _,
B(r.{) = /// d 2.1
(r,t) |r—r’|3 1% (2.199)

is in general periodic in wt — ¢ but its z-component along the z-axis is stationary. Using
Eq. (2.79) and

(G0 t) x (r =), = Ju (', 1) (2.200)
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(cf. Eq. (2.80)) for r = ze,, we obtain

% o0 (!
B.(zt) = _% 0 p'def[w T Jj‘z;r_’g)z)w d (2.201)
where
1 o
Ja0 D) = o [Tt dd (2.202)
(cf. Egs. (2.85) and (2.86)). Inserting Eq. (2.197) into Eq. (2.202) yields
B0~ G ) (2.203)

and thus (B,(z) = B,(z,1))

proeh [ o0 gip', 7))
B.(z) ~ - / p’dp’/_ s de
dme Jo < (p?+ (2 = 2)?)
Bz,-‘r(Z)
2

(cf. Eq. (2.90)), i.e. the z-component of the induced magnetic field along the z-axis is time-

(2.204)

independent and equal to the half of the z-component of the induced magnetic field of the
state | W) where the factor 3 is due to the half population of this state. Further analysis
shows that the absolute value of the orthogonal component of the induced magnetic field
along the z-axis is also time-independent and in general non-zero, i.e. B (z,t) = B, (z) =
\/B:%(z,t) + B2(z,t) > 0, but its direction varies with time periodically, i.e. B,(z,t) and
By(z,t) are time-dependent. Thus the magnitude of the total induced magnetic field

along the z-axis |B(z,t)| \/ B2(z) + B%(z) is time-independent and in general larger
than |B.(z)].

2.4 Vibrational and pseudorotational states

2.4.1 Time-independent nuclear Schrodinger equation

The time-independent Schrédinger equation for the molecule with N’ nuclei and N elec-

trons is given by
Ht0t|\lft0t> = E% |l (2.205)
where the total Hamiltonian

[:Itot = Tnu—i_ﬁel (2206)

h2 N’ VR R
= T4 < +Hel
> 2,
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is the sum of the kinetic operator T, of the nuclei with masses M, (¢ =1,...,N’) and
the electronic Hamiltonian H (Eq. (2.2)). Note that the repulsive Coulomb potential
between nuclei is already included in H,; (cf. Eq. (2.2)). The total (nuclear and electronic)
eigenstate and eigenenergy are |W') and E!?', respectively, with corresponding sets of

nuclear (v) and electronic (i) quantum numbers.

Furthermore we use the Born-Oppenheimer approximation, i.e. the total wavefunction

Wi is the product of the nuclear ¥™* and electronic U¢ wavefunctions,
VR, Ry, qy) = V(R Ra) Y (qr, - agni R, o Ry (2.207)

where the electronic wavefunction ¥¢ depends parametically on the nuclear positions
R, (a=1,...,N’). This approximation is made because the masses of electrons and nu-
clei are very different, i.e. the electronic and nuclear motions can be approximately treated
independently. Inserting the Born-Oppenheimer ansatz (2.207) into the Schrodinger equa-
tion (2.205), using Eq. (2.206), neglecting the nonadiabatic coupling term, i.e.

Y1
~5 2 3 [2(VRl W) Ve, [0 + (05 Ve [U)] ~ 0, (2.208)
a=1 (e

and applying (¥¢| yield the time-independent nuclear Schrodinger equation

(T + Vi) W) = Bl U (2.200)
where
‘/i(Rla"wRN’) = <qul|ﬁel|\llfl> (22]‘0)

is the PES of the electronic state |U¢) (cf. Eq. (2.1)).

2.4.2 Nuclear wavefunction

Now, we focus on the aligned linear triatomic molecule ABA (D, symmetry) in the
electronic non-degenerate singlet ground state |¥§') = [X '¥7F). The masses of the nuclei
A and B are M, and Mp, respectively, and the total mass of the molecule is M =
2M s+ Mp. The equilibrium bond length between nuclei A and B is R.. The corresponding
time-independent nuclear Schrodinger equation (Eq. (2.209)) is

h2 h2 nu O nu
<—2MA<V%A1+V%A2>—2MB V%Bwo(RAl,RAQ,RB)) vy = B (2210

where Vj is the potential energy surface of the electronic ground state |Vy) depending
on the positions Ry = Ry4,, Res = Rya,, and Ry = Rp of the nuclei A; = A(left),
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Figure 2.6: A right (+) circularly polarized laser pulse impinging on the aligned linear triatomic

molecule '*CdH; and propagating along the Z-axis. The arrows indicate the central sequence of laser

cycles as they would be “seen” by the molecule when the pulse passes by. The straight and curvilinear

arrows correspond to bend and pseudorotation of the linear molecule represented by polar coordinates p;

and ¢; (i = 1,2,3) of the nuclei Aj=H;, As=H, and B=Cd, respectively.

A, = A(right), and B, respectively. These positions can be represented in Cartesian or
cylindrical coordinates, i.e. R; = (X;,Y;, Z;) = (p; cos @i, pisin ¢y, Z;) (i = 1,2,3), see Fig.

2.6, and are related to normal coordinates for the symmetric stretch
Qs = Zo—2Z1—2R.,

for the antisymmetric stretch

for the degenerate bends

1
Qpx = X3— §(X1 + Xo)
1
= p3C0S(P3 — §(P1 COS (1 + P2 COS P3)

1
Qb,Y = Y3_§(Y1+Y2)

: 1 : :
= pssings — 5(/)1 sin ¢ + p2 sin @),

for the translation of the center of mass

M M
Qex = 57X+ Xa)+ 27 X,
M M
= WA(Pl cos ¢ + pz cos Pz) + WB p3 COS (3

(2.212)

(2.213)

(2.214)

(2.215)

(2.216)



52 CHAPTER 2. THEORY

M M
Quy = S-(Mi+Ya)+ 2 (2.217)
M . . M .
= WA(Pl sin @1 + pa sin ¢p) + WB p3sin ¢z
M M
Quz = 7%+ 20)+ 57 Zs (2.218)

and for the rotation of the molecule

Qrx = Xo—Xi (2.219)
= 9 COS o — P1 COS D1
Qy = Y-V (2.220)

= p2singg — p1sin¢s.

Using these normal coordinates (2.212)—(2.220), the nuclear Schrédinger equation (2.211)
is then rewritten as [207,208]

2m,,

h? 92 h* 02 h? 02 02 h? 02 02
<_2ms 02 2m,0Q2  2my (a@ax i a@%,y) } (8@$,X "oz,

S A +V0(Qss Qu, Qo x Quy) | 1T3Y) = BT
2M aQiX aQZY a@iz 0 S as b,X? b,Y v - v0 v

) (2.221)

with reduced masses

MaMy My

L= m, = _ 9.222

m m Ma+t My 2 (2:222)
IMAM

me = mp = # (2.223)

where the potential energy surface 1 depends only on the vibrational coordinates
Qs, Qa, Qb x,Qpy. Using the polar coordinates (), and ¢ instead of the Cartesian bend
coordinates @, x = Qpcosd and Qpy = Qpsind (Egs. (2.214), (2.215)), i.e.

Qv = JQix+Qpy (2.224)

2 . . 2
_ \J (pgcosgbg M COS¢1;’P2COS¢2> n (pgsinq§3 _ p1singy ;Pﬁmﬁbz)

2 . 2
+ coS —
= \/ﬂ§ AT A (91— ¢2) _ p1p3 cos(p1 — ¢3) — pap3 cos(dz — ¢3)

4 2
d = arccos (be> (2.225)
Q@
<p3 cos @3 — 5 (p1 cos ¢y + pa cos gbz))
= arccos 0 ;
b

the nuclear Schrédinger equation (2.221) becomes [207, 208]
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2 92 2 92 2 1 12
(ha_ha_h a(Qba>+ 2 (22%6)

T 2m,0Q%  2m,0Q%  2myQ,0Qu \ T 0Qy) T 2mpQ}

K2 02 02 02 K2 02 02
ToM (a@z,x oz, T a@%,) " 2m, (a@%,x " a@%,y>
V@ @a,w) = gy

where
0

L, = —ih (2.227)

denotes the angular momentum operator for the pseudorotation d. For symmetry reasons,
the potential energy surface Vj depends only on the stretches (), (), and bend Q) of the

triatomic molecule but not on the pseudorotation 9.

Since each translational Q). x, Q. v, Q. z and rotational @), x, @,y coordinate appears
only in one term of the Schrodinger equation (2.226), we use the separation ansatz for

the nuclear wavefunction (cf. Eq. (2.207))

\IIZU(RL R27 R3) = (I)C,X(QC,X)CI)C,Y(QC,Y)(I)C,Z(QC,Z)(PT,X (QT7X)CI)T7Y(QT7Y> (2228)
qu(Qs; Qaa Qb; 5)

In the following application, we assume that the molecule ABA does not rotate, i.e.
Qrx = Qry = 0, and its center of mass does not move and remains at the origin, i.e.
Qex = Qcy = Qcz = 0, on the short timescale below a few picoseconds. In this case,
the square-integrable wavefunctions for the translation of the center of mass and for the

rotation of the molecule along the X-axis are given by

P x(Qex) = /0(Qex) (2.229)
P, x(Qrx) = /0(Qrx) (2.230)
where the corresponding densities (I%X(QC?X) = 0(Qc,x) and <I>2’X(QT7X) = §(Q,.x) are
already normalized, i.e. [ Cbg,x(@c,x) dQ.x =1 and f<I>12n7X(QT,X) dQ. x = 1, respectively.

The other wavefunctions .y (Qcy ), Pez(Qez) and @,y (Q,.y) are defined in an analogous

manner as in Egs. (2.229) and (2.230), respectively. Their mean energies are defined as

K2 o2
By = —— (o, |-2_|o, 2.931
X 5 M< x50, ,X> ( )
I o2
E.y = — O, |——| D, 2,932
X 2mr< X502, ,X> ( )

where the definitions for E.y, E. 7 and E,y are analogous. The total translational and
rotational mean energies are thus £, = E, x +E.y +FE.z = 3E. x and B, = E, x + E,y =

2E, x, respectively.
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Inserting the ansatz (2.228) into Eq. (2.226) and applying (®. xP.y P,z P, x P, y| yield
the Schrodinger equation for the vibrational eigenfunction ®,(Qs, Qq4, Qp, )

2 42 2 o2 2 L2
L S A S N P A .
2mgs 0Q?  2m, 0Q?2  2my Q, 0Qy 0Qy 2mpQ;

+ %(Qsa Qm Qb)) ’q)v> = vO‘cI)v>

where E,g = E% — E.— E, is the eigenenergy of the vibrational state |®,) in the electronic
ground state |W¢). Since the coordinate for the pseudorotation J appears only in the

fourth term of Eq. (2.233), we further make the separation ansatz

qu(Qsa Qaa Qba 5) = (I)v|l|(Qsa Qm Qb)q)l(é) (2234)

where v and [ are the vibrational and pseudorotational quantum numbers, respectively.
The solutions of the equation for the pseudorotational wavefunction ®;(6) (cf. Eq. (2.227))
) 92
Ly |®) = —h° @M’l) = a|®) (2.235)

are the normalized eigenfunctions

1 )
)(6) = et (2.236)
and the eigenvalues
a = I*R? (2.237)

with quantum numbers | = 0, £1,£2,.... Inserting the ansatz (2.234) into Eq. (2.233),
using Egs. (2.235)—(2.237), and applying (®;| yield the differential equation for the vibra-
tional wavefunction ®,;(Qs, Qq, Qs)
oot n 9 m 10
2m, 0Q?  2m, 0Q2%  2my Q, 0Qy

0 I’h?
+ 2.238
@ aQb> 2m Q3 ( )

+‘/0(Q37Qa7Qb)> Do) = Bt o] Popp)

where E,; 0 = Ew. Note that the pseudorotational quantum number [ appears in Eq.
(2.238) only as (2, i.e. the vibrational eigenenergy E,j o and wavefunction @, (Qs, Qa, Qb)
are independent of the sign of [. The (anharmonic) vibrational state for [ # 0 is therefore

twofold degenerate.

The potential energy surface V(Qs, Qq, Qp) of the electronic ground state |P¢) may

be separated into the harmonic (h) and anharmonic (ah) parts, i.e.

%(QS7 Qaa Qb) = ‘/Oh(Q& Qm Qb) + %ah<Q87 Qm Qb) (2239)
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where the harmonic part for the linear triatomic molecule ABA
1 1

‘/E)h(Qsa Qm Qb) - 5 msngi + 5 mangQ + mbwb Qb (2240)
is the sum of the harmonic potentials with corresponding harmonic frequencies w, for
the symmetric stretch, w, for the antisymmetric stretch, and w; for the bend. For the
calculation of the nuclear probability and current densities, nuclear ring currents and
associated induced magnetic fields, we use the harmonic approximation, i.e. V5 ~ V{. In
this case, the vibrational wavefunction ®,(Qs, Qa, @s) ~ <I>v|l|(Qs, Qa, Qp) is separable,

ie.

Oy (Qs, Quy Q) = 04 (Q) Py, (Qu) Dy, 1y (@) (2.241)

with quantum numbers v, for the symmetric stretch, v, for the antisymmetric stretch,
and v, for the bend. Inserting the ansatz (2.241) into Eq. (2.238) within the harmonic

approximation yields three uncoupled differential equations for the wavefunctions (IDLLS (Qs),
cbﬁja (Qa), and q’vbm (Qs)

B2 92 1

( ms0Q2 ' 2 )|‘I’ ) = Enol®)  (2242)
2 2

( haéQﬁ; awi@i) [©F) = Eyol®) (2.243)

h2 1 0 l2h2 1
<_2mebaQb (Q”ac;b> @t a e )“I’W = Euol®iy)  (2244)

with corresponding eigenenergies F., o, [, 0, and E,, o, respectively, where F,i o =
E, 0+ E,, o0+ E,, 0. The solutions of the Schrodinger equations for one-dimensional har-
monic oscillators (Eqgs. (2.242) and (2.243)) are well-known one-dimensional normalized

harmonic wavefunctions for the symmetric and antisymmetric stretches [207, 208]

S 1/4 1 1,02
o (Qs) = <7T) WHUS<\/§QS)€ 25 (2.245)
W a\ /4 1 a2
Py (Qa) = (W> WHM(\/EQ&)@ 30Qa (2.246)
where H,(z) are the Hermite polynomials and
S¥S M S
s = mhw = ;hw (2.247)
aWa 2MaMpw,
a = mhw = ;‘WLBM (2.248)

(cf. Egs. (2.222), (2.223)). The corresponding eigenenergies are

1
E,, = <Us + 2) hw, (2.249)

1
E, = (va + 2) hw, (2.250)
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Figure 2.7: Bending and pseudorotational states of the linear triatomic molecule ABA with corre-
sponding harmonic eigenenergies E,, o = (vp + 1)hwp (Eq. (2.254)) for vs = v, = 0 and 0 < v, < 4. Red
and blue arrows indicate the dominant ladder climbing to excited vibrational and pseudorotational states
according to the selection rules v, — vy + 1,1 — [+ 1 and I — [ — 1 for absorption by a right and left

circularly polarized laser pulse, respectively, see Section 2.5.2.

with quantum numbers vy = 0,1,2,... and v, = 0,1,2,..., respectively. Solving the
Schrodinger equation for the harmonic bend oscillator (Eq. (2.244)) leads to the harmonic
wavefunction for the bend [207,208,250-252]

vp—||
2 Al Zlp02 4 |L

val;' e QbeL@(bQi) (2.251)
5 )

where LF(x) are the associated Laguerre polynomials (for another notation, see e.g. Ref.
[250]) and

2M M
b m%”b - ?\4713% (2.252)
(cf. Eq. (2.223)). The wavefunction (2.251) is already normalized, i.e.
7 (oh CQudQ, = 1 2.253
A ( vbm(Qb)) QvdQy, = 1, (2.253)

see Appendix A.2.2. The corresponding eigenenergy

Evb,O = (Ub+1)hwb (2254)
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with quantum number v, = 0,1,2,... is independent of the pseudorotational quantum
number [ = —uvy,, —vp + 2, ..., v, — 2, vp. Thus, the harmonic vibrational state for v, # 0 is

(vp + 1)-fold degenerate, i.e. the total vibrational energy in the harmonic approximation
(Egs. (2.249), (2.250), (2.254))

1 1
Ez’fm,o = <"Us + 2> fiw, + <Ua + 2) hiw, + (v + 1)hwy (2.255)

is independent of [, see Fig. 2.7. Finally, the total wavefunction in the harmonic ap-
proximation W9 ~ Wl (Eq. (2.207)) of the linear triatomic molecule ABA in the

VsVq U0

electronic ground state |Wg') is

R Re Rayan, . an) = 1/0(Qux)d(Qey)d(Qez)d(Qrx)d(Qry)  (2:256)
O} (Qs) P (Qa) P 1 (Qy)P1(0)
Ue(q,...,an; Ry, Ra, Ry),

using Eqs. (2.228)—(2.230), (2.234), (2.241).

2.4.3 Nuclear probability density

The nuclear probability density p4, (R = Ry) of the nucleus A; = A(left) in the electronic
ground state |U¢') within the Born-Oppenheimer and harmonic approximations is given
by

pa(R) = ///dRQ///ng (2.257)

/ /|\Ilfzoi)a'ubl0 R7R2;R37q17---,qN)|2dQ1...qu.

Using Eq. (2.256) and the fact that the electronic wavefunction is normalized, i.e.

/.../|\I:gl(q1,...,qN;Rl,RQ,Rg)\qul...qu — 1, (2.258)

that the vibrational wavefunctions for the stretches @7 (Q;), @ (Q,) (Egs. (2.245),
(2.246)) and for the bend CI)ZZ,U\(Qb) (Eq. (2.251)) are real, and that |®;(0)]* = 1/(27)
(Eq. (2.236)), we obtain

217r/ (QTX)dXZ/ (QcX)dXsf 5(Qry) dYa (2.259)

| 0@ (@h(@0) ¥ [~ dzs [~ 6(Qur) (€1,(@0)" (04(Qu) "z

PA, (R)

Using Q,x = Xo — X and Q,.y = Yo — Y (Egs. (2.219), (2.220)), we have
1 2
pa®) = oo [ 0@ X, [ 5(@Quy) (h(@) avs|
|z [ 5@uz) (04(@0)" (04.(Qu) dzs

(2.260)
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Again, using Q. x = (2MaX + MpX;3)/M for Xo = X and Q.y = (2MAY + MpYs)/M
for Yo =Y (Egs. (2.216), (2.217)) yields

1 M?

pa(R) = 9n M2 (‘I’ﬁbMQb))Q (2.261)

Xo=X,Yo=Y

/_O:O A7, /_O:O 5(Qez) (<I>ZS(QS))2 (CI)ZG(QG))Z iZs.

Since for Xo = X, X3 = —2M4X/Mp and Yo =Y, Y3 = —2M,Y/Mp

Qvx = _J\]ZX (2.262)
Qoy = _J\ZZY (2.263)
Qy = ]]\\ij (2.264)
(Eqs. (2.214), (2.215), (2.224) and p = VX2 + Y?), we get
pa(R) = 217%3 (@ (]f‘fB p))2 (2.265)

/dZQ/ 5(Qez) (®4(Q0)" (81 (Qu)) dzs.

Then, using Q.z = (Ma(Z + Zy) + MpZs3)/M (Eq. (2.218)) yields
1 M3 M N\ e
pnR) = i (ot (57-2)) [ (@h(@0)" (#h(@n) " aze

and for Z3 = —Ma(Z + Z5)/Mp

(2.266)
Zgz—ﬁ—;}(ZJrZz)

M
Qo = —QMB(Z+Zz) (2.267)
(Eq. (2.213)), i.e
1 M3 M 2
pa (R) = o M3 (‘I)Z,,z (MB/))) (2.268)

[ (@ z-z-2R)) (@) (—5y (2 + ZQ)»2 iz

where Qs = Zo — Z — 2R, (Eq. (2.212)) was used. With the definition of the integral

L@ = L[ (@@ ) (o (@ @) . o)

Mp
we obtain the simple form for the nuclear probability density of the nucleus A, using
Q=724+ R.and Q =72, — R,, i.e.

1 M?
2m My M2

2

o (R) = L2+ 1) (B (37-0)) - (2.270)
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For symmetry reasons the nuclear probability density pa,(R = Rp) of the nucleus
Ay = A(right) is

1 M? M 2
palR) = 5o FodZ = R) (P (37-0) ) (2271)

Since the total wavefunction W! is normalized, the integrals of the nuclear proba-

VsVq VB0

bilites densities p4, (R) and pa,(R) over the whole space must be equal to 1, i.e.

/ / / pa,(R)dR = 1 (2.272)
pi(R)AR = 1 (2.273)
[]]

(cf. Eq. (2.257)). Using Egs. (2.270), (2.271), dR = pdp dZ d¢ and the normalized wave-
function (I)vbm(Qb) (Eq. (2.253)), we get

///PAW(R) dR. (2.274)
e e
_ / Lo (Z £ R.) dZ/ h (@) QudQy
_ / L (Z+R)dZ = 1,
thus
| hw(@d@ = 1 (2.275)
for all quantum numbers v, = 0,1,2,...and v, =0, 1,2, .... For example, for v, = v, = 0,

the harmonic wavefunctions for the symmetric and antisymmetric stretches (Eq. (2.245),
(2.246)) are

) _)(Q.) = (;)1/46‘55‘93 (2.276)
! _o(Qa) = (Z)l/4e‘5aQ3. (2.277)

The corresponding integral Ip0(Q) (Eq. (2.269)) is
(@ = - faslP sl (2.278)

T\ 4sM2 + aM?
VT B

1al 12 , 1al I ’
= Ve car = Wiz car ¢
dsMp +aM? | ™ 4sMp + alM?

(see Appendix A.1) and satisfies the normalization condition (2.275) automatically.

Hence, for vy = v, = 0, the nuclear probability densities of the nuclei A; and Ay (Egs.
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(2.270), (2.271)) are

1 M? 4asM? - 54“;]”; 5(Z+Re)* [, M 2
1 M2 dasM? — —illn(-r? (0 (MY
PAQ(R) 973/2 M?B 48M§ Y e AsMp+aM ( wlll (]\43 p)) . (2.280)

The nuclear probability density ps(R = Rj) of the nucleus B in the electronic ground
state |UE') is defined as

///de///dRz (2.281)

/ /lqu)(:tv vbl(] R17R2aRth-~,QN)|2dQ1--'qu-

With the same procedure of the derivation for pa, (R) we have

,OB(R) 271'./ Xm/ (QCX) (Qr,X)dXQ (2282)
/— in/ (QCY) (QT,Y) (q)ZbM(Qb))Qd}é
"z [ 5(Qu) (2.Q) (24,(@0) iz

using Q. x = Xo — X, Qry = Y2 — Y; (Egs. (2.219), (2.220))

1

pp®) = o [ 6(Qua)dXs [ 6(Quy) (2 (@) av;

(2.283)
Xo=X1,Y2=Y;

|z [ 6@Quz) (9.(Q0) (#1(Qu)" dze,

and using Q. x = (2Ma X1 + MpX)/M for Xo = X; and Q.y = (2M4Y, + MgY')/M for
Y, = Y; (Egs. (2:216), (2.217))

1 M2, 2

p(R) = o3 (@ (@) iz:_xl,h?;yl (2.284)
1=7 204
MB

2 2
| az / Q) (28,(Qu)” dz..
Since for Xo = X, X1 = —MpX/(2M4) and Yo =Y, Y1 = —MpY/(2M,)
M
= X 2.2

(o, x o, (2.285)
M

= Y 2.286

Qby oM, ( )
M

Qv = p (2.287)

2M 4
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(Egs. (2.214), (2.215), (2.224) and p = v X? 4+ Y2), we obtain

pelft) = ;rﬂﬂg <®Zb'” (2% p>)2 (2.288)
/_O:Odzl /_O;é(Qc,z) (<I>5L(Qs))2 (@’;ﬂ(@a)f iZ».

Using Qc.z = (Ma(Z1 + Z2) + MpZ)/M (Eq. (2.218)) yields

1M M 2o, 2/ 2
ps(R) = 8WM%(%. (ire) [ (@h@) (o) i, (229)
2=, 1
and for Zo = —MpZ /M4 — Z
M
Q, = —-L27—-27 —2R, (2.290)
M4
M
L= Z 2.291
Q oM (2.291)

(Bgs. (2.212), (2.213)), i.c.

2

1 M3 M 2 M
- 5o (% (@7 2) (% (G 0) 2292
pB(R) 87 Mi < Va 2MA v |1 2MAp ( 9 )
© (en ( Msp 2
/—oo (q)vs (_M Z - 221 - 2Re>) le
= o (% (G 2)) (o (3 7) [ (@) .
167TM§;( va \20M 4 wll \op7, P 700( 0 (@ )) dQ

Since the wavefunction ®” (Q,) (Eq. (2.212)) is normalized, we have the final form for

the nuclear probability density of the nucleus B

1 M3 M 2 M 2
= o (- (o 7)) (% (3a70) 22
po(®) = oo (2 (5ar b (537, (2:203)
where the normalization condition
///pB(R) dR = 1 (2.204)

is fulfilled automatically. Note that all stationary nuclear probability densities p4, (R),
pa,(R) and pp(R) (Egs. (2.270), (2.271), (2.293)) are independent of the azimuthal angle
¢. Their densities along the Z-axis (p = 0) are zero for [ # 0 (cf. Eq. (2.251)), i.e. they have
toroidal structures with a nodal line along the Z-axis. However, for [ = 0, the densities
along the Z-axis (p = 0) are non-zero, and in addition for v, = 0, they have ellipsoidal
structures. The centers of the densities are located at Z7 = FR, and Z = 0 for nuclei
Ay, Ay, and B, respectively. Furthermore, the densities p4, (R) and pa,(R) depend on all
harmonic vibrational frequencies ws, wg, and w;, (cf. Egs. (2.270), (2.271), (2.247), (2.248),
(2.251), (2.252)) whereas the density pg(R) (Eq. (2.293)) is independent of the quantum
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number v, and the vibrational frequency w, for the symmetric stretch since, in this mode,
the nucleus B does not vibrate, i.e. ()5 is independent of Z3 (cf. Eq. (2.212)). For the
heavy nucleus B, i.e. Mp > My, the corresponding density pg(R) is strongly localized
at the origin (Z = 0) whereas the distributions of the densities p4, (R) and pa,(R) of the
other light nuclei A; and A, are broad. In the reverse case, i.e. M4 > Mpg, the densities
pa, (R) and pa,(R) are strongly localized at Z = —R, and Z = R,, respectively, whereas
the distribution of the density pg(R) of the light nucleus B is broad.

Finally, the total nuclear probability density within the Born-Oppenheimer and har-
monic approximations is the sum of the probability densities of the nuclei A, A,, and B,

1.e.

ptot(R) = pPa (R) + pa, (R) + pB<R) (2295)
1 M? L (M 2
= %Mé (Log0a(Z + Re) + Ly, (Z — Re)) (q)vbu <MB p))

1 M3 M 2 M 2
o (% (a2, 7)) (i (3 0)
+167TM§;< ve \2M 4 wll \9a7, P
(cf. BEgs. (2.270), (2.271), (2.293)) where

/ / / pr(R)dR = 3 (2.296)

(cf. Egs. (2.272), (2.273), (2.294)). Three nuclei exist in the molecular space.

2.4.4 Nuclear current density

The nuclear current density ja,(R = Ry) of the nucleus A; = A(left) in the electronic
ground state |¥¢) within the Born-Oppenheimer and harmonic approximations is given

by

in@®R) = 2;2///ng///ng/.../dql...qu (2.297)

{\IltOt (R7 R27 R37 di,--- 7qN)vR [‘Ijzzi;;avbl(](Ra R27 R37 i, - .- )qNﬂ*

VsVqUpl0

- {\Pff;i}avblO(Ra R27 R37 di,-- -, qN)} VR‘PZC:;&%ZO(R, R27 R37 di,-- -, qN)} .

Since the nuclear wavefunctions ® (Qs), @} (Qa), @}, (Qs) (Egs. (2.245), (2.246),
(2.251)) are real and the electronic wavefunction ¥¢(qy, ..., qy; Ri, Ra, R3) of the elec-
tronic non-degenerate ground state |U¢') can be designed as a real function (using real
orbitals), we obtain, using Eqgs. (2.256), (2.258) and Vg = (Vr0)9/94,



2.4. VIBRATIONAL AND PSEUDOROTATIONAL STATES 63

in®) = S5 [0 0% [T Qe dXs [ 6@ av; (2.295)
0 0

[ 6@ (@@ |00) 55 35(6) - 3(6) 5 806)| (T a2
|z [~ 6Qu) (4,(@0) (91,(Q)" dz.

With @, = ¢ /\/27 (Eq. (2.236)) we have

2751734/4 /_OO (Q"X>dX2/ (ch)dXs/ 5(Qry)dYs  (2.299)

/_oo 2(Qey) (‘I)]Jblu(Qb)) (Vrd) dY3
/ dZ?/ 3(Qe.z) (¥4, (Q ))2 (¢Za(Qa))2dZ3.

With QT,X =X, — X, Q,ﬂ,y =Y,-Y, QQX = (QMAX + MBXg)/M for Xo = X, and
Qc,y = (2MAY + MBY},)/M for Yo =Y (Eqs. (2.219), (2.220), (2.216), (2.217)), it leads
to

jAl (R) =

lh
ja, (R) = ) 2.300
.]Al( ) 9 M4 (VR ) X2—X2,}1\/3;Y ( )
Xg=—"rit X
3:*215;1; Y

/_Oo (er)dX2/ (ch)ng/ 5(Qry) dYs
/ (QCY)( vl (@) dY3/ dZQ/ 5(Qer) ( (QS))Q(@ZG(Qa))Qng

[h
= 37 PR (VRO)| sy scvy v
A __2My
3=~ g
Y3=— JCI/I;Y

where the expression for the nuclear probability density pa, (R) (Eq. (2.259), (2.270)) was
used in the last step. Now, let us evaluate Vg6 using the definition of the Nabla operator

in Cartesian coordinates (R = R,)

0 0
VR = 879X+8Tey+8762. (2301)
Since 0 = arccos(Qy x/Qs) (Eq. (2.225)) is independent of Z, we obtain
o) 90

Using the derivation for the inverse trigonometric function d arccos(z)/dx = —1/v/1 — a2
[253] we have

— 1 9 [Qvx Qb x
Vrd = — - (Qb,x)2 (ax (Qb) ex + 5 (Qb) ) (2.303)
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@ (1 0Qyx  Qex OQs or it 1 0Qnx  Qux 0@y .
T Ja—a \eax g ox ) T ey T gy )

1 0Qpx  Qux 0Qy ex beﬁQb
Q X  Q, 0X Qs Y ©

since Qpy = /Qj — Qi x (BEq. (2.224)) and Qp x (Eq. (2.214)) is independent of Y. With

Qv =\/Q3x + Q3 (Eq. (2224)) it yields

U5 — 1 OQvx  Qrx 9 (Qg,x + Qz,y) o _ Qux 9 (an + Qg,y) .
BT Ty \\ax T 2@ 0X X700 oy Y
(2.304)
1 OQvx Qb x OQp.x o _ Qb xQuvy 0Qpy .
Qoy \\ 0X @ ox )~ Q oy ¥
_ 1 <Q§,Y Qv x ex — Qu,xQuy OQby o )
QbY QP 0X Q? ay v
0 0
= Q <Qby g)b(x ex — Qv x g)bfy eY) )

again using the fact that @, x and Qpy (Eqgs. (2.214) and (2.215)) are independent of Y
and X, respectively, and Q} y = Qf — Qf x (Eq. (2.224)). With Q x = X5 — (X + X3)/2
(Eq. (2.214)) and Qpy = Y5 — (Y + Yg)/2 (Eq. (2.215)) it reduces to

Vrd = 2Qb (Qvy ex —Qpxey). (2.305)

Thus, for Xy = X, X3 = —2M4X/Mp and Yo =Y, Y3 = —2M,Y/Mp, i.e. using Egs.
(2.262)(2.264)),

Mp
(VR(S) Xo=X,Yo=Y _W (Y €x _XeY) (2306)
xa=- 24 x P
vy =
B .
= — (singpex — cospey)
2Mp
Mp
= ——e
2Mp
where X = pcos¢, Y = psing, and e, = —singex + cos¢ey were used. Hence, the

nuclear current density ja,(R) (Eq. (2.300)) of the nucleus A; is
thB PA; (R) e

ia,(R) = 2.
For symmetry reasons, the nuclear current density of the nucleus A is
[h M R
in(R) 2 pa(R) (2.308)

2MMA P
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The corresponding nuclear current density js(R = Rj3) of the nucleus B in the elec-

tronic ground state |Wg') is

is(R) = 2MB///de///ng/.../dql...qu (2.300)

{‘Pmt (Rla Ry, R, qy, .. aQN)VR [‘I’ffivavbm(Rh Ry, R, qy, ... 7QN)r

VsVq V10
— [\IlfjostvavblO(Rh RQ, R, qi, .- ,qN)} VR f}ostvavblO(Rh RQ, R, qi, .- ,qN)} .

In an analogous way (cf. Egs. (2.297)—(2.300), (2.282)—(2.284)), the current density re-
duces to

B®) = 1 en(R) (V)

(2.310)

Xo=X1,Yy=Y7 *
__Mp
X1= 2M 4 X
__Mp
1="omry

For R = Rj the evaluation of VgJ is the same as in Eqgs. (2.302)—(2.304) but for Qp x =
X — (X1 +X5)/2 (Eq. (2.214)) and Qpy =Y — (Y71 4+ Y2)/2 (Eq. (2.215)) we obtain

aQb X a@b Y ey>

oy X ~Whx 5y

Ve = Q (Qby (2.311)

= Q (QbYeX—QbXeY)
b
For Xo = X3, X1 = —MpX/(2M4) and Yo = Y}, Y7 = —MpY/(2M},), i.e. using Egs.
(2.285)-(2.287)), X = pcos¢, Y = psin¢, and e, = —sinp ex + cos ¢ ey, we obtain

2MA

(VRO xpmxipmvs = — 7,2 (Vex — Xey) (2.312)
Xlz—ﬁ
-
2M
= — M; (singpex — cospey)
2M 5
= e
Mp ¢
Thus, the nuclear current density js(R) (Eq. (2.310)) of the nucleus B is
R e 2.313
is(R) MMz p ¢ ( )

and independent of the quantum number v, and the vibrational frequency w, for the
symmetric stretch (cf. Eq. (2.293)). Note that the expressions for the nuclear current
densities ja,(R), ja,(R), and jp(R) (Egs. (2.307), (2.308), (2.313)) are similar to the
one for the electronic current density in atoms, atomic ions, and linear molecules (cf. Eq.

(2.38)). The total nuclear current density can be written as

i ®) = 34, (R) 4 3, (R) +5(R) 2514
— i (o (o (R + paa(R) + 57 ()
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2.4.5 Nuclear ring currents

As in the theory of electronic ring currents in atoms, atomic ions, and linear molecules
(cf. Eq. (2.38)), the total nuclear current density j;:(R) (Eq. (2.314)) is proportional to
the pseudorotational quantum number [ and vanishes for [ = 0. Its ¢-component is the
only one which does not vanish, and it is independent of the azimuthal angle ¢ because
the probability densities pa,(R), pa,(R), and pp(R) (Egs. (2.270), (2.271), (2.293)) are
also independent of ¢. Thus, the state |¥! ) with [ # 0 represents the stationary

VsV VL0

toroidal ring currents of the nuclei A;, A, and B about the Z-axis where the sign of [

determines the direction of these nuclear ring currents.

Now, let us first calculate the mean angular momenta of the nuclei A;, Ay, and B,
to show that the Z-component of the total angular momentum is in fact equal to (A and
that the corresponding X- and Y-components are zero. The formula for the mean angular

momentum of the the nucleus A; is given as

(Lia,) ///de///ng///ng/.../dql...qu (2.315)

{\I]fgi)avblO(Rh RQ; R37 qi,-- -, QN)] LA1 \Ilzosvavblo(Rlv R27 R37 di,---, QN)
where the angular momentum operator L 4, is defined as

L, = —ih(RyxVg,). (2.316)

Since the expectation value (Ly,) is real, Eq. (2.315) can be rewritten as

Ea) = 5 ((En)+(Ea)) (2.317)

_ m///def//ng///ng/.../dq1...qu

(Wl io(R1, R, Ry, )
(R1 X Vg,) [ wnio(R1.Ra, Rs gy, ,QN)r
= [t (R, Ra, Ry au, - qw)] *
(R1 X VR,) ¥, 0(R1,Ra, Rs,qu, - . >CIN)}-

The evaluation of this equation is similar to the one of the equation for j4, (R) (cf. Egs.
(2.297)—(2.300)), i.e. the intermediate result, using Ry x Vg, = (Ry x Vg,9)9/09, is

(La) = Ih / X, / dv; / pa,(Ry) (Ry X Vig,6)

Xomxy ey, dZ1. (2.318)
X

2M 4
=— X
3= MB 1
Y3_—7A Yy

Using Eq. (2.306), Ry = pie, + Ziez, and dX,dY1dZ, = pydp; dZy dp, expressed in
cylindrial coordinates, we obtain

. (hM
<LA1> = B/ dpl/ le/ PA; Rl)(plep+ Zlez) X e¢ dgbl (2 319)
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Wth
= N dﬂl/ pa(Ri)(prez — Zie,) dz,

where e, X ey = ez, e X eg = —e,, and the ¢;-integration was easily carried out because
the integrand is independent of ¢;. With Eq. (2.270) we obtain

A WM o< M O\\2 . g
(La,) = 2MB/0 (‘I)Zbu <MB P1)> dp1 [m Lo, (Z1 + R.)(prez — Zye,) dZ; (2.320)

WM >/, (M 2
= QMB/O (% <MB”)> a1
<p1 / Loowi(Z1 + R dZrey — / JW(ZI+RE)ZIdZIep>.

The integrands I,,,,(Z1+ R) (Eq. (2.269)) and 1,,,,(Z1+ R)Z; are even and odd functions
in Z;, thus the corresponding integrals are 1 (Eq. (2.275)) and 0, respectively, i.e.

- IhM o M 2
(La,) = ZMB/O ((I)Z,,u (MP1)> prdprez (2.321)

[hMp

= oM o (vbm(Qb))szdeez

= mlhez

since @}, (Qp) is normalized (Eq. (2.253)). For symmetry reasons, the mean angular

momentum of the nucleus A, is

. Mp
(La;) = 55 ez (2.322)

The mean angular momentum of the nucleus B is evaluated in the almost same manner
but using Eq. (2.312) instead of Eq. (2.306) ie

5 471th
(Lp) = 2 dps / p(Rs)(psez — Zse,) dZs (2.323)

(cf. Eq. (2.319)). With Eq. (2.293) we obtain
2

. InM? oo M 2 M
(Lp) = %/0 (‘I)Z,,u (2MA P3>> dﬂs/ <<I>h <2MA Zz)) (psez — Zze,) dZ3
2

(2.324)
L )
<p3/_o;< <2MA >> 1207 = oo@)h <2%A Z3>) Z?’dZ?’e”)
) »

IhM? [ 2 M 2
-t ()
4Mi /0 ( ’Ub‘l| <2MA ) dp3 ( 2MA 3 d 3€z7

since the integrand of the third integral is an odd function in Zs. The functions ®} (Q,)

and @}, (Qs) are normalized, thus

(Lp) = 21?\%4 (@l (@) Qo dQy /_O:O (22, (Qu) dQues  (2.325)
20,
= lhez.

