
II Besprechung der PAC-Messungen

II.1 Auswertung der R(t)-Spektren

Zunächst werden die aufgenommenen R(t)-Spektren, zusammen mit Präparation und Separation der Sondenfraktionen vorgestellt. Die Fraktionen werden mit Abkürzungen versehen. Die Zuordnung realer Adsorptionsplätze erfolgt anschließend.

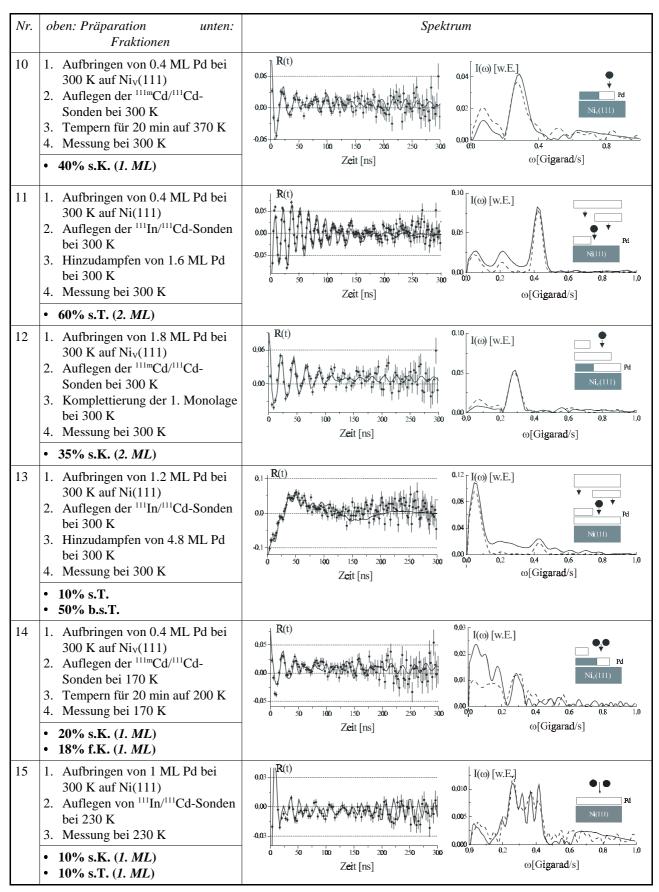


Tabelle 4: Präparation des Kristalls und R(t)-Spektren mit Separation in die Fraktionen für Cd in Pd auf Ni(001) und Ni(111)

Fazit: Es konnten die Fraktionen **f.K., s.K., s.E., s.T. und b.s.T** in verschiedenen Lagen des *Pd* gefunden werden. Die Zuordnung der Fraktionen zu Sonden-Adsorptionsplätzen erfolgt im nächsten Kapitel.

II.2 Identifizierung der Adsorptionsplätze der Sonden auf Pd/Ni(111)

2.1 Vorgehensweise

PAC-Messungen an ^{111m}Cd/¹¹¹Cd-Sonden auf ultradünnen *Pd*-Schichten auf *Ni(001)* wurden bereits von H. Granzer [Gra96] und K. Potzger [Pot98] durchgeführt. Im Rahmen dieser Arbeit entstanden Messungen am ^{111m}Cd/¹¹¹Cd und am ¹¹¹In/¹¹¹Cd auf ultradünnen *Pd*-Schichten auf *Ni_V*(111) und *Ni(111)*. *Pd* wächst sowohl auf *Ni(001)*, als auch auf *Ni(111)* in quasi (111)-Orientierung. Die Messungen des *EFG* auf *Pd*(111)-Einkristallen von E. Hunger [Hun89] sind daher eine gute Vergleichsgrundlage zur Bestimmung der Adsorptionsplätze. Im Folgenden wird die Zuordnung der separierten Fraktionen aus Tabelle 4 zu den möglichen Adsorptionsplätzen (Zeichnung 9, Seite 10) durch Vergleich mit bisherigen Messungen besprochen. Hierbei wird analog zum undekorierten *Ni* (ab Seite 33) vorgegangen.

Aufgrund des inkommensurablen Wachstums von Pd auf Ni ist die Zuordnung der Koordinationszahlen nicht unproblematisch. Sie wird hier vorweggenommen, und ab Seite 66 begründet.

2.2 Die Fraktion b.s.T. ...

...aus Messung 13 konnte dem Gitterplatz mit 12 nächste Nachbarn zugeordnet werden. Die Cd-Sonden ließen sich in der 2. Pd-Monolage von der Pd/Ni-Grenzfläche aus gezählt einschließen und mit 4 ML Pd bedecken. Somit befinden sie sich auf einem fcc-Gitterplatz und der EFG am Kernort verschwindet aufgrund der kubischen Symmetrie. Eine nähere Diskussion zu diesem Fall findet man ab Seite 64.

Lokale Umgebung	Wirt	$ V_{zz} [10^{17} V/cm^2]$	η	α, β, γ[•]	<i>T_A</i> [<i>K</i>]	T _M [K]	$ B_{hf} [T]$	Ref.
12 NN, O _h	3MLPd/ Ni(111)	-	-	-	300	300	2.7 (2)	Nr. 13

2.3 Die Fraktion s.T. ...

...konnte dem substitutionellen Terrassenplatz zugeordnet werden. Die Messungen Nr. 6 und Nr. 7 wurden bereits 1998 von K. Potzger [Pot98] durchgeführt.

Lokale Umgebung	Wirt	$ V_