M
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Finally, the total angular momentum is

(Liot) = (La,) +(Lay) + (Lp) (2.326)

1My Mg
- M( 5 T o +2M“‘)mez

= [h (S3A4
since M = 2M 4 + Mp, i.e. its Z-component is equal to [h as expected.

The electric ring current of the nuclei in the stationary state [} o) is determined
by

Ligw = Ia, +14,+1Ip (2.327)
- ZAe// (i, (R) + ja, R))-dSJrZBe//jB(R)-dS

(cf. Eq. (2.55)) where Z4 and Zp are the nuclear charges of the nuclei A and B, respec-
tively. The integral is over the half plane perpendicular to the X/Y plane at a fixed
arbitrary azimuthal angle ¢ with domains p € [0,00), Z € (—00,00) (dS = dpdZ e,)
since the nuclear current densities ja, (R), ja,(R), js(R) (Egs. (2.307), (2.308), (2.313))
are independent of ¢. Note that for [ = 0, the electric ring current is zero, i.e. I;,; = 0.
With Egs. (2.307), (2.308), (2.313) and (2.270), (2.271), (2.293) we have for  # 0

Lo = Zae [ dp [~ (G0 (R) s (R) - epdZ + Zye | “dp [ jn(R)- ey dZ

(2.328)
_ celh ZaMp Oodp/oo QZBMA/OOdp/oo
- M(QMA/O o | R) F o (R) dZ + == | R ps(R)dZ
elhM L [0 M 2dp oo
= — Z/ <q>h ( >) 7/ I, . (Z D+ 1,0 (Z—R,) dZ
47rMAMB<AO wli\ 21, ”)) ) (Lygo,(Z + Re) + 10, (Z — R.)) d

(0 () S (00 (7)) 7).

Using Eq. (2.275) and the normalized wavefunction ®” (Q,), we obtain

elhM

loa = par2Za+ Zs) /0 (@0 0(@0) @5 d Q. (2.329)

The integral is evaluated as

L= [T (k@) @tden — ¢ (2:330)

(see Appendix A.2.4). Hence, the electric ring current, using Eq. (2.252),

Lot = Sgn(l)%cj:@ZA‘l'ZB) (2.331)



2.4. VIBRATIONAL AND PSEUDOROTATIONAL STATES 69

and the corresponding components

Z

In = Ly, = L, = sgn(l) gi“’b (2.332)
Z

Iy = sgn(l) g’f:“" (2.333)

for [ # 0 are independent of all quantum numbers except for the sign of the pseudoro-
tational number [ which determines the direction of the nuclear ring currents. Thus,
the magnitudes of the corresponding electric ring currents in the harmonic approxima-
tion are equal in all vibrational and pseudorotational states of the linear triatomic ABA
molecule with non-zero pseudorotational quantum number (I # 0). Furthermore, the
magnitudes are proportional to the harmonic bending frequency w;, but they are indepen-
dent of the harmonic frequencies for the stretches w, and w,, and also of the equilibrium
bond length R.. The electric ring currents of the nuclei A; and A, (Eq. (2.332)) are equal
and proportional to their nuclear charge Z, whereas that of the nucleus B (Eq. (2.333)) is
proportional to its nuclear charge Zg. Thus, the corresponding electric ring currents are
strong for nuclei with large nuclear charges Z4 and Zp, and for high harmonic bending

frequency wy.

The periods of the nuclei A;, A,, and B about the Z-axis in the harmonic approxima-
tion are equal, i.e.
Z A€ Z pe 2w
L, | 15| wy

T =Ty =Ty, = Tp = (2.334)

(cf. Eq. (2.60)), as expected in classical mechanics.

2.4.6 Induced magnetic fields

The stationary nuclear ring currents with non-zero pseudorotational quantum number
(I # 0) induce magnetic fields according to the Biot-Savart law. The induced magnetic

fields along the Z-axis are calculated as

ZAeMO o0 & jd)’A (p/aZ/)
B, (Z :7/ ’2d’/ : a7’ 2.
Zaepy [ o0 Joras (P, 2")
Ba,(Z) — / )2 dy /_ SR 7 e, (2.336)
2 Uy (7 + (2~ 2'P)
Zpepy [ oo Jos(ps 2’
By(Z) — 0 / o2y /_ ¢ ( /)2 5317 ez (2.337)
2 o o (P2 +(Z—2")?)

(cf. Eq. (2.87)) where jya, (0, Z'), joa,(p', Z'), and jyp(p’,Z’) are the ¢-components of
the ¢-independent nuclear current densities ja,(R’), ja,(R’), and jg(R’) (Egs. (2.307),
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(2.308), (2.313)), respectively. The total induced magnetic field along the Z-axis is
Bit(Z) = Bu(Z)+Ba,(Z)+Bgp(2) (2.338)

which must be calculated numerically for arbitrary values of Z. Note that for symmetry
reasons, By, (—Z) = By4,(Z) and Bg(—Z2) = Bp(Z), thus Biw(—2) = Bi(Z). The
approximations for Z = —R., Z = R., and Z =0

Btot(_Re) = Btot(Re) ~ BA1(_R6) = BA?(RE) (2-339)
Bix(0) ~ Bp(0) (2.340)

are valid because the magnetic fields at the equilibrium position of the nucleus induced
by ring currents of the other nuclei are negligible due to large separation between the
nuclei. The evaluation of the induced magnetic fields B, (—R.) = Ba,(R.) and Bg(0)
(Egs. (2.339), (2.340)) is rather difficult, hence, we restrict the evaluation to the lowest
quantum numbers for the stretches, i.e. v, = v, = 0, since in this case the induced
magnetic fields at the equilibrium positions of the nuclei are expected to be strongest
because the corresponding nuclear probability and current densities for vy, = v, = 0 with
respect to the Z-axis are localized rather compactly at the equilibrium positions of the
nuclei. In general, the induced magnetic field Bg(R) is independent of vs because the
corresponding current density jg(R) (Eq. (2.313)) is also independent of vy whereas the
induced magnetic field B, (—R.) = B, (R.) depends on both the quantum numbers v

and v,; of course, they also depend on the quantum numbers v, and .

We have for vy = v, = 0 (Eq. (2.335)), using Eqs. (2.307), (2.270), (2.278), u =
((Z'+ Re)/p),
Z o0 o0 ) &/ A
BAI(_Re) — A@/J/O/ plZ dp// jd’ Al(p7 ) 5 dZ/eZ <2341)
2 0 —o (p2 + (7' + Re)2>3/
ZAelh:UOMB > ' d //Oo pA1(p/>Z,) dZ’eZ
4MMA 0 — 00 (pl2+<Z/+Re)2)3/2

ZAelh,qu o0 h M 2 o0 [QO(Z/ + Re)
- SeMaiM / (q)fubu (M pl)> p, d,O//_ P , \3/2 dz’' ey
TMaMp JO B oo (p? 4+ (Z' + R.)?)

ZaelhpoMmy, [ L M \\?,
- 87r3/2MAM31/0 (q)”b" (MB'O» &4

2 (Z/+Re)2

00 e Ay ,
Loo <p12 + (Zl + R6>2)3/2 4 €z

—m2 2
My, P U

_ ZAethOMmAl /Oo <<I>h (M p’>)2dp,/ooedue
832 MaMp Jo vl \ Mp pJo ﬁ(l‘i‘u)gﬂ !

where

dasM?
= _ 2.342
M 4sM3 + aM? ( )
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and for v, = 0 (Eq. (2.337)), using Eqs. (2.313), (2.293), (2.246), u = (Z'/¢)?,

_ ZBQMO RV R VAN e j¢’B(p/>Z,) /

_ ZpelhpiM, /°° 'd r/°° 21V /

- T arar — a5 (S3A4

MMz 0 (p/2 +Z’2)3/2

~ 2
Zgelhyig M? /Oo( h ( />> - 2M Zl))

= ] (@ 'd / FRal YA V4
167M3Mg Jo \M\onr, 7)) P T (e Z,2)3/2 €z

. ZBelh,qumB 0 h , me ,
- 8m3/2M 4 Mp /0 ((I)”bll <2M )) p dp / p/2 +Z’2 (2 L 72)3/2 dZ" ez

ZgelhpoMmp /oo (q)h < M ,)) dp' / e~mpP U e
pu— — —_— . u
8m32MsMp Jo wltl \ 201, P pJo Ju(l+ u)3/2 z

JaM
2M 4

where

mp

(2.344)

Using the integral representation of the confluent hypergeometric function of the second
kind U(a, 3, z) [253,254]

1 fe')
Ula,B,2) = ] /0 e u N (14 u)’ " du, (2.345)

o)

the Gamma function I' (%) = /m, and | = sgn(1)]l], Egs. (2.341) and (2.343) are then

rewritten as

ZaelhpoMmey, [ M 2 /1 dp/
Ba(-R) = AT [T (g () U(,o,milp”)p’iez (2.316)

8TMsMp Mg 2
Z aehjuog M2b3/2 _
— sgnlt) AR i [ [ (@l (@)U (5:0.802) @3 due
B
where
M3 2 dasM?, 1
7 = —~— B8 _ - 2.347
“ = " AsMZ + a2 e (2.347)
and
ZgelhpoMmp [ ( . [ M 2 1 > 0\ dpf
Bp(0) — / <<I> ( ’)) U(,o, ’) 2.348
Zgehpo M2b3/2 1 _
= san() ER TP [ (@0 (@)U (5.0.002) @5t d@ues,

respectively. With the definition of the integral

Iy (Ub,m ) = ’”\f/ oh Qb (;70,(3@5) Q1 dQy,  (2.349)
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Eqgs. (2.346) and (2.348) lead to

Zaepo [MM, 3/2 ( wb>
B, (—R.) = sgn(l w,/ "Iy (v, U], — ) € 2.350
A1( ) g ()271'\/% Mg b U\% | | wa 4 ( )

and

Zgepo [MMg 3/2 ( wb)
Bg(0) = sgn(l w,/ Ty (v, U], — ) € 2.351
5(0) g()47r\/ﬁ M, L U b||wa Z ( )

where Eq. (2.252) was used. In Eq. (2.349), the dimensionless values b/c for ¢ = a and
¢ = a, using Eqs. (2.247), (2.248), (2.252), (2.347), are rewritten as

b 1 M Wy
o - 2.352
a wb( M3w8> W ( )
where
1 M N\7!
s o= (= 2.
w (W + MBWS) (2.353)
and
b
—_—— (2.354)
a Wq

respectively (cf. Egs. (2.350), (2.351)). Note that b/a < b/a.

For |I] # 0 the prefactors in Eqgs. (2.350) and (2.351) are independent of the quantum
numbers vy, |l| and of the harmonic frequencies for the stretches wy and w,. The depen-
dences on wy, |l],ws, and w, are determined only by the integral Iy (2.349) but for ¢ = a
the integral Iy and the corresponding induced magnetic field Bp(0) are independent of
ws as expected (cf. Eq. (2.354)). Since the integral Iy and the prefactors except for sgn(l)
are positive, the direction of the induced magnetic fields along the Z-axis is determined
by the sign of the pseudorotational quantum number [ or, equivalently, by the sign of
the Z-component of the total angular momentum [A, i.e. if [ > 0 or [ < 0, then the
induced magnetic fields along the Z-axis are directed to the positive or negative Z-axis,
respectively. The analytical solutions of the integrals Iy for v, < 3 and || # 0, using Eq.
(2.352) for ¢ = a and Eq. (2.354) for ¢ = a, are (see Appendix A.3 for the evaluation of

these integrals)
1 arcsin, /1 — %
( d 1/“’b) (2.355)

Wh
] pu— l pu— ]_7 > pu—
v <vb 4 We 1—=

1
o (w =l =2.22) =
We

(1-2)
( B 4wb> arcsin,/l — %i N (1 N 2wb) Wb]

(2.356)

S-Sl

—_

wC 1 — % wC wC
We

| —|
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CdH, FHF — =3, ‘l| _
c=a| c=a c=a w=l| =1
2.0 —— y=l|=2 ]
' — =l =3
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=
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Figure 2.8: Integrals Iy for v, < 3 and |I| # 0 (Egs. (2.355)(2.358)) versus wp/we: vp = 3, || = 1 (red),
vy = |I| =1 (blue), vp = |I] = 2 (green), vy = |I| = 3 (magenta). The integral values Iy for different v,
and |!| marked by circles at wp/w. = 0 and wp/w. = 1 are given in Egs. (2.360)—(2.367). The vertical lines
for 1*CdH, and FHF~ (see Section 3.5) are also drawn, i.e. wy/w; ~ 0.68 and wy/w, ~ 0.34 for 114CdH,
and wy,/w, ~ 1.03 for FHF~ whereas the corresponding line at wy/ws ~ 83.66 for FHF~ is outside of the

range of this figure.

Wy 3 1
U\ Uy ‘ ’ W, 4ﬁ (1 - ﬂ)iﬂ
. Qe 8% arcsm,/l 10wb B 87w£ Wy
We w2 /1 — 3we  3w? We

Wp 1 1
Iy <v,, =3Il =1, ) = = (2.358)
) V)

11 wb+ w2 arcsing /1 — = 21+7wb 2w\ [ws
4  w, uﬂ /1—2 2 we |

(2.357)

4 2w, Wi
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Note that the integral Iy for v, = 3,]l] = 1 (Eq. (2.358)) can be written as the linear
combination of the remaining three integrals, i.e.

Iy (w, =3,|l =1, ””) = 2 (ub = =1, ”") —2I, <ub =l =2, "”)) (2.359)
w w w

c (& C

w
‘|‘IU <Ub = M = 3, b>
w

c

(see Appendix A.3.4). The integrals (2.355)—(2.358) versus w;/w, are plotted in Fig. 2.8.

Hence, the induced magnetic fields are strongest for |[| = 1, and weaker for |I| =
2,3,.... The smallest mean current radius is obtained for |I/| = 1 and larger radii are
obtained for |I| = 2,3,..., see Section 2.4.7, while the magnitudes of the electric ring
currents (Eqgs. (2.331)—(2.333)) for |/| # 0 in the harmonic approximation are independent
of all vibrational and pseudorotational quantum numbers. This finding is in accord with
the Biot-Savart law in the current loop model, cf. Eq. (2.93). Furthermore, for fixed
|I| = 1, the induced magnetic fields for v, = 3 are stronger than for v, = 1. In general,
one can show by further evaluation of integrals for v, > 3 that the induced magnetic fields
are strongest for |[| = 1 and v, > 1, due to a decrease in the mean current radii for fixed
|I| with increasing vy, see Section 2.4.7. The corresponding integral values Iy examplarily
for wy/w. = 0 (easily calculated from Eqs. (2.355)—(2.358)) and w,/w. = 1 (see Appendix
A.3) are

11
Iy (ub =3,]l|=1,2= o) _ VT s (2.360)
We 8
Iy (vb =I|=12= 0) = V7 ~ L7725 (2.361)
Iy (vb =2, = o) _ VT o 08862 (2.362)
We 2
Iy (vb — =32 = 0) - 387T ~ 0.6647 (2.363)

and

Wy

Iy <vb _3 =1,
w

I
—

= ~ 0.8167 (2.364)

C

I
—

]U <’Ub = |l| = 1,ﬁ
We
Wy

)
) - 2~ 07523 (2.365)
)

I (o=l =2,%=1) = ~ 0.601 2.

U(vb =22 s~ 06018 (2.366)
Wy 32

Io(w=1=3%=1) = ~ 0.5158 2.367

U(vb U " We ) 35/ ’ ( )

respectively, which are marked by circles in Fig. 2.8. However, their asymptotic limits for
wp/we — oo are zero and in this limit the integral I;; — 0 is independent of all vibrational

and pseudorotational quantum numbers (see Appendix A.3). In general, for wy/w. > 1,
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the dependence of the integral Iy on the quantum numbers v, and |{] is less important, but
for small wy,/w, the dependence on the quantum numbers v, and |I| is no longer negligible,
see also Fig. 2.8. For example, for FHF~, the integral Iy for ¢ = a, which is necessary
for the calculation of the induced magnetic fields at Z = R, (cf. Eq. (2.350)), is almost
independent of v, and |I| because wy/wz ~ 83.66 is large due to the relatively small mass
of the hydrogen nucleus, i.e. M > Mg (cf. Eq. (2.352) and Sectoin 3.5). In this case the
integral values Iy range only from 0.1165 for v, = |I| = 3 to 0.1208 for v, = 3, |l| = 1. But
for 114CdH, the corresponding mass ratio is M/Mp = 1, thus the value wy/w; ~ 0.68 is
not as large as it is for FHF~ (cf. Eq. (2.352)) and the corresponding integral I for ¢ = a
is still strongly dependent on v, and ||, see also Fig. 2.8. Furthermore, the integral I, for
¢ = a, which is necessary for the calculation of the induced magnetic field at Z = 0 (cf.
Eq. (2.351)), is larger than the one for ¢ = a because of w, > w; (cf. Egs. (2.352)—(2.354)
and Fig. 2.8). Obviously, the integral [;; increases with the harmonic frequencies for the
antisymmetric w, (for ¢ = a and ¢ = a) and symmetric wy (only for ¢ = a) stretches (cf.
Egs. (2.352) and (2.354)). For small frequencies w, and wy, i.e. wy/w,. > 1, the nuclear ring
currents with respect to the Z-axis are no longer compactly localized at the equilibrium
positions of the nuclei, thus the corresponding integrals I; and the induced magnetic
fields are smaller than the ones for high frequencies w, and w,s. This fact also confirms
indirectly that the induced magnetic fields are strongest for the lowest quantum numbers

for the stretches v, = v, = 0.

To investigate the dependence of the induced magnetic fields By, (—R.) = Ba,(R.)
and Bg(0) on the harmonic bending frequency ws, we must consider the product wZ’/ Iy
(cf. Egs. (2.350), (2.351)). Although, the integral I;; decreases with increasing wy, see Fig.
2.8, the additional factor wg/ ? leads to the strong dependence on wj,. The product wg/ Iy
and thus the induced magnetic fields increase with the harmonic bending frequency wy.
While [y goes to zero if w, — oo, we will show for the example v, = |I[| = 1 that the
product wZ’/QIU instead goes to infinity if w, — co. Using Eq. (2.355), z = 1 — wp/w, i.e.
wy = (1 — 2)w,, L'Hospital’s rule, and darcsin(z)/dz = 1/v/1 — 22, we have

23/

32 |arcsiny/z V1 -z

. 32, .
i hy = ST i (1= 2) e - (2.368)
23/ ’ (1 —2)3?arcsiny/z — (1 — 2)%/z
= im
ﬁ z——00 23/2

2w i 4 (1—2)*?arcsing/z — £ (1 —2)%/z

= /5. L 372

4w i —3V/1 = zaresiny/z + ;Z +2(1 — 2)/z — (1272)2

3ﬁ z2——00 \/E
4w =31 —zaresing/z + 2(1 — 2)y/z
3ﬁ z2——00 \/z
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Aw3/? /1
= Z:/% Zme [—3 P 1 arcsin (i\/—z) + Z(l —2)

arcsin(iz) = idarcsinh(z) (2.369)

Using [253]

and lim,_ ., arcsinh(z) — oo, we obtain

4312 (1
w})@mwgﬂ Iy = 3‘% lim [_321’/2 — larcsinh (V=2) + 2(1 - z)] (2.370)

4 3/2
3("\)/_ {3 lim arcsinh (\/ z) + ;th (1-— z)]

9 z2——00
—  OQ.

In general, for arbitrary quantum numbers v, and ||, one can show in an analogous way
for v, = |I| = 1 that the induced magnetic fields By, (—R.) = Ba,(R.) and Bg(0) go
to infinity if w, — oo. The reason for the strong increase of the induced magnetic fields
by increasing the harmonic bending frequency wy, is that the electric ring currents (Egs.
(2.331)—(2.333)) and the corresponding mean ring current radii (see Section 2.4.7) are

~1/2

proportional to w, and w, '~ respectively, and the induced magnetic field in the current

loop model (Eq. 2.93) is thus proportional to wg/ ? which is in accord with the factor wg’/ 2
in Egs. (2.350) and (2.351). Note that the electric ring current in the current loop model
(2.94) is proportional to the inverse square of the mean ring current radius and hence

proportional to wy, again in accord with Eqs. (2.331)—(2.333).

The physical properties of the nuclei of the ABA molecule also play an important
role in the determination of the induced magnetic fields, i.e. the nuclear charges Za, Zg
and masses My, Mp. The magnetic fields induced by ring currents of the nuclei A and
B at their ring centers B, (—R.) = Ba,(R.) (Eq. (2.350)) and Bg(0) (Eq. (2.351)) are
proportional to their nuclear charges Z4 and Zg, respectively. The dependence of the

magnetic fields on the nuclear masses is determined by the factors

MMA . 2MA+MB . 2MA

M, VMa T T VMg (2.371)
MMpg 2MA+MB

i = M| AR = M2 + i (2.372)

for Z = 0. In addition, the integral Iy in B Al( R.) = Ba,(R.) also depends on the
nuclear masses, i.e. wz (Eq. (2.353)) depends on M, and Mp as

for Z = +R, and

1 2M 1\
wa(Ma, Mg) = (w + ( MBA + 1) w) . (2.373)
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Thus, the induced magnetic fields at Z = £R., i.e. Ba,(—R.) = Ba,(R.), increase
with increasing My, even if the relative mass ratio M4/Mp remains unchanged or if
Mp decreases. Note that the inverse dependence of the integral Iy on wz(Ma, Mp) (Eq.
(2.373)) is still weak compared to the stronger dependence of Eq. (2.371). Similarly, the
induced magnetic field at Z = 0, i.e. Bg(0), increases with increasing Mg, even if Mg /M4

remains unchanged or if M4 decreases.

2.4.7 Mean ring current radius

The mean ring current radii of the nuclei Ay (i = 1), Ag (i =2), and B (i = 3) for [[| #0

are calculated as

Z’G 1/n
R = (o))" = (I / / p"ji(R)~dS> (2.374)

where dS = dpdZ ey, and n = 1,—1,—-2, cf. Egs. (2.95)—(2.97); for choosing n see the
discussion in Section 2.2.7. Note that for symmetry reasons, the mean ring current radii
of the nuclei A; and A, are equal, i.e. R, 4 = R, 4, = Ry, 4,. Using Eqgs. (2.307), (2.332),
sen(l)l = (sgn(1))?|l] = ||, (2.270), (2.275), they are evaluated as

Z 1/n
R = (2] [oinm)- dS> (2.375)

1/n
i 1dp/ pa,(R) dZ)
1/n

l|AM 0 M 2 -~
2w|b]|\4AMB (q)ﬁblll <MB P)) " 161,0/_0O Iy, (Z + R,.) dZ)
/n
[[|A oo > 1
2waAM1—" ((I)Zbll\(Qb)) Qy 1 dQy

(mhMl ”fn_lwb,m))”

(7
(2t 4
(
(s

2u)bMAME1;_n
where the integral I,,(vy, |I]) is defined as
o0 2
Lo ) = [ (@h(@0)" Q3" das (2.376)

see Appendix A.2. In an analogous way, using Eqs. (2.313), (2.333), (2.293), (2.376), and
normalized wavefunction ®% (Q,) (2.246), we can evaluate the mean ring current radius

of the nucleus B as
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Zpe / / p"js(R) - dS) . (2.377)

/n
47T|l|hMA 1 o0

o d/ R)dZ
wy M Mp 0 P _OOPB( )

(%

(S5 -
- (i [ (o i) oo 0. 3 2) )

(=

\l|hM1 - /OOO ((I)me(Qb)) - de>

_ |l|h]\41 nIn—l(Ub7|l|)
21—, M My

By comparing the mean ring current radii R, 4 and R, g (Eqs. (2.375), (2.377)), we obtain

n M’n
n,A B
o= = — (2.378)
n,B 2n‘Z\JA
thus in accord with the condition of the center of mass (in the X/Y-plane)
2MaR, 4 = MpR, 5 (2.379)

which holds for all n.

The mean ring current radii of the nuclei A and B for n = 1 and |I| # 0, using the
integral In(wp, |I|) (Eq. (2.376), Appendix A.2.3) and Eq. (2.252), are

vy U(l+13)
p— l p—y 2.
Ry a(ve = [I]) 2o M (1] (2.380)

iy U(+3) ji+2
=l|+2) = 4 2.381
Fralos =1+ 2y MM (= 1) [+ 1 (2.381)

and
ond, T (I +3
R =|l]) = 2.382
el =) = | e 1 (2,382
ondd, T (11+3) ji+2
Rip(vp =1l +2) = 4, 2.383
e Bl e v A (SR -
respectively. Since |I| + 2 < |I| + 1, the mean ring current radii for v, = |I| 4+ 2 are
smaller than the ones for v, = |l|, i.e. for fixed |I| they decrease with increasing v,. By
further analysis, one can show that for v, = ||, v, = |I| +2,..., and for combinations also

involving fixed vy, the mean current radii increase with |I|, see Table 2.1.
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v ||| R R, R, | R

0o 0] - - - 1 0.886
1 1088 0564 - |1.329
2 0| - - - | 1.551
2 21329 1.128 1.000 | 1.662
3 11]0775 0410 - |1.828
3 301662 1505 1.414 | 1.939
4 0| - - -] 2.008
4 2 (1.219 0.903 0.775 | 2.077
4 411939 1.805 1.732 | 2.181

Table 2.1: Mean ring current radii R,, of the nuclear ring current depending on the quantum numbers
0<wv,<4and]l| forn=1,—1,-2 (Egs. (2.380)—(2.389)) but without prefactors (Egs. (2.390), (2.391)).
For comparison, the mean radii R (Eqgs. (2.396)(2.399)) without prefactors (Egs. (2.390), (2.391)) are

also listed.

For the estimation of the induced magnetic fields in the current loop model (Eq.
(2.93)), the mean ring current radii for n = —1 and |I| # 0 should be used, i.e. with the
integral I_s(vy, |I|) (Appendix A.2.5) and Eq. (2.252),

Mg (I 1)
2wy MM T (Ji] - 1)
hMpg (=1 JI]+1

R =|ll+2) = 2.385
e e (e KR S

Ry a(vp = I]) (2.384)

and

oM, (]| —1)!
o = = 2
R_1 (v, =) MM F(‘” - %) (2.386)

onM,  (JI]— 1) |I|+1
_ pu— pu— 2.
R_i (v, = |l] +2) ‘/waMB r(|z| _%> T (2.387)

Again, because of |I| + 1 < |I| + %, the mean ring current radii for fixed |/| decrease with

increasing v,. By further analysis, for v, = |l|, v, = |I| + 2, ..., and also for fixed vy, they

increase with |I| as for n = 1, see also Table 2.1.

The integrals Io(vp, |l|) for n = 1 and I_5(wyp, |I|) for n = —1 do not have the simple

analytical expressions depending on v, and ||, but the integral I_s(vy, |l|) for n = —2 does
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have the closed analytical form (see Appendix A.2.6). However, the mean ring current

radii for n = —3 are usually used to estimate the approximate electric ring currents in
the current loop model (Eq. (2.94)). For |I| # 0,1, they are
hMp 1|2 -1

R_ = 2.388

A \/2wa1\@\/ vy + 1 (2.388)

and

2RM |12 =1

R_ = . 2.389

2.8 \/waMB Vp + 1 ( )

Note that the radii would be zero if |I| = 1 because the integral I_5(vy, |I| = 1) is infinite,
thus the estimation of the electric ring currents for |I| = 1 in the current loop model cannot
be used. The mean ring current radii increase with |/|, and decrease with increasing vy,
see also Table 2.1. Thus, the ring current radii are smallest for |[| = 1 and v, > 1, and
the corresponding induced magnetic fields are strongest, see also the discussion in Section
2.4.6. Furthermore, Table 2.1 shows us that the mean ring current radii for n = 1 are

larger than the ones for n = —1 which are in turn larger than the ones for n = —2.

The prefactors in Eqgs. (2.380)—(2.389) for nuclei A and B are rewritten as

MMp J h (2.390)

2wy M M 4 2wy (% + 1) My
and
2hM 5 _ 2h (2.391)
—_ o )
waMB Wy (2+M7§> Mp

respectively. It is obvious that the mean ring current radii decrease with increasing

/2 For the nuclei A and B, the radii decrease

harmonic bending frequency according to w,,
with an increase in their own respective masses M, and Mp, or for a decrease in the
masses Mp and M4, respectively. However, they are independent of the nuclear charges
Za, Zp and of the harmonic frequencies for the stretches ws, w,. For heavy nuclei and
high harmonic bending frequency, the mean ring current radius can be very small, even
in the range of 0.001 ag, and the corresponding strong induced magnetic field is sharply
localized inside of the nuclear ring current whereas it decreases rapidly outside of the
nuclear ring current. This behavior indicates that the strong magnetic field interacts only

with the nuclear spin and 1s electrons.

For comparison, instead of the nuclear currrent densities, we calculate the mean radii
Ra,, Ra,, and Rp of the nuclear probability densities pa, (R), pa,(R), and pp(R), re-
spectively. For symmetry reasons R4 = RAI = RAQ and the mean radius for the nucleus
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A is defined as

Ra = (o) = ///de///ng///ng/.../dql...qu (2.392)

[‘I/f,itvavblg(Rh Ro, R3,qy, - - ,CIN)} POy o(Ri, Ry, Ry qu, ... qw)

= ///plpAl(Rl)de

where Eq. (2.257) was used. With dRy = p; dp; dZ; d¢y and Egs. (2.270), (2.275), (2.376),

we obtain
», M2 o0 h M 2 9 oo
RA - j\@‘/o (val (]\43 pl)) pl dpl /—OO Ivsva(Zl + Re) le (2393)
Mp [/ 4 2 o
= or ) (@hu(@) @ day
M
= =7 (o 1)

The corresponding mean radius for nucleus B, using Eqgs. (2.281), (2.293), (2.376), is given

Ry = (py) = ///de///dRz///ng/.../dql...qu (2.304)

[‘IfZii,avblo(Rla Ry, R3,qy,. .. 7qN)} ,03‘1’5;2&%10(R1, Ry, R3,qy,. .. 7CIN)

= / / / p3pe(Rs) dRs
L M3 oo/, M 2, o/ (M 2

= - — Z Z
8Mg/o <q>”b" (2MA”3)> p3dp3/W ((I)”a (QMA 3)) 423

2MA o0 h 2 5

= 7 (q’vb|1|(Qb)> Qy dQs
2M

= MA IQ(Ub7 |l|)

It is obvious that the condition of the center of mass is also satisfied for the mean radii,

i.e.
OMs Ry = MgRg, (2.395)

of. Eq. (2.379).

Using the integral Iy(vs, |I|) (Appendix A.2.1) and Eq. (2.252), the results for all ||
1+

are
_ My
Ra(vy = |I)) = 4
alve = i) 2o, MMs |l

r (i +3)
. iy T(I+3) ) +1
— 2) = 4 2.
Ralvs = 1] +2) 2y MM, L [ +1 (2:397)

(2.396)
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and

- 2hdd, T (lil+3)
Ro(o =) =\ 3 (2.398)

_ ond, T(l+3) ) +1
=ll+2) = 2.
Bplos =1+2) =\ omn i i+ (2.399)

Note that the prefactors in Egs. (2.396)—(2.399) are the same as the ones for the mean ring

current radii (cf. Egs. (2.390), (2.391)). In contrast to the mean ring current radii, the
mean radii increase with |I] and also with v, since |I] + 7 > |I] + 1, see also Table (2.1). In
particular, the mean radii for |[| = 0 are non-zero but there are no nuclear currents. The
mean radii are larger than the corresponding mean ring current radii because the nuclear
current densities contain the additional factor 1/p (cf. Egs. (2.270), (2.271), (2.293)).

2.4.8 Electronic ring currents in pseudorotating molecules

For the stationary pseudorotation of the linear triatomic molecule ABA, we have consid-
ered the stationary non-degenerate electronic state. Of course, the electronic and nuclear
probability and current densities are stationary but we showed that the current densities
of the nuclei are non-zero for |I| # 0 which carry stationary toroidal ring currents of the
nuclei about the Z-axis. One expects intuitively that the electrons follow the nuclear
motion even in the stationary state such that the electrons should also circulate with the
nuclei about the Z-axis although the electronic state is non-degenerate. But in the Born-
Oppenheimer approximation W% = ¥muye (Eq. (2.207)), the corresponding electronic
current density je(r) (cf. Eq. (2.21)) is exactly zero, i.e.

ju(r) = ;ZV [[[awvi [ [ [ar [ [ [ar, (2.400)

/ / \I,totv (Wiot)* (\pigt)*vr\p?it) doydqs . ..qyn

S ] ff | f

/. .. / (\I]Slvr(qul)* _ (‘Pfl)*vr\pfl> do_lqu A

because the nuclear wavefunction W7* is independent of the positions of the electrons, and
the electronic wavefunction ¥¢ of the non-degenerate electronic state can be designed as

a real function using real orbitals.
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One can go beyond the Born-Oppenheimer approximation and use first-order pertur-
bation theory to obtain the first-order term of the total wavefunction which can describe
the non-zero electronic current due to nuclear motion even in the stationary state, see e.g.
Refs. [255,256]. This implies that the electronic wavefunction has an additional phase fac-
tor due to moving nuclei, in general, depending on time and electronic as well as nuclear
coordinates. In the semi-classical picture, in particular for application of atomic collisions,
this phase is called travelling atomic orbital (TAO) or electron translation factor (ETF),
see e.g. Refs. [257,258]. Recently, an alternative approach for calculating electronic and

nuclear fluxes (currents) in vibrating molecule Hj was developed [259].

Nevertheless, the influence of the electronic ring currents on induced magnetic fields
in pseudorotating molecules at Z = 0, £ R, should be negligible. The reason is the broad
distribution of the electronic probability density in the range of several ag which is larger
than the typically very small mean ring current radii of the pseudorotating nuclei. For
example, the maximal mean current radius of the light hydrogen nucleus of an XHX or
HXH molecule for v, = |I| = 1 is about 0.2a¢. Hence, if the pseudorotating nucleus at
X =0,Y > 0 moves in the negative X-direction, then the broadly distributed electronic
wavepacket at X = 0 but Y > 0 as well as Y < 0 moves in the same negative X-direction.
After the half period, the nucleus at X = 0, Y < 0 and the electronic wavepacket at X = 0
and Y > 0 aswell as Y < 0 move in the positive X-direction. This switch in direction leads
to the oscillation of the electronic current densities at each point where its magnitudes
(positive and negative directions) are slightly different due to the small displacement of
the double mean ring current radii of the nucleus 2R,,. Averaging the electronic current
density over the stationary nuclear probability density yields the relatively weak toroidal
electronic ring current with a corresponding relatively weak induced magnetic field at the

ring center.

2.5 Nuclear dynamics

2.5.1 Circularly polarized laser pulses

The concept for the generation of nuclear ring currents and pseudorotation is the same
as for the generation of electronic ring currents and circulation, see Fig. 2.6 (cf. Fig.
2.4 and Section 2.3). In particular, a right (4) or left (—) circularly polarized laser pulse
propagating along the molecular axis of the linear triatomic molecule ABA (Z-axis) is used
for the excitation from the vibrational non-degenerate ground state |¥7* ) to vibrational

degenerate excited states [¥7%) carrying anti-clockwise (+) or clockwise (—) nuclear ring
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currents with a non-zero Z-component of the total angular momentum (Ly;) # 0 (|I] # 0).
All formulae for the circularly polarized laser pulses given in Section 2.3.1 can be adopted
here, for example the time-dependent circularly polarized vector potential (Eq. (2.98)) and
electric field (Eq. (2.99)), laser envelope (Eq. (2.100)), and time-dependent intensity (Eq.
(2.114)). Note that the linear triatomic non-polar molecule ABA has to be pre-aligned by
means of a linearly polarized laser pulse [210,213] and that the effective pulse duration of
the circularly polarized laser pulse 7. should be shorter than the rotational period of the
linear molecule, i.e. the linear molecule should be aligned during the vibrational excitation.
Furthermore, the laser frequency of the circularly polarized laser pulse w,. should be near-
resonant to the harmonic bending vibrational frequency wj, such that the electronic and
rotational transitions are off-resonant, i.e. the electronic state remains in the electronic
non-degenerate singlet ground state |¥§') = |X 'S}), and the time-dependent field-free

rotational state after the alignment is not changed during the vibrational excitation.

2.5.2 Time-dependent nuclear Schrodinger equation

The laser driven vibrational and pseudorotational dynamics in the electronic ground state
|Wel) is described by the time-dependent nuclear Schrédinger equation (TDSE) within the
electric dipole and Born-Oppenheimer (Eq. (2.207)) approximations,

O o) = Hulbe) (2.401)

where ]:L,ib(t) is the time-dependent vibrational Hamiltonian

A

Hy(t) = Hyp—M-Ees(t). (2.402)

The vibrational Hamiltonian H,; is the nuclear Hamiltonian T}, + Vo (Eq. (2.209)) but

without kinetic operators for translation and rotation of the molecule, i.e.

i __h2 02_712 32_h2i8
vib 2ms 0Q2  2m, 0Q2  2my, Qp 0Q

0 L2, .
Qb 8@{)) + 2me% + O(stQ(MQb)
(2.403)

(cf. Eq. (2.233)). The right (+) or left (—) circularly polarized electric field E.4(t) is
given in Eqs. (2.118) and (2.99), respectively. The dipole function M is defined as

M(QS7 Qa7 Qb? 6) - <‘1I81’M’\:[18l> (2404)
where the dipole operator M is given in Eq. (2.118). For symmetry reasons, the X- and
Y- components of the dipole function M in polar coordinates are

My = M, cosd (2.405)
My = M, siné (2.406)
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where MJ.(QS7Q(17 Qb) = MX(QS?QG7QZ)76 = O) = MY(QSan; Qb75 = 7T/2) denotes the
component of the dipole function perpendicular to the Z-axis and depends, in principle,
on the vibrational coordinates @), @, and @), but not on the pseudorotational coordinate

0. Since the Z-component of the electric field is zero, the interaction term is rewritten as
—M . Eci(t) = —ML (Eci’)((t) cos o + Ecj;y(t) sin 5) s (2407)

cf. Eq. (2.119).

The ansatz for the time-dependent vibrational state |®(¢)) is

macc

Z C,y(t)| @, ) Eroli=to)/h (2.408)

where |®,) and E, are the vibrational eigenstates and eigenenergies of I:Im-b with vibra-
tional quantum numbers v = 0,1,2, ... in the electronic ground state |U&') (Eq. (2.233)).
Cy(t) and v,
states |®,) included in this expansion, respectively. Using |®,) = |®yy)|P1) (Eq. (2.234)),

the ansatz (2.408) is then rewritten as

+ 1 are the time-dependent coefficients and total number of vibrational

Umaz lmaz

= 3 X Cu®)| @) | @) e Feolt=to)/h (2.409)

v=0 l=—Ilmazx

where v = 0,1,2,...,0me: and | = —l4z, ..., lmee are now the pure vibrational and
pseudorotational quantum numbers, respectively, E,0 = Ey and Cy(t) = Cy(t). At the

initial time ¢y, the system is in the vibrational ground state v =1 =0, i.e.
[©(t0)) = [Pu=o,=0)|Pi=0)- (2.410)
Inserting the ansatz (2.409) and (2.410) into the Schrodinger equation (2.401) and (2.402)
yields the equivalent set of differential equations for the time-dependent coefficients
] d Umax Imax
Zhdi Z Z Hvl v’l’ ’l’( ) (2411)
t v'=0l'=—lmazx

with initial condition
Culto) = duodio (2.412)

(v =0, ,Vmaz;l = —lmazs -+ lmaz), cf. Eqs. (2.122), (2.123). The time-dependent

matrix elements H,; ., (t) are evaluated as
Hvl,v’l’(t) = _le,v’l’ : Ec:l:(t)eiiwvlwl’vm(tito) (2413)

with transition frequencies

Ev’ I',0 — Evl,O
Wl = — : . (2.414)
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and transition dipole matrix elements
lem/l/ = <q>v‘l||<<I)l|1\~/[|<1)l/>|(l)v/|”/> (2415)

(0,v" =0,...,Vmaz; 1, ' = =lmaz, - - -, lmaz)- Since the wavefunction @, is independent of
the pseudorotation §, the corresponding X- and Y- components of the transition dipole
matrix elements, using Eqs. (2.405), (2.406), (2.236), are evaluated as

le,v’l/,X = <(I)U|”’MJ_|(I)U/|Z/‘><(I)1|COS 5’(I)ll> (2416)

1 ~ 2,

= 5 <(I)U|ZI|ML|(I)11’|I’|>/O e '3 cos 5 db
1 = CLI i . .

= in <q)v|l|’MJ_|q)v’|l’|>/O e (=03 (6“5 + e_“s> do
1 ~ 2, 2,

= — <@’U|l|’MJ_‘¢’U/|l/|> (/ =18 g8 +/ cil'=1=1)6 dé)
47 0 0
1

= 2 <q)v\ll|ML|‘I)v’\l/l> (5l'l—1 + 5m+1)
and

Moy = (P ML| @y} (@] sin 6| r) (2.417)
1 ~ 2 )
= %@uuﬂMﬂ@va/o D0 gin § do

= L@ l|]\~4l‘q)/l,>/27rei(z/_z)5 <€i6—6_i5> d5
dig © M oL

) - 2, 2,
- v <(Dv\l||ML|CI)u/|l/|> (/ =418 g5 / eil'=1-1)3 d5>
47 0 0

7 ~
= _5 <(I)v|l\|ML‘q)v’\l’\> (51’171 - 5l'l+1) )

respectively. Thus, the matrix elements (Eq. (2.413)) are rewritten as

1

Hy () = _§<(I)v|l\|]\;[1_|q)v’\l’\> [(Bexx(t) — iBery (1)) 81 (2.418)
+ (Eex x(t) + 1By v (1)) 0141
(0,0 =0, Unaz; LU = —lnaz, - -+, bmaz). Since the Z-component of the electric field

is zero, the Z-component of the transition dipole matrix element is irrelevant. Because
of the factors ;1 and &;441 in Eq. (2.418), the diagonal matrix elements H,;,(t) are
exactly zero. Moreover, the selection rule [ — [+ 1 holds for pseudorotational transitions,
by analogy with the selection rule for laser-induced electron circulation and electronic
ring currents in atoms, atomic ions, and aligned linear molecules, see Section 2.3.2. Thus,
we expect that the right (4) and left (—) circularly polarized laser pulses will induce
dominant pseudorotational transitions | — [+ 1 and [ — [ — 1 for absorption, or { — [ —1

and [ — [ + 1 for stimulated emission, respectively, see Fig. 2.7.
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In the so-called double harmonic approximation (DHA), one uses the harmonic poten-
tial VI (Qs, Qu, Qp) (Eq. (2.240)) for the potential energy surface together with the linear
approximation for the dipole function [207,208|

aML(Q& Qm Qb)
9y Q:=Qa=Qy=0

MUQy) = Qb (2.419)
where the zeroth-order term M, (Q, = 0,Q, = 0,Q, = 0) for a linear triatomic
molecule ABA is zero due to symmetry. The DHA matrix elements <<I>vu||]\2[f|@u/|z/|> ~
<<I>v|l||]\~4l|(l>v/|l/|> for I =1+1 (cf. Eq. (2.418)), using Eqgs. (2.241), (2.245), (2.246), (2.251),
(2.419), are

8MJ_(Q57 Qm Qb)

Oy | MP | Py) =
(Pojo | M | @oryir)) o

51}51}{56'”@”{1 <®vb|l‘|Qb|®vl’)|l’|> (2420)
Qs=Qa=Qp=0

where [207,208]

vy + |l vy — |1
(Puyju|Qol®eypr) = Ougn i1 (5l'|1|+1 : 5 L. -1y = 5 L 1) (2.421)
UI + l/ U, _ l/
H0ufu,-1 (Mul : 2‘ S AL 2’ 4 1)

for I’ =1+ 1. Thus, the DHA yields selection rules

vl = v, (2.422)
vl = v, (2.423)
v, = vl (2.424)
o= 1£1. (2.425)

Starting from the ground state vy, = v, = v, = [ = 0, the dominant absorption processes
(p v+ 1,1l —1l+1and [ — [ —1, “double” ladder climbing) by means of a right and
left circularly polarized laser pulse are illustrated schematically by red and blue arrows in
Fig. 2.7, respectively.

In the anharmonic model where the harmonic and anharmonic eigenenergies are differ-
ent, i.e. Ef}wo # Eyji10, we use quantum numbers v, vq, vp, and [ for the dominant contri-
bution of the harmonic vibrational wavefunctions, denoted as v,l = (vs, v}, v,). According
to the DHA selection rules (Eqgs. (2.422)—(2.425)), we neglect the transitions from anhar-
monic vibrational states |v,1) = |(v, = 0,0, v, = 0)) to other states [/, 1) = |(v/, v}",v1))
where I =1+ 1 and v, + ¢/, > 0. In this approximation, the ansatz (2.409) and the prop-
agation of the set of equations (2.411) for the time-dependent coefficients Cy,(t) = C,,i(t)

are, therefore, restricted to quantum numbers v, = (v, = 0, v}, v, = 0).
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The differential equations (2.411) together with the initial condition (2.412) are then
solved by the same Runge-Kutta method [245] as for electron dynamics, but with larger
time step sizes. For example, At = 1fs for 1*CdH, and At = 5fs for FHF~. Of
course, the convergence of the results is tested with respect to the number of bending and
pseudorotational states which are included in the expansion (Eq. (2.409)), for example
0 < v, < 10 for 1CdH, [207] and 0 < v, < 4 for FHF~ [208]. Finally, the resulting time-
dependent coefficients yield time-dependent populations of bending and pseudorotational

states, i.e.
Po(t) = [Cou(t)]%, (2.426)

and the corresponding time-dependent mean values of quantum numbers for the bend

and pseudorotation

Vb, max lmaz

(up(t)) = Z Z Up Py, (t) (2.427)
V=0 l=—lmax
Vo,maz  Imax

i) = Y 3 P (2,429
vp=0 l=—lmax

The latter corresponds to the time-dependent mean value of the Z-component of the total

angular momentum, i.e.
(Liotz (1)) = (1D, (2.429)

cf. Eq. (2.326).

2.5.3 Nuclear pseudorotation

In an analogous way as in Section 2.3.4, the expressions for the time-dependent nuclear
probability and current densities are similar, i.e. by inserting the time variable ¢ in Egs.
(2.257), (2.281), (2.297), (2.309), cf. Eqgs. (2.176), (2.177), and using the ansatz (2.409)
for the time-dependent vibrational state |®(¢)) while the electronic state remains in the
ground state |¥¢) and therefore time-independent. For ¢ < ¢35, the molecule is in the
vibrational and electronic ground state and the corresponding nuclear probability and
current densities are stationary. While the electric field is turned on at time ¢y, the nuclear
probability and current densities for ¢ > t; are, in general, no longer stationary. In the
harmonic approximation and assuming that the symmetric and antisymmetric stretches
are not excited (vs = v, = 0), the time-dependent probability densities of the nuclei Aq,
Ay, and B are
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1 M?

i) = loolZ + & 2.430
pA1( 7) 2 MB 00( + ) ( )
Ub,maxzx l 2
4 max M ) )
S 3 Casl®®lyy (1) €O Bnal-n
=0 l=—lmax ’ bH MB
1 M?
i) = foo(Z = 2.431
pAz( a) 2 MB 00( ) ( )
Vb, max [ 2
max M ) )
Z Z C’ul v l( p> ell(¢+7r)e_ZEvaIVO(t_tO)/h ;
vp=0 l=—lmaz ’ el MB
and
1 M3 M 2
RO = Toramg (™ ( Z)) 2.432
pB( Y ) 167]' Mi < ,Uaio 2MA ( )
Vb, max l 2
Z Z val vbm (2M p) l¢€ EvbllLO(t to)/h ’
vp=0 I=—Imaa

respectively, cf. Egs. (2.270), (2.271), (2.293). Note that the pseudorotation § was re-
placed by ¢ + 7 for nuclei A; and A,, and by ¢ for nucleus B since cosd = Qp x/Qp =
—X/p = —cos¢ for nuclei A; and Ay, and cosd = Qp x/Q» = X/p = cos ¢ for nucleus
B (cf. Egs. (2.225), (2.262), (2.264), (2.285), (2.287)). As in Section 2.3.4, the time-
dependent nuclear probability densities (Eqgs. (2.430)—(2.432)) are the sum of the nuclear
probability densities of vibrational stationary states weighted by their time-dependent
populations P,;(t) plus the interference terms. After the end of the laser pulse, i.e.
t > ty, the coefficients C,,;(t) = C,,(tf) and corresponding populations P,,;(t) = P,,i(ts)
are time-independent but the nuclear probability densities and also current densities are,
in general, time-dependent because of the time-dependent exponential factors in the in-
terference terms in Eqs. (2.430)—(2.432), cf. Eqgs. (2.182), (2.183). In this case, the expo-
nential factors depending on the azimuthal angle ¢ and time ¢ lead to the non-stationary
nuclear pseudorotation about the Z-axis. Moreover, in the harmonic approximation, the
l-independent vibrational eigenenergies E., ;0 ~ Eh lil0 = hws + %hwa + (vp + 1)hw, (Eq.
(2.255)) are equidistant, i.e. the transition frequency of all neighboring states with respect
to vy is w = wp. With this approximation, the nuclear probability and current densities
(cf. Egs. (2.195), (2.196)) as well as the electric currents and induced magnetic fields (cf.
Egs. (2.198), (2.199)) are periodic in wt. In the anharmonic model, however, this peri-
odicity is no longer strictly valid, i.e. the distribution of the nuclear densities circulating

about the Z-axis changes slowly with time and has revival structures, cf. Refs. [260-266].

In the special case in which the population of the target vibrational state |(0,v},0))
(I # 0) at the final time ¢; is approximately equal to 1, the interference terms in Egs.
(2.430)-(2.432) for t > t; are negligible due to almost no populations of other vibrational

states. The nuclear pseudorotation and ring currents as well as electric ring currents and
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harmonic model anharmonic model
Vp = |l| =2
<u I r AE
\‘ y
>< Eyo—Eiio| | Ei1.0— Eooo
< Vp = |l| =1
Ei10— Eooyo
Vp = |l| =0 ‘

Figure 2.9: Vibrational levels (v, = |I| = 0, 1,2) and resonant excitations (red arrows) in the harmonic
and anharmonic models with equidistant and non-equidistant energies Ez"b‘ 11,0 and E.,|;|0, respectively,
where the anharmonic energies E,, ;o are shifted to E,, ;0 + Eébo,o — FEpp,0. Multiphoton transitions
(“double” ladder climbing, see Fig. 2.7) in the harmonic model by means of the right circularly polarized
laser pulse can be supressed in the anharmonic model where the spectral width I' of the laser pulse must
be smaller than the anharmonicity AF, see Eq. (2.436). This condition implies that the effective pulse
duration 7, must be sufficiently long, but on the other hand, it must be much shorter than the rotational

revival time 7,., of the linear triatomic molecule ABA.

induced magnetic fields after the end of the laser pulse are stationary. For example, the

nuclear current densities for ¢t > ¢, are
PA, (R’ t) ~pA R) (2433)

(
:0A2<R7t) ~ /OA2<R) (2434)
ps(Rot) ~ pu(R). (2.435)

~—

The nuclear ring currents of the excited vibrational state |(0,v},0)) (I # 0) persist after
the laser pulse until they decay by means of spontaneous emission with the corresponding
lifetime (ms timescale) which is typically longer than the effective pulse duration (fs/ps

timescale) and the periods of nuclei about the Z-axis (fs timescale).

The complete population transfer from the vibrational ground state |(0,0°,0)) to the
first degenerate state [(0,1%,0)) can be achieved by means of a right circularly polarized
reoptimized 7 laser pulse, see Section 2.3.3, but with the following important consid-
erations for vibrational excitations. We know that in the harmonic approximation with
equidistant level spacings there are sequential multiphoton transitions to higher states due

to double ladder climbing, see Figs. 2.7 and 2.9. To avoid this, we must take an anhar-
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monic model into account with non-equidistant vibrational energies E,y; 0. In particular,
the transition from the state [(0,1%,0)) to the higher state |(0,22,0)) can be supressed by
the suitable choice of the spectral width I' of the laser pulse. The spectral width I" should
be smaller than the absolute difference between two transition energies, denoted as the

anharmonicity AFE,
I' < AE = |(Ey=2ji=20 — Eu,=1,i1=1,0) — (Eu,=1,j11=1,0 — Ev,=0,j11=0,0), (2.436)

see Fig. 2.9. Since the anharmonicity AF is, in general, small, the effective pulse duration
7. of the circularly polarized laser pulse (Eq. (2.99)) must be sufficiently long, typically a
few ps. On the other hand, 7. must be much shorter than the rotational revival time 7,,,
see Section 2.6.3, because the molecule must be aligned during the vibrational excitation.
Moreover, the rotational revival time for the HXH molecule is shorter than the one for
the XHX molecule, where X is the heavy nucleus. Thus, the complete population transfer
can be achieved for the XHX molecule, but it can also be achieved for the HXH molecule
if the anharmonicity AF (2.436) is sufficiently large.

2.6 Nonadiabatic orientation of a linear molecule

For all applications described in this work, i.e. the generation of electron or nuclear circu-
lations with corresponding ring currents and induced magnetic fields, linear or ring-shaped
molecules must be aligned or oriented during short electronic or vibrational excitations.
The nonadiabatic alignment [210-214] and orientation [113,146,215-217] of the non-polar
and polar molecules can be achieved by means of a linearly polarized HCP. After the
HCP, the rotational wavepacket evolves under field-free conditions similar to the field-free
non-stationary electron circulation and nuclear pseudorotation after the circularly polar-
ized laser pulse. In addition, the wavepacket dephases due to non-equidistant rotational
level spacings but it will be reconstructed periodically at intervals of the rotational revival
time T,¢, [225]. However, in this work only the nonadiabatic orientation of linear polar
molecules, such as BeO [146] and AICI [145], is investigated, whereas the nonadiabatic
alignment of non-polar molecules can be achieved according to Refs. [210-214], in which
the polarizability « plays a dominant role since the permanent dipole moments of the non-
polar molecules are zero. Furthermore, the typically weak rotational-vibrational coupling
is neglected in this work, since the time scales on which the effects of such interactions
are observable are much longer (ns timescale) [226] than the pulse durations of the laser
pulses and than the time scales of electron circulation and nuclear pseudorotations, see
Sections 2.3.4 and 2.5.3.
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2.6.1 Rotational states

At the initial time ¢ = 0, the linear polar molecule BeO or AICI is in the vibrational
and electronic non-degenerate ground state at a rotational temperature 7" > 0K, hence
the inital state is the | X 'S (v = 0)) vibronic state with a Boltzmann distribution of the
rotational states |JM) where J = 0,1,2, ..., Jyee and M = —J, —J+1,...,J—1, J are the
corresponding rotational quantum numbers. In the rigid-rotor limit where the rotational-
vibrational coupling is neglected, the (2J + 1)-fold degenerate rotational energies of the
X ¥+ (v =0) state are

EY = B.xJ(J+1) (2.437)

where B, x denotes the rotational constant of the molecule. The Boltzmann weights of

the states |JM) are then calculated as
o~ Bex J(J41) [T

P(J, M) = P(J) = iﬂ:uz)z(2t]_'_1>€—BE7X‘](J+1)/]€BT

(2.438)

where kp is the Boltzmann constant.

2.6.2 Linearly polarized laser pulses

Linearly (1) polarized HCPs have been applied to achieve molecular orientation [113,215—
217], but most reported pulses do not satisfy the corresponding condition (2.111) for the
linearly polarized laser pulse, i.e. [141,242,243]

/ E/(t)dt = 0. (2.439)

—00

Hence, the time-dependent linearly polarized electric field with non-zero z-component

propagating along the axis perpendicular to the laboratory-fixed z-axis is constructed as

0 (t<0)
Et) = { —&cos® (U2 sin(wi(t —t,0))e. (0<t<t,)  (2440)
_52,l(1 _ 6—(t—tp,1)/7'1,l)e—(t—tp,L)/Tz,z e, (t > tp,l)7

where &, £ are amplitudes, w; is the carrier frequency, t,; = 7/wj is the pulse duration
of the first part of the laser pulse (0 <t <'t,;), 714, T2, are the switch-on and switch-off
times of the second part of the laser pulse (¢t > t,,), respectively. It is obvious that the
first part of the laser pulse is zero at ¢t = 0 and ¢ = t,,; since sin(—w;t,;) = —sin(r) =0

and sin(w(t,; — t,1)) = 0, respectively, and the second part of the laser pulse is also zero
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at t = t,; since 1 —e~(tri7t0)/Tt = 1 — % = 1 —1 = 0. Moreover, the electric field (2.440)
must be smooth at ¢ = 0 and ¢ = ¢,;. The derivative of the electric field is given by

0 (t < 0)
] — &1 wy cos ( e t’”)) [cos (wl(t t’”)) cos(wi(t —tp,))
pr E(t) = —sin (w’ )sm wi(t — tpl))} e. (0<t<t,))
—&y [m —(t=tp,0) /111 o= (t—tp1) /T2
L (1 el o, (¢34,

(2.441)

At t = 0, we have cos(w;(t —t,;)/2) = cos(n/2) = 0, thus the electric field at t = 0 is

always smooth. The condition that the electric field is also smooth at ¢ = ¢,; leads to

&
ELw, = Tﬂ (2.442)
1,1

which can be easily verified using Eq. (2.441). Thus, the formula for the switch-on time

of the second part of the laser pulse is

— L 2.443
L & wp ( )

Finally, using Eq. (2.440), t,; = 7/w;, and sin(2z) = 2sinz cos x, the condition (2.439) is

rewritten as

e} tp. t B t
/_ _Bindt = =&y /0 ' cos? (M) sin(wy(t — t,,)) dt e, (2.444)
—& /Oo(l - ef(tftf'vl)/ﬁvl)e*(t*tp,l)/Tz,z dte,
tp

tp, t—t t—1t
= —25171/ ' cos® (wl( 5 p’l)> sin (wl( 5 p’l)> dte,
0

oo o0 J S S
_g2l/ 6—(t—tp,l)/7'2,z dtez_i_gll/ e —(t— tpl)( l+ l) dtez

o o

tp
Eu g fwlt =) \|"
= — cos" | ————F=~ .
Wy 2 0
(t—tp1) L) [*
_(t— 00 T1,1T2,1 tt,z( +T—)
+52,l7'2,l e (t—tp,1)/72,0 e, — 82,1 _rLer2d P 2,1 e,
b, Ti,1 + T2 ¢
b 3 p,l
&y T1,1T2,0
= (— —Eyumy+ & ———|e,
wy T+ Toy
2
&y Ea1Ts
= |———"""—]e, = 0,
wi T, + Toyu
thus
&y EaiTyy
Lo T2 (2.445)

)
wi T, + T2y
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and using Eq. (2.442)

1 T2
— = — (2.446)
WL T, + Toy
or
2 T2,l 1
— —— = 0. 2.447
72, Wit  w? ( )

The solution of this quadratic equation for the switch-off time 75; > 0 is therefore

1 1 1
= —. 2.448
T2l 20T * 4w}t * w? ( )

Since the first part of the laser pulse (0 <t <'t,;) is similar to a HCP, the corresponding
magnitude must exceed that of the second part of the laser pulse (¢ > ¢,.), i.e. |E1] >
|€24]. Then, the switch-on time 7, (Eq. (2.443)) is short, and the switch-off time 7,
(Eq. (2.448)) is long, i.e. the second part of the laser pulse has a long tail. With a
compromise between a large amplitude ratio & ;/&»; and an acceptable switch-off time
To1, we use & /&, = 10 in this work. The laser amplitude & ; and carrier frequency wy
should be optimized to yield the best orientation of the linear molecule. Note that the
carrier frequency w; must be small with respect to the vibrational and electronic transition
frequencies from the ground state, i.e. it is off-resonant with all vibrational and electronic
excitations, and hence the molecule remains in the electronic and vibrational ground
state X '¥* (v = 0), while the moderately intense laser pulse populates a broad rotational
wavepacket. The other laser parameters, i.e. pulse duration ¢,;, switch-on 7 ; and switch-
off o times, are estimated using t,; = 7/w; and Eqs. (2.443), (2.448), respectively. The
time-dependent intensity of the laser pulse is given by [244]

L(t) = ceolEi(t)]? (2.449)

cf. Bq. (2.114), and its maximum I} e, = max [;(t) is smaller than c£o&7;. In passing,
we note that similar HCPs have been constructed, e.g. in Ref. [141], aiming at entirely
different goals, i.e. control of unidirectional rescattering of electrons. A counterintuitive
result of Ref. [141] is that the effect of the long weak second part of the HCP may be

quite important.

2.6.3 Time-dependent Schrodinger equation for a rigid-rotor

In the rigid-rotor approximation, the time-dependent Schrodinger equation for the rota-

tional state |W,,(t)) is written within the electric dipole approximation as

A~

i L)) = Hro0) (1)) (2.450)

ot



2.6. NONADIABATIC ORIENTATION OF A LINEAR MOLECULE 95

Z A

O/Z

 J
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Figure 2.10: Negative orientation of the diatomic polar BeO molecule by means of a linearly polarized
HCP E,(t) (Eq. (2.440)) (with negative amplitudes & ; and & ;) propagating along the axis perpendicular
to the laboratory-fixed z-axis. The direction of the permanent electric dipole moment M (blue arrow) is
from the O to the Be atom, i.e. it is the direction of the negative molecular Z-axis. In the perfect negative

orientation of the BeO molecule, the laboratory-fixed z- and molecular Z-axes coincide, i.e. § = 180°.

where f[mt(t) is the time-dependent rotational Hamiltonian

A ~

Hyoot(t) = Hypop — M(Rex)Ey.(t) cosb, (2.451)

A~

H, . is the rigid-rotor rotational Hamiltonian
H.o = BexJ? (2.452)

and J is the total angular momentum operator with corresponding rotational eigenstates
|JM) and eigenenergies B = B.xJ(J + 1) (Eq. (2.437)). In the second term of Eq.
(2.451), M(R. x) denotes the magnitude of the permanent electric dipole moment at
the equilibrium bond length R, x of the electronic ground state of the diatomic polar

molecule, i.e.

M(Rex) = IM(Rex) = (¥ MTg)], (2.453)
cf. Eq. (2.404), E, .(t) is the z-component of the time-dependent electric field E;(t) (Eq.
(2.440)), and @ is the angle between the laboratory-fixed z-axis and the direction of the

permanent electric dipole moment M(Re, x) of the molecule, see Fig. 2.10.
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As for electron and vibrational dynamics, the time-dependent rotational state |, (%))

is expanded in terms of the rotational states |JM) as

Jma,z
WMy = Y Z CTM (1) T M )e Ext/h, (2.454)

rot
J=0 M=

cf. Egs. (2.120), (2.408), with the initial condition

Wi = 0)) = |J:M;). (2.455)

rot

Inserting the ansatz (2.454) and (2.455) into the Schrodinger equation (2.450) yields the

set of coupled differential equations for the time-dependent coefficients,

Jmafl)
FL* C Z Z HJMJ/M/ )CJ’M’< ) (2456)

=0 M'=-J’

with the initial conditions
CH(t=0) = 655,0mum, (2.457)

(J =01, Jyaes M = —J,—J +1,...,J — 1), cf. Eqs. (2.122), (2.123), (2.411),
(2.412). The time-dependent matrix elements H s a0 (t) are

Hynpgor(t) = —M(Rex)Ey.(t)(JM|cos@|J M')e st (2.458)

with transition frequencies

E{ — E%
(,JJ/J = % (2459)

and transition matrix elements [267,268]

J 1 J 1 J
(JM|cosOlJ'M') = Syan(—1)M /(27 + 1)(277 + 1)
Mo -M)\0o0 0

(2.460)

(J=0,1,....Jpae; M = —J,—J +1,...,J —1,J). These matrix elements yield the
selection rules for the rotational transitions J' = J+1 and M’ = M. Thus, the differential
equations (2.456) are simplified to

d »
ih— Copi(t) = > H v, (8) AT (2) (2.461)

dt 0<J'=J£1<Imaz

for J =0,1,..., Jhna, and

Ccrllit=0) = 0 (2.462)
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for M # M;. The time-dependent rotational wavepacket |07 (¢)) (Eq. (2.454)) is then

rewritten as

Jma:c

W) = X O (T Me R (2.463)
J=0

rot

The differential equations (2.461) with initial condition (2.462) are solved by means of
the same Runge-Kutta method [245] as for electron and vibrational dynamics, cf. Sections
2.3 and 2.5, respectively. For BeO molecule, the time step size is chosen as At = 5fs with
which the convergence results are obtained for a low rotational temperature 7' = 1K and
moderate total number J,,,, = 13 of rotational states which are included in the expansion
(Eq. (2.463)). The resulting time-dependent coefficients depending on the initial state
|.J; M;) yield the time-dependent expectation value of cos 6

(cos ) yar(t) = (USiMi(t)] cos O|WiMi(t)) (2.464)

rot rot

JT’LUH’L' * .
= Y [CRE®)] R @) (I M| cos 0] M;)e !
J,J'=0
which determines the degree of molecular orientation. The corresponding thermally av-
eraged time-dependent expectation value is given as a Boltzmann average (Eq. (2.438))

over the initial state-selected value of Eq. (2.464),

Ji,maz - Jl
(cosO)r(t) = D P(J) Y. (cos)(t), (2.465)
Ji=Ji, min M;=—J;

where J; i, and J; e are chosen such that the Boltzmann weights P (J;) (J; =
Jimins - - - » Jimax) at the rotational temperature T are not negligible. Positive and nega-
tive signs of (cos 6)7(t) correspond to orientation in the positive and negative z-directions,
respectively, and |(cos @)7(t)| = 1 corresponds to the idealized limit of perfect orientation.
The laser parameters & ; and wy, see Section 2.6.2, are optimized such that the expectation
value |(cos @)7(t*)| is maximized at ¢t = t*, where t* denotes the instant of best orientation
of the molecule after the laser pulse. Since the time-dependent rotational wavepacket
after the laser pulse is a superposition state, there is revival pattern, i.e. the orientation
of the molecule is periodically reconstructed at intervals of the rotational revival time
Trev,x = Th/Be x of the electronic ground state [226]. The orientation duration Aty of
the molecule is determined by the peak width at times t = t* + n7e x (n =0,1,2,...)
and, of course, it is much smaller than the rotational revival time A7y < 7., x. Thus, the
effective pulse duration 7, of the applied circularly polarized laser pulse for electronic or
vibrational excitations of the oriented molecule must be smaller than the orientation du-
ration A7x. In total, the lifetimes of the electronic or vibrational excited states carrying

electronic or nuclear ring currents are on the ns or ms timescale, respectively. The ring
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currents will persist for a short period Aty but will recur periodically in time, following

the regular revival pattern of excited state rigid-rotors.

The time- and angle-resolved distribution of the rotational wavepacket depending on
the initial state |J;M;) is obtained as an integral over the (isotropic) distribution of the

azimuthal angle ¢,

rot rot

21
(WIM (g )2 = /O (DI (9, , 1)[2 dob, (2.466)

where UZiMi(0, 6,t) = (0, ¢|W7Mi(t)), and the corresponding thermally averaged time-

rot

dependent angular distribution is

Ji;maz Ji
Wt (0,8)7 = P(J) > Wi, (2.467)
Ji=Ji min M;=—1J;
At the initial time ¢ = 0, the expectation value (cosf)r(t = 0) is zero and the corre-
sponding angular distribution |¥,.(6,t = 0)|% is isotropic in § whereas the angular dis-
tribution | W, (6,1)[% at times t = t* + N7 x (n =0,1,2,...) is focused in the 0° — 20°
or 160° — 180° ranges for best positive or negative orientation of the diatomic molecule,
respectively. The thermally averaged normalized angular distribution used in Section 3.3

is defined as | ¥, (0,t)|% sinf since

/7r Uyor(6,6)|2 sin0df = 1. (2.468)
0

Finally, we note that BeO and AICI are convenient special cases, because the z-
components of electronic (orbit and spin) angular momentum in their electronic ground
states | X 'X7) are zero. In contrast, the electronic ground states of NO and OHF~ [113]
are | X AT) and their z-components of electronic (orbit as well as spin) angular momenta
are non-zero. In this case, there are additional complications in the derivation of equations

for laser control of molecular orientation.
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Results

3.1 Overview

In Section 3.2, the analytical exact results are presented for electronic ring currents and
associated induced magnetic fields in non-relativistic hydrogen-like atomic orbitals, i.e.
in the hydrogen atom or one-electron ions with nuclear charge Z < 13, induced by left
or right circularly polarized 7 laser pulses [144]. These exact expressions can be used as
an approximation for the electronic ring currents and induced magnetic fields in many-
electron systems, for example in pre-oriented polar diatomics AICI [145] and BeO [146],
see Section 3.3, and also in the pre-aligned planar molecule magnesium-porphyrin (MgP)
[147-150], see Section 3.4, using left or right circularly polarized re-optimized m laser
pulses. The corresponding electron circulations in superposition states induced by left or
right circularly polarized re-optimized 7/2 laser pulses are also presented. Finally, the
nuclear ring currents and nuclear pseudorotation of the linear triatomic molecules FHF~
[208] and "*CdH, [207], induced by circularly polarized picosecond (ps) re-optimized 7

and femtosecond (fs) non-optimized laser pulses, respectively, are discussed in Section 3.5.

3.2 Atomic orbitals

3.2.1 Electronic ring currents

For the hydrogen atom or one-electron ions (He™, Li**, ...) with nuclear charge Z, the

non-relativistic atomic orbitals ¢,;,,, with principal quantum number n = 1,2, ..., angular
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momentum quantum number [ = 0, ..., n—1, and magnetic or azimuthal quantum number
m=—l,—l+1,...,1— 1,1 are given in spherical coordinates r = (r, 0, ¢) by [144,269]
271\
punr,0,6) = Cu (1) e #mop2al
n

Qo

27r

nao

) Yin(6,9). (31)

The normalization constant C,,; is given by

o, - J(zz)?’(n—z—n! 52)

nag/ 2n(n+10)!’

where aq is the Bohr radius

4 2
1 = meoh” (3.3)

mee?

In Eq. (3.1), L%(z) are the associated Laguerre polynomials,

20+ 1(1—m)!
A (I +m)!

Yim(0,0) = \J P/ (cos 0)e™? (3.4)

are the spherical harmonics, and P/"(x) are the associated Legendre polynomials. The

energy of the atomic orbital ¢, (Eq. (3.1)) is

(Za)? 7Z?
Enlm = En = —meCQW = _ﬁEh (35)
where
e? h
pr— p— 3.6
@ 4reghc AgMeC (36)
and
hQ
E = 3.7
ey (3.7

are the dimensionless fine structure constant and the Hartree energy, respectively. The

corresponding ¢-independent electronic current density is (Eq. (2.38)) [270,271]

. . mh Pnlm (T7 6)
.]nlm(r7 9) - m, r SiIl 9 e(j), (38)
where
Prtm(1,0) = [@nim(r,0,0)|? (3.9)

is the electronic probability density. For example, the electron wavefunctions of 2p.
atomic orbitals (Egs. (3.1), (3.2), (3.4)) are given by

1 Z\? ,
p11(r,0,9) = :FW <> re=27/20 gin § 17 (3.10)
™ \Qo
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Figure 3.1: Electronic probability pai+1(r,0) (Eq. (3.11)) (panels a, b) and current densities joi41(r, 0)
(Eq. (3.12)) (panels ¢, d) in the z/y (z = 0) (panels a, ¢) and y/z (x = 0) (panels b, d) planes, for 2py
atomic orbitals and for arbitrary nuclear charges Z due to the scaling of the axis, ©Z/ag, yZ/ag, and
zZ/ag. Note that panel ¢ shows the direction of the electronic current density only for the 2p, orbital;
the corresponding direction for the 2p_ orbital would be opposite. In panel d, the electron of the 2p,
orbital at y > 0 and y < 0 moves toward and away from the reader, respectively, and backwards for
the 2p_ orbital. The mean radius Rgy+1 (Eq. (3.52)) (see also Fig. 3.3) and mean ring current radius
R_12141 (Eq. (3.50)) are also drawn in red dashed lines in panels b and d, respectively. Note that the

mean radius Roj41 is much larger than the most probable radius Rmaw721i1 (Eq. (3.16)).

where L{(z) = 1, P{(cosf) = —sinf, and P’ = 1sinf [254]. The corresponding
electronic probability (Eq. (3.9))
I
p1+1(r,0) = GT<_> r2e= 27/ gin? g, (3.11)
T \Qg
and current densities (Eq. (3.8))
3 h Z i —4r/a L
Joaiza(r,0) = :l:647rm (a_) re” %/ gin f ey (3.12)
e 0
: h Z ° —Zr/ag :
o121 (r, 0)] = pyp— (a_> re~ 21/ sin g (3.13)
e 0

are illustrated in Fig. 3.1. Because of the factor sin 6, the densities are largest for § = 7/2.

The corresponding maxima max pa1+1(r, ) and max |jo141(r, 0)| are determined as follows.
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For the electronic current density, we derive

d s
0 = & 0= ) 3.14
Lo (-3)], o
r=~Nmaz,21+1
1 (ZN\° d
- <> 7T26—Z7’/a0
647T o dlr‘ T:Rmax,Qlil
VAN
B,
64 Qo Qo r:]:zmaz,mil
where po141(r,0) = 0 is obtained when r = 0 or when r — oo, and the maximum
IV AN
) = — (=) e? 3.15
max po11(r ) 167 (ao) ‘ (3.15)
is obtained for §# = 7/2 and the most probable radius
~ a
Rmax,Zlﬂ:l = 2 ?0 (316)
For the electronic current density, we have
d |. T
0 = df Jo1+1 (7",0 = ) (317)
r 2 R
r=~Rmazx,21+1

h (Z\°d
_ () — re=4r/ao
64mm. \ag dr r=Rmaz,21+1

5
- ot () -2
64mm. \ag ag

where [jo141(7, 8)| = 0 is obtained when r = 0 or when r — oo (cf. Eq. (3.13)), and the

Y

T:Rmaz,21j:1

maximum

. h ZN\* _
max |jor41(r, 0)| = Y- <ao> et (3.18)

is obtained for § = 7/2 and the most probable ring current radius

a
Rmaa:,21i1 - = (319)

N

which is smaller than the most probable radius me,glil (Eq. (3.16)).

For m = 0, the electric ring current is zero, and for m # 0 (thus [ # 0), we obtain,
using Eqgs. (2.55), (3.1), (3.2), (3.8), (3.9), and dS = r dr df ey,

Lum = —e / / jnim(r,0) - dS (3.20)
_ emh/ /”|cpnlm7“(9¢| "

sin
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_ _emﬁ 02 /OO (2ZT>21 672Zr/nao
0

!
me nag

o emhnay 5 [ o Ty 2 ™ Vi (0, 0) |7
= ﬁcnl/o e [Ln_l_l(x)} dr/o —df

2 . 2
LQlJrl (22’/’>:| d?“/ Dﬁm(e? ¢)| do
0

=1\ nag sin 6

sin 6

2emh 2% (n —1—1)! = 20 2 ™ [Yim (0, 9)[”
= - — —o [ 241 / 2\ @)1” o
mead n®  (n+1)! /o v [ "7171(35)} ar 0 sin ¢ b

The first integral involving associated Laguerre polynomials can be evaluated using Egs.
(A.30), (A.32) by replacing |I| # 0 by 20 + 1 # 0 and v, by 2n — 1, i.e.

(”bgllm Ooxm—le—x [L|l| <x)]2 dr — 1 (3.21)
(55 ua i -
W /OOO p2e® [Liljzl—l(x)r dr = 2l}|—1’ (3.22)
hence
/ooo e L2 (@) de = o 1(;1(:?!1 = (3.23)

foralll =0,...,n—1. With Eq. (3.4), the second integral in Eq. (3.20) is then rewritten

as

s 2 — | 7 m 2
0 sin 4 (I+m)!Jo sin 0
_ Ariiomtp P (@)
4w (I+m) S 1 —a?
For m > 0, the last integral is [253,254]
LB (o)) 1 (I+m)!
—rdr = ——= 2
/4 1-22 7 m (I —m)!’ (3:25)
and for m < 0, using
miy mAEm)
ie.
LB ())? 1 (l4+m)!
= —— 2
/_1 1 —a? da m (I —m)!’ (3:27)
thus for m # 0
P () L (I+m)
= ) 2
et ] (1 = m)! (3:28)

The integral (3.24) is then reduced to
™|V (6, 0)? 20+ 1
0

sin 6 © drmml|

(3.29)
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atom  Z | |Iae1]  Torxr [Baixa(r = 0)] R 12141 ’M2111;100| To141
or ion (mA)  (as) (T) (ap) (eap) (ps)
H 1| 0.132 12159 0.52 1.273 0.745 1595.325
He™ 2 | 0527 304.0 4.17 0.637 0.372 99.708
Li%*+ 3 | 1.186  135.1 14.08 0.424 0.248 19.695
Be3t 4 | 2.108 76.0 33.38 0.318 0.186 6.232
B** 5 | 3.294 48.6 65.19 0.255 0.149 2.553
Cor 6 | 4.744 33.8 112.65 0.212 0.124 1.231
N6+ 7 | 6.457 24.8 178.89 0.182 0.106 0.664
o7 8 | 8.433 19.0 267.03 0.159 0.093 0.389
8+ 9 [10.674 15.0 380.20 0.141 0.083 0.243
Ne* 10 | 13.177  12.2 521.53 0.127 0.074 0.160
Nal®*t 11 | 15.945 10.0 694.16 0.116 0.068 0.109
Mg+ 12 | 18.975 8.4 901.21 0.106 0.062 0.077
AlY2H 13| 22.270 7.2 1145.81 0.098 0.057 0.056

Table 3.1: Magnitude of the electric ring current |I;4+1| (Eq. (3.31)), the mean period of an electron
about the z-axis Th141 (Eq. (3.32)), the induced magnetic field at the nucleus |Boiyi(r = 0)] (Eq.
(3.43)), the mean ring current radius R_1 2141 (Eq. (3.50)), the transition dipole moment |Mai41.100] for
transition between 1s and 2p. orbitals (Eq. (3.64)), and the lifetime 72141 (Eq. (3.72)) for 2p4 orbitals
(n=2,1=1,m = £1) depending on the nuclear charges Z < 13, see also Ref. [144].

With Egs. (3.23), (3.29), the electric ring current for m # 0 (Eq. (3.20)) is [144]

eh 7?2

2rmead nd’

Lym = —sgn(m) (3.30)

The magnitude of the electric ring current |I,,;,,,| is proportional to Z? and independent of
quantum numbers [ and m where the corresponding direction is determined by the sign of
the quantum number m. The strongest electric ring current is obtained for 2p, orbitals
(n=2,l=1,m==1), ie.

ehZ?

—_ 3.31
16mmea’ (3:31)

Iy = F

with the corresponding shortest mean period in the attosecond domain (Eq. (2.60)) of an
electron about the z-axis
16mm.a?
Towg = — 0. 3.32
2141 57 (3.32)

The corresponding magnitudes |I>1+1| and mean periods 7549 for Z < 13 are listed in
Table 3.1.
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3.2.2 Induced magnetic fields

The electronic ring current in the atomic orbital @, (7,0, ¢) (m # 0) induces the ¢-
independent magnetic field in cylindrical coordinates (Eq. (2.78))

e
Bun(p2) = —55 [T dg [ junlp2) ey d? (3.33)

/Qﬂ (z=F)cosApe, + (ff = peosAde. |\
0 (P p? = 2pp cos A+ (2 — 2)2)°)?

or in spherical coordinates, using p = rsinf, z = rcos0, dpdz = rdrdf, e, = sinf e, +

cosfey, and e, = cosf e, —sinf ey,

Bun(r,0) = —5° /0 "2 dy’ /0 i (7, 0') - e sin 0 dof (3.34)

2 -
/ (7“ > 47" — 277/ (sin @ sin 6’ cos A¢ + cos 6 cos 9/)) "
0

{r'(sin#’ cos @ — cos @' sin O cos Ag)e,

+[r cos Ag — r'(sin 0’ sin 6 + cos 0’ cos 0 cos Ag)leg} dAg,

and using Eq. (3.8) [144],

B (r,0) = ,uoemh/ r dr/ Prim (7', 0") dO’ (3.35)

4mm,
~3/2

27
/ (7"2 + 7% — 2rr/(sin @ sin 0’ cos A¢ + cos § cos 9’))
0
{r'(sin @ cosf — cos ' sin 6 cos A¢)e,

+[rcos Ag — r'(sin @’ sin 6 + cos 0’ cos 6 cos Ap)|eg} dAg.

The induced magnetic field at the nucleus (r = 0), using r = 0 and 6 = 0, hence e, = e,

and eg = e, is

0 '
Bn(r = 0) — —Hoem / 7; / Prim (7 0) O (3.36)
0

4mm,

{r' sinf'e, —r' cos cos Ape,} dA®

Bopeodr!
_ Hoemn / @ / prim (17,0 sin 0/ d6 e,
0

2m,

and using Egs. (3.1), (3.2), (3.9),

h o (271 \* 1 , 27r'\1?
Boum(r = 0) — _“;‘f:‘ 2, /0 (n;;) e lL”ﬁll(nar ﬂ dr' (3.37)

/ Vi (0, )| sin ' do’ e,

~ peemh ZP(n—1—=1! 1 o 1 riam
T mmead nt (n+ 1) /0 e [Ln_l_l(xﬂ tre:
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where

. 1
/0 Yinl®', )P sin0d) = . (3.38)

™

Again, the integral in Eq. (3.37) can be evaluated using Eqs. (A.36), (A.37) by replacing
[I| #0,1 by 214+ 1 # 0,1 and v, by 2n — 1, i.e.

(’Ub—\l|)| o 5

e % } gy — Lotl
(n_l_1>!/oo 2A-1 — 2 2 n
T Enr | La dv = 4

hence
gy +)!

21,z [ 2041 2 e — n(n “

/0 vl [ ”’H(x)] ! 2021+ 1)(I + 1)(n — 1 = 1)! (341)

for I = 1,...,n — 1. Thus, the induced magnetic field at the nucleus (Eq. (3.37)) for
[=1,...,n—1is [144]

_ poeh Z3m
2rmead ndl(20+ 1)(1+ 1)

B,m(r =0) €., (3.42)

in accord with the results of fine-structure splitting calculations for hydrogenlike atoms.
These calculations rely on the relation between the magnetic field induced by electron mo-
tion and electronic angular momentum, i.e. B;, ~ L, and on the fine-structure interaction
term which is proprortional to L- S ~ By, - S whre S is the electronic spin operator [272].
The magnitude of the induced magnetic field is proportional to Z3 and depends on all
quantum numbers n, [, m. Of course, the direction of the induced magnetic field ist deter-
mined by the sign of the azimuthal quantum number m. The strongest induced magnetic
field at the nucleus (Eq. (3.42)) is obtained for 2p. orbitals, i.e.

poehZ?

3 eZ?

Baslr =00 = Fo6mag
e0

(3.43)

in accord with the strongest electric ring current Io;41 in 2py orbitals (Eq. (3.31)). The
corresponding magnitudes |Boj41(r = 0)] for Z < 13 are also listed in Table 3.1. Fig. 3.2
shows the induced magnetic field By (7, ) (Eq. (3.35)) for 2ps atomic orbitals.

3.2.3 Mean ring current radius

The mean ring current radius R_j ,,, (Eq. (2.96)) of the electronic ring current in the

atomic orbital @, (r,0,¢) (m # 0), using p = rsinf, is given by

]nlm
—€ f f(?“ sin 9)_1jnlm(ra ‘9) ’ dS,

R_1 nim (3.44)
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(9 4) = regg| e
(g0 ieg]

6-4-20 2 4 6 -6-4-20 2 4 6
AN 27 [ay

Figure 3.2: Induced magnetic field Baj1(r, ) (Eq. (3.35)) in the z/y (2 = 0) (panel a) and y/z (z = 0)
(panel b) planes, for 2pL atomic orbitals and for arbitrary nuclear charges Z, cf. Fig. 3.1. In panel b,
the direction of the induced magnetic field is drawn only for the 2p, orbital whereas the field direction
for the 2p_ orbital is opposite. In panel a, the induced magnetic field for the 2p orbital in the center
region is directed away from the reader and in the outside region (with smaller magnitudes) toward the
reader. For the 2p_ orbital, the situation would be reversed. The maximum of the induced magnetic

field is located at the nucleus, i.e. max |Baj11(r,0)| = |Ba2141(r = 0)| (Eq. (3.43)).

and using Eqgs. (3.1), (3.2), (3.8), (3.9), (3.30), (3.41), and dS = rdr df ey,

dr 7 lpum (0 0) )
do 3.45
27ra2 |m|n3 (/ / sin? 6 (3.45)
_ 1 / <22r) L —2zr/nas [L2l+1 <QZ7“>]2dr
2ma2 ]m\n?’ 2 \Jo \nay/ r 1\ nag
™ Vim0, 0)* N7
e de
/0 sin? 6
| ([ e ™Y, AN
_ G n (n+1) (/ A1 [Liljll—l(x)rdf/o |lm‘(97¢)| d0>

8 Zm|(n—1-1)! o
_ apl@+1)(+1) </ |ylm(9 5 d&) 1'

A Z|m| sin? 6

R_ 1,nlm

The remaining integral, using Eq. (3.4), involving powers of sinf and two associated

Legendre polynomials, is derived from the general formula [144,273]

[ Dinlo ) _ 20410 (1+3)0 (Iml - 3) 5.46)
0 sin? 6 ~ Adx|m|! (-1 '

3 1 1 1 1
Wy (5, =505 0= lml = 1), =50 = s 1,5 = L lm] + 151)
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where I'(z) and 4F3(ay, ag, as, as; by, ba, bs; z) are the Gamma function (Eq. (A.5)) and the

generalized hypergeometric function [254]

[(b1)I(b2)I"(b3)
F(al)F(ag)F(ag)F(a4)

(3.47)

4F3(a17a2)a’37a4;b17b27b3;z> =

> T(ay + k)(ag + k)T(as + k) (ag + k) 2*
k; T(by 4 k)T(by + k)T(bs + k) k!
I L'(by)T(bo)T'(b3)
['(a1)T(a2)l(a3)T (ay)
> T'(ay + k)T(az + k)T(az + k)T (ay + k) 2F
,; T(by + k)T (by + )T (b3 + k) k!

respectively. Note that the generalized hypergeometric function is equal to 1 if at least one
of the parameters a; (i = 1,...,4) is equal to 0 since I'(0) is infinite and hence 1/T°(0) = 0,
cf. Eq. (3.47). The mean ring current radius (Eq. (3.45)) for m # 0 is rewritten as [144]

I+ 1)(1—1)! —1)!
PR (e et TR .
31 1 1 1 -t
S = lm|=1),—=(I—|m|):1, = — 1) .
[4F3 (27 27 2(l ’m‘ 1)7 2(l ’m‘)7 72 l?|m‘+ ) ):|

It can be seen already in Eq. (3.45) that the mean ring current radius R_; ,,;,, depends on
Z, 1, and |m| but not on n. For I =|m| >1and I = |m|+1>2,ie. a3 =0 and a4 = 0,
Eq. (3.48) is simplified to

a0 U(l + 1)( = D(jm| = 1)!

R—l,nlm = (349)
Z 1(1+3)r(Iml - 3)
For 2p. atomic orbitals (n = 2,1 = |m| = 1), the mean ring current radius
4 Qo Qo
. = —— = 127— .
R_12141 — 7 7 (3.50)

is a bit larger than the most probable ring current radius Ry,q0141 = ao/Z (Eq. (3.19)),
see also Fig. 3.1. The corresponding values for Z < 13 are also listed in Table 3.1.
The mean ring current radius is smaller than the mean radius R, = (p) = (rsinf),

exemplarily for 2p. atomic orbitals, using Eqs. (3.11), (A.5), (A.7),

/7r sint dp — °F (3.51)
0 8
254], and dV = r? sinf dr df d¢,

RQI:I:I = ///rsin@pglﬂ(r, 6) A% (352)

= 27T/OOT3dT’/7r,021il(7’,0) sin20d6’
0 0
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pzuﬂ(/% 2’) ﬁzua(/% 2’)
max pa1+1(p, 2) max pa;+1(p, 2)
0.0 05 1.0 0.0 05 1.0

< 6 ™
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a) b) o
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Figure 3.3: Electronic probability density p21+1(p, 2) = p2141(r,0) (Eq. (3.11)) (panel a, cf. Fig. 3.1b)
in the cylindrical coordinate sytem (p = rsiné, z = rcos @, ¢), for 2py atomic orbitals and for arbitrary
azimuthal angles ¢ and nuclear charges Z, and after integration over the azimuthal angle pa141(p, 2) =
fo% po1+1(p, 2) pdd = 2mp pa1+1(p, 2) (panel b). Further integration over the radial coordinate p yields
the one-dimensional electronic probability density, p21+1(z) = fooo p21+1(p, z) dp (black curve in panel b),
i.e. the electrons of 2py orbitals are located most probably at z = 0. In panel b, the curve of the mean
radius depending on z, i.e. (p)(z) = [~ pp21+1(p, z) dp/p21+1(2), is plotted in red. It has its minimum
at (p)(z = 0) = 4a9/Z and almost linearly increases with |z|. Averaging (p)(z) (red curve) over z with
weight f2141(2) (black curve) yields the larger value of the mean radius (p) = [*_(p)(2)p2141(2) dz =
ffooo dz fooo ppo1+1(p,2) dp = Ro1a1 ~ 4.42a0/Z (cf. Bq. (3.52), red dashed lines in panels a and b, and

in Fig. 3.1Db).

5 o s
= 1 <Z> / roe4r/ao dr/ sin* 0 d6
32 \ag 0 0

o 1 ap o 5 —x . 4

= 357/ z’e da:/o sin® 6 df
457 ag agp

= —— = o~ 442 =.
32 Z A

Furthermore, the mean radius Rglil is about twice as large as the most probable radius
Rmaxgljﬂ = 2a9/Z (Eq. (3.16)). The large value of Roysq compared to meglﬂ (Eq.
(3.16)) and R_1 9141 (Eq. (3.50)) can be explained in Fig. 3.3, see also Fig. 3.1.

3.2.4 Complete population transfer

The complete excitation of an electron from the ground state atomic orbital 1s to the

target excited orbital 2p, or 2p_, representing the strongest electric ring currents and
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induced magnetic fields, can be achieved by means of a right (+) or left (—) circularly
polarized 7 laser pulse E.. (¢) or E._(t), propagating along the z-axis (Eq. (2.99)), re-

2 envelope

spectively, see Section 2.3.3. Here, the laser envelope s, (t) (Eq. (2.100)) is a cos
function (n = 2) and the number of laser cycles during the total pulse duration ¢,
mot,,) = e — 500, (3.53)
2m
is chosen to be very large such that the second term of the electric field (Eq. (2.99)) can
be neglected (cf. Eq. (2.112)) and that the three-state model with the RWA (cf. Section
2.3.3) can be applied, see below. The laser frequency w, is chosen to be resonant with the

excitation frequency between 1s and 2p4 atomic orbitals, using Eq. (3.5),

En—o— F,— 3 mec?
We = W2141;100 = # = ) (Za)Q, (3-54)

see Table 3.2. Hence, with Eq. (3.53), the total pulse duration ¢, . and the effective pulse

duration 7, are given by

2mme(ty.c) 160 A me(ty.)
P c\Ip,c _ C\"P,C 3.55
b, We 3 7nec2 (Za)2 ( )
and
2
T, = T = — arccos (2_1/4) tpe =~ 0.364%,, (3.56)
™
32 h me(tye)

_ 2= —1/4
= 3 arccos (2 ) me (Za)?

cf. Egs. (2.101), (2.102), respectively, see Table 3.2. The transition dipole element My 109
(Egs. (2.118), (2.126)) of the 1s — 2p. transition is given by

Moissi00 = (@211 M|pi00) (3.57)
e8] ™ 27
= e [ rtdr [Tsin0dd [ o4, (,0,0) v in(r,0,0) do
0 0 0
where the nucleus is located at the center (R = 0). With Eq. (3.10),

0 1 7 3/2 Zr)
= —|(— Carsa 3.58
90100(7“’ ) ¢) ﬁ <a0> € ) ( )
and
r = rsinf cosgpe, +rsint singe, +rcoste,, (3.59)
we obtain
7 4 0 ™ 2w .
Moit1;00 = +— <> / rde32r/2a0 dr/ sin29d9/ eFrde (3.60)
81 \ag 0 0 0

4 (o] s
-+ () / r%’gzr/zaodr/ sin® @ df
&1 \ag 0 0
2
/ (cos ¢ Fising)(cospe, +singe,)do
0
4 eay [

T 27
= j:m? i rte® dx/o sin30d0/0 (cos® g e, Fisin® ge,)dg,
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atom 7 hw, tpe Te 1€ Linaz.c
or ion (eV)  (fs)  (fs) (Vm™) (Wem™2)
H 1 10.2  202.6 73.77 3.66 x 10°® 3.56 x 10'°
Het 2 40.8  50.66 18.44 2.93 x 10° 2.28 x 102
Li** 3 91.8 2252 8197 9.88 x 10° 2.59 x 103
Be’t 4 | 163.3 12.67 4.611 2.34 x 10 1.46 x 104
B4t 5 | 255.1 8.106 2.951 4.58 x 10'° 5.56 x 10
Cco+ 6 | 3674 5.629 2.049 7.91 x 10 1.66 x 10*°
N6+ 7 | 500.0 4.136 1.506 1.26 x 10'* 4.19 x 10%
o™ 8 | 653.1 3.166 1.153 1.87 x 10'1 9.33 x 10*°
F8+ 9 | 826.5 2.502 0.911 2.67 x 10" 1.89 x 10'6
Ne’t 10| 1020.4 2.026 0.738 3.66 x 10!t 3.56 x 10
Nal®t 11 | 1234.7 1.675 0.610 4.87 x 10 6.30 x 10'6
Mg+ 12 | 1469.4 1407 0512 6.33 x 10" 1.06 x 10'7
At 13117245 1199 0.437 8.04 x 10! 1.72 x 10"

Table 3.2: Laser parameters of the right (+) or left (=) circularly polarized 7 laser pulses (Eq. (2.99))

with a cos? envelope (n = 2) (Eq. (2.100)), for complete population transfer from 1s to 2p. atomic

orbitals for Z < 13. The laser parameters are listed for total number of laser cycles m(t,.) = 500

(Eq. (3.53)), i.e. resonant laser frequency w. (Eq. (3.54)), total pulse duration ¢, . (Eq. (3.55)) with

corresponding effective pulse duration 7. (Eq. (3.56)), magnitude of the electric field amplitude |&.| (Eq.

(3.66)) with corresponding maximum intensity Inaqe,c (Eq. (3.67)).

and using Eqgs. (A.5), (A.7),

[254], i.e.

Moi+1;100

The corresponding magnitudes

|Ma141.100]

2 2
/ cos’pdp = / sin®pdp =
0 0

G 4
.3
0dod = -
/0 Sin 3
T
128 eay )
513 7 (o= T iey):
243 7

(3.61)

(3.62)

(3.63)

(3.64)

for Z < 13 are listed in Table 3.1. The condition for circularly polarized 7 laser pulses
(Eq. (2.171)) must be satisfied, where M is defined as

M =

Mboi+1:100 - (ex F iey)*

le, F iey|?

128 eay

243 7

(3.65)
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cf. Egs. (2.128) and (2.150). Therefore, the magnitude of the electric field amplitude |&,|
and the corresponding maximum intensity /.., using Egs. (2.171), (3.6), (3.55), (3.65),

are
£ = mh 7129 m2c® (Za)? (3.66)
¢ |M|t, . 2048 eh mc(tp,.) '
and
531441 " (Za)b
Lnaze = c20E2 = fomec” (Za) (3.67)

4194304 e2h® m2(tp.)’

respectively, see Table 3.2. Since I, . < 10" Wem ™2, the laser pulses are still in the non-
relativistic regime. Regardless of the laser-matter interaction, the electric ring currents
and induced magnetic fields for small nuclear charges Z < 13 can be calculated using non-
relativistic (Schrodinger) theory, see Sections 3.2.1 and 3.2.2, whereas for large nuclear
charges Z > 13, the relativistic Dirac theory [274] must be used to calculate corresponding
relativistic currents and magnetic fields, since the mean kinetic energy of the electron in
ions is then in the relativistic regime, see also discussion in Ref. [144]. The time-dependent
populations of three states |Ug) = |p15) and [VUi) = |pg,,) for n = 2 are given in Egs.
(2.163)—(2.165), (2.166), (2.171), i.e.

Py(t) = cos? r(t_t‘)) + L gin <27r <t —t _ ;))] (3.68)

2,c 4 tpe
} m(t—1 1. t—1t 1
P,(t) = sin® [(2151,760) + s (2# ( two — 2))] (3.69)
P.(t) = 0 (3.70)

for tg <t <ty =ty +tp., and illustrated in Fig. 2.5a, exemplarily for a right circularly
polarized 7 laser pulse. After the end of the laser pulse (¢ > t;), the populations of
these three states are constant, i.e. Py(t) = 1, Fy(t) = P_(t) = 0 for t > t;. Thus, the
stationary electronic ring current and induced magnetic field for the atomic orbital 2p,
(Figs. 3.1 and 3.2) persist after the end of the laser pulse until they decay by spontaneous

emission, see below.

The very large number of laser cycles m.(t,.) = 500 (Eq. (3.53)) and therefore large
total pulse duration ¢,. (Eq. (3.55)) ensure that the competing transitions from the 1s
ground atomic orbital to other excited atomic orbitals, e.g. 3p., are neglected because
the spectral width of the cos? laser pulse is much smaller than the energy gap between
the excited orbitals 2p, and 3py. The spectral width parameter for m.(t,.) = 500 laser
cycles, using Egs. (2.108), (3.5), (3.56),

I h 178

= ———— =~ 4745 ——— =
7 En:S - En:Q Tcmec2(ZCY)2 mc<tp,0)

~ 00156  (3.71)
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is much smaller than 1, i.e. the three-state model (Section 2.3.3) can be applied. For
comparison, the corresponding laser parameters for v = 0.1 (m.(t,.) ~ 78) and v = 0.01
(me(ty,) = 778) are listed in Ref. [144].

Of course, the lifetime 79141 of excited atomic orbitals 2p, by spontaneous emission
(144, 240]

s 3meoc®h 65617 egmiciag 1
To1+1 = 3 ~ _
2 2 47

wi141.100| Ma1+1;100] 64 e2h” Z

(3.72)

see Table 3.1, should be larger than the total pulse duration ¢,. (Eq. (3.55)), i.e., with
Egs. (3.3) and (3.6),

7:21:|:1;100 -~ 1968350m§c5aéo¢2 1 (3 73)
the 1024 2R my(ty.) 22 ‘
19683 1
T 40967 admy(t,.) 22
78725
~ 77

Thus, for Z < 13, this ratio is larger than 46 and clearly satisfies the condition
To141:100/tpec > 1.

Finally, the maximum ionization probability P;,, which depends on the magnitude of
the electric field |&.|, given by [39,109]

Ea
Pion = 4waZ5 eXp( (374)

273 &, )
|| ’

3 &

should be neglected to avoid competing ionization of an electron from the electronic
ground state. Here, w, = h/(mea?) ~ 4.134 x 10'°s7! and &, = Rh*/(em.a]) =~
514.221 GVm~! are atomic units of frequency and electric field, respectively. Using Eq.
(3.66), we obtain for m.(t,.) = 500 laser cycles

Pop ~ 4.721 x 1073% 72571, (3.75)

Thus, the ionization probability can be neglected for all known nuclear charges Z.

3.2.5 Electron circulation

Non-stationary electron circulation after the end of the laser pulse can be achieved, for
example, by means of a right (+) or left (—) circularly polarized resonant 7/2 laser pulse
(Eq. (2.99)) with a cos? envelope (Eq. (2.100)) and many laser cycles, where the condition
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for /2 pulses (Eq. (2.175)) must be satisfied, see Section 2.3.3. This condition implies
that the factor |E.t, .| for m/2 laser pulses is half of the one for 7 laser pulses (Table 3.2).
For example, the total pulse duration ¢, . or the magnitude of the electric field |&,| is halved
while the other laser parameter |&,| or ¢, . remains unchanged, respectively [147,149,150].
Dividing the magnitude of the electric field |E.| by 2 is preferred because halving the
total pulse duration ¢, . would double the spectral width I' (cf. Eq. (3.71)). The resulting
time-dependent populations of three states |¥g) = |¢15) and Vi) = |pg,,) for a cos?

laser envelope are given in Egs. (2.163)—(2.165), (2.166), (2.175), i.e

Po(t) = cos? [w + ;sm <27r <tt;f° - ;))] (3.76)
P,(t) = sin? [w + é sin <27r <tt_:° - ;))] (3.77)
P() = 0 | : (3.78)

for to <t <ty =ty +tp., and illustrated in Fig. 2.5b, exemplarily for a right circularly

polarized 7 /2 laser pulse.

After the end of this laser pulse (¢t > ty), the time-dependent wavefunction ¢(r, 8, ¢, t)
is the superposition state with dominant contributions of 1s and 2p, atomic orbitals with

equal weights, i.e.

1
o(r,0,0,t) = \/§<P100(7" 0,0)e i (tto) /B g ﬁ%pﬂ-&-l(r 0, ¢)e ~iEa(tto) [hgiwetp.c/2 ,(3.79)

of. Egs. (2.146), (2.160), (2.161), (2.167), (2.175), (3.65). With Eqs. (3.10), (3.54), and

(3.58), the wavefunction is rewritten as

—Zr/2ao sinfe i(we(t—tp)—9)

—iE1(t—to)/h VA 3/2 . Z
prb.0.8) = e (2) el - L2

\/27‘(‘ ao 8 ao

0 (3.80)

where we(t —to+tpc/2) = we(t —tp+tr —to+1tpe/2) = we(t =ty +3tpc/2) = we(t —tf) +
3mme(t,.) and the number of laser cycles m.(t,.) = 500 (cf. Eq. (3.53)) have been used.

The corresponding time-dependent electronic probability (Egs. (2.176), (2.186)) and
current (Egs. (2.177), (2.187)) densities, using (Egs. (2.36), (3.10)), are

p(r,0.¢,t) = |p(r,0,¢,t) (3.81)
<Z>3 Zrfan LT
ag 8 ag

3 2
<Z> 6—2Zr/a0 + i (Z?”) e—Zr/ao sin2 0
Qg 64 Qo

i e 2r/2a0 iy g o ilwe(t—ts)= <f>)‘
27
1
2
1 Zr
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and
. 1h ¥ %
ho (ZN\*'112Zr _,
A = Z —Zrjao
16mm, (ao) [8 Qo © sinf e

_eer/ao vre*Z”/zao sin 6 COS(wc(t - tf) - ¢>

+re=?7/290 gin § cos(we(t — ty) — gb)Ve_Zr/ao}

h ATAYA
= 6mm, <ao) [(8&: e~2r/a0 gin g — e=3%7/2a0 sin(we(t — tf) — gf))) ey

—i—(?"e_ZT/QaO sin @ Ve 2r/a0 _ g=2r/a0 \7pe=27/200 gy 0) cos(we(t —tf) — ¢)]

Z\4 17
_ h () 6—3Zr/2ao {<7n 6Z1ﬂ/2a() sinf — sin(wc(t — tf) — ¢)> €y

16mm. \ao 8 agp

17
_ (T + 1) sin @ cos(we(t —ty) — @) e,
2 Qo

—cosf cos(w.(t —t7) — @) ep

Y

respectively, see Figs. 3.4 and 3.5. Note that the additional factor v/2 occuring in interfer-
ence terms of Eqgs. (2.195) and (2.196) does not appear in Egs. (3.81) and (3.82) because
there are no singlet configuration state functions (CSFs) (Eq. (2.10)) for the hydrogen
atom and one-electron ions, cf. Egs. (2.180), (2.181), (2.188), and (2.189).

The time-dependent electronic probability and current densities (Egs. (3.81), (3.82))
oscillate with resonant frequency w. = wai+1,100, i.e. the electronic wavepacket in the
hybrid (superposition) state after the end of the laser pulse (¢ > tf) circulates about
the z-axis with the same frequency w., see Fig. 3.4. In contrast to the current-loop-like
stationary ring currents of 2p, atomic orbitals (Fig. 3.1), the time-dependent electronic
currents of 1s+ 2p, hybrid orbitals look like circulating, nearly rectilinear currents (Figs.
3.4 and 3.5). Furthermore, the time-dependent current density has, in general, non-zero

r- and #-components, and, in particular, non-zero current density at the nucleus (r = 0),

using 7 = 0 and @ = 0, hence e, = e,, eg =cospe, +singe,, e, = —singe, + cospe,,
=00 = (2 [t~ 1) - 0)(-sinoe, + conve,) (3.59)
r= = — ) [—sin(w.(t —t;) — ¢)(—singpe, + cospe .
! ’ 16mm,. \ag f v

—cos(w.(t —ty) — ¢)(cospe, +singe,)]
= 167?me <aZO> [(sin(w.(t —tf) — ¢) sin ¢ — cos(w.(t — tf) — @) cos @) e,
— (sin(we(t — tf) — @) cos ¢ + cos(w(t —tf) — @) sin¢) e,]

- _1677:me (aZo) [cos(we(t —t7)) e +sin(we(t — 7)) ey
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we(t —ty) = 2wk we(t —ty) =27k +7/2  wlt—tp)=2mk+7  wlt—t;)=2rk+37/2

yZ/ao

yZ/ag

3 2-101 2 3 2-101 2 3 -=2-101 2 3-2-101 2 3
xZ/ag xZ/ag xZ/ag xZ/ag

Figure 3.4: Time-dependent electronic probability p(r,0,¢,t) (Eq. (3.81)) (panels a-d) and current
densities j(r,0,¢,t) (Eq. (3.82)) (panels e-h) in the z/y (2 = 0) plane, for superposition states of 1s
and 2p, atomic orbitals with equal weights and for arbitrary nuclear charges Z due to the scaling of the
axis, xZ/ag and yZ/ag. The snapshots after the end of a right circularly polarized /2 laser pulse at
times t =ty + 2nk/we, t =ty + 2nk + 7/2)/we, t =ty + 2mk + ) /we, and t =ty + 27k + 37/2) /we
(k=0,1,2,...) are shown in panels a, b, ¢, and d, for probability and e, f, g, and h, for current densities,

respectively.

The corresponding time-independent magnitude
4

. n Z .
ir =00 = oo (2) = maxli(e.) (3.84)

is the maximum current density and is about 11 times larger than the maximum current
density of the stationary electronic ring current max |jo141(r, 0)| (Eq. (3.18)). Note that,
in general, the current density

i(r=0,1)] =

WTP+<Z>4 = max|j(r,t)] (3.85)

8tm. \ag
is maximal if 1s and 2p, atomic orbitals are equally weighted, i.e. Py = P, = %, cf.
Eq. (3.84). Because of the contribution of the 1s atomic orbital, the maximum electronic
probability density (Eq. (3.81)) is located at the nucleus (r = 0)
3
p(r=0,t) = 217r (aZo) = maxp(r,t). (3.86)
The density is non-zero, time-independent, and about 59 times larger than the maximum

probability density of the 2p; orbital max ps141(r,0) (Eq. (3.15)).

In contrast to the stationary ring currents for which the nodal line of the electronic

probability and current densities is along the z-axis, the nodal curves (p(r,t) = 0) (r < o0)
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we(t —ty) = 2wk we(t —ty) =27k +m/2  wlt—t;)=2mk+7  wlt—1t;)=2nk+37/2
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Figure 3.5: As in Fig. 3.4, but the time-dependent probability (Eq. (3.81)) and current densities (Eq.
(3.82)) are shown in the y/z (z = 0) plane. Since the - and #-components of the current densities for
¢ =we(t —ty)+7/2 and ¢ = w(t —ty) + 3m/2 are zero (cf. Eq. (3.82)), no arrows are drawn in panels
e and g, but the corresponding ¢-component is, in general, non-zero. The electron above and below the
(circulating) nodal (black) curves (Eq. (3.90)) in panels a, c, e, and g moves toward and away from the

reader, respectively.

and (j(r,t) = 0) (r < oo) of the time-dependent probability and current densities (Egs.
(3.81), (3.82)) are beside the z-axis. The location of the nodal curve of the current density
can be derived as follows. The condition for the §-component jy(r,t) = 0 (Eq. (3.82)) is
fulfilled if § = 7/2, ¢ = w.(t —t5) + /2, or ¢ = w.(t —t;) + 37/2. But the condition
for the r-component j,(r,t) = 0 is not true for § = 7/2 and ¢ # w.(t —t5) + 7/2 or
¢ # we(t —tg) +3m/2, hence ¢ = w.(t —ty) +7/2 or ¢ = w(t —tf) + 37/2 must be
satisfied. The last condition js(r,t) = 0 yields

17
STz Ging 41 = 0 (3.87)
8 Qo

where the signs + and — correspond to ¢ = w.(t —t¢) + 7/2 and ¢ = w.(t — ts) + 37/2,
respectively. Using cylindrical coordinates, i.e. rsinf = p = /22 + y? and r = /p? + 22,
Eq. (3.87) becomes

éZp AV 20 41— (3.88)
Qg

and can be rewritten as

AN 8
IVPTE oy, <q: “°>. (3.89)

2@0
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Since the argument of the logarithm must be positive, the nodal curve is only given by
¢ = we(t —ty) +3m/2 and

4a3 8ao
z = j:\l 5 (111 Zp) — p?, (3.90)
which is in accord with the nodal curve of the probability density, obtained from p(r,t) = 0
(Eq. (3.81)). That is, using p = rsinf and r = \/p? + 22,

1 (Zr\? 17
0 = e Zr/oop — <T> sin? § — 1 2L ez gin g sin(we(t —ty) — @) (3.91)

64 \ ag Qo
2
— efzw/p2+22/a0 + i <Z> pQ o 1 é pe—Zw/p2+z2/2a0 Sin(u)c<t - tf) - ¢)
64 ap 4 Qo
Y] 172 \* 127 o)
— <6_Z p2+22/2a0 g ,0> + Z 7p€_z p2+z2/2a0<1 o sin(wc(t o tf) o ¢))
Qo Qo

Since the first and second terms are positive or equal to zero, both terms must vanish for
p, 2| < o0, ie ¢ =w(t—tf)+37/2 and

VA L2 (3.92)
8 Qo
or equivalently
z = — (In—) — .
72 \"8ay)

which is also equal to Eq. (3.90) since (Inz)? = (Inaz=!)2. To yield the corresponding
formula for p as a function of z, one has to solve Egs. (3.90) or (3.93) numerically. The
solution at z = 0is p &~ 2.404 a¢/Z and goes to zero if z — F00. Since ¢ = w.(t—1t;)+37/2
is time-dependent, the nodal curve circulates about the z-axis with the same resonant

frequency w,.

The time- and angle-dependent electric current (Eq. (2.198) without the factor v/2),
using dS, = rdrdfe,, Egs. (3.82), (A.5), (A.7), is evaluated as

1(6,1) = —e//j(r,9,¢,t)-ds¢ (3.94)

= —e/ rdr 7rj(z,(?“,ﬁ,(b,t) de
0 0
5 [o.¢] ™
L (Z) [T ez ar [Tsinedo
1287mm, \ag 0 0
eh A 4 0 ™
4 . Jt—t;) — —3Zr/2a0 d / 4o
o () Sinleclt =t = 0) [T ey |
ehZ? © 7Z? o0
_ e “dy £ 2 sin(wa(t — tf) — / g
647rm6a%/o e " dx + S6m, sin(we( 7)— @) ; re Tdx
hZz? hZ?
= ‘ + ¢ 5 sin(we(t —ty) — ),

32mmeal | 36meal
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Figure 3.6: Time- and angle-dependent electric current I(¢,t) (red curve, Eq. (3.95)) with corresponding
average current I»141/2 (dashed red line) for superposition states of 1s and 2p, atomic orbitals with equal
weights. The electric currents at ¢ = w.(t —ty) + 7/2 and ¢ = wc(t — ty) + 37/2 are approximately
1.90 I5141 and —0.90 2141, respectively, cf. Fig. 3.4e-h. For comparison, the stationary electric ring

current Io141 (Eq. (3.31)) of 2p, atomic orbitals is also shown (blue line).

and using Eq. (3.31),

[212“ (1 Lo sin(¢ — w,(t — tf))> : (3.95)

16,1 g

see Fig. 3.6. Thus, the electric current is periodic. Since 87/9 > 1, its direction is not
only determined by the sign of the azimuthal quantum number m = +1 but also by the
time ¢ and the azimuthal angle ¢. Its magnitude is largest for ¢ = w.(t — tf) + 7/2 with
the same direction as that of the stationary electric ring current I.4, i.e. &= 1.90 Io14;.
However, the magnitude at the other extremum ¢ = w.(t —ty) + 37/2 is smaller than the
magnitude at ¢ = w.(t—ty)+m/2 but largest for the opposite direction, i.e. & —0.90 I511,
cf. Fig. 3.4e-h.

The time-dependent electronic current density (Eq. (3.82)) induces the time-dependent
magnetic field B(r,t) (Eq. (2.199)), see Fig. 3.7. We will show that the z- and y-
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Figure 3.7: Time-dependent induced magnetic field B(r, 0, ¢,t) (Eq. (2.199)) in the z/y (2 = 0) (panels
a—d) and y/z (x = 0) (panels e-h) planes, for superposition states of 1s and 2p; atomic orbitals with
equal weights and for arbitrary nuclear charges Z, cf. Figs. 3.4 and 3.5. The snapshots are taken at times
t =t5+27nk/w. (panels a, e), t =ty + (2rk 4+ 7/2) /w. (panels b, ), t =ty + (2mk 4+ 7) /w. (panels c, g),
and t =ty + (2mk + 37/2) /w. (panels d, h) (k= 0,1,2,...). In panels a-d, the induced magnetic field
has zero z- and y-components due to z-symmetry. The most intense region (red) is directed away from
the reader and the least intense region (green) toward the reader. However, the induced magnetic field

at the nucleus is time-independent, i.e. B(r = 0,t) = Boy41(r = 0)/2 (Eq. (3.99)), cf. panels f and h.

components of the induced magnetic field at the nucleus (r = 0) are zero due to z-
symmetry of the electronic current density. The induced magnetic field at the nucleus
(r = 0), using Egs. (2.199), (3.82), dV’ = r? sin @' dr' df’ d¢’, is evaluated as

0 e T
Br=0,1) = @/0 ‘i—r/o sine’de'/ 1) %t dgy (3.96)

2
47 0

4 0 , s 2T
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64m2m,. \ag 0 0 0
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0

/%singzﬁdgb — 0
0

(3.100)

(3.101)

and Egs. (3.61), (3.43), (A.5), (A.7) have been used. Therefore, the magnetic field at
the nucleus induced by the time-dependent electronic current density has zero z- and

y-components, and its z-component is time-independent. This field is half of the one
induced by the stationary electronic ring current (cf. Egs. (2.204), (3.43)). Of course,

the induced magnetic field at any location (r # 0) is time- and angle-dependent, and

circulates about the z-axis with the same frequency w,, see Fig. 3.7. The magnitude of

the induced magnetic field along the z-axis is time-independent, cf. Fig. 3.7e-h. Because

of the z-symmetry, the z- as well as the y-components of the induced magnetic field are

also zero on the symmetric plane, i.e. z =0 or § = 7/2, see Fig. 3.7a-d. For |z| # 0, all
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Figure 3.8: Magnitudes of the induced magnetic field |B(r,0,¢,t = ty + 27k/w.)| (k = 0,1,2,...)
(Eq. (2.199)) along z- (y = z = 0) (panel a), y- (x = z = 0) (panel b), and 2- (x = y = 0) (panel ¢)
axes, for superposition states of 1s and 2p, atomic orbitals with equal weights and for arbitrary nuclear
charges Z, cf. panels a and e of Fig. 3.7. The curves in panels a (x-axis) and ¢ (z-axis) are along the
horizontal section lines in panels a and e of Fig. 3.7, respectively, whereas the curve in panel b (y-axis)
is along identical vertical section lines in panels a and e of Fig. 3.7. In contrast to the time-dependent
magnitudes of the magnetic field along z- and y-axes with zero a- and y-components (panels a and b),
the corresponding magnitude along the z-axis (panel ¢) is time-independent but with time-dependent x-
and y-components, cf. Fig. 3.7e-h. The magnitudes of the induced magnetic field at ¢ = ty + 27k /w.
(k=0,1,2,...), 2 =z =0 (panel b), and y = —0.795a/Z, y = 0, y = 0.217ap/Z, and y = 1.200ao/Z
are 1.28 |Ba111(r = 0)|, 0.5 |Ba14+1(r = 0)[, 0, and 0.58 |Bg;41(r = 0)], respectively.

components of the induced magnetic fields are in general non-zero. It is very interesting

that the maximum of the induced magnetic field
max |B(r,t)| =~ 1.28|Bgj1i(r =0)], (3.102)

located at ¢ = w.(t—1t;)+37/2, 0 = 7/2, and r ~ 0.795 ap/Z is 2.56 times larger than the
induced magnetic field at the nucleus |B(r = 0,¢)| (Eq. (3.99)). It is even 1.28 times larger
than that of the stationary ring current max |Baj11(r)| = |B2i1i(r = 0)| (Eq. (3.43)).
This maximum magnetic field has a negative z-component, i.e. it is directed toward the
negative z-axis where its other components are zero since z = 0. However, there is another
maximum of the z-component of the induced magnetic field which is exactly directed
toward the positive z-axis. The magnitude of this maximum is 0.58 |Bgj1i(r = 0)],
located at ¢ = w.(t —ty) + 7/2, § = /2, and r ~ 1.200a/Z, which is still larger
than the one at the nucleus |B(r = 0,¢)| (Eq. (3.99)). Note that the induced magnetic
field at ¢ = w.(t —t;) +7/2, 0 = 7/2, and r =~ 0.217a/Z, i.e. close to the nucleus, is
zero. Fig. 3.8 shows the magnitudes of the induced magnetic field |B(r,t = t; + 27k /w.)|
(k=0,1,2,...) along the z-, y-, and z-axes, cf. panels a and e of Fig. 3.7.
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3.2.6 Approximations for many-electron systems

The stationary electric ring currents for the atomic orbitals in the hydrogen atom and
one-electron ions (Eq. (3.30)) and associated induced magnetic fields at their centers
(Eq. (3.42)) can be generalized within the approximation for atomic and molecular or-
bitals carrying electronic ring currents in many-electron systems, such as atoms, ions,
and molecules. For the estimate of these magnitudes in twofold degenerate states |W.) of

atoms, atomic ions, and linear molecules, the following approximations are used:

1. The state |W.) is approximately equal to the CIS state |[¥¢?°) where the electronic
transitions from different occupied non-degenerate orbitals ¢, to an unoccupied
twofold degenerate orbital ¢,1 or from an occupied twofold degenerate orbital ¢,
to different unoccupied non-degenerate orbitals ¢, are dominant. The corresponding

electronic current densities were given in Eqgs. (2.40) and (2.41), i.e.

jer) ~ j¥r) &~ L) = jp.(r) (3.103)
and
jer) = j{00) &~ U () = e (n), (3.104)

where j,, . (r) and j,, . (r) are the electronic current densities of the unoccupied
pp+ and occupied .+ atomic or molecular orbitals, respectively. Note that the
special case of the single dominant electronic transition (for example the HOMO-
LUMO transition) is already included in this approximation. Thus, the electric
ring current and induced magnetic field in the degenerate state are independent
of the non-degenerate orbital contribution to dominant electronic transitions. For
example, two degenerate states with corresponding dominant transitions 1s — 3p.
and 2s — 3py are different but their electric ring currents and induced magnetic
fields are very similar. However, one can also go beyond the CIS approximation, e.g.
CISD approximation in which the double electronic transitions are also included,
see examples below.

2. For molecules, the linear combination of atomic orbitals - molecular orbital (LCAO-
MO) approximation is used, i.e. the degenerate molecular orbital consists of several
degenerate atomic orbitals with associated quantum numbers n,l,m. In particu-
lar for linear molecules, there are electronic ring currents of these atomic orbitals
about the corresponding nuclei. These electric ring currents and associated induced
magnetic fields at the nuclei are then weighted by the corresponding weights for the
expansion coefficients of the LCAO-MO.
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3. The electric ring currents and induced magnetic fields (Egs. (3.30), (3.42)) can
be estimated for each contributed degenerate atomic orbital with corresponding
quantum numbers n, [, m but the nuclear charge Z should be replaced by the effective

one Z.yf, using simple Slater rules [275,276].

For example, the first excited state |A'TI.) of the AICI molecule does not correspond
only to the dominant HOMO-LUMO transition 90 — 47y (83.9%), but also to another
single transition 80 — 4wy (3.6%) and, beyond the CIS approximation, double and triple
transitions 90% — 4wy, 100 (5.2%), 80,90% — 4r%, 4w+ (0.4%), and 80,90 — 4wy, 100
(0.3%) [145]. All of these transitions contribute to the electronic ring current of the
molecular orbital 47, with the weight > 93.4%, hence jai, (r) & jar, (r). The molecular
orbital 47y has the LCAO-MO expansion 474 = czp, (a13p+(Al) + cs3p. cy3p+(Cl) with
dominant weights for the coefficients |cz,, (an|? = 0.9 and |csp, (cn]? = 0.1 [145]. The
effective nuclear charges for 3p,. orbitals of Al and Cl atoms are Z,sf(Al) = 13—2—8-0.85—
2:0.35 =3.5and Z.5;(Cl) = 17—2—-8-0.85—6-0.35 = 6.1, respectively [144,145,275,276].
The approximate electric ring currents (Eq. (3.30)) for electronic ring currents of atomic
orbitals 3p(Al) and 3pL(Cl), using n = 3,1 =1, m = +1, are

eh

I (A) = Fo—s 72 (AD ey ~ F430 pA (3.105)
e™0
eh
13141 (Cl) ersz(mﬂc?)pi(mﬂ? ~ F145 A, (3.106)
e 0

which are similar to the CASSCF results I (Al) ~ F313 A and I (Cl) =~ F92 pA [145],
respectively, see also Section 3.3.2. Likewise, the approximate magnitudes of the induced
magnetic fields at nuclei Al and Cl (Eq. (3.42)) are

poeh

IBsis1(r =r1p)| = mzjff(Al)\cgpi(ADE ~ 60T (3.107)
eh
By (r =ra)| = ?Mzéﬂcm%pﬂcw ~ 35T, (3.108)

again in accord with the CASSCF results |B(r =ra))| = 7.7T and |B(r = rq)| =~ 4.1T
[145], see also Section 3.3.2.

Another example is the first excited state |A'Tly) of the BeO molecule which cor-
responds the dominant HOMO-LUMO transition lmy — 5o (96.1%) [146], hence
jain, (r) = jir. (r). Furthermore, the molecular orbital 17y has the LCAO-MO expan-
sion 1my = cyp i(o)2pi(0) + cop i(BG)ijE(Be) with dominant weights for the coefficients
|cops(0)]* = 0.96 and |9y, (Be)|* = 0.03 [146]. Thus, there is only a dominant electronic
ring current of the 2p. atomic orbital about the O nucleus. The effective nuclear charge
for the 2py orbital of the O atom is Z.;(O) =8 —2-0.85 — 5-0.35 = 4.55. Therefore,
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the approximate electric ring current (Eq. (3.30)) and magnitude of the induced magnetic
field (Eq. (3.42)) at the O nucleus, using n = 2,1 = 1,m = +1 (cf. Egs. (3.31), (3.43)),

are

eh
IQlil(O) m Zlef(O)|02pi(O)|2 ~ :F262 mA (3109)
e™0
and
Moeh 3 2
B = —— 7. (0 ~ 4727 3.110
[Bai41(r = ro))| 96mmead eff( )’CQPi(O)’ ) ( )

which are in quite good agreement with the CASSCF results [, (O) ~ F2.49mA and
|IB(r =ro)| = 52.1T [146], respectively, see also Section 3.3.2.

The induced magnetic fields are strongest for 2p, atomic orbitals and for large effective
nuclear charges Z. s, cf. Section 3.2.2. Thus, these strong magnetic fields can be achieved
also for atoms, in particular, for O and F atoms. The lowest singlet states |1' Dy, ) (M, =
+1,4+2) of the O atom carry non-zero electronic ring currents. They correspond to the
dominant electronic configurations ... (2p_)(2po)(2p4)? for My =1, ... (2p_)*(2po)(2p4)
for (M = —1), ... (2po)*(2p4)? for (M = +2), and (2p_)*(2po)? for (M = —2). For
M;, = %1, the electronic ring currents are dominated by 2py atomic orbitals. For M =
42, the electric ring currents and induced magnetic fields are twice as large as the ones
for M = +1 because two (rather than a single) electrons with opposite spins and the
same spatial atomic orbital 2p circulate about the O nucleus. Using the effective nuclear
charge for the O atom (Z.;; = 4.55, see above), the approximate induced magnetic fields
at the O nucleus (Eq. (3.110) but without the factor |cyp, 0)|*) are |Bajsi(r = ro)| =
49.1T for My, = £1 and 2|Baj11(r = ro)| = 98.3T for M, = £2. These approximate
values are compared to the CASSCF results |B(r = ro)| =~ 62.07T for M, = +1 and
IB(r =ro)| ~ 124.0 T for M, = +2 [146].

A final example is the doublet twofold degenerate ground states [12Py,) (M =
+1) of the F atom which correspond to the dominant electronic configurations
o (2p2)(2p0)%(2p1)? for My, = +1 and ... (2p_)2(2po)*(2p.) for My = —1. These de-
generate states carry non-zero electronic ring currents of the atomic orbitals 2p, about
the F nucleus, even in the electronic ground state. Since the effective nuclear charge of
the F atom (Z.;p =9 —2-0.85—6-0.35 = 5.2) is larger than that of the O atom, the
associated induced magnetic fields are, of course, stronger. The approximate magnitude
is |Baj41(r = rp)| &= 73.3T compared to the CASSCF result |B(r = rp)| ~ 95.2T, see

conclusion in Ref. [146].

Note that the approximate induced magnetic fields in all of the above examples are
nevertheless underestimated. Thus, one can consider the approximate magnitudes of the

induced magnetic fields as the lower bounds of the exact ones.
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3.3 Linear molecules AIC] and BeO

3.3.1 Nonadiabatic orientation

Before applying right or left circularly polarized laser pulses propagating along the
laboratory-fixed z-axis in order to generate electronic ring currents and electron cir-
culation in excited electronic degenerate states |A'II.) of linear polar AICI and BeO
molecules (see Sections 3.3.2 and 3.3.3, and Refs. [145, 146]), these molecules have to
be oriented along the laboratory-fixed z-axis, e.g. by means of a linearly polarized laser
pulse (see Section 2.6). We first present the results for the nonadiabatic orientation of
the BeO molecule [146], and then for the AICI molecule in which the simple scalings for
laser parameters are used to obtain equivalent quantum dynamical results as for the BeO

molecule.

We consider the BeO molecule in the electronic and vibrational ground state
| X !XT (v = 0)) at the rotational temperature T = 1K. The BeO molecule has the
rotational constant B, x = 1.619 hcem™ and the permanent dipole moment M (Rex) =
2.56 eap = 6.50D (Eq. (2.453), calculated at the CASPT2 level) at the equilibrium bond
length R. x = 2.54ag of the electronic ground state | X 'X+) [146]. Note that the dipole
vector points from the O to the Be atom, see Fig. 2.10. The first three rotational eigenener-
gies (Eq. (2.437)) are E{™" = 0hcem™!, E{7' = 3.24hcem™ | and E{72? = 9.71 hcem™?,
and the corresponding Boltzmann weights at 7 = 1K (Eq. (2.438)) are P(0) = 0.972,
P(1) = 0.009, and P(2) = 107, Since other Boltzmann weights at 7' = 1 K are negligible,
only initial rotational states |J;M;) with J; min =0 < J; < Jimae = 2, M; = —J;, ..., J;
and the total number of rotational states J,,., = 13 were used for the time-propagation
of the time-dependent rotational state | W2 (t)) (Eq. (2.120)).

A HCP-like linearly z-polarized laser pulse (Eq. (2.440)) propagating along the axis
perpendicular to the laboratory-fixed z-axis is applied for the nonadiabatic orientation of
the BeO molecule. While the ratio of field amplitudes & ;/&»; = 10 of the laser pulse is
constant, the laser amplitude & ; (with negative amplitude) and carrier frequency w; are
optimized to yield the maximum negative orientation of the BeO molecule (see Fig. 2.10).
The optimized laser parameters are & ; = —100 MV m~! and fiw; = 12.0 hcem™!, thus
&y = —10.0MV m~!. Note that the optimized carrier frequency wj is off-resonant with the
experimental vibrational frequency of the electronic ground state fiw, x = 1487.3 hcem™!
[277] and with the excitation frequency of the first excited electronic state |A'TIL) at
Rex,i.e. AE (R, x) = hwig = 1.2367eV = 9974.7 hc cm ™! [146], hence the BeO molecule

remains in the electronic and vibrational ground state | X 'Y F (v = 0)). The other laser pa-
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Figure 3.9: z-component of the time-dependent electric field E, ;(t) (Eq. (2.440), red curve) and its
intensity I;(t) (Eq. (2.449), blue curve) of the optimized linearly z-polarized laser pulse propagating

along the axis perpendicular to the laboratory-fixed z-axis for maximum negative orientation of BeO

and AICI molecules, cf. Fig. 2.10. The laser parameters are £; = —100MVm™!, &; = —10.0MVm™,
hw;, = 12.0hccm™!, tpy = w/w, = 1.39ps, 11 = 44.2fs, 19, = 4.47ps for the BeO molecule and
11 = —64.0MVm~! & = —640MVm~!, hw, = 1.81 hcem ™}, tpy = m/w = 9.22ps, 71 = 294fs,

To,; = 29.6 ps for the AICl molecule. The vertical line indicates the pulse duration ¢, of the first part of

the laser pulse and the maximum time shown in this figure is the rotational revival time 7., x = 7.41%,;.

rameters are then estimated, i.e. the laser pulse duration of the first part of the laser pulse
is t,; = m/w; = 1.39 ps, and the switch-on (Eq. (2.443)) and switch-off times (Eq. (2.448))
of the second part of the laser pulse are 71; = 44.2fs and 79; = 4.47 ps, respectively. The
maximum intensity of the laser pulse is I4,; = max [;(t) = 1.12 GV em™2, cf. Eq. (2.449).
Note that the maximum amplitude max|E;(¢)] = 65.0 MV m™! is smaller than |&;|. Fig.
3.9 presents the z-component of the time-dependent electric field E;(t) = E,;(t)e, and
the corresponding intensity I;(t) (Eq. (2.449)). Note that this laser pulse is very similar
to the experimental laser pulse shown in Fig. 2 of Ref. [278], i.e. with almost the same

pulse shape and duration, but with lower intensity.

Fig. 3.10 shows the thermally averaged time-dependent expectation value (cos@)r(t)
(Eq. (2.465)) at T = 1 K for the optimized laser pulse. The orientation reaches a minimum
value of (cos@)r—1k(t = 1.27ps) = —0.850 immediately before the turn off of the first
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Figure 3.10: Thermally averaged time-dependent expectation value (cos @) (t) at T = 1K for the BeO
molecule and T' = 0.151 K for the AICI molecule. The orientation revivals (marked by vertical lines) are
spaced by the rotational revival time 7,¢, x of the electronic ground state | X 1X7), i.e. Trev,x = 10.30 ps
for the BeO molecule and 7y, x = 68.4ps for the AIC]I molecule. The orientation durations Arx are
0.050 Tye, x (i-e. 0.52 ps for BeO and 3.4 ps for AICI) and 0.017 7y¢,, x (i-e. 0.17 ps for BeO and 1.1 ps for
AlCl) for absolute values of (cosf)r(t) larger than 0.5 and 0.8, respectively.

part of the laser pulse, implying strong orientation of the BeO molecule in the negative
z-direction. As expected, the rotational revival pattern is observed, i.e. the rotational
wavepacket dephases and rephases periodically at intervals of the rotational revival time
Trevx = Th/Be x = 10.30ps = 7.41¢,,; of the electronic ground state | X 'X*) of the BeO
molecule because the pulse duration ¢,; is much smaller than the revival time 7,., x, i.e.
the orientation is nonadiabatic. The maximum negative orientation of the BeO molecule
after the switch-off of the laser pulse recurs at times ¢ = t*+n7,., x (n =0,1,2,...) where
t* = 21.88ps= 2.127,¢, x. Note that the orientation of the BeO molecule also recurs at
t = 11.58 ps = 1.12 7., x but the electric field of the laser pulse is still not negligible, see
also Fig. 3.9. At times t = t* 4+ nTyep x = (2.12 4 n)Tpepx (n =0,1,2,...), the thermally
averaged expectation value (cos#)r(t) is —0.844 and the orientation durations Aty are
0.52ps = 0.050 7,y x and 0.17ps = 0.017 7, x for absolute values of (cosf)p(t) larger
than 0.5 and 0.8, respectively. These durations A7y should be larger than the pulse
durations of applied circularly polarized laser pulses for the induction of electronic ring

currents.
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Figure 3.11: Thermally averaged normalized angular distribution |¥,.(6,)|% sin6 of the rotational
wavepacket at T = 1K for the BeO molecule and T' = 0.151 K for the AICI molecule, and at times
t=(2124n)Trer,x (n=10,1,2,..., Trep,x = 10.30ps for BeO and 7,¢,, x = 68.4ps for AICl) (red curve)

compared with the initial distribution at ¢ = 0 (blue curve).

Fig. 3.11 shows the thermally averaged normalized angular distribution
|U,0:(0,8)]2 sinf at T = 1K and at the instances of almost perfect negative orien-
tation of the BeO molecule ¢ = (2.12 + n)7epx (n = 0,1,2,...), where the angular
distribution is focused in the 160° to 180° range. The initial normalized angular
distribution at ¢ = 0 is also shown in Fig. 3.11, where the corresponding expectation

value (cos @)r(t = 0) is zero.

Now, we consider the AlCI molecule in the same ground state | X '3 (v = 0)) as for
the BeO molecule. The AICI molecule has the rotational constant B, x = 0.244 hc cm™?
and the permanent dipole moment M (R, x) = 0.60 cag = 1.53D (Eq. (2.453), calculated
at the CASPT2 level [279]) at the experimental equilibrium bond length R, x = 4.03 ay
of the electronic ground state |X '3T) [145,277]. The dipole vector points from the Cl
to the Al atom, thus the AICI molecule has to be oriented in the negative z-direction as
for the BeO molecule. Since the rotation constant of the AICI molecule is smaller than
that of the BeO molecule, the rotational eigenenergies (Eq. (2.437)) are reduced by the
factor B x(AICl)/B. x(BeO)= 0.151, i.e. E{7% = 0hcem™!, E{7! = 0.49 hcem™!, and
FE{7? =1.46 hccm™!. To obtain the equivalent Boltzmann weights for the AICI molecule
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as for the BeO molecule, the rotational temperature for the AICI molecule is reduced to
T = B, x(AlICl)/B. x(BeO) - 1K= 0.151 K (cf. Eq. (2.438)), where J; min = 0, Jimaz = 2,

and Jp,., = 13 remain unchanged (see above).

Equivalent quantum dynamics for the nonadiabatic orientation of the AICI molecule,
shown in Figs. 3.9-3.11, can be obtained using the simple scalings for laser parameters.
Since the rotational revival time is larger for the AICI molecule, i.e. T,ep x = Th/Be x =
68.4 ps, by the factor B, x(BeO)/B, x(AICl) = 6.64, all other time variables for the laser
pulse have to be raised by the same factor, i.e. t,; = 9.22ps, 71; = 294fs, and 7o; = 29.6 ps.
Thus, the carrier frequency is reduced to w; = 7/t,; = 1.81hcem™!, which is also
off-resonant with the experimental vibrational frequency of the electronic ground state
hwe x = 481.3 hcem™! [277,280] and with the excitation frequency of the first excited elec-
tronic state |A'TL) at R.x, i.e. AEj(Rex) = hwyg = 4.6323eV = 37362 hcem ™! [145].
Furthermore, if M (Re x)E14tp 1s equal for BeO and AICI molecules, then the quantum
dynamical results are exactly equal (cf. Egs. (2.458) and (2.461), also compared with Egs.
(2.171) and (2.175)). Thus, the laser amplitudes & ; and &, for the AICI molecule are
reduced by the factor B, x(AIC1)/B. x(BeO)- M(R, x,BeO)/M (R, x,AlCl) = 0.640, i.e.
&y =—64.0MV m~! and &y = —6.40MV m~!. The corresponding maximum amplitude
is max|E;(t)] = 41.6 MV m™'. The maximum intensity of the laser pulse is reduced by
the factor (0.640)?, i.e. I'mazy = 0.459 GV cm~2. These laser paramters are also listed in
Fig. 3.9.

The thermally averaged expectation value (cos@)r(t) at T' = 0.151K for the AICI
molecule is the same as for the BeO molecule at 7' = 1 K (see Fig. 3.10), but the rotational
revival time and orientation durations are raised by the factor B, x(Be)/B. x(Al)= 6.64,
i.e. Tyepx = 68.4ps, ATy = 3.4psand A7y = 1.1 ps for absolute values of (cos 0)r(t) larger
than 0.5 and 0.8, respectively. The thermally averaged normalized angular distribution
| U, (0, 1) |%(t) sin@ at T = 0.151 K and at times ¢t = (2.12 + n)Tepx (n =0,1,2,...) for
the AICI molecule is the same as for the BeO molecule at T = 1K, but with a different

rotational revival time 7,., x, see Fig. 3.11.

3.3.2 Electronic ring currents in excited |A'Tl) states

First, we summarize the quantum chemistry results for the AICl and BeO molecules,
given in Refs. [145] and [146], respectively. The quantum chemical calculations were
done at CASSCF(8,11)/CASPT2 and CASSCF(6,12)/CASPT2 levels for AICl and BeO
molecules, using the MOLCAS 6.0 program package, respectively [281-286]. For AICI, 8

electrons and 11 orbitals were included in the active space and an atomic natural orbital
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state dominant configuration AE; M5
(AICI) (AICI) (eV) (eaq)
X 1st ... (80)2(3m)4(905)2 (87.8%) | 0.0000 | A:1.313  G:0.431 H:1.102  J:0.182  K:0.007
Aty (90) — (474) (83.9%) | 4.6323 | X:1.313 B:0.032 C:0.082 D:0.183  [E:0.092 F:1.575  I:1.359
Blxt (90) — (100) (51.6%) | 6.4649 | A:0.032  G:0.040 H:0.091  J:0.856  K:0.017
(Bry) — (4my) (17.9%)
Br_) — (47_) (17.9%)
ClAi (Brg) — (4my) (90.6 %) 6.4816 A:0.082 G:0.164 H:0.195 J:0.376 K:1.113
Dlx— (3w_) — (47y) (45.9%) | 6.5461 | A:0.183 G:0.184 H:0.068  J:0.666  K:0.009
(Bmy) — (4m_) (45.9%)
Elxt (90) — (100) (31.0%) | 7.1413 | A:0.092 G:0.070 H:0.362  J:0.174  K:0.004
(Bry) — (A7) (25.3%)
Br_) — (47_) (25.3%)
Flag (90)2 — (4my)? (90.6%) | 7.8580 | A:1.575  G:0.069 H:0.014  J:0.133  K:0.486
Gy (37%) — (100) (81.4%) | 8.4586 | X:0.431 B:0.040 (C:0.164 D:0.184 E:0.070 F:0.069 I:0.116
Hlmg (80) — (474) (66.0%) | 8.6738 | X:1.102 B:0.091 C:0.195 D:0.068 FE:0.362 F:0.014 I:0.101
st (90)2 — (4my)(4w_)  (76.4%) | 8.9655 | A:1.359  G:0.116 H:0.101  J:0.318  K:0.007
x2st (90) — ionized 9.1959
Jll_[j: (374)(90) — (47r:(:)2 (50.7 %) 9.6454 X:0.182 B:0.856 C:0.376 D:0.666 E:0.174 F:0.133 1:0.318
(96)2 — (474 )(100) (25.9 %)
KMy |(83rg)(90) — (4wy)(4m_) (90.4%) | 9.7273 | X:0.007 B:0.017 C:1.113  D:0.009  E:0.004 F:0.486  I:0.007

Table 3.3: Quantum chemistry CASSCF(8,11)/CASPT2 results for the AICl molecule at the exper-
imental equilibrium bond length R, x = 4.03ao of the electronic ground state | X Iy:+), adapted from
Ref. [145].

relativistic core correlated (ANO-RCC) 6s5p3d2f contracted basis set for Al and Cl was
used; for BeO, 6 electrons and 12 orbitals were included in the active space and an
ANO-RCC 5s4p2d1f contracted basis set for Be and O was used. Furthermore, scalar

relativistic effects by means of the Douglas-Kroll transformation were also included [287].

Tables 3.3 and 3.4 list the dominant electronic configurations of electronic states,
the excitation energies AF; = E; — Fy = hw;o, and the absolute values of all non-zero
dipole transition matrix elements |M;;| with zero z-component of M;; for both the AICL
and BeO molecules. These results were computed at the equilibrium bond length of
the electronic ground state | X '¥1), i.e. R, x = 4.03 aq for the AIC] molecule (experimen-
tal [145,277,280]) and R, x = 2.54 a¢ for the BeO molecule (estimated [146]). The first ex-
cited states of AICI and BeO are twofold degenerate states |A 'TIL.) carrying electronic ring
currents but with different dominant electronic configurations . .. (3m)*(90)(47+) (83.9 %)
and ... (1m4)*(17+)(50) (96.1%) corresponding to the dominant HOMO-LUMO transi-
tions 90 — 4my and 17+ — 50, respectively. The |A'TLL) states of AICl and BeO are
energetically well separated from other electronic states. Furthermore, these states are
bound states and have corresponding equilibrium bond lengths R, 4 = 4.07aq for the
AICI molecule [280] and R, 4 = 2.78ap for the BeO molecule [146] with corresponding
small equilibrium displacements AR, = Rea — Re x = 0.04a¢ and AR, = 0.24 ay, re-
spectively. Note that the potential curves of several electronic states for AICl and BeO

can be found in Refs. [280] and [146, 288], respectively. Because of small displacements
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state dominant configuration AE; M 5]
(BeO) (BeO) (eV) (eap)
x st c(40)2(m)?t (67.4%) | 0.0000 | A:0.686  E:0.851  G:0.717
Aty (1rg) — (50) (96.1%) | 1.2367 | X:0.686 B:0.371 C:1.349 D:0.948  F:0.693
Blx+t (40) — (50) (80.2%) | 2.4852 | A:0.371  E:1.154  G:0.246
clag (mg) — (274)  (95.7%) | 5.5636 | A:1.349  E:0.074  G:0.518
D'z~ (1m_) — (274)  (48.4%) | 5.5773 | A:0.948  [E:0.004  G:0.400
(Amy) — (27-) (48.4 %)
Eg (40) — (274) (95.5%) | 6.7417 | X:0.851 B:1.154 C:0.074 D:0.004 F:0.275
Flst (1my) — (274) (31.0%) | 7.5513 | A:0.693 E:0.275 G:0.145
(Imr_) — (27w_) (31.0%)
Gl (1mx) — (60) (94.7%) | 7.7462 | X:0.717  B:0.246 C:0.518 D:0.400 F:0.145
X 2Hj: (17r¥) — ionized 9.88

Table 3.4: Quantum chemistry CASSCF(6,12)/CASPT?2 results for the BeO molecule at the estimated
equilibrium bond length R. x = 2.54ag of the electronic ground state | X *X71), adapted from Ref. [146].

AR, and the short pulse duration of the applied circularly polarized laser pulse (a few
fs) compared to the vibrational periods 7,54 = 69.3fs [145] and 7,4 = 29.2fs [146] in
the electronic excited states |A'TIL) of AICI and BeO, the nuclei can be considered as
frozen during FC-type electronic excitations from the vibrational and electronic ground
state | X '3 (v = 0)) to the vibrational and electronic excited states |A Tl (v = 0)) and
|AMIL (v =0,...,5)) of AICI [145,280] and BeO [146], respectively.

The stationary electronic excited states |A'TI1) of AICI and BeO carry anti-clockwise
(+) and clockwise (—) electronic ring currents about the molecular axis. As already shown
in Section 3.2.6, the electronic ring currents of excited states |A'Il.) are dominated by
those of 4m, and 17y molecular orbitals of AICl and BeO with corresponding weights
of at least 93 % and 96 %, respectively. Furthermore, the molecular orbital 47y of the
AICI molecule has the LCAO-MO expansion 474 = ¢3,, (a1 3P+ (Al) + ¢35, (c1)3p+ (Cl) with
dominant weights for the coefficients |cs,, (ap|*> ~ 0.9 and |esp, (cn|? = 0.1 [145], and
the molecular orbital 17y of the BeO molecule has the LCAO-MO expansion lmy =~
Cops (0)20+(0)+C2p, (Be)2p+ (Be) with dominant weights for the coefficients |ca,. (0)]? &~ 0.96
and |cgp, (Be)|* ~ 0.03 [146]. Hence, the electronic ring currents of excited states |AI1.)
of AICI and BeO are dominated by those of 3p.(Al) and 2p4(O) atomic orbitals about
Al and O nuclei, respectively. The corresponding toroidal electronic current densities in

cylindrical coordinates are

jamg(p2) = jane(p,2) = ﬂ:iMe (3.111)
+ ? + ) me p
for AICI] and
. . B |prn |?
JAlni(p,Z) ~ .]l7l'i<p7 Z) = im’lpi’e¢ (3.112)

for BeO, cf. Eq. (2.38). Figs. 3.12 and 3.13 show the electronic probability densities
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Figure 3.12: Electronic probability psr, (p, ) (panels a, b) and current densities jir, (p, z) (Eq. (3.111))
(panels ¢, d) in the z/y (z = 0) (panels a, ¢) and y/z (z = 0) (panels b, d) planes, for 474 molecular
orbitals of the AICI molecule. The Al and Cl nuclei are located at ra; = (0,0,0) and roy = (0,0, Re, x)
where R, x = 4.03 ag, respectively. Note that panel c shows the direction of the electronic current density
only for the 47 orbital; the corresponding direction for the 47_ orbital would be opposite. In panel d,
the electron of the 47, orbital at y > 0 and y < 0 moves toward and away from the reader, respectively,
and backwards for the 47_ orbital. The electronic ring currents about the Al and Cl nuclei are separated

by the surface r = (z,y,2.84 ap) shown as the vertical dashed line in panel d.

Pars (0, 2) = |pans|? and pio,(p,2) = |@1r.|?> of 474 and 17y molecular orbitals, and
the corresponding electronic current densities jur. (p, z) and ji..(p, z) of AICl and BeO,
respectively. Since the maximum electronic current density of the 17y molecular orbital
of the BeO molecule is approximately four times larger than that of the 47, molecular
orbital of the AICI molecule, i.e. max |ji,.(p, 2)| & 4 max |jar, (p, 2)|, the current density
of the 174 molecular orbital of BeO in the excited state |A'IIL) is much stronger. Since
Imy =~ 2p.(0O), the corresponding current density is strongly localized at the O nucleus
with large effective nuclear charge Z.ry = 4.55 (see Section 3.2.6) and is very similar to
that of the atomic orbital 2p. shown in Fig. 3.1. Since 2p. atomic orbitals give rise to
stronger effects than 3p, orbitals, see Sections 3.2.1 and 3.2.2, the corresponding electric

ring currents and induced magnetic fields of 17y &~ 2p4(O) orbitals of BeO are stronger



134 CHAPTER 3. RESULTS

y/ao
(z *d)™1d xewt
(z‘d)™1d

y/ao
|(z ‘d) T[] xew
(= )]

3 2101 2 3 -2-10 1 2 3

x/ay 2 /ag

Figure 3.13: Electronic probability p1., (p, z) (panels a, b) and current densities ji.. (p, z) (Eq. (3.112))
(panels ¢, d) in the z/y (z = 0) (panels a, ¢) and y/z (x = 0) (panels b, d) planes, for 1my molecular
orbitals of the BeO molecule, cf. Fig. 3.1. The Be and O nuclei are located at rge = (0,0, —R. x) and
ro = (0,0,0) where R, x = 2.54 ag, respectively. Note that panel ¢ shows the direction of the electronic
current density only for the 17 orbital; the corresponding direction for the 17_ orbital would be opposite.
In panel d, the electron of the 17, orbital at y > 0 and y < 0 moves toward and away from the reader,

respectively, and backwards for the 17_ orbital.

than those of 4mL =~ 3p.(Al) orbitals of AICl. The corresponding total electric ring
currents (Eq. (2.55)) of electronic states |A'TI1) of AICl and BeO are estimated as

Ijin, ~ Iz, = TF0.405mA (3.113)
and
Ijin, ~ Liz, = F2490mA, (3.114)

respectively. Furthermore, the electric ring current of the 47, molecular orbital of the
AICI molecule can be divided approximately into two separate electric ring currents about
the Al and Cl nuclei, see Fig. 3.12. Using the separation surface r = (z,y,2.84 ag), the
electric ring currents about Al and CI nuclei are I5; = F0.313mA and I = F0.092mA,

respectively. These electric ring currents are in accord with the approximate values given
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in Section 3.2.6 based on the theory of electronic ring currents of atomic orbitals. The

corresponding mean periods of an electron circulating about the z-axis (Eq. (2.60)) are
Thine ~ Ty, = 39as (3.115)
for AICI and
Ty, =~ Tix, = 644as (3.116)

for BeO which are, of course, much shorter than the lifetimes of eletronic ring currents
of excited states |A'TI.), which are limited by the radiative decay of excited states, i.e.
Tradgatm, = D.51s for AICI [145] and 7,49 4111, = 1.1 ps for BeO [146].

The toroidal electronic ring currents of excited states |A'II.), circulating about the
molecular z-axis, induce magnetic fields B 41y, (r) & Byr, (r) for the AICI molecule and
B4, (r) & By, (r) for the BeO molecule, cf. Eq. (2.78). These induced magnetic fields
are illustrated in Fig. 3.14. For the AICI molecule, the induced magnetic field achieves
peak values at both the Al and CI nuclei, i.e.

Bam,(r=ra)| =& |By,(r=ry) = 77T (3.117)
Bam,(r=ra)| & Buy(r=ra)| = 41T, (3.118)

respectively. For the BeO molecule, the induced magnetic field has only one large peak
at the O nucleus because 174 ~ 2p,(0O). The induced magnetic fields at Be and O nuclei

are

Bain, (r =rge)] = |Bir(r=rp)| = 12T (3.119)
Bamn,(r=ro)] =~ |Birn(r=ro) = 52.1T, (3.120)

respectively. These values of the magnetic fields are again in accord with the approximate

values estimated in Section 3.2.6.

The mean ring current radii (Eq. (2.96)) of the electronic ring currents of excited states
|AMIL) of AICI and BeO molecules are estimated as

R—I,Alﬂi ~ R—1,47ri = 0.18&0 (3121)
and
R—l,All_[i =~ R_Llﬂ-i = 0.25 ap, (3122)

respectively.

In the following application, see also Section 2.3, we assume that the AICl and

BeO molecules in the electronic ground state |X 'XT) are perfectly oriented along the
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Figure 3.14: Induced magnetic fields By, (p, 2) (panels a, b) and B1., (p, z) (panels c, d) (Eq. (2.78))
in the z/y (# = 0) (panels a, ¢) and y/z (z = 0) (panels b, d) planes, for 471 and 1wy molecular
orbitals of AIC] and BeO, respectively. The arrows are drawn only for 471 and 174 molecular orbitals.
The locations of the nuclei are the same as in Figs. 3.12 and 3.13. In panels a and c, the induced
magnetic fields in the center regions are directed away from the reader (large negative z-component of
the magnetic field) where the arrows drawn in these panels are only for very small p-components of the
magnetic fields. The maxima of the induced magnetic fields max|Bur_ (p, 2)| = |Buar. (r =ra1)| =7.70T

and max|Bi,_, (p,2)| = [Bir, (r =rp)| = 52.1T are located at the Al and O nuclei, respectively.

laboratory-fixed z-axis, a condition that can be approximately achieved using the method
described in Section 3.3.1. We showed that almost perfect orientation |(cosf)r| > 0.8 is
achieved at the revival times t = (2.124n) 7, x (n = 0,1,2,...), for about A7y = 0.17 ps.
Thus, this orientation time is much larger than the total pulse duration of the subse-
quent circularly polarized laser pulse, ¢, . = 21.2fs. The circularly polarized laser pulse
(Eq. (2.99)) is centered at a selected revival time, for example ¢, = t* = 2.127,, x, i.e.
t. = 145.18 ps for AICI and ¢, = 21.88 ps for BeO.

For the given total pulse duration t,. = 21.2fs, the laser parametes of the right (or
left) circularly polarized reoptimized 7 laser pulse (Eq. (2.99)) with cos® envelope (Eq.
(2.100)) are determined in order to achieve an almost complete population transfer from
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Figure 3.15: Complete population transfer | X 1X7) — |AII,) of AICI (left panels) and BeO (right
panels) by means of a right circularly reoptimized 7 laser pulse centered at ¢, = 2.12 7,.¢,, x. Panels a and
b show the x- (red) and y- (green) components of the time-dependent electric field E.. (¢) (Eq. (2.99))
and the corresponding time-dependent intensity I.(¢) (Eq. (2.114)) (blue). In panels ¢ and d, the time-
dependent populations P;(t) (Eq. (2.130)) of dominant electronic states | X '$7) (red) and |A L) (blue)
are drawn; minor contributions of electronic states |F'1A,) (green) of the AICI molecule and |C'1A )

(green) of the BeO molecule are also observed.

the electronic ground state |X '$T) to the excited state |[A'I,) (or |A'TI_)) of AICI
and BeO at the equilibrium bond length R, x. For the AICl molecule, the optimized
laser parameters are the field amplitude & = 5.72GVm~! and the laser frequency fiw, =
4.65 eV, with the corresponding maximum intensity /,,45, = 8.68 TW cm 2, the effective
pulse duration 7, = 2.5fs, and the optical cycle period At. = 27/w. = 889as. For the
BeO molecule, the corresponding laser parameters are & = 10.05GVm™, hw, = 1.04eV,
Lnaze = 26.8 TWem™2, 7, = 2.74fs, and At. = 3.98fs, see Refs. [145,146]. Fig. 3.15
shows the z- and y-components of the time-dependent right circularly polarized electric
field E . (t) = Ey e (t)es + By (t)e, (Eq. (2.99)) centered at ¢, = 2.127,, x and the
associated time-dependent intensity I.(t) (Eq. (2.114)) for AICl and BeO.

The corresponding resulting population dynamics are also shown in Fig. 3.15, see
Refs. [145,146], which are very similar to the population dynamics in the three-state
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model, see Fig. 2.5. This figure clearly shows that a right circularly polarized reoptimized
7 laser pulse for AICI and BeO induces an almost complete population transfer from the
electronic ground state | X '27T) to the target excited state |A T, ) carrying an electronic
ring current shown in Figs. 3.12 and 3.13. The population of the degenerate state |A'TI,)
at the final time t; = ¢, + ¢,./2 reaches the value 1, i.e. Py(t;) =1 —3-107* for AICI
and P4(t;) = 1—6-1077 for BeO. There are also small fractions of high-lying excited
states |F'Ay) and |[C'AL) of AICI and BeO molecules, due to strong two-photon dipole-
allowed transitions | X 'XF) — |AL,) — |F'A}) and | X '¥T) — |ATLL) — |CTAL),
respectively, but the populations of these states after the end of the laser pulses are
negligible. Note that all other states listed in Tab. 3.3 and 3.4 are also included in the

calculation and these states have negligible populations during the electronic excitation.

3.3.3 Electron circulation

A right circularly polarized reoptimized 7/2 laser pulse (Eq. (2.99)) with cos* envelope
(Eq. (2.100)) is applied in order to achieve a half population transfer from the electronic
ground state | X 'X7) to the excited state |A T} ) of AICI or BeO molecules. Starting from
the reference values for reoptimized 7 laser pulses shown in Fig. 3.15, three possible laser
parameters can be adjusted to achieve half population transfer. As already predicted
in Section 2.3.3, cf. Egs. (2.171) and (2.175), the amplitude of the electric field &, or
the total pulse duration ¢, . of the laser pulse can be reduced by the factor % Another
possibility is the modification of the laser frequency w,. which also leads to the reduction
of the population of the excited state |[A'Il;) from 1 to 0.5, see Ref. [149]. In this
Section, the amplitude of the electric field &. is reduced by the factor % Then, the
amplitude &. and the laser frequency w, are reoptimized in order to achieve an almost
exact half popoulation transfer from |X ') to |A'II,) states where the total pulse
duration ¢, . = 21.2fs, which is already sufficiently short compared to vibrational periods
and orientation durations of AICI and BeO, remains unchanged. For AICI, the reoptimized
amplitude of the electric field is & = 2.84 GV m™! and the laser frequency hw, = 4.65eV
is the same as for the reoptimized 7 laser pulse, hence At. = 889as and 7. = 2.5fs. The
corresponding maximum intensity 4 = 2.14 TW cm~2 is about four times smaller than
the maximum intensity of the reoptimized 7 laser pulse. For BeO, the field amplitude
is £& = 5.01GVm™~! and the laser frequency is modified slightly from hw, = 1.04eV to
1.06 eV, corresponding to At. = 3.90fs and 7. = 2.73fs. The corresponding maximum
intensity is Lnae. = 6.66 TWcm™2. Fig. 3.16 shows the - and y-components of the right
circularly polarized electric field E i (t) = E, o4 (t)e, + Ey o+ (t)e, (Eq. (2.99)) centered at
te = 2.127,¢, x and the corresponding time-dependent intensity I.(t) (Eq. (2.114)).
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Figure 3.16: Half population transfer |X !$+) — |A L, ) of AICI (left panels) and BeO (right panels)
molecules by means of a right circularly polarized reoptimized /2 laser pulse centered at t, = 2.12 Tyey x .
For further details, see Fig. 3.15. Note that the populations of excited states |F'1A,) and |CtA) of
AlCI and BeO molecules are much smaller than the corresponding populations for the right circularly
polarized reoptimized 7 laser pulses shown in Fig. 3.15 because of small intensities of the reoptimized

7 /2 laser pulses shown as blue curves in panels a and b, respectively.

The resulting population dynamics of electronic states | X 'XT) and |A'TI,) of AICI
and BeO molecules shown in Fig. 3.16 are very similar to the population dynamics in the
three-state model, see Fig. 2.5. In particluar, there are negligible populations of other
electronic states including |F'A,) and |[C'A}) states of AICI and BeO, respectively,
compare Figs. 3.15 and 3.16, because the intensities of the reoptimized /2 laser pulses
are reduced by the factor . The populations of the states | X 'S%) and |[A'II;) at the
final time t; = t.+1,./2 are Px(t;) = 0.5+ 3-107% and P4(t;) = 0.5 —4-107* for AICI
and Px(t;) = 0.5+ 9-107° and P4(t;) = 0.5 —9-107° for BeO, respectively. Hence,
a right circularly polarized reoptimized /2 laser pulse shown in Fig. 3.16 induces an
almost exact half population transfer from the electronic ground state |X '¥7) to the

excited state |A'T1,) of AICI and BeO molecules.

After the end of the reoptimized 7/2 laser pulse, the electronic state is the super-
position of electronic ground | X 'X*) and excited |A'II,) states of AlCI or BeO. The
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Figure 3.17: Electron circulation in the superposition of |X '¥*) and |A!IL,) states of the AICI
molecule after a right circularly polarized reoptimized /2 laser pulse, see Fig. 3.16. This hybrid state
has the dominant contribution of the hybrid orbital, 90 + 4w, corresponding to the HOMO-LUMO
transition 90 — 47,. The snapshots are illustrated as the difference of the electronic density Ap(r,t) =
p(r,t) —p(r,to) (Egs. (2.191) and (2.195)) at times t = t+ (n+k)m0 (n =0,1,2,..., k= 0,1/4,1/2,3/4).
Here, t is the time after the end of the laser pulse at which the difference of the electron density is the
same as shown in the bottom panel (t = i+ ntp), and 119 = 27 /w9 = 892 as is the period of the time-
dependent electronic density p(r,t) circulating about the molecular z-axis. The blue and cyan regions

show positive and negative differences Ap(r,t), respectively.

corresponding electronic probability and current densities are time-dependent and cir-
culate about the molecular z-axis. Since the electronic ground state | X 'X1) of BeO is
dominated by the corresponding HF wave function with weight of only 67.4 %, see Table
3.4, we consider the electron circulation only for the AICI molecule. We calculate the
difference of the electronic probability density Ap(r,t) = p(r,t) — p(r,to) (Egs. (2.191)
and (2.195)) after the end of the laser pulse (¢ > t;), using the CIS approximation (see
Section 2.3.4) with the dominant HOMO-LUMO transition 90 — 4m,. The corresponding
snapshots are illustrated in Fig. 3.17. The electronic probability density, i.e. the electron
wavepacket, circulates about the z-axis with period 79 = 27/wi9 = 892 as, where wyq is
the excitation frequency of the electronic state |A 1, ). The corresponding period for the

BeO molecule is 79 = 3.34fs. Note that this period 7o of the time-dependent electronic
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probability density about the z-axis should not be confused with the period T' (Eq. (2.60))
of an electron about the z-axis. These times are, in general, different. For example, the
electronic density in the stationary degenerate state is time-independent and the corre-
sponding period is thus not defined whereas the period of an electron about the z-axis
is non-zero for non-zero stationary electronic ring currents. These different times can
also be understood in classical mechanics. For example, the velocity of water particles
(molecules) in the ocean and the velocity of water waves are, in general, different. A
further analogous example is the steady flow of water in the tube where the density of
water is time-independent (the corresponding period is not defined) but the stationary

velocity of water particles (molecules) is non-zero.

3.4 Ring-shaped molecule Mg-porphyrin

3.4.1 Electronic ring currents in excited [2'F,.) and [4'E,.)

states

Now, let us consider the ring-shaped molecule magnesium-porphyrin, shown in Fig.
3.18 [147-150]. Mg-porphyrin is an important biomolecule, for example a core molecule of
chlorophyll. The molecule’s optimized geometry in the electronic ground state | X 'A;,)
is planar and has Dy, symmetry. Although the molecule is not axial-symmetric, there
are twofold degenerate electronic states |F1) carrying opposite electronic ring currents.
The quantum chemistry results of electronic states | X 'Ay,), [n'Eu+) (n = 1 —4) and
IntE,+) (n =5,6) that are used in this work are adapted from CASSCF(14,16)/CASPT?2
and TDDFT calculations by Rubio et al. [289] and by Sundholm [290], respectively. How-
ever, the optimized geometry and orbitals are calculated at HF level with the 6-31G(d)
basis set, using the GAUSSIANO3 program package. These HF orbitals are primarily used
for calculating electronic current densities of degenerate molecular orbitals, corresponding
electric ring currents and induced magnetic fields in Mg-porphyrin. Other quantum chem-
ical SAC/SAC-CI and TDDFT results for Mg-porphyrin can also be found in Refs. [291]
and [292], respectively.

Table 3.5 lists the dominant electronic configurations of electronic ground |X 'A;,)
and excited [n'E,.) (n = 1 —6) states at the equilibrium geometry of Mg-porphyrin, the
corresponding excitation energies AF; = F; — Ey = hw;o, and the absolute values of dipole
transition matrix elements |M;;| between | X 'A;,) and |n'E, ) states, adapted from Refs.
[289,290]. Note that there are other non-degenerate excited |A) and | B) states but we use

the approximation that these states and corresponding additional electronic transitions
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Figure 3.18: Molecular structure of Mg-porphyrin at the optimized geometry of the electronic ground
state | X 'A4;,). The planar molecule has Dy, symmetry and consists of four pyrrole fragments connected
to four carbon bridges and to one central atom. The axis of symmetry is the z-axis. The molecule has 37
atoms including one magnesium atom (yellow), four nitrogen atoms (blue), twenty carbon atoms (gray),

and twelve hydrogen atoms (white).

are not included in the quantum dynamics calculations since the non-degenerate excited
states cannot be excited by circularly polarized laser pulses directly from the electronic
ground state |X 'A;,). The energy of the ionized state |X 2A4;,) of Mg-porphyrin is
Ey +6.91eV [293]. Furthermore, we assume that the nuclei are frozen during FC-type
electronic excitations from the electronic ground | X ' A;,) to excited |n'E,.) states of Mg-
porpyhrin due to the sufficiently short pulse duration of the applied circularly polarized

laser pulse.

In this work, the electronic ring currents of excited states [2'E,i), |4'E..)
and |5'E,1) about the axis of symmetry (z-axis) are investigated in this Section
and Section 3.4.2. The degenerate electronic state [2'F,.) has dominant elec-
tronic configurations ... (4as,)?*(lai,)(4e,x) (35%), ... (4das,)(lar,)?*(4e,+) (27%), and
- (Ba2y) (3€4)*(2b24)? (4a2y,)? (1ary, )* (4egw) (6%) corresponding to dominant transitions
lay, — 4egs, 4ag, — 4eyyr, and 3ag, — 4deyy, respectively, whereas the state |4 'E,+) has
the dominant electronic configuration ... (3ag,)(3e,)*(2b2y)?(4asy)?(1a1,)*(4ey+) (57 %)
corresponding to the dominant transition 3as, — 4e4+. Although the electronic struc-
tures of excited states |2'FE,+) and |[41E,.) are different, the electronic ring currents of
these states are very similar due to the similar dominant contribution of the electronic
ring current of the molecular orbital 4e,y with corresponding weights of at least 68 %
and 57 %, respectively. Note that the TDDFT results by Sundholm [290] predict that
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state dominant configuration | AE; | |M,|
(MgP) (MgP) (eV) | (eao)
XAy, | ... (4az)?(1ar)?  (80%) | 0.00
1'Eur | (4agy) — (dege)  (39%) | 1.66 | X:0.31
(law) — (degs)  (36%)
21F,. | (law) — (degs) (35%) | 2.66 | X:3.55
(dagy) — (degs) (27 %)
(3az4) — (4eg+)  (6%)
31E,s | (2ba) — (deyz)  (61%) | 3.11 | X:1.40
4By | (Base) — (degy)  (57%) | 3.42 | X:2.60
51 B | (3e,4) — (2b1)  (94%) | 4.56 | X:1.00
6'Fus | (1b1) — (de,2)  (73%) | 5.12 | X:0.24
(2eye) = (2b)  (23%)

Table 3.5: Quantum chemistry CASSCF(14,16)/CASPT2 and TDDFT results for electronic states
|X1A1y), [In'Eys) (n=1-4) and [n'E,1) (n = 5,6) of Mg-porphyrin (MgP) at the optimized geometry
of the electronic ground state | X ' A,), adapted from Refs. [289] and [290], respectively.

the corresponding minimum weights of the electronic ring current of the molecular orbital
4e,4 for excited states [2'E,4) and |[4'E,.) are 85 % and 96 %, respectively. Thus, the

electronic current densities of electronic states |2'F,+) and [4'E,.) are

J218,. () R Jae . (r) (3.123)
j41Eui(r) ~ j4egi(r)~ (3124)

Of course, the electronic ring current of the excited state |[1'E,.) is also dominated by
that of the molecular orbital 4e,, with weight of at least 75 % but it is difficult to excite
this state due to the small transition dipole moment. Furthermore, the excited state
|3'E,+) has the dominant electronic configuration ... (2ba,)(4a2,)?(la1,)?*(4e,+) (61%)
corresponding to the dominant transition 2by, — 4eg=, see also the discussion after Eq.
(2.52). Hence, the electronic ring current of the excited state |3 ! E,4.) is dominated by that
of the molecular orbital 4e,+. For ring-shaped molecules, the magnetic quantum number
M7, is not a good quantum number, i.e. the direction of the electronic ring current in ring-
shaped molecules cannot be determined by the sign of My, thus the opposite direction
of the electronic ring current of the molecular orbital 4e,+ for the state |3'E,+) is not

contradictory. Another example is the excited state |5'F,+), see Section 3.4.2.

Fig. 3.19 shows the electronic probability pa,, (r) = |@sc,.|> and current densities

jae,. (r) of the molecular orbital 4e,+ of Mg-porphyrin. The corresponding maxima are
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Figure 3.19: Electronic probability pse,. (r) (panels a, b) and current densities jse,, (r) (panels ¢, d)
in the z/y (z = £0.55a¢ (panel a) and z = £0.79 ay (panel ¢)) and y/z (x = 0) (panels b, d) planes, for
4e,+ molecular orbitals of Mg-porphyrin. The Mg nucleus is located at ryg = (0,0,0). The maxima of
Pie,. (r) are located near four carbon bridges, i.e. * = y = +4.5a¢ and z = £0.55ap, and the maxima
of |jse, (r)] are located at © = y = +4.5a9 and z = £0.79ap. Note that panel ¢ shows the direction of
the electronic current density only for the 4e,4 orbital; the corresponding direction for the 4e,_ orbital
would be opposite. In panel d, the electron of the 4e,4 orbital at y > 0 and y < 0 moves toward and

away from the reader, respectively, and backwards for the 4e,_ orbital.

located near four carbon bridges, i.e. x = y = £4.5a9, 2 = +0.55 a¢ for probability and
2z = +0.79 ag for current densities. This electronic ring current is unidirectional, i.e. anti-
clockwise and clockwise for molecular orbital 4e,, and 4e,_, respectively. The electric
ring currents (Eq. (2.55)) of electronic states [2'E,+) and [4'E,1) of Mg-porphyrin are

similar, i.e. [148]
g, =~ lpp, =~ lie, = F85pA. (3.125)

These currents are, of course, weaker than the electric ring currents in one-electron
ions (Tab. 3.1) and linear molecules AICl and BeO (Egs. (3.113) and (3.114)). Fur-
thermore, there are branch zones of the electronic ring current of the molecular orbital
4egy located near eight neighbouring carbon atoms of carbon bridges. In pyrrole frag-

ments, the electronic currents are divided into inner and outer currents along C-N-C
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Figure 3.20: Induced magnetic field By, (r) (Eq. (2.61)) in the z/y (z = 0) (panel a) and y/z (z = 0)
(panel b) planes, for 4e44 molecular orbitals of Mg-porphyrin. In panel a, the induced magnetic field for
the 4e, orbital in the center region is directed away from the reader and in the outside region (with
smaller magnitudes) toward the reader. In panel b, the direction of the induced magnetic field is drawn
only for the 4e,4 orbital. For the 4e,_ orbital, the situation would be reversed. The maxima of the
induced magnetic field max|By,,, (r)| = 0.21T are located at x = y = £3.5a¢ and z = +£0.9ao. The
induced magnetic field at the Mg nucleus is [Bye,, (r = rvg = 0)] = 0.16 T

and C-C-C-C bonds, respectively. The corresponding values are I, 4c,, = F44 A and
Toutge,. = F41 #A which are obtained by integration of the electronic current density
jae,: (r) over separated half planes, e.g. 2 =0, 0 <y < 6.1ag and y > 6.1 ay, respectively.

The mean period of an electron circulating about the z-axis (Eq. (2.60)) is
g, = Top, ~ Ti, = 19fs, (3.126)

which is typically much shorter than the corresponding lifetime of the eletronic ring cur-
rent, which is limited by the radiative decay of excited states [2'E,1) and [4'E,L) on
the ns-timescale.

The electronic ring currents of excited states [2'E,4) and [4'E,.) of Mg-porphyrin,
circulating about the z-axis, induce magnetic fields B 1, , (r) = By1p,, (r) = By, (r), cf.
Eq. (2.61) and see Fig. 3.20. The induced magnetic field at the Mg nucleus (ryg = 0) [148]

|Boig,, (r=ryg)| = [Baig,, (r=rMg)| & By, (r=ry)| = 016T (3.127)
is somewhat smaller than the maximum of the induced magnetic field
max|Byip,, (r)] =~ max|Byig,,(r)] = max|By,,(r)] = 021T (3.128)

located at * = y = +3.5a¢9 and z = £0.9ag, because the currrent density flowing near

carbon bridges is strong and, hence, the induced magnetic field around it is also strong
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(similar to the magnetic field in a rectilinear current). Again, the induced magnetic fields
in Mg-porphyrin are weaker than the induced magnetic fields in one-electron ions (Tab.
3.1) and linear molecules AICI and BeO (Egs. (3.117)—(3.120)). The mean ring current
radii (Eqgs. (2.95) and (2.96)) of the electronic ring currents of excited states |21 FE,+) and

|41E,.) of Mg-porphyrin averaged over the azimuthal angle are
Rigip,, = Rigpg, = Rig,, = 59ao (3.129)
and
Roisip,, = R_jsip,. = R_js,. = 52ao, (3.130)

hence Ry 4e,, ~ R_14c,,, see also the discussion in Section 2.2.7.

For the induction of electronic ring currents of excited states [2'E,1) and [4'E,.) by
means of right or left circularly polarized laser pulses, we assume that the ring-shaped
molecule Mg-porphyrin is pre-aligned along the laboratory-fixed z-axis, using techniques
of nonadiabatic alignment of non-polar molecules, see also Refs. [210,213]. Furthermore,
we assume that the alignment duration is longer than the total pulse duration of the
circularly polarized laser pulse, here ¢, . = 21.2 fs, the same as for AIC] and BeO molecules,
and that the laser pulse (Eq. (2.99)) is centered at the revival time of the rotational

wavepacket, i.e. t, = t*.

The laser parameters of the right circularly polarized laser pulse (Eq. (2.99)) with
cos?® envelope (Eq. (2.100)) are then optimized in order to achieve a complete popu-
lation transfer from the electronic ground state | X 'A;,) to the excited state [2'E, )
or [4'E,,) of Mg-porphyrin. For the target state |21E,,), the optimized laser param-
eters are £ = 1.99GVm™!, hw, = 2.61eV, L. = 1.05 TWem ™2, 7, = 2.53fs, and
At. = 27 /w, = 1.58fs. For the target state |41E,.), the corresponding laser param-
eters are £, = 2.80GVm™!, hw, = 3.32¢eV, L. = 208 TWem™2, 7, = 2.52fs, and
At. = 1.25fs. For laser parameters with longer effective pulse duration 7. = 3.52fs, see
Ref. [148]. Fig. 3.21 shows the z- and y-components of the time-dependent right circularly
polarized electric field E. (t) = E, o4 (t)es + Ey 1 (t)e, (Eq. (2.99)) centered at the revival
time t. = t* and the corresponding time-dependent intensity I.(t) (Eq. (2.114)) for nearly
complete population transfer from the ground state | X 'A;,) to the excited state [2'E, )
or [4'E,,) of Mg-porphyrin.

Fig. 3.21 also shows the corresponding time-dependent populations P;(t) of elec-
tronic states | X 'Ay,), 12 'Eyy), [31Euy), [4'Eyy), and |5 E,.) whereas other electronic
states such as |11E,,) and |61E,,) states have negligible populations during the elec-
tronic excitation. For optimal population transfer | X 'A;,) — [2'E,.), a right circu-

larly polarized reoptimized 7 laser pulse excites the target state |2'E,,) with its fi-



3.4. RING-SHAPED MOLECULE Mg-PORPHYRIN 147

o [ N w
- WD MWT/T

S\ 2'Eu)

ﬂh
» | 5 1Eu+

-2 -1 0 1 2 3
t—t./fs t—t./fs

Figure 3.21: Population transfers |X 'A4;,) — [21E, 1) (left panels) and |X 'A;,) — [4'E,4) (right
panels) by means of a right circularly polarized reoptimized 7 laser pulse centered at the revival time
t. = t*. Panels a and b show the z- (red) and y- (green) components of the time-dependent electric field
E.;(t) (Eq. (2.99)) and the corresponding time-dependent intensity I.(t) (Eq. (2.114)) (blue). In panels
c and d, the time-dependent populations P;(t) (Eq. (2.130)) of electronic states | X 'A4;,) (red), |21 E,4)
(green), |[31E,y) (blue), [41E,;) (magenta), and |5'E, ) (cyan) are drawn.

nal population P5(t;) = 0.881. The final populations of other electronic states are
marginal, i.e. Px(tf) = 0.030, Ps(ty) = 0.047, and Py(t;) = 0.041. For the other op-
timal population transfer | X 'A;,) — [4'E,.), the final population of the target state
|41E,4) is Py(t;) = 0.745 whereas other electronic states have small final populations, i.e.
Px(ty) = 0.085, P(ty) = 0.085, Ps(t;) = 0.082, and P5(t;) = 0.003. The non-negligible
populations of these undesirable electronic states are due to the large spectral width of
the laser pulse. For sufficiently long pulse durations, e.g. 7. > 10fs, these side effects will

disappear.

Finally, the excited state |4'E,+) has the mean electronic angular momentum (L.) =
(L) = £2.5h calculated at the CISD level [148]. Since a right (+) or left (=) circularly
polarized laser pulse transfers the photonic angular momentum +# to the molecule dur-
ing the electronic excitation, i.e. the total angular momentum of the molecule after the

excitation is equal to £h. This conservation of the total angular momentum implies that
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A

the mean nuclear angular momentum is (L, ,,) = F1.5h. Thus, there are nuclear ring
currents in Mg-porphyrin (e.g. nuclear pseudorotations or rotations) associated with elec-
tronic ring currents. These nuclear pseudorotations and rotations are rather slow, with
periods on fs- and ps-timescales, respectively. These timescales are much longer than the
effective pulse duration 7. & 2.5 fs of the circularly polarized laser pulses and, hence, the
nuclei can be considered frozen during the FC-type electronic excitation. Analogous exci-
tations of nuclear rotations associated with electronic currents through helical molecules

between electrodes have been discovered in Ref. [294].

3.4.2 Electronic ring currents in excited |5'E,.) states

Now, let us investigate electronic ring currents in electronic excited |[5'E,.) states of
Mg-porphyrin. The electronic state |5'FE,+) has the dominant electronic configuration
(3ege)(3€45 ) (2b9y)? (4agy)*(1ary)?(2b1,) (94 %) corresponding to the dominant transition
3ege — 2by,, see Table 3.5 and the discussion after Eqs. (2.52) and (3.124). Due to
removal of an electron from the 3e . orbital, the electronic ring current of the |5'E,.) is
dominated by that of the 3e,+ molecular orbital of Mg-porphyrin with the weight of at

least 94 %. Thus, the electronic current density of the electronic state |5 F,4) is

3515, (T) & Jae, (T). (3.131)
Fig. 3.22 shows the electronic probability ps, . (r) = |¢s.,, |* and current densities js.,, (r)
of the molecular orbital 3e,+ of Mg-porphyrin. The corresponding maxima are located
near the four nitrogen atoms, i.e. x =0, y = £3.8ap and y = 0, x = £3.8 ag, z = +0.46 a
for the probability density and x = £0.41 ag, y = +4.1a¢ and y = £0.41 ag, x = £4.1 ag,
z = £0.73 ap for the current density. Note that the panel c of Fig. 3.22 shows the current
density of the molecular orbital 3e,_, not of the other one, i.e. 3e,y. The electronic
ring currents of the 3e,+ and 4e,. molecular orbitals are very different, cf. Figs. 3.19
and 3.22. For 3ey+ orbitals, the electronic ring current is no longer unidirectional, i.e.
there are several richly structured ring currents in Mg-porphyrin. For the 3e,— molecular
orbital, the net electronic ring current is anti-clockwise along carbon bridges and nitrogen
atoms of Mg-porphyrin. However, there are four strong clockwise ring currents in pyrrole
fragments and four weak anti-clockwise ring currents between carbon bridges and the Mg
atom. Furthermore, there are also two very weak clockwise ring currents around the Mg
atom inside and outside of Mg-porphyrin. The net electric ring current (Eq. (2.55)) of
the electronic state |5 F,+) of Mg-porphyrin is

]51Eui ~ I3eg; = :F6,uA (3132)

which is much weaker than the electric ring currents of the [2'E,.) and [4'E,.) states
of Mg-porphyrin, i.e. lyip,, ~ I;ip,, ~ F8pA (Eq. (3.125)). However, the electric
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Figure 3.22: Electronic probability pse,, (r) (panels a, b) and current densities jse,, (r) (panels ¢, d)
in the z/y (z = £0.46 a¢ (panel a), z = £0.73a¢ (panel c¢)) and y/z (x = 0) (panels b, d) planes, for
3eg+ molecular orbitals of Mg-porphyrin. The corresponding maxima are located near the four nitrogen
atoms, i.e. x = 0, y = £3.8ap and y = 0, v = +3.8ap, z = £0.46ag for p3.,, (r) and x = £0.41 ay,
y = +4.1ap and y = £0.41ap, * = +4.1ag, z = +£0.73ag for [jse,, (r)[. Panel ¢ shows the direction of
the electronic current density only for the 3e,_ orbital. In panel d, there are three different regions, i.e.
the electron of the 3e,_ orbital at 0 < y < 2.4a9, y > 6.1ag and 2.4a¢p < y < 6.1 a9 moves away from
and toward the reader, respectively. For y < 0, the corresponding directions are opposite. For the 3eq4

orbital, the situation would be reversed.

ring currents in pyrrole fragments are stronger. The inner and outer electric currents
along C-N-C and C-C-C-C bonds are l;,3.,. = F35pA and Loyt 3e,. = £27 uA which
are obtained by integration of the electronic current density js. . (r) over separated half
planes, e.g. t =0, 2.4a9 <y < 6.1ag and y > 6.1 ag, respectively. The weak ring current
around the Mg atom (inside of Mg-porphyrin) Ingse,. = £2pA is obtained using the
remaining half plane, e.g. x =0, 0 < y < 2.4 ay, cf. panel d of Fig. 3.22. The mean period

of an electron circulating about the z-axis (Eq. (2.60)) is
Toip, ~ T, = 26fs, (3.133)

which is typically shorter than the corresponding lifetime of the electronic ring current,

which is limited by the radiative decay of the excited state |5 FE,+) on the ns-timescale.
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Figure 3.23: Induced magnetic field Bae,, (r) (Eq. (2.61)) in the z/y (z = 0) (panel a) and y/z
(x = 0) (panel b) planes, for 3e,4 molecular orbitals of Mg-porphyrin. In panel a, the induced magnetic
field for the 3e,_ orbital inside the pyrrole fragments is directed toward the reader and outside of these
fragments (with smaller magnitudes) away from the reader. In panel b, the direction of the induced
magnetic field is drawn only for the 3e,_ orbital. For the 3ey4 orbital, the situation would be reversed.
The maxima of the induced magnetic field max|Bs,,, (r)| = 0.11T are located at = 0, y = +5.8 ay,
z==21.0ap and x = £5.8ap, y = 0, 2z = +1.0ag. The induced magnetic field at the Mg nucleus is
IBse, . (r =ryng = 0)] =0.02T.

The electronic ring current of the excited state |5'E,.) of Mg-porphyrin induces the
magnetic field Bsipg,, (r) = Bs,. (r), cf. Eq. (2.61) and see Fig. 3.23. The induced
magnetic field at the Mg nucleus (ryg = 0)

Bsip,.(r=rug)| ~ |Bse,.(r=ry)| = 0.02T (3.134)
is much smaller than the maximum of the induced magnetic field
max|Bs1p,, (r)] ~ max|Bs,(r)] = 0.11T (3.135)

located inside the pyrrole fragments, i.e. x = 0, y = +5.8a¢ and y = 0, x = +5.8 ay,
2z = +1.0 ag, due to the strong electronic ring currents in pyrrole fragments. Nevertheless,
this maximum of the induced magnetic field is still smaller than the corresponding maxima
for excited [2'FE,+) and [4'E,.) states (Eq. (3.128)). Since the formulae for the mean
ring current radii (Eqgs. (2.95)—(2.97)) are only defined for unidirectional ring currents,
these formulae cannot be used for the electronic excited state |5 E,1) where the electronic

ring current is not unidirectional, see Fig. 3.22.

As for electronic excitations of the [2'E,.) and |[4'FE,.) states, we assume that the
molecule Mg-porphyrin is pre-aligned along the laboratory-fixed z-axis [210,213], that

the alignment duration is longer than the total pulse duration of the subsequent right or
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Figure 3.24: Population transfer | X ' 4;,) — |51 E, ) by means of a right circularly reoptimized 7 laser
pulse centered at the revival time ¢, = ¢*. Panel a shows the a- (red) and y- (green) components of the
time-dependent electric field E.o (t) (Eq. (2.99)) and the corresponding time-dependent intensity I.(t)
(Eq. (2.114)) (blue). In panel b, the time-dependent populations P;(t) (Eq. (2.130)) of electronic states
|X1A1,) (ved), [2'E,1) (green), |3'E,4) (blue), [4'E, ) (magenta), |5'E,+) (cyan), and |6'E, )

(yvellow) are drawn.

left circularly polarized laser pulse, t,. = 21.2fs, and that the laser pulse (Eq. (2.99)) is
centered at the revival time t. = t*. Again, the laser parameters of the right circularly po-
larized laser pulse (Eq. (2.99)) with cos®® envelope (Eq. (2.100)) are optimized in order to
achieve a complete population transfer from the electronic ground state | X *A;,) to the
excited state |5'F, ) of Mg-porphyrin. They are £ = 7.97GVm™!, hiw. = 4.03¢V,
Inaze = 16.9TWem™2 7. = 2.51fs, and At, = 27/w, = 1.03fs. Fig. 3.24 shows
the z- and y-components of the time-dependent right circularly polarized electric field
E (t) = E,cr(t)e, + By o1 (t)e, (Eq. (2.99)) centered at the revival time t. = t* and
the corresponding time-dependent intensity [.(¢) (Eq. (2.114)) for selective population
transfer from the ground state | X 'A;,) to the excited state |5'E, ) of Mg-porphyrin.

In Fig. 3.24, the time-dependent populations P;(t) of electronic states | X 'A;,) and
In'E,.) (n =2 —6) are shown whereas other electronic states, i.e. |1'E,;) and [n'E,_)

(n = 1 — 6), have negligible populations during the electronic excitation. Thus, a right
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circularly polarized reoptimized 7 laser pulse induces selective population transfer from
the electronic ground |X 'A;,;) to the excited |5'E, ) states. The corresponding final
populations are Px(t;) = 0.042 and P5(t;) = 0.869. The final populations of other excited
states are small, i.e. Po(ty) = 0.001, P5(t;) = 0.013, Py(ty) = 0.051, and Fs(tf) = 0.023.
These results would be improved for long pulse durations of circularly polarized laser

pulses with smaller spectral widths.

We note that the excited state |5'E,.), represented by the dominant transition
3eg+ — 2b1y (94 %), has the mean electronic angular momentum (ﬁz) = <[:Z7€l> = F0.08 %
calculated at the HF level. Since the angular momentum is proportional to the angular
velocity of the circulating electron and to the corresponding radius, the outer electronic
current of the 3e,_ orbital in pyrrole fragments with large radius contributes more to the
negative angular momentum (~ —27 A -8 ay ~ —216 ay pA) than does the opposite inner
electronic current with small radius (~ 35 pA-4 ag ~ 140 ag pA) plus the electronic current
along carbon bridges (~ 6 uA - 6ag ~ 36agpA). In contrast to the positive mean elec-
tronic angular momentum of the [4'F, ) state, the mean electronic angular momentum
of the |51 E, ) state is negative. Since the total angular momentum of the molecule after
the excitation by means of a right (+) or left (—) circularly polarized laser pulse (with
photonic angular momentum =+#) is equal to +h, the mean nuclear angular momentum
of the state |5'E,.) must be (L. ,,) = £1.08%, i.e. it is positive for the state |5 E,,) in
contrast to the negative mean nuclear angular momentum of the state [4'E,,). There
are also nuclear ring currents in excited states |5'E,.), represented by nuclear pseudoro-
tations or rotations induced by electronic ring currents, see also the discussion at the end
of Section 3.4.1.

3.4.3 Electron circulation

A superposition of the ground state | X 'A;,) and the excited state [2'E,.), |[4'E,.),
or |51E, ) of Mg-porphyrin, with approximately equal populations (& 0.5), is achieved
by means of a right circularly polarized reoptimized 7/2 laser pulse (Eq. (2.99)) with
cos?® envelope (Eq. (2.100)). As for AICI and BeO molecules, the total pulse duration
tpe = 21.21s is chosen to be fixed whereas the amplitude of the electric field £, and the
laser frequency w, are reoptimized in order to achieve almost exact half population trans-
fer from the electronic ground |X '4;,) to the excited |n'E, ) (n = 2,4,5) states. The
optimized laser parameters are & = 1.56 GVm™!, hw, = 2.30eV, Iz, = 0.65 TW cm ™2,
7. = 2.54fs, At. = 27 /w. = 1.80fs for the half population transfer | X 'A4;,) — [2'E,.),
E =231GVm™, hw. = 3.63eV, Iyue = 1.42TWem™2, 7, = 2.52fs, At, = 27/w, =
1.14fs for the half population transfer |X'A;,) — [4'E,;), and & = 3.98GVm™!,
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Figure 3.25: Half population transfers |X 'A;,) — [21E, ;) (left panels) and |X 'A4;,) — [4'E,4)
(right panels) by means of a right circularly polarized reoptimized 7/2 laser pulse centered at the revival

time t. = t*. For further details, see Fig. 3.21.

hw. = 4.31eV, Iy = 420TWem ™2, 7, = 2.51fs, At, = 27/w, = 0.98fs for the
half population transfer | X 'A;,) — [5'E,.). Figs. 3.25 and 3.26 show the z- and y-
components of the right circularly polarized electric fields E i (t) = E, o4 (t)es+E, o+ (t)ey
(Eq. (2.99)) centered at the revival time ¢, = t* and the corresponding time-dependent
intensities I.(t) (Eq. (2.114)) for almost exact half population transfers from the elec-
tronic ground state |X 'A;,) to the excited states |2'FE,.), |[4'E,;), and |5'E, ) of
Mg-porphyrin. The optimized parameters of the right circularly polarized laser pulses
with other effective pulse durations 7. are given in Refs. [147,150] for the half population
transfer | X 'A;,) — |2'E,;) (7. = 0.91fs and 7. = 1.37fs), [149] for the half popula-
tion transfer | X 'A;,) — [4'E,;) (7. = 1.82fs and 7. = 3.64fs), and [147] for the half
population transfer | X *A;,) — |5'E, ) (7. = 2.001s).

Figs. 3.25 and 3.26 also show the time-dependent populations of electronic states
|X'Ay,) and [n'E,) (n =2 —5) of Mg-porphyrin. They clearly show that the popula-
tions of all excited states for half population transfers are smaller than the corresponding
populations for complete population transfers, shown in Figs. 3.21 and 3.24, due to smaller

intensities of the right circularly polarized reoptimized 7/2 laser pulses. The final popula-
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Figure 3.26: Half population transfer | X 'A4;,) — |51FE, ) by means of a right circularly polarized

reoptimized 7 /2 laser pulse centered at the revival time t. = t*. For further details, see Fig. 3.24.

tions of the dominant electronic states at ty = t.+t,. are Px(ty) = 0.499, Py(ty) = 0.493
for the half population transfer | X 'A;,) — |21E, ), Px(tf) = 0.499, Py(tf) = 0.462 for
the half population transfer |[X 'A;,) — [41E, ), and Px(t;) = 0.499, Ps(t;) = 0.491 for
the half population transfer |X 'A;,) — |[5'F, ), where the other electronic states have

negligible final populations.

After the end of the right circularly polarized reoptimized 7/2 laser pulses shown in
Figs. 3.25 and 3.26, there are electron circulations of the probability density about the
z-axis. Here, we consider only the superposition of the electronic ground | X 'A;,) and
excited |5'E, ) states of Mg-porphyrin since the ground state | X '4,,) is dominated by
the corresponding HF wavefunction with weight of 80 % and the excited state [5'E, ) is
dominated by the corresponding transition 3e,; — 2b;, with weight of 94 %, see Table
3.5. Thus, the CIS approximation for this superposition state is better than the other
superposition states involving |21 F, ;) and |4 E,, ) states. The difference of the electronic
probability density Ap(r,t) = p(r,t) — p(r,t9) (Egs. (2.191) and (2.192)) after the end of
the laser pulse (¢t > ty), using the CIS approximation (see Section 2.3.4) with dominant
transition 3e,, — 2by,, is shown in Fig. 3.27, see also Ref. [147]. The electronic probability

density circulates about the z-axis with period 750 = 27 /w50 = 907 as, where wsq is the
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Figure 3.27: Electron circulation in the superposition of | X '4;,) and |5'E, ) states of Mg-porphyrin
after a right circularly polarized reoptimized 7/2 laser pulse, see Fig. 3.26. This hybrid state has the
dominant contribution of the hybrid orbital, 3e44+42by,,, corresponding to the dominant transition 3e,, —
2b1,. The snapshots are illustrated as the difference of the electronic density Ap(r,t) = p(r,t) — p(r, to)
(Egs. (2.191) and (2.192)) at times t =t + (n + k)750 (n = 0,1,2,..., k= 0,1/4,1/2,3/4), cf. Ref. [147].
Here, t is the time after the end of the laser pulse at which the difference of the electron density is the
same as shown in the bottom panel (t = £ + n7yg), and 750 = 27/wso = 907 as is the period of the
time-dependent electronic density p(r,t) circulating about the z-axis. The blue and cyan regions show

positive and negative differences Ap(r, t), respectively.

excitation frequency of the electronic state |5'F, ). For the superposition of the ground
| X 'A;,) and excited |[4'E, ) states, the electron circulation with period 749 = 27 /wso =
1.211s is illustrated in Ref. [149]. The corresponding period for the electron circulation
in the superposition of | X 'A4;,) and [2'E, ) states is 799 = 27 /wqy = 1.55fs. Note that
the period 79 of the time-dependent electronic probability density should not be confused
with the period T (Eq. (2.60)) of an electron about the z-axis, see also the discussion at
the end of Section 3.3.
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3.5 Linear triatomic molecules FHF~ and '"CdH,

3.5.1 Nuclear ring currents

In this Section, we apply the concepts for nuclear ring currents and pseudorotation in
bending and pseudorotational states to linear triatomic molecules FHF~ [208] and '*CdH,
207] in the electronic ground state [ X 'XF), see also Section 2.4. These linear molecules
have D, symmetry. The physical properties of FHF~ and *'4CdH, molecules are listed
in Table 3.6. The equilibrium bond lengths R, between nuclei A and B, here A=F, B=H
for FHF~ and A=H, B=Cd for "*CdH,, and harmonic vibrational frequencies w, for the
symmetric stretch, w, for the antisymmetric stretch, and w;, for the bend are determined
by ab initio calculations, where the corresponding details can be found in Refs. [207,208].
The rotational constants B,y for FHF~ and "' CdH, are different, see Table 3.6, due
to the different locations of the light hydrogen nucleus, i.e. at Z = 0 for FHF~ and at
Z = £R, for " CdH,. Thus, the rotational revival time for FHF~ i.e. Trev,x = 48.8 ps, is
much larger than for "*CdHy, i.e. 7,y x = 5.6 ps. In the subsequent application, the linear
triatomic molecule with its molecular Z-axis has to be pre-aligned along the laboratory-
fixed z-axis, cf. Fig. 2.10, again using techniques of nonadiabatic alignment of non-polar
molecules [210,213]. One expects that the maximum of the alignment duration of the
linear triatomic molecule is about 10 % of the rotational revival time, cf. Section 3.3.1,
ie. ATx ez = 0.17, x. Hence, ATx 4, i approximately 5 ps for FHF~ and 500fs for
H4CdH,.

Let us investigate nuclear ring currents and induced magnetic fields in bending and
pseudorotational excited degenerate states |v, = 1'=%1) = |(v, = 0,0, = 1% v, = 0))
of the electronic ground state |X 'X7) of linear triatomic molecules FHF~ and "*CdHs.
We use the harmonic approximation in order to calculate nuclear probability and current
densities, electric ring currents, and induced magnetic fields, see Section 2.4. In this

approximation, the total vibrational energy of twofold degenerate states |[1F1) is

h S h a
By eoumyti—t1 = ;d + ;} + 2hw, (3.136)

cf. Eq. (2.255). The corresponding total angular momentum is (L) = dhey (Eq.
(2.326)). Figs. 3.28 and 3.29 show the total nuclear probability p::(R) (Eq. (2.295)) and
current densities jioi(R) (Eq. (2.314)) of vibrational states [1*!) of FHF~ and “CdH,
molecules. For FHF~, the maxima of the nuclear probability and current densities are
located at Z7 = £R. = £2.15a9, p = 0.0077ag and p = 0.0055 ag, respectively. For
H4CdH,, the maxima of the nuclear probability and current densities are located at Z = 0,

p = 0.0054 ag and p = 0.0038 ag, respectively. The toroidal shapes of the probability and
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FHF- | CdH,
Ma/u 18.998 | 1.0078
Mpg/u 1.0078 | 113.903
Za 9 1
75 1 48
R./aq 215 | 3.16
Box/(hcem™) | 0.342 | 3.00
Trev, X /DS 48.8 5.6
ws/(2mcem™) | 640.3 | 1864.0
wa/(2mcem™) | 1333.7 | 1849.5
wp/(2mcem™t) | 1367.2 | 629.2

Table 3.6: Properties of linear triatomic molecules FHF~ and ' CdH, in the electronic ground state
|X '3}), i.e. nuclear masses My and Mp in unified atomic mass unit (1u= 1.66054 - 1027 kg), nuclear
charges Z4 and Zg where A=F, B=H for FHF~ and A=H, B=Cd for '*CdH,, equilibrium bond lengths
R, between nuclei A and B, rotational constants B, x, corresponding rotational revival times Tpey x =
7h/Be,x, and vibrational harmonic frequencies w; for the symmetric stretch, w, for the antisymmetric

stretch, and wj, for the bend, adapted from Refs. [208] for FHF~ (cf. Ref. [295]) and [207] for 1'4CdH,.

current densities representing the rotations of the H and F/Cd nuclei about the Z-axis are
large and small due to different masses of the light and heavy nucleus, respectively. The
nodal lines of the probability and current densities coincide with the molecular Z-axis.
For FHF~, the hydrogen bond in excited states [1*!) is no longer located along the Z-axis
(“linear hydrogen bond”), but around it — this means that we have discovered a new type
of hydrogen bond, denoted as “toroidal hydrogen bond” [208]. We recognize that the ratio
of widths of nuclear probability and current densities along p- and Z-axes is determined
by the factor f = w,/w; (Eq. (2.352)) for the nucleus A and f = wy/w, (Eq. (2.354)) for
the nucleus B. The toroidal shapes are spherical for f = 1, oblate for f < 1, and prolate
for f > 1. For FHF~, the toroidal shapes of H and F nuclei are spherical (f = 1.03) and
strongly prolate (f = 83.7), respectively, cf. Figs. 2.8 and 3.28. For 14CdH,, the toroidal
shapes of the H nuclei are oblate (f = 0.68), where the corresponding shape of the Cd
nucleus is a little more oblate (f = 0.34), cf. Figs. 2.8 and 3.29. Due to the factor 1/p
in Eq. (2.314), the nuclear current density approaches the Z-axis more closely than the

nuclear probability density, cf. Figs. 3.28 and 3.29.

The bending and pseudorotational states |1¥!) represent unidirectional anti-clockwise
(+) and clockwise (—) toroidal ring currents of the nuclei about the molecular Z-axis.

They have strong electric ring currents of the F and Cd nuclei and the weak ones of
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Figure 3.28: Nuclear probability pioi(p, Z) (Eq. (2.295)) (a, c¢) and current densities jior(p, Z) (Eq.
(2.314)) (b, d) in the Y/Z (X =0) (a, b) and X/Y (Z = £R. = +£2.15a9) (c, d) planes, for vibrational
states [1*!) of FHF~. The F and H nuclei are located in the left/right and middle regions (a, b),
respectively. For better visualization, pr(p, z) and jr(p, z) are enlarged by a factor 5, whereas pu(p, 2)
and ju(p, z) are increased by factors 2000 and 40, respectively. Panel d shows the direction of jr(p, 2)
only for |11); the corresponding direction for |[1~!) would be opposite. In panel b, the nuclei of the state

[11) at Y > 0 and Y < 0 move toward and away from the reader, respectively, and backwards for [171).

the H nuclei (Egs. (2.332) and (2.333)) because of the large nuclear charges Zp = 9 and
Zcq = 48 compared to Zy = 1, i.e.

Iy = +59.1uA (3.137)

Iy = +6.6uA (3.138)
and

Iy = +3.0puA (3.140)

for FHF~ and ''CdH,, respectively. The corresponding total electric ring currents (Eq.
(2.331)) and mean periods of the nuclei (Eq. (2.334)) circulating about the molecular
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Figure 3.29: Nuclear probability pioi(p, Z) (Eq. (2.295)) (a, c¢) and current densities jior(p, Z) (Eq.
(2.314)) (b, d) in the Y/Z (X = 0) (a, b) and X/Y (Z = 0) (c, d) planes, for vibrational states |1*') of
H4CdH,. The Cd and H nuclei are located in the middle and left /right regions (a, b), respectively. For
better visualization, pcd(p, z) and jcq(p, 2) are enlarged by a factor 20, whereas pi(p, 2) and ju(p, z) are
increased by factors 10° and 2000, respectively. Panel d shows the direction of joq(p, 2) only for |11); the
corresponding direction for |171) would be opposite. In panel b, the nuclei of the state [1') at Y > 0 and

Y < 0 move toward and away from the reader, respectively, and backwards for [171).

Z-axis are
hiscgn, = =£151.1pA (3.142)
and
Tepp- = 24.4f1s (3.143)
Tiacgn, = 53.0fs, (3.144)

respectively.
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Figure 3.30: Induced magnetic fields By, (p, Z) along the Z-axis (a, b) and in the X/Y plane (Z =
+R, = £2.15q¢ for FHF~ (c) and Z = 0 for ''*CdH, (d)), for vibrational states [1*!) of FHF~ (a,
c¢) and 1*CdH; (b, d). The locations of the nuclei are the same as in Figs. 3.28 and 3.29. For better
visualization in panels a and b, By(Z) is increased by factors 10 and 500, respectively. In panels ¢ and
d, the p-component of By, (p, Z) is very small and thus negligible. For |1'), the induced magnetic fields
in the center regions of panels ¢ and d are directed away from the reader. For [1~1), the situation would

be reversed. The maxima of the induced magnetic fields are given in Eqgs. (3.145) and (3.146).

The nuclear ring currents of vibrational states |1¥!) induce magnetic fields By, (R);
the corresponding induced magnetic fields along the Z-axis, i.e. By, (Z), are given in Egs.
(2.335)—(2.338). Fig. 3.30 shows the induced magnetic fields for linear triatomic molecules
FHF~ and ""CdH,. The induced magnetic fields are independent of the azimuthal angle
¢ and strongest at the centers of the ring currents of the heavy nuclei, i.e. p =0, Z =
+R, = £2.154a¢ for FHF~ and p = 0, Z = 0 for 1*CdH,. The corresponding maxima of
the induced magnetic fields of excited states [1%!') (cf. Egs. (2.350) and (2.351)) are

max|B;(R)] = |Bi(£R:)| = 109T =~ |Bp(£R,.)] (3.145)

and

max|Biy(R)| = [Biu(0)] = 318T ~ |Bca(0)| (3.146)
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for FHF~ and 4CdH,, respectively. If the shape of the current density of the F nucleus
would be not prolate, i.e. spherical or oblate, then the maximum of the corresponding
induced magnetic field would be on the order of 50 T — 100 T, because the integral I; for
v, = |l| =1 and f = wp/wz = 1 (spherical), i.e. Iy = 0.7523 (Eq. (2.365)), is larger than
that for f = wy/ws = 83.7 (oblate), i.e. Iy = 0.1205, cf. Fig. 2.8. The induced magnetic
fields at the centers of the ring currents of the hydrogen nuclei are comparatively very

small, i.e.
Bt (0)] = 200mT = |By(0)] (3.147)
and
Biot(£Re)| = 99mT ~ [Bu(+R.)| (3.148)

for FHF~ and "*CdH,, respectively, cf. Egs. (2.350) and (2.351). Furthermore, the ap-
proximations (2.339) and (2.340) are very good, since the magnetic field induced by the
nuclear ring current, strongly localized at the corresponding center, is approximately zero
at the centers of the other nuclear ring currents, cf. Fig. 3.30. However, the width of the
magnetic field induced by the ring current of the F nucleus along the Z-axis is broader

than for Cd, because of the prolate shape of the toroidal ring current of the F nucleus.

The mean ring current radii of excited states |1*1), using Egs. (2.380), (2.382), (2.384),
and (2.386), are

RI,F = 00069(10 (3149)
Ry = 0.0044aq (3.150)
RLH = O.26CLQ (3151)
R—I,H = 0.16@0 (3152)
for FHF~ and
Rica = 0.0048aq (3.153)
Rfl,Cd = 0.0030 ao (3154)
Rig = 0.27ag (3.155)
R—LH = 0.17@0 (3156)

for 11*CdH,, cf. Table 2.1. Note that the ring current radius R_;r for the F nucleus
is about 67 times larger than the nuclear radius of F. However, for the Cd nucleus, the
current radius R_; cq is only 25 times larger than its radius, implying that the strong

induced magnetic fields are sharply located inside these nuclear ring currents, cf. Fig.
3.30.
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state | AEy) 0
(hcem™1)
0° 0.0
1%t 1304.6
20 2602.5
2+2 2613.2
3*! 3867.5
3+3 3925.3
40 5335.3
4+2 5342.7
44 5240.0

Table 3.7: Anharmonic excitation energies AFEy, 10 = E(US:O,vé,UQZO),O — FE(0,00,0),0 of bending and
pseudorotational states [v}) = |(vs = 0,v},v, = 0)) in the electronic ground state | X '3}) of the FHF~
molecule [208].

The different effects of the induced magnetic fields at the centers of the nuclear ring
currents of Cd in 1'*CdH; and F in FHF~ can be understood simply by using Biot-Savart
law in the current loop model. Using Eqs. (2.93), (2.94), and (2.334) with nuclear charge
Q, the result is |B| = poQ/(2RT) = poQw/(4wR). This approximation shows that the
induced magnetic fields are strong for heavy atoms (large nuclear charge ) and small
ring current radius R) and for high degenerate vibrational frequencies w. It can also be
applied to non-linear pseudorotating molecules such as the tetrahedral UH, molecule in
pseudorotational excited degenerate antisymmetric vibrational states, see also conclusions
in Chapter 4.

For the complete population transfer from the vibrational ground state |0°) to the first
excited pseudorotational state [1') by means of a right circularly polarized laser pulse, we
employ an anharmonic model to avoid multiphoton transitions to higher excited vibra-
tional levels (ladder climbing), see also Fig. 2.9. For the electronic ground state |X ')
of the FHF™ molecule, the anharmonic excitation energies AE,, ;0 = Ely=0,0! va=0)0 ~
E(o0,0),0 of bending and pseudorotational states |v}) = |(v; = 0,0}, v, = 0)) are listed
in Table 3.7, adapted from Ref. [208]. However, for FHF~, we use the linear approxima-
tion of the dipole function (Eq. (2.419)) in order to calculate the transition dipole matrix
elements (Eq. (2.415)). We use OM, (Qs, Qa; Q1) /0Qb|0.~0.~0y—0 = 0.0869 ¢, which is
determined from ab initio calculations [208]. For the choice of the effective pulse duration
of the laser pulse, we calculate the anharmonicity of the FHF~ molecule, AE = 4 hcem™!

(Eq. (2.436)), i.e. the spectral width I' of the laser pulse must be smaller than AE. Hence,
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0

the effective pulse duration 7 of the cos?® envelope must satisfy the condition

2.826 h 2.826 h
T T > Tap 3.75 ps, (3.157)

cf. Egs. (2.109) and (2.436). On the other hand, the effective pulse duration 7 must be

shorter than the maximum of the alignment duration of the FHF ™ molecule, i.e.
T < ATxmez = D5Ds. (3.158)

For FHF~, we use 7 = 4 ps. The corresponding total pulse duration is ¢, . = 33.8 ps.

Note that for *CdH,, the anharmonicity is AE = 4.7hcem™ (cf. Eq. (2.436) and
Table 3.8). For the complete population transfer [0°) — |11} of the 1*CdH; molecule,
the spectral width must be smaller than 4.7 hccm ™! and the corresponding effective pulse

0 envelope must be larger than 3.19 ps which does not satisfy the other

duration of the cos?
condition 7 < ATy mar &~ 500fs. Thus, the complete population transfer [0°) — [1') for
H4CdH, cannot be achieved by means of a right circularly polarized laser pulse, given by
Eq. (2.99), with effective pulse duration less than 500 fs; for further details, see Section

3.5.2.

Assuming that the molecule FHF~ is pre-aligned along the laboratory-fixed z-axis
and that the laser pulse is centered at the revival time t. = t*, we reoptimize the laser
parameters of the right circularly polarized IR laser pulse (Eq. (2.99)) with cos®® en-
velope (Eq. (2.100)) in order to achieve a complete population transfer |0°) — |[11).
The reoptimized laser parameters, starting from the reference values £, = 81.8 MV m™!
and fiw, = 1304.6 hccm™! for the resonant 7 laser pulse, are £ = 81.9MVm~! and
hiw, = 1303.8 hcem ™. The corresponding maximum intensity is Iawe = 1.7T8 GW cm ™2
Because of the short optical cycle period At, = 27 /w,. = 25.6 fs compared to the effective
pulse duration 7 = 7, = 4 ps, i.e. there are about 156 laser cylces during 4 ps, only the
time-dependent intensity I.(t) (Eq. (2.114)) of a right circularly polarized reoptimized 7

laser pulse is shown in Fig. 3.31.

The time-dependent populations P,,;(t) of bending and pseudorotational states |0°),
|11), and |22) are also shown in Fig. 3.31, where the other states have negligible populations
during the vibrational excitation. This figure clearly shows that a right circularly polarized
reoptimized 7 laser pulse excites the state |1') almost completely from the ground state
|0°). The corresponding final populations P,,;(t;) (Eq. (2.426)) of vibrational states [0%),
|11}, and |22) are 0.011, 0.951, and 0.038, respectively. The non-zero transient population
of the bending and pseudorotational state |22) is due to the double ladder climbing (vy, [ —
v, + 1,1+ 1), see Fig. 2.9. As a consequence of the double ladder climbing, the mean
values (vp(t)) and (I(t)) (Egs. (2.427)) and (2.428)) are indistinguishable in Fig. 3.31,
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Figure 3.31: Selective population transfer |0°) — |1') of FHF~ by means of a right circularly reop-
timized 7 laser pulse centered at the revival time t. = t*. Panels a, b, and ¢ show the time-dependent
intensity I.(t) (Eq. (2.114)) of the laser pulse, the time-dependent populations P,,;(t) (Eq. (2.426)) of
bending and pseudorotational states |0°) (red), |1!) (green), |22) (blue), and the corresponding mean
values (vp(t)) (Eq. (2.427)) and (I(t)) (Eq. (2.428)), respectively. Note that the magnitudes of (v,(¢)) and
(I(t)) are on the same scale, i.e. {vy(t)) = (I(t)).

ie. (vp(t)) =~ (I(t)). At the final time ¢;, these mean values are equal to 1.03, i.e. the
corresponding mean value of the Z-component of the total angular momentum at the
final time is (Lo 2 (tf)) = 1.03% (Bq. (2.429)).

3.5.2 Nuclear pseudorotation

For the vibrational excitation of anharmonic bending and pseudorotational states |v}) =
|(vs = 0,0}, va = 0)) (vy < 10) in the electronic ground state | X 'SF) of "*CdH, by means
of a right circularly polarized laser pulse, the anharmonic excitation energies AE,, ;0 =
By, =048 wa=0).0 — E(0,00,0)0 for v, < 10 (see Table 3.8) and anharmonic dipole matrix
elements (v}| M, v} (cf. Eqs. (2.416) and (2.417)) adapted from Ref. [207] are used in

the following quantum dynamical calculations. As discussed in Section 3.5.1, the complete



3.5. LINEAR TRIATOMIC MOLECULES FHF~ AND " CdH, 165

state | AE, ;0 | state | AE, 0 | state | AE, 0 state | AEy, .0
(hcem™) (hcem™) (hcem™1) (hcem™1)
0° 0.0 5+ 2941.3 7| 4107.1 9+5 5205.8
1+ 605.9 5+3 2955.5 7 4148.0 9+7 5245.1
20 1199.5 5% | 2983.9 80 4617.5 9+9 5297.5
2+2 1207.1 6° 3505.2 82 | 4624.2 10° 5706.4
3*! 1788.9 6+2 3512.2 g+ 4644.3 10%2 | 5712.8
3%3 1803.7 6% | 3533.1 86 | 4677.7 10 | 5732.3
40 2366.9 6*¢ | 3567.9 88 | 47245 10%6 | 5764.4
4*%2 | 23741 7+ | 4066.1 9+! 5166.3 10*8 | 5809.4
4+ | 2395.9 7| 4079.8 9t | 5179.5 | 10¥10 | 5867.2

Table 3.8: Anharmonic excitation energies AE, 10 = E(vs:0,v£7va:0),0 — FE(0,00,0),0 of bending and
pseudorotational states [v}) = |(vs = 0,0}, v, = 0)) in the electronic ground state | X '33}) of the "' CdH,

molecule [207].

population transfer from the vibrational ground state [0°) to the excited state [1') cannot
be achieved by means of a right circularly polarized laser pulse. The reason is that the
114CdH; molecule rotates faster than FHF~, due to the light masses of the H nuclei. The
maximum alignment duration of '**CdH,; is only about 500 fs whereas the condition of
the spectral width of the laser pulse (Eq. (2.436)) implies 7 > 3.19 ps.

Here, we use a right circularly polarized IR laser pulse (Eq. (2.99)) with cos?® envelope
(Eq. (2.100)) and short pulse duration, 7 = 50fs, in order to achieve field-free nuclear
pseudorotation of ''*CdH,. The corresponding total pulse duration is t,. = 423.1fs. As
for the FHF~ molecule, the '**CdH, molecule is aligned during the vibrational excita-
tion (z = X and y = Y'), where the circularly polarized laser pulse is centered at the
revival time t. = t*. We optimize the amplitude of the electric field &£, and laser frequency
w. so that the sum of final populations of excited states [v}) (1 < v, < 4) is maximal.
Thus, the final populations of higher-lying vibrational states v, > 5 are supressed, using
non-resonant laser frequency w. to avoid double ladder climbing to higher excited states.
The optimized laser parameters are £ = 6.00 GV m™' and fiw. = 777.0 hcem™ (compare
hiwy, = 629.9 hcem™). The corresponding maximum intensity is Iaz,c = 9.56 TW cm 2.
Fig. 3.32 shows the X- and Y-components of the right circularly polarized electric field
E i (t) = Excirex + Eve+(H)Ey (Eq. (2.99)) and the corresponding time-dependent in-
tensity I.(t) (Eq. (2.114)).
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Figure 3.32: Vibrational dynamics of 1**CdH, by means of a right circularly polarized 50 fs laser pulse
centered at the revival time t. = t*. Panel a shows the X- (red) and Y- (green) components of the
time-dependent electric field E . (¢) (Eq. (2.99)) and the corresponding time-dependent intensity I.(t)
(Eq. (2.114)) (blue). In panel b, the time-dependent populations P,,;(t) (Eq. (2.426)) of bending and
pseudorotational states [0°) (red), [11) (green), |22) (blue), |3%) (magenta), |4%) (cyan), |5°) (yellow), and
|6%) (gray) are drawn. Panel ¢ shows the corresponding mean values (v, (t)) (red, Eq. (2.427)) and (I(t))
(green, Eq. (2.428)).

Fig. 3.32 also shows the time-dependent populations P,,;(t) of bending and pseudoro-
tational states |v}) (0 < v, = [ < 6). Because of the non-resonant laser pulse, the
high-lying excited states |v}) (7 < v, = [ < 10) have negligible populations during the
vibrational excitation. Furthrmore, the populations of the other states |v}) (v, # ) are
also negligible due to double ladder climbing (v, I — v, + 1,1 + 1), see Fig. 2.9. The
vibrational ground state |0") is therefore transferred sequentially to the dominant excited
bending and pseudorotational states |v}) (1 < v, = [ < 4), by dominant absorption pro-
cesses |0%) — [11) — [22) — [33) — |41) — ..., cf. Refs. [98,296] for simple vibrational
ladder climbing in one-dimensional oscillator models. The transient stimulated emission
processes, i.e. [33) — |22), |22) — |11}, and [1') — |0°), after ca. 30 fs are also observed.
The final populations of dominant states |v}) (1 < v, = [ < 4) are Py(t;) = 0.095,
Pii(ty) = 0.238, Pa(ty) = 0.282, Ps3(ty) = 0.210, and Pu(ty) = 0.111. The other
vibrational states |5°), |6°), and |77) have negligible final populations Ps5(t;) = 0.046,
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Figure 3.33: Nuclear pseudorotation of the *CdHy molecule after the end of the right circularly
polarized laser pulse (see Fig. 3.32). Panels a—d and e-h show the time-dependent probability densities
pu(R,t) and pca(R,t) of the H and Cd nuclei at Z = £R, = 3.16 a9 and Z = 0 (Egs. (2.430)—(2.432)),
respectively. The corresponding snapshots are shown at times t = ¢ty + 2rk/w11 (K = 0,1/4,1/2,3/4),
where w11 = AE1;19/h = 605.9 (2mc) cm ™! is the anharmonic frequency of the state [1!) (see Table 3.8).

Pss(ts) = 0.014, and Prr(tf) = 0.003, respectively. The sum of final populations of ex-
cited states |vf) (1 < v, < 4) is 0.841, which also implies that the final populations of
excited states |v}) (1 < v, < 4,0, # 1) are negligible (35, 1y Po(ty) — X0 _i—y Poyi(ty) =
0.841 — 0.841 = 0.000). This fact is also supported by the time-dependent mean values
(up(t)) (Eq. (2.427)) and (I(t)) (Eq. (2.428)), illustrated in Fig. 3.32. Thus, the double
ladder climbing is confirmed by almost perfect agreement (v,(t)) =~ (I(¢)). Furthermore,
initial absorption processes and subsequent competitions with stimulated emission pro-
cesses (after ca. 30fs) lead to the non-monotonic time evolution of (v,(t)) and (I(t)). At
the final time, these mean values are (v,(ts)) = (l(tf)) = 2.22, and the corresponding
mean value of the Z-component of the total angular momentum is (L (7)) = 2.22h
(Eq. (2.429)).

After the end of the right circularly polarized 50 fs laser pulse, the vibrational state
|®(t)) after the final time ¢ consists of bending and pseudorotational states |v}) (v, =
[), where the corresponding coeflicients C,,;(t) for ¢ > t; are time-independent. The
bending and pseudorotational wavepacket |®(¢)) is, however, time-dependent due to the
time-dependent exponential factors in Eqs. (2.430)—(2.432). The snapshots of the time-



168 CHAPTER 3. RESULTS

T, T 3T e
ret cv t = t/ + T‘U t= t[ + /Traw

X/a(] X/U,U X/a(] X/Cl[)
-10 -05 00 05 10 -05 00 05 10 -05 00 05 1.0 -05 00 05 1.0

1.0
05 E
AR
S < |E
~_ 0.0 =8
S~ IR
-05 <
0.02
0.01 £
o ;\>_<7 b
=} Be) 2
§ 0.00 215
=2
-0.01 <
-0.02
-0.02 -0.01 0.00 0.01 0.02 -0.01 0.00 0.01 0.02 -0.01 0.00 0.01 0.02 -0.01 0.00 0.01 0.02

X/a[) X/a(] X/CL() X/a()

Figure 3.34: Revival structures of the nuclear pseudorotation of the '4CdHs molecule after the end
of the right circularly polarized laser pulse (see Fig. 3.32). Same as in Fig. 3.34, but the time-dependent
probability densities are shown at longer times t =ty + kTye, (kK =1/4,1/2,3/4,1), where T}, = 14.2ps

is the pseudorotational revival time. Panels d and h are similar to panels a and e of Fig. 3.33, respectively.

dependent probability densities py(R,t) and pcqa(R,t) of the H and Cd nuclei at Z =
+R. = £3.16 qp and Z = 0, and at times t = t;+27k/wy; (k =0,1/4,1/2,3/4) (one cycle)
are shown in Fig. 3.33, respectively. Here, the anharmonic vibrational energies E,, ;0 (see
Table 3.8) and harmonic approximation of vibrational wave functions are used. Fig. 3.33
clearly shows that the H and Cd nuclei at opposite locations circulate anti-clockwise about
the Z-axis with the anharmonic frequency wy; = AE;o/h = 605.9 (27c) cm™! of the state

|11}, corresponding to the anharmonic peseudorotational period 711 = 55.1 fs.

Because of the anharmonicity of bending and pseudorotational levels, the vibrational
wavepacket dephases after several cycles and recurs at intervals of the pseudorotating

revival time T},

) -1
0 E'Ub:|l|70

502 ~ 14— 15ps, (3.159)
Ub

Trew = 47rh’

vp=(uvp(ts))

cf. Ref. [263,264,266]. For Morse potentials, the revival time T,., is constant because the
anharmonic energies have only terms with exponents n = 0, 1, 2 of v,. However, for exact
anharmonic systems, the second-order derivative in Eq. (3.159) is no longer constant and
the revival time 7., is dependent on (vy(¢)). In this case, the vibrational wavepackets

at times ty and t; + 7)., are not exactly equal but similar, cf. Refs. [264,266]. Using
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anharmonic energies of 1*CdH, from Table 3.8, the pseudorotating revival time T, (Eq.
(3.159)) is estimated between 14 ps and 15 ps. In numerical calculations, we found that
the probability densities at times t; and ty + 1}, are similar, if 7}, = 14.2ps. Fig. 3.34
shows the time-dependent probability densities of the H and Cd nuclei at times t ;47T /4,
t+Trev/2, t+3T e, /4, and t +T,.,. As predicted in Ref. [263], the vibrational wavepacket
recurs also at ¢ + Ty, /2, but the relative phase of the wavepackets at ¢ and ¢ + T}e, /2
is w. At times t; + T}, /4 and ty + 31,.,/4, the pseudorotation of the H4CdH, molecule

is separated into two regions with the corresponding probabilities of about 0.5.

However, the alignment duration ATy .. & 500fs of the " CdH, molecule is much
shorter than the pseudorotational revival time 7)., = 14.2fs. Since the rotational revival
time of " CdHy is T,ep x = 5.6 ps (still shorter than the pseudorotational revival time),
the rotational wavepacket recurs at times tg + n7ep x & tf + NTrep x (n =1,2,...). The
ratio of the pseudorotational and rotational revival times is Tye/Tren x =~ 2.5 = 5/2. This
ratio implies that the total (rotational and vibrational) wavefunction recurs at the time
b+ 2T ey =t + OTrew, x ~ 28 ps, where the difference of 27}, and 57,¢, x is less than the

maximum of the alignment duration ATx .. ~ 500 fs of the *CdH, molecule.
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Chapter 4

Conclusions and Outlook

In this work, concepts for the generation of electron circulations, nuclear pseudorotations,
electronic and nuclear ring currents, and associated induced magnetic fields in atoms,
ions, and aligned/oriented molecules by means of circularly polarized laser pulses have
been developed, with demonstrations by quantum dynamics simulations for exemplary
model systems, see also Refs. [144-150]. The four main challenges of this work, listed in

Section 1.3, were accomplished:

1. Stationary electronic and nuclear ring currents and associated induced magnetic
fields can be controlled by means of circularly polarized UV /visible and IR opti-
mized 7 laser pulses, respectively, where the direction of ring currents is determined
by the sense of circular polarization. Ring currents occur in electronic and vibra-
tional degenerate states. In this work, twofold degenerate excited states |¥.) in the
complex representation were used, which are easily obtained from degenerate states
|W,) and |¥,) in the real representation by simple transformation (Eq. (2.29)).
We have investigated electronic ring currents in atomic orbitals of the hydrogen
atom and one-electron ions (Section 3.2), in excited states |A ') of oriented lin-
ear molecules AIC1 and BeO (Section 3.3), and in excited states [n'E,1) (n = 2,4,5)
of the aligned ring-shaped molecule Mg-porphyrin (Section 3.4), and nuclear ring
currents in excited bending and pseudorotational degenerate states (v, = 1,1 = £1)
of linear triatomic molecules FHF~ and "4 CdH, (Section 3.5).

By means of a circularly polarized optimized 7 laser pulse, the population of the
excited degenerate target state is transferred selectively from the electronic or vi-
brational non-degenerate initial state. For electronic excitation, the effective pulse
duration, typically of the order of 7. = 2.5fs, is shorter than vibrational and ro-

tational periods of the molecule. Thus, the molecule was considered frozen during
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the electronic FC-type excitation. For vibrational (bending and pseudorotational)
excitation, the electronic states are not excited due to off-resonance of the laser
pulse and the linear triatomic molecule is aligned during the excitation. The an-
harmonicity of the bending and pseudorotational state, and the alignment duration
of the linear triatomic molecule play an important role for the selective population
transfer from the vibrational ground state (v, = 0,1 = 0) to the excited bending
and pseudorotational state (v, = 1,1 = £1). For FHF~, the effective pulse dura-
tion of 7. = 4 ps is sufficient in order to achieve an optimal final population of the
excited state. However, for 1'**CdH,, the first excited pseudorotational state cannot
be selectively populated from the vibrational ground state because the rotational
revival time of 1*CdH, is too short and the anharmonicity of bending and pseu-
dorotational states is too small. In this case, the full optimization of the ultrashort
laser pulse (with effective pulse duration less than the alignment duration of the

molecule) through an evolutionary algorithm would overcome this problem.

. Analytical results for electronic probability and current densities, corresponding

electric ring currents, mean ring current radii, and induced magnetic fields in
atomic orbitals of the hydrogen atom and one-electron ions show that the effects
are strongest for 2p, atomic orbitals and high nuclear charges Z, see Section 3.2.
Electric ring current and induced magnetic field at the nucleus are proportional to
Z? and Z3, respectively, whereas the mean ring current radius is proportonal to Z 1.
The corresponding non-relativistic magnitudes for 2p, atomic orbitals range from
0.132mA, 0.52T, and 1.273q for H (Z = 1) to 22.3mA, 1146 T, and 0.098 a( for
Al'?* (Z = 13). The huge induced magnetic fields in 2p. atomic orbitals of Al'2*
are obviously much stronger than the currently available experimental permanent
magnetic fields, ca. 90T [230].

As demonstrated in Section 3.2.6, the electric ring currents and induced magnetic
fields can be estimated for electronic ring currents in many-electron atomic and
molecular systems, using CIS and LCAO-MO approximations and Slater rules for
estimation of the effective nuclear charge Z.;;. The corresponding approximate val-
ues compare well with the exact values, using CASSCF orbitals carrying electronic
ring currents. The exact induced magnetic fields in excited states [1'Dyy) and
[11D.,) of singlet oxygen are 62.0T and 2 -62.0T= 124.0 T, respectively. How-
ever, these states cannot be excited directly from the ground state |13 Py;) of triplet
oxygen by means of a circularly polarized laser pulse due to different spin states.
Another example is the electronic ground state |12Py;) of the F atom, carrying elec-
tronic ring currents with induced magnetic fields of 95.2T at the nucleus. In this
case, the ring currents in ground states cannot be achieved from the 1 : 1 mixture

of [12P,;) and |1%P_;) states by a single circularly polarized laser pulse.
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The accessible electronic ring currents induced by a circularly polarized UV /visible
laser pulse are those of the excited electronic degenerate states with a dipole al-
lowed transition from the ground state with the same spin multiplicity. Examples
are the excited states |A ') of linear molecules AICI and BeO as well as excited
states [n1E,.) (n = 2,4,5) of the ring-shaped molecule Mg-porphyrin, see Sec-
tions 3.3 and 3.4. The LUMO 47, and HOMO 17 of excited states |A'TIy) of
AICI and BeO carry the dominant electronic ring currents, respectively. For AICI,
the corresponding electric ring currents and maxima of induced magnetic fields are
0.405mA and 7.7T located at the Al nucleus, respectively, whereas for BeO, they
are 2.490mA and 52.1T located at the O nucleus. For Mg-porphyrin, we found
that the electronic ring current, in general, depends on the electronic state, but the
ring currents are similar for |21 E,.) and |[4'F,.) states because these states carry
dominant electronic ring currents of the same HOMO 4e . For these orbitals, the
electric ring currents and maximum of induced magnetic fields located near carbon
bridges are 85 A and 0.21 T, respectively. Note that the electronic ring current
can also be generated by means of a permanent magnetic field, but a magnetic field
of the order of about 8000 T would be required in order to achieve the same elec-
tric ring current [148,170,179], i.e. the required magnetic field is about 100 times
stronger than the permanent magnetic fields which can be produced with present-
day technology [230]. Thus, the generation of electronic ring currents by means of
circularly polarized laser pulses is more efficient than the traditional approach based
on permanent magnetic fields. Furthermore, the laser pulse can control the struc-
ture of the electronic ring current. For example, the nature of the electronic ring
current in excited states |51 FE,+) is totally different. These states carry dominant
electronic ring currents of 3e,+ molecular orbitals, having net electric ring currents
of only 6 uA. But there are strong electric ring currents of about 30 uA along the
bonds of pyrrole fragments, which induce magnetic fields of 0.11T, located at the

centers of the pyrrole fragments.

We also investigated nuclear ring currents in the first excited bending and pseudoro-
tational states (v, = 1,1 = 41) of linear triatomic molecules FHF~ and 'CdH,
(Section 3.5). The net electric ring currents are similar, i.e. 125 uA for FHF~ and
151 pA for 1**CdH,. But the induced magnetic fields for FHF~ and 4CdH, are
very different and can be explained based on analytical results for linear triatomic
molecules, see Section 2.4.6. In fact, 1**CdH, has the strong induced magnetic field
of 318 T located at the center of the ring current of the Cd nucleus, whereas the
maximum of the induced magnetic field for FHEF~ reaches only 10.9T located at
centers of ring currents of the F nuclei. We conclude that the induced magnetic
fields for HXH are stronger than for XHX, for heavy atoms X (large nuclear charge

() and small ring current radius R), and for high bending frequencies wy, in accord
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with the Biot-Savart law in the current loop model where the induced magnetic
field is proportional to Qw/R. Unfortunately, the rotational revival time of HXH is
shorter than that of XHX, thus the vibrational bending and pseudorotational state
(vy, = 1,1 = +1) of HXH cannot be excited completely by a circularly polarized
IR optimized 7 laser pulse, if the anharmonicity of bending and pseudorotational
states is too small.

. Unidirectional electron circulation in the superposition of electronic non-degenerate

ground and degenerate excited states is achieved by means of a circularly polarized
UV /visible optimized 7 /2 laser pulse. After the end of the laser pulse, the electronic
wavepacket is time-dependent. The corresponding probability and current densities
as well as electric ring current and induced magnetic field are periodic in time and
azimuthal angle, i.e. the electron circulates about the axis of symmetry. We have
extensively investigated electron circulation in the superposition state consisting of
1s and 2p, atomic orbitals with equal weights (Section 3.2.5), in the superposition
of [ X1XT) and |A'TL,) states of oriented AlCI and BeO (Section 3.3.3), and in the
superposition of | X 'A4;,) and [n'E, ) (n = 2,4,5) states of aligned Mg-porpyhrin
(Section 3.4.3). For electron circulation in a superposition of two electronic excited
degenerate states, e.g. [4'E, ;) and |5'E,, ) of Mg-porphyrin, induced by means of

two time-delayed circularly polarized optimized 7/2 laser pulses, see Ref. [149].

For the aligned linear triatomic molecule "4CdH,, nuclear pseudorotation, repre-
senting several dominant bending and pseudorotational states (v, =1 = 0,...,4),
can be induced by means of a right circularly polarized IR 50 fs laser pulse (Section
3.5.2). We showed that double ladder climbing (v, — v, + 1, [ — [ + 1) for right
circular polarization is the reason for the excitation of vibrational states with the
same bending and pseudorotational quantum numbers (v, = ), starting from the
vibrational ground state (v, = [ = 0). After the end of the laser pulse, the Cd and H
nuclei circulate about the pre-aligned molecular Z-axis with a period of about 55 fs.
But the nuclear pseudorotation does not persist for a long time, due to dephas-
ing of vibrational wavepacket in the superposition of anharmonic vibrational states.
This anharmonicity leads to the bending and pseudorotational revival pattern. The
corresponding revival time for "*CdH, is estimated as T}.., = 14.2 ps, whereas the
rotational revival time is 7., x = 5.6 ps, i.e. the nuclear pseudorotation of aligned

H4CdH, will recur at 27}, & 5T, x & 28 ps after the end of the laser pulse.

. Finally, we also demonstrated the nonadiabatic field-free orientation of polar AlCI

and BeO molecules by means of a HCP-like linearly polarized laser pulse (Sections
2.6 and 3.3.1). In this work, we have considered the requirement that the integral of
the electric field over time is zero, cf. Eq. (2.439) and Refs. [141,242,243]. Thus, the

laser pulse consists of two parts, i.e. a strong short HCP-like laser pulse following
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by a weak long switch-off laser pulse. For BeO at the rotational temperature of 1 K,
the HCP-like laser pulse was optimized in order to yield the maximum (negative)
orientation of BeO along the polarization axis. The pulse duration of the first part
of the laser pulse is 1.39 ps, i.e. much shorter than the rotational revival time of
BeO, Tyen,x = 10.30ps. Hence, the rotational wavepacket evolves nonadiabatically
after the end of the laser pulse under field-free conditions and the rotational re-
vival pattern is observed. The thermally averaged expectation value of cos # reaches
—0.850 at intervals of the rotational revival time, implying strong orientation of BeO
in the negative z-direction. At these times, the normalized angular distribution is
strongly located between 160° and 180°. The corresponding orientation duration is
estimated as 0.52ps. For AICI, we use the simple scalings for laser parameters to
obtain equivalent quantum dynamics of the rotational wavepacket. Since the rota-
tional revival time of AICl is 7,., x = 68.4 ps, determined by the rotational constant
of the molecule [225], all times for AICI can be estimated from those for BeO by
multiplying the latter by 68.4/10.30 = 6.64. For example, the pulse duration of the
first part of the laser pulse and orientation duration are 9.22ps and 3.4 ps, respec-

tively, but the rotational temperature is reduced by the same factor, i.e. 0.151 K for
AICL.

The basic concept of the laser control of electronic and nuclear ring currents, intro-

duced in this work, opens different interesting research projects for future work:

1. In various quantum chemistry packages, one can compute electronic probability
densities of molecular electronic states, but to the best of my knowledge, the
computation of stationary electronic current densities of degenerate states, asso-
ciated electric ring currents, and induced magnetic fields has not been implemented
yet. Omne could develop corresponding routines in quantum chemistry packages
to investigate electronic ring currents in different symmetric molecules, depend-
ing on the electronic state. Stationary electronic ring currents do not only oc-
cur in atoms, ions [144], and linear molecules [145, 146], but also in non-linear
molecules, including ring-shaped molecules such as benzene [297] with Dgj, symme-
try, metal-porphyrins [147-150,292,298,299], metal-porphyrazines [292, 298], metal-
tetrabenzoporphyrins [298,299], and metal-phthalocyanines [298,300] with Dy, sym-
metry as well as corresponding sandwiches with Cy, [301] or Dy, [302] symmetries.
Furthermore, electronic ring currents also exist in non-ring-shaped molecules such
as planar XY, (Dyp), tetrahedral XY, (7y), and octahedral XYg (Op) molecules
because of their existence of twofold and threefold (only for 7, and O},) degenerate
states. Investigation of electronic ring currents in n-fold (n = 2 — 5) degenerate

states of high-symmetric fullerene Cgo (I5,) [303] would be very interesting.
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2. Since Mg-porphyrin (Dyy,) (for direct synthesis of Mg-porhpyrin, see [304]) is the

core molecule of the important biomolecule chlorophyll [305,306] with lowest molec-
ular symmetry C', one could compute non-stationary electronic ring currents in the
superposition of near-degenerate states of chlorophyll, with comparison of corre-
sponding ring currents in Mg-porphyrin to investigate the influence of the symmetry-

breaking of the molecule on electronic ring currents.

. In most cases, after the FC-type electronic transition by a circularly polarized laser

pulse, the molecule vibrates in the degenerate state because of different equilibrium
structures of the electronic ground and excited states. The corresponding electronic
ring current is no longer stationary and vibrates with the vibrational period of the
molecule, i.e. the circulating electron travels with the vibrating nuclei. For linear
molecules, the z-component of the electronic current density j.(r,¢) is no longer
zero, i.e. the approach for calculating electronic and nuclear fluxes (currents) [259]
could be extended to electronic degenerate states. The corresponding electric ring
currents and induced magnetic fields are also time-dependent. For longer times,
there is vibrational revival pattern, i.e. the electronic ring current follows this revival
pattern with the same vibrational revival time. Research in this field, i.e. electronic
ring currents in vibrating molecules, would also be very interesting, in particular for

probing electron dynamics in excited degenerate states.

. Long-lived electronic ring currents in electronic degenerate ground states of atoms

and molecules could be achieved by different techniques. For example, the LiF
molecule has a dissociative excited state |A'II,) that can be excited by an opti-
mized right circularly polarized laser pulse from the ground state | X '37). After the
complete electronic transition, the LiF molecule dissociates into atomic fragments Li
and F in corresponding | X 2S) and | X 2P,) electronic states, respectively. Regard-
less of spin effects, the ground state of the Li atom carries no electronic ring current,
but the ground state of the F atom carries a long-lived electronic ring current, dom-
inated by the 2p, atomic orbital, with an induced magnetic field of about 95.2T at
the nucleus. Another example are the electronic ground states | X ?I11) of the NO
molecule carrying opposite electronic ring currents. At the initial time, the weights
of these degenerates states are equal, i.e. the net electronic ring current is zero. By
means of a right circularly polarized pump laser pulse, the electronic and vibrational
ground state | X *II_(v = 0)) is transferred to the first excited state [12X7 (v > 0))
whereas the other state |X 211, (v = 0)) cannot be affected. Then, the molecule in
the excited state |[12X7 (2’ > 0)) vibrates and has no electronic ring current. Af-
ter a delay time, the left circularly polarized dump laser pulse with smaller laser
frequency induces the population transfer from the excited state |12X+ (v > 0))

to the electronic ground but vibrational excited state | X 2T, (v > 0)), via induced
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emission. After the dump laser pulse, the NO molecule is in a superposition of the
electronic ground and vibrational excited state |X *IT, (v > 0)) and the remaining
electronic and vibrational ground state | X ?II, (v = 0)). This superposition state
carries non-stationary but long-lived electronic ring current in the electronic ground
state of the vibrating molecule NO. This control is analogous to the selective prepa-

ration of enantiomers from a racemate by a series of circularly polarized laser pulses,

see Ref. [107].

. In this work, the non-relativistic approximation was used, i.e. some relativistic effects
of electronic ring currents were neglected. This approximation can be applied to
electronic ring currents in excited singlet states, where spin effects are neglected,
and with low effective nuclear charge Z.ss. In the relativistic regime, the current
density always exists in all spin-orbitals due to the fact that it contains not only
the orbit but also spin current densities, see the decomposition of the relativistic
current density in its orbital and spin parts in Refs. [189,307,308]. Thus, the
degenerate states with non-zero spin quantum numbers S # 0 and Mg # 0 also
carry electronic ring currents, even if the magnetic quantum number My, is zero.
Using the Dirac theory for the hydrogen atom and one-electron ions, one can show
that the expressions for the electric ring current (Eq. (3.30)) and induced magnetic
fields (Eq. (3.42)) for quantum numbers j = n — % are modified, by replacing [ by j
and m by m;, and by multiplying relativistic correction factors which are important
for large nuclear charges Z. Because m; is always non-zero, there are relativistic
electronic ring currents in all atomic spin-orbitals. For ground state degenerate
spin-orbitals 1s 141 of the H atom, the electric ring current is 1.05mA and the
associated induced magnetic field at the nucleus is 16.7 T which are about 8 and
32 times stronger than the corresponding non-relativistic results for 2py atomic
orbitals, respectively. The relativistic results can also be applied to highly charged
ions such as one-electron U?'* ions with nuclear charge Z = 92. The electric ring
current in the ground state is very strong, i.e. 12.0 A, corresponding to the mean
period of 13.4zs (zeptosecond, 1zs= 1072's). The associated induced magnetic
field at the nucleus, 36.4 M T, is comparable to the magnetic fields in neutron stars,
ca. 100 MT. Note that the Dirac theory is valid only for Z below 100 because there
are quantum electrodynamics effects for Z above 100. The results of relativistic
ring currents and associated induced magnetic fields in atomic spin-orbitals will be
published elsewhere. One still has to consider the generation of relativistic electronic
ring currents in the ground state by means of a series of linearly and circularly
polarized laser pulses, even in the relativistic regime [309], see also the work on
quantum dynamics of relativistic electrons [310]. In a similar context, the spin
asymmetry in the ionization of the H atom by means of intense circularly polarized
laser fields is already predicted in Ref. [311].
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6. For the generation of electronic ring currents by means of circularly polarized laser

pulses, we have assumed that the nuclei are fixed in space because of extremely
large differences in the masses of nuclei and electrons. However, for electronic ring
currents in 2p4 atomic orbitals of the H atom or He™ ion with light nuclear masses,
the center of mass is no longer located at the nucleus, i.e. it is located outside the
nucleus. This leads to the electronic and nuclear ring currents of the 2py atomic
orbitals about the center of mass. The electric ring currents for nuclei are estimated
as 0.132mA for H (Z = 1) and 2 - 0.527mA = 1.05mA for Het (Z = 2), see
Table 3.1. Since the corresponding mean radii of the nuclear ring currents are much
smaller than those of the electronic ring currents, i.e. about 0.0007 ay for H and
0.00009 aq for He™, the associated magnetic fields induced by nuclear ring currents
at the center of mass are on the order of about 1000 T for H and 60000 T for He™,
i.e. they clearly exceed the magnetic fields induced by the corresponding electronic

ring currents. Work on this topic is in progress and will be published elsewhere.

Nuclear pseudorotations and stationary nuclear ring currents in electronic non-
degenerate ground states appear in all vibrational degenerate states of symmetric
molecules, cf. Ref. [206]. They can be induced by means of circularly polarized laser
pulses, starting from vibrational non-degenerate ground states. The vibrational de-
generate states carrying nuclear ring currents are not necessarily bending states,
e.g. for linear triatomic molecules, but also other degenerate states, exemplarily for
antisymmetric vibrational T, modes of tetrahedral (T;) molecules XY,. The ad-
vantage of the antisymmetric stretches is the high vibrational frequency 3 = w,
compared to the bending frequency v, = w, with the same symmetry 75, see e.g.
Ref. [312]. Since the vibrational T, state is threefold degenerate, the pre-alignment
of the XY, molecule is not necessary for the estimation of electric ring currents and
magnetic fields induced by nuclear ring currents in the harmonic approximation. To
achieve the small mean ring current radius Rx of the central nucleus X with high
vibrational frequency w, and, hence, strong induced magnetic fields at the center
of the molecule, the XH; molecule in the electronic non-degenerate singlet ground
state | X 'A;) is considered where the mass My and charge Qx of the nucleus X
are large, e.g. X=U. This is in accord with the Biot-Savart law in the current loop
model, i.e. the induced magnetic field is proportional to @ xw,/Rx. Examples are
the ReH;, OsHy [313], and UH, [314,315] molecules with 7, symmetry. First ap-
proximations of the magnetic fields induced by stationary nuclear ring currents in
the first excited antisymmetric vibrational 75 states of these molecules leads to the
result of the order of about 5000 T at the center of the molecule. Work on this topic

is currently in progress.
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8. In this work, we have assumed perfect alignment/orientation of the molecule dur-
ing the electronic or vibrational excitation by means of a circularly polarized laser
pulse. In reality, as discussed in Section 3.3.1, laser induced alignment /orientation
can be rather sharp but it is never perfect, see also Figs. 3.10 and 3.11. Application
of the same circularly polarized laser pulse to the non-perfectly aligned/oriented
molecule gives rise to additional dipole allowed transitions. For example, the elec-
tronic |[XT) « |£T) and vibrational |(vs, v}, v4)) < |(vs, v}, v, £ 1)) transitions for
linear triatomic molecules become allowed because the projection of the molecular
Z-axis on the laboratory-fixed z- or y-axis is non-zero. Therefore, the electronic
and nuclear ring currents are no longer perfect, i.e. the corresponding electric ring
currents and induced magnetic fields are no longer maximal, see also the discussion
in Ref. [146]. The influence of non-perfect molecular alignment/orientation on the
generation of electronic and nuclear ring currents should also be investigated in the

future.

9. Finally, there are several suggestions for experimental detections of electronic and
nuclear ring currents with associated induced magnetic fields. For example, the
electronic ring currents and, in particular, their directions could be monitored by
HHG by means of elliptically polarized laser pulses [77], by asymmetric photoelec-
tron spectra [243,316,317], or by momentum imaging techniques, e.g. cold target
recoil ion momentum spectroscopy (COLTRIMS) [318,319]. Perhaps, the strong
magnetic fields induced by electronic or nuclear ring currents could be used for nu-
clear magnetic resonance (NMR) and electron spin resonance (ESR) spectroscopy.
Another suggested detection of the induced magnetic field is the depolarisation of
neutron spins by collisions of neutrons and atomic or molecular systems carrying ring
currents due to the interaction of neutron spins and induced magnetic fields. The
strong magnetic fields induced by nuclear ring currents in pseudorotating molecules
could be used for the detection of new interactions, i.e. nuclear spin - nuclear orbit
interaction, which would lead to additonal energy splitting, in analogy to electron

spin - electron orbit interaction which causes the well-known fine structure splitting.
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Appendix A

Integrals

A.1 Integrals involving Gaussian functions

The integral I, (Q) (Eq. (2.269)) for vy = v, =0
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— A B B dQ/
N € €
B —00
asMEtaM? _AsMPtaM? | o M
_ Vvas M ——fm—Q [ M2 Q 451\42 oz Q¢ 10’
T M€ ? Q
B —0o0
2
4sM%+aM? 4sM% —aM? 5
p) 3 7 | —1|@Q
as M AM7 AsMZ +aM
= ———¢€
™ MB

2
4sM%+aM? Q22 4sM?, a]WQQQ 4sM% —aM? 0?
461\12+ M2 4s 1\12+ M2 dQ/

o0 2
4JV[B
(&
—0o0
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2 2)2 2 2)2 2
1 (4SMB*“M ) 7(4SMB+“M ) Q2 4sM %, +ar? , 4sM%—aM?
vas M am3 4sMP +al? o TTaMg Q- 45M2 Tz @ /
= e dQ
™ B —00
2 2
_ dasM? 2 oo _ AsMptaM® .,
_ as M 431\/I%+a]b12 Q@ 4MfB Q@ d "
= —e e Q
™ MB —0o0
2 __ 4dasM? 2 oo
_ l dasM o T raa? Q / e_dey
7\ 4sM3 + aM? —o0
D) __ 4asM? 2
_ 1 4asM T it Q

Va\ 4sMZ 1 a2 €

1al 1 , 1al 1 ?
= Vo oo | P Wiz ooz @
AsMz +aM? | " AsMz + aM?

where the formula for the Gamma function I'(z) (2 > 0) [253,254]

was used, hence

/_ e Vdy = 2/0 e Vdy = /0 ﬁe Pdr = F(2> = m.  (A6)

Note that if z is a positive integer, then [253,254]

[(z) = (z—1) (A.7)

A.2 Integrals involving associated Laguerre polyno-

mials

Let us evaluate the integral

I, = /OOO (Cbﬁm(Qb))Q Q" dQy (A.8)

where

Ll (0}) (A.9)

for | = —vp, —vp +2,..., v, — 2,15 (Eq. (2.251)), i.e

Vb |l|
I, = 2bl+lgub+z / Q2Hm o —bf {Lib 0 (be)rde (A.10)
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or, using = = bQ3,

I, = b Ejjg [t [L'j'b o )]2 dz. (A11)

The important relations for the associated Laguerre polynomials L% (z) with positive
integers n and k [253,254]

ha) = (-1 ( ok ) i (A.12)
v=0 n—v )V
are the orthogonality relation [253,254]
/0 T ke LE ()L () de = (”‘;’“)' S (A.13)
and the recurrence relation [253, 254]
Ly(z) = Lp™(z) - Ly (2). (A.14)

Eq. (A.14) leads to the other recurrence relation [254]

LF Y (z Z LE(x (A.15)
since
YoLi(x) = YLyt (x) =D Lyti(x) (A.16)
v=0 v=0 v=1

_ Z L (x Z L(2)
— Z Lllerl Z Lk+1 _'_ Lk+1< )
= LF(2).

Furthermore, in Eq. (A.12) the binomial coefficient for positive integers n and k is defined

as [253,254]
n n n!
(k> ) (n—k:) = Hm—m  (0sksw (A.17)

The corresponding recurrence relation is [253]

E RN I
k+1 k k+1
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which similarly leads to the other recurrence relation [254]

“ (g B n+1
;g(k:) B (k+1) (A.19)
proved by induction, i.e.
Kol k k! (k+ 1)! k+1
]2(/{) - (k:):k!:(kH)!:(kH) (A.20)
an g B WA n+1\ [ n+1 n+1\ [ n+2
S0 -20)0) - ) 0) - 02)

We use Egs. (A.11), (A.12), (A.17), and (A.5) to obtain

- (%;l”) = 4! ot i . 1 vb;r\ll vb;r\ll
R = yrtee
Im = bz sl Z Z | vbg|l| _ vl Vs (A22)

|
(T) v1=0 v3=0 V1o

) (vb—|l|)| Ub i vb iz 1 vp+|I| vp |1

1l=—m 2 °

= b2 V1+V27 2 2
vp I\ Z Z V1!V2!

c v1=0 vo=0 ’l|+7/2
m+1
(”“2”1*”2)

for || > —(m + 1)/2. In general, it is difficult to obtain a simple analytical result for
arbitrary v, and |l|. However, the evaluation of Eq. (A.22) is useful for several integrals

I,,,, in particular for even |m| since, in this case, the exponent of x is real.

A21 m=2

For m = 2, the integral I (Eq. (A.11)) for all |{| is given by

vp—|1| vb 2] vb 1] oyt ol
I = \}ngﬂrlg Z Z V1+V21< ;_ )( 2 ) (A23)

151
. =0 19=0 IZ2)

3
F(]l\+2+u1+u2>.

For v, = |l|, we obtain

1 3
L = m”!r(uy+2) (vy = |1]). (A.24)
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Using Eq. (A.17), we have for v, = || + 2

1 1
12 = Z V1+V2 1 |l‘ +1 ’l| +1 (A25)
JYM+1UFWF0 A T B

3
F(|l|+2+V1+V2>

= Zrqre [0+ v (1 5) —20u+or (1= 5) 4 (1 + 5)]

_ m :(m +1)2 = 2(1] + 1) (!l\ + ;) + (V” + 2) (’” + 2)] d (“' * 2)

_ m I+ 208+ 1= 24 = 5l = 3.+ i + aj] + ﬂ (i + g)
_ m (u+)r(u+3)  w=l+2
where the relation I'(z 4+ 1) = 2I'(z) [253,254] was used.
A22 m=1
For m = 1, the integral I; (Eq. (A.11)) is easily carried out, i.e.
L = (::-2;::):/0 alle™ {Llilb u (@ )]2 dx (A.26)

|
|

(*3%)
(524 (3
(1)

1

for all |I|] where the orthogonality relation (Eq. (A.13)) was used.

A23 m=0
For m = 0, the integral Iy (Eq. (A.22)) for all |I| is

(vb |l\) ”b 7] vb U] 1 o+l v+ 1
IO — Z Z 1/1+V27 2 2 F(|l|++1/]_+l/2> .
<Ub+|l\)- et 2

nla\ 1)+ 1y | + vy

(A.27)

For v, = |l|, it reduces to

L = ﬁr(uué) (vs = |1]). (A.28)
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For v, = |l| 4+ 2, we have, using Eq. (A.17),

Vb

(17 + 1)!

Iy

(17| + D! L

A24 m=

For m = —1, the integral I_; (

v1=019=0

T

—1

1

1/1!V2!

|+ 1
[+

|+ 1
|+ ve

Z Z (_ vi+v2

1
)F<yl|+2+ul+u2>

(A.29)

el

1+ v2r (1 + 5 ) =20+ 0 (1 +5) + (10 +5)]

}m+1f—2wy+n(m+;)+(m+g>Qu+;ﬂr(m+;)

[ 3 1
U + 200+ 1= 20 = 34 = 1+ 1 + 200+ 5| (11 + 5)

= |I| +2).

Eq. (A.11)) for |I| # 0 is

vp—|]

! 00 2
I, =% ( 2 ) / gli-te=e {Lf'_” (3:)} dx. (A.30)
(—vbﬂl')! 0 S
2
Using Egs. (A.15), (A.13), (A.17), and (A.19), we obtain
(%JU et ’
I, il / all-tem ZO Ly (x)| da (A.31)
2 v=

)
):bz:/ |l\1—x LY )] dr

vp—|l]

e
(2

(vb2ﬂ|)
., (vb;\”)l Ub2”I (v + m —1)!
(vb+\l|)| =0
o (P
= b(|I| - 1) (w,;m)u 2:% | =1
s ()
= b(jI] —1)!
(JI] = 1)! (vb;rll)! V%:1 -1
Ll URY ”b+|l|
_ (ll'Eybzlgu( 1] )
_ = () ()
— m' (vb;m)l( ; )
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thus
I, = (1] # 0). (A.32)
A25 m=-2

For m = —2, the integral I_» (Eq. (A.22)) for |I| # 0 is

" (Ub |l\) 2l 2ol 1 vyt |i] ] 1
1727 V1+V27 2 2 F<|l|—+V1+I/2>
(5t VIZO VQZO vl \ il S\ 1]+ v 2

(A.33)

For v, = |l|, it becomes

b3/2
Lo = Gt (- S @=Ll £0). (A.34)

Using Eq. (A.17), we obtain for v, = |I| + 2

iz A4 1 I|+1 I|+1 1
I, = ‘Z 1)t 7 1+ ]+ F<|l|_+l/1-|—V2>
(J7]+ 1)t vl \ 1 4 1 | + 15 2

v1=0 1/2:0
(A.35)

- el son(ns e

= e (00200 (= 5)+ (e 5) (- 5)] e (- )

o 1 — 2 — g+ 12— S (-
= Ty 2 =2 = g (- )

b3/2
= (7] + 1)! (W—I—Z)F(m—;) (vp = |I| + 2, 1| # 0).

A26 m=-3

For m = —3, the integral I_3 (Eq. (A.11)) for |I| # 0,1 is

2

Sl !
I, = ) /0 22 [L%l( o) de. (A.36)
The simple result
b? 1
R UELEY (A.37)

I =
’ [ =1
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can be proven by induction. For v, = ||, we have, using Eqs. (A.12), (A.5), and (A.7),

b oo 2
I3 = W/O gll=2¢—2 {Lg‘(x)] dx (A.38)

_ l72/°°x|1|—2€—mdx
i e

b2
= —TI(l -1
TRAREY
1
DR
vl +1

= ot W#on.

For v, = v, +2 = |l| +2n + 2 (n is a positive integer), we obtain, using Eq. (A.15),

2

+1 oo [
I3 = b <U,i|l ) / gll=2ew L‘il,)_m (x)| dx (A.39)

( b+ 1)! 0 | e+l
(vgfll\ n 1)! . _“2;'”“ ?

= v U,JQFT/ l=2em | N LIFN@)| de
( b2 + 1)' 0 v=0
(v{,fll\ n 1)! N 'vg;mH 2

= v v’<2Hl\ / e | 3T Y Ly )| de
( b2 + 1)' 0 v=0 /=0
(v{,*ll\ I 1>! - _v;’;m—l—l o — il ’

= v’ill\ / =2 Z < b +2 V) L!f"z(a:) dx
( b2 + 1)' 0 v=0 2

since

NN Lhz) = > (L’g(x) + LE(x) + ..+ Lﬁ(x)) (A.40)
v=02v'=0 v=0

= (n+1)L§(x) +nLli(z)+ ...+ LE(z)

n

= Z(n +1— V)Ll;(x)

v=0
Using Egs. (A.13), (A.36), (A.37), (A.39), and (n+ 1)?> = n* + (2n + 1), we have

!
Ubfll‘

vl | t—+1 2
g2 ( 5 T 1)' 3 v, — || 2, [ l-20]2
1—3 = m Z%) 9 +2—v /0 X (& [LV (.I')} dx (A41)
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v, — |l %‘ll 00
- e 3 (”2;”' e [T ]

ol —|I| il
— 2 E:H_—::g 22: (b;'” +1— V>2/OOO x|l|*2efx [LL”*Q(x)]2 dx

] 2 2
+ 1)1 oo
— bQM =20 L ()] de+ [ 22 (L2 (2)| da
el o i v 1|
(4" + 1) | o 2 0 R

[

+ > (v, — || +3—2v) /OOO gll=2¢—2 {Llf'ﬂ(ac)r dx
v=0

) (vb 7] + 1) (Ufﬂ;\”), Ull, +1 (@ _ 1)!

P ET D | )T ()

“b
2 I| —2)!
£3 (-l 43— L=
v=0 2
With Egs. (A.17) and (A.19), it leads to
v =l 2 2
L=+ 10" vy +1 b
[—3 = /2 — D + / 7 (A42)
Ty 1 ()
sl )y
+b° (v] _‘l|+3)(b +1)! (v +[I] —2)!
(Ub—Hl' 1)' v=0 V!

(B3 1) E - 2)
I S D)
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e R L A 2
= U] 171 1712 — ’+\l| v+l
Sl [l =1 (255 +1)

il 1!%T v -
(1] — HUZJFB)MX:O( + [{] 2)

vy =l

el il
P ) i (”'”‘2)

(Sl 1) =
S 102 0 41 2

- 7 171 + ! /
=1 S (T )
+1)!

=l -2
(1] - 2)! (v} HS)E“) > ( Y )

l\3

,,+u|

+ 1) e \ I —2

U

W —|i] 2
TR Gl L ( )
26 (1] 1)'(112;“@1)!”:2”:-1 -1

B RS 2
- vb+\l| +1 |l| 12 —1 t '+u| (vb+|l| )

{, \l\ o+l
FR(1] — 2)! (o] — 1] + 3) E +1)! (2_1)

v,, Ill vb+|u
—20%(|I| — 1)! )

b+|l|

G142 b+1 )

T 1T ( s 1)
2 / Ub m va |l| Ub |l| 1
B (v, — || + 3) +1 % (255 +1)

-1 udl (vb;m 1) o vb;m (vmu 1)

Finally, with v, = |I| + 2n, we obtain

n+1l Vl|+2n+1 b
I_ — A.43
s [+n+1]l JI2-1 (1] +n)(Ji| +n+1) (A.43)
b* (2n + 3) n+1 o2 n(n+1)
=1 (l[+n)(ll+n+1) [ (I|+n) (] +n+1)
b? 1

P =D (U )+ 1) (1] +n)(J] +2n+1)(n + 1)

P = 1) + 11 + D) (n+1)2n+3) —2(Jl* = Dn (n+ 1)}
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b2 . 2
— 0 =) (1 + ) (i +n + 1) (2 + ) (n -+ 1] + 20% + 3n + 1)

12+ 3)112n 4 317 + 2||n® + 5|l|n + 2|I| 4 2n* + Qn]
b? 1

=D (I + )l +n+1) (2 +n)(n + 1] +20% + 3n + 1)

+([1 + n) (|12 + 2[tn + 3] + 2n + 2)]
b 1|2 + 3|i|n + 4)l] + 2n® + 5n + 3

11(J7)> = 1) [|+n+1
VPl +2n+3
IR

b? v+ 1
= E—1 (1] #0,1).

A.3 Integrals involving confluent hypergeometric

functions

We solve the integral

= o [T (@h@0) U (5.0.002) @ity (A44

where U(a, 3, ) is the confluent hypergeometrlc function of the second kind [253, 254].
With Eq. (2.251), we have

o [ e [ oo v (h.c0f) o (v
(cf. Eq. (A.10)), using = = be,
L=tz | Il ? L e
H\[ WM) @] U(3050)dr (aa0)
(cf. Eq. (A.30)), with Egs. (A.12) and (A.17),
e E R e (B V() we
v vb+\z| ‘ vilva! \ 1] + 1, 1] + v ‘

v1=0 =0
1 c
[l—14vi+ve —2 - = d
/0 v ‘ [(2’O’bx) v

(cf. Eq. (A.22)), and using u = cx /b,

’Ub [7] ’Ub |7]
plil—1/2 (vb lll) 1 vyt vyt Pt
_ V+V 2 2
i = W gy 2, 20 S

! \ 1|+ 1, 1| + 1

/ M=t g =gu <1,O,u> du.
0 2
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This integral is already known [254], i.e. for § > 0 and s > 0

0 I(p)r 1
/0 e U, 0,u) du r<(§)+(§j— 1)) 2118, 8+ La+ S+ 11— s)(A49)
where o Fy (o, 3;7; 2) is the hypergeometric function [253,254]
F(v) > I(a+ k(B + k)"
B 1“7) > a+k DB+ k) 2"
=t T'(a)0(3) X:: T(y+k) k!

Thus, we obtain for |I| # 0 and b,c > 0

vl vt
pll—1/2 (vb |z|) il 1 v+l vp+|i] pritve
— l/ +v 2 2
Iy = |l A—1/2 (vb+|l|)‘ VIZO VQZO e | s (A.51)

! \ 1+ 1 1|+ v

T+ v+ )0l + 11 + 12+ 1)
F(|l|+l/1+l/2+%)

3 b
F1<|l|+V1+V2a|l|+V1+V2+1§|l|+V1+V2+2§1—C)-

For the speical case v, = |l|, Eq. (A.51) simplifies to

I (| Sy (MO AT A52
vo= C|”_1/2F(\l|+§)2 1<’|7H+ 7H+§a —C>- (A.52)
2
A.3.1 Vp = |l’ =1
For v, = || = 1, Eq. (A.52) becomes
4 /b 5 b
I :—fF127'1—7 A.
U 3\/— 2 1( ’ 727 C> ( 53)
where T'(2) = 2 /7. Using the linear transformation formula for the hypergeometric
function [253,254]
Fia557i2) = o —aFi (ay = B ) (A.54)
21\, D35 2 - (1_2)(12 1{a,Y ’7’2—1 .
we have
4 c 15 c
Iy = ——=\/=2F1 (1, =551 —+). A.
v 3\/E\/;2 1( 1272 b) (4.55)
With the Gaussian recursion relation for the hypergeometric function [253,254]
T =1=(2y—a—=pB—1)z] 2Fi(a, B;7; 2) (A.56)

+(y = a)(y = B)z2Fi(a, B5y + 1;2) +y(y = 1)(z — 1) 2 Fi(a, B37 — 1;2) = 0,
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or equivalently

oFi(a, 87+ 1;2) = _7[7_1_(27_04—5—1)2]

21 (v, 3575 2) (A.57)

(o - )2
TG IC) S
(=) — gz 2T T )

Eq. (A.55) can be rewritten as
1 13 ¢ 11 ¢

I = \/2%\/2(1_12){2F1<1’2;2’1_b)_2F1(1’2;2;1_b>} (A.58)

Again with Eq. (A.54) and o Fi(«, 8;7;2) = 2F1(5, a;; 2), it yields

2 1 113 b c 11, ¢
Iy = ———— R (=55 1—=) = /2R (1,5 51-2)|. (A
v N [2 1(2’2’2’ c> \[92 1( '27 2 b)] (A.59)

Finally, with [253,254]

113 ,\  arcsinz
2F1 (2) 5; 27Z ) - P (A60)
1
2 Fi(a, ;85 2) = =20 (z <1), (A.61)

the result for v, = |I| = 1 in the conventional form is

2 1 arcsin,/1 — 2
- ( Vi b). (A.62)

v\ Ve

Note that in the limit b/c — 1, the integral [, is finite, i.e. using L’'Hospital’s rule and
z=1-"0/c,

2 arcsin —/z(1—2
lim [y = —=lim v ( ) (A.63)
%—)1 \/E z—0 23/2
d . d
2 L arcsiny/z — = 4/z(1 — 2
- < _lim dz \/_ dz ( )
ﬁ z—0 % 23/2
1 1 1-2z
4 li 1-z 2V/z 24/ 2(1—2)
= im
3/ =0 NE
4 I 1
= im
3V =041 — 2
B 4
N

which can also be obtained easily using Eqs. (A.50) and (A.53). The corresponding

asymptotic limit for b/c — oo, i.e. z=1—b/c — —o0, is

1 1
lim I, = I
DoV T B et VT2

= 0. (A.64)
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A3.2 uy=|l|=2

For v, = || = 2 we obtain from Eq. (A.52)

16 b2 7.b
Iy = ——=—52F112,3;,-;1—- A.65
where I'(2) = 2T(2) = 32 /m = 22 /7. Using the other Gaussian recursion relation for

the hypergeometric function [254]

oFila+ 1,8+ Ly +152) = gz[zFl(Oé+1>ﬁ;7;Z)—25(%5;%2)] (A.66)

yields
4 21 5 b 5 b
Iy = Fi(2,2:=1—~-—oF(1,2:=:1—-]]. A.67
U 3ﬁ03/21—2[2 1<aa27 C) 21<7a27 C)] ( )
Using Eq. (A.54) twice, we get
4 1 115 b\ b2 5 b
Iy = ——— | l=,==1—-) ——=F 1,2, =:1—~ A.
v 3\/7?1—gl2 1(2’2’2’ c) 32 2 1(’ DX cﬂ (4.68)
and using Eq. (A.57),
1 1 2b 113 b b 111 b
Iy = —— |[1—— | =, =;=:1—~ -9 F] 1—- A.
v W(l_b)2[< c>21<2’272’ c>+c2 <222 c) (A.69)

4 13/? b 5 b

Finally, using Eqgs. (A.60), (A.61), (A.53), and (A.62), the result for v, = |I| = 2 in the

conventional form is

v - e (9=l (2]

In the limit b/c — 1, we have, using L’Hospital’s rule twice and z = 1 — b/,

1 (42 — 3)arcsing/z + (3 — 22)4/2(1 — 2)

?Lnl v v = 2572 (A.71)
I T 4 (4z — 3)arcsin\/_+ 4 (3 92 /5T =3
VT 4 25/2
I B s - 2ol 2) ¢ 2
5./ 2—0 7
o i darcsingz - iz\/m e

0 3/2
5/ == 42
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2 12z + 4z—2 + 1-22

. 4 i \/z(l—z) \/z(l—z) \/z(l—z) \/z(l—z)
= 1m

154/ =0 vz

4 i 4

= 1m

15/7 =0 /1 — 2
16
157

which is in accord with the result for b/c = 1 using Eqs. (A.50) and (A.65). The asymp-

totic limit is

4 4

lim Iy = li = 0. A.T2

e TV Sy (A.72)
A.3.3 Vy = |l| =3
The integral for v, = [[| = 3 is (Eq. (A.52))

32 b/ 9 b
v = 220 R (3,421 A.
U N ke <3, T c) (A.73)

where ['(3) = T(3) = § 2 /7 = 12 /7. With the same procedure as for v, = |I| = 2,

we have, using Eq. (A.66),

16 b2 1 7 b 7 b
Iy = F =l —=] —9F1 (2,3, =;1— - A.74
U 15\/7—1_05/21_% [2 1<373a27 C> 2 l( 73727 C)]? ( 7)

using Eq. (A.54) twice,

6 1 117 b\ b2 7 b
Iy = ———— | F (2,251 =2 ) = =0 (2,351 — - A5
U 15ﬁ1_g[2 1(272a27 C> C5/22 1(7 a27 C)]? ( )

and using Eq. (A.57) twice,
Iy = \/1%(1_192 [(1 - 266) 2 F (;, ;; 2; 1— i) + izﬂ <;, ;; ;; 1— i) (A.76)
et
gl A

b 2% 111 b\ 641572 b\? 7 b
12 LR (=2 =) =22 (1=2) LR (23212,
Jrc( c>2 1(2’2’2’ c) 4505/2< c) 2 1(’ "9’ c>]

Finally, using Egs. (A.60), (A.61), (A.65), and (A.70), the result for v, = |I| = 3 is

3 1 4b 8%\ arcsiny/1 —? 06 862\ [b
Iy = S T i A
)3 /1 -0 c

c c?

C
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The limit at b/c = 1, using L’Hospital’s rule threefold and z =1 —b/¢, is

3 822 — 12z + 5)arcsiny/z + (L2 — 822 —5) /2(1 — 2
lim Iy = lim ( ) (525 ) V=0 -2) (A.78)
E—>1 4ﬁ z—0 27/2
3 y 4 (827 — 12z + 5)arcsiny/z + £ (2—362 — 82— 5) 2(1—2)
N zli% % 27/2
72 — 62z 10
3 (162 — 12)arcsiny/z + (% - ?2) z(1—2)+ 3 i/6(1_+
BRIV 25/
16 d §z376z2+1—0z
3 ) 4 (162 — 12)arcsiny/z + £ (* - gz) z(1—2)+ d—ﬁ
14T 00 L 25/2
gzz_gz
3 16 arcsiny/z — 2(1—2)
BN 23/2
32,2 32,
3 ) 4 16arcsing/z — £ 10, /2(1 — 2) + £ = z(1—3z)
RSV i 30
o 5% L 5%
+ +
_ 2 lim \/z \/zl z) \/z(l—z) \/z(l—z)
354/ z—0 Vz
2 I 16
= i
35/ =0 4/1 — 2
32

again in accord with the result obtained by Eqs. (A.50) and (A.73). The asymptotic limit
1s
16

2
im Iy = ——= li - 0. AT9
el T = N (A.79)

A.3.4 Ub=3,‘l| =1

For v, = 3, |l| = 1, the simplest case of v, = |I|+2, the evaluation of the integral /;; (A.51)
is, at first glance, rather difficult but using the previous results for v, = |I| = 1,2,3, it

can be easily simplified as follows

1 vpt1 vptl pritre
]U = Z Z l/1+l/2 2 2 e (A80)

u1 =0 1v9=0 Vl!VQ! V1+1 1/2—|—1

F(I/l + vy + 1)F(V1 + vy + 2)
F (1/1 —+ Vo —+ g)

5 b
oI <V1+1/2+1,V1+V2+2;V1+V2+2§1—C)
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8 b 5 b 32 b¥/? 7 b
= m\&ﬂ(l’zvg’l‘g‘mcwﬂ (2’3’2’1‘(;)
32 b2 9 b
LR (34512,
NNk 1<3’ Pl c>

Using Egs. (A.53), (A.62), (A.65), (A.70), (A.73), and (A.77), we have

[U = 2[U(Ub_m_1) QIU('UI,:’l|:2)+IU(’Ub:W:3) (A81)
1 arcsin ,/1—% \/3
= ﬁl_g Ve
- 4b arcsin,/1 — % . 2h \/E
) fi—r U )Ve

3 1 . arcsiny/1 — 2 Ly 1ob 8v2\ b
4T (1 b>3 02 1—2° 3c 3c2) Ve
1 1 A 87[; 47(;2 arcsiny/1 — g N 4+7 47(;2 b
B ﬁ(1_9)3 c A /10 c
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ﬁ( o 9)3 c? _b c c? c

0

1 1 3 3b 602\ arcsiny/1—2 /3 5 22\ [b
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thus

1 1 b, 2b?\ arcsiny/1 — 2 21 262\ [b
Iy = ——— |[=-72 ¢ D222 (A2
v ﬁ(lb)?’[(él c 02> 1 +< 4+2c 02>\/;] ( )
Finally, the corresponding limit at b/c = 1, using Eqs. (A.81), (A.63), (A.71), and (A.78),

1S

8 32 32

lim Iy = - A.83
R W EV T (A.83)
1R
1057

Since the asymptotic limits (b/c — oo) for v, = |I| = 1,2, 3 are zero (Eqgs. (A.64), (A.72),
and (A.79)), the corresponding asymptotic limit for v, = 3,|l| = 1 is also zero, i.e.

lim Iy = 0. (A.84)

2—00
c
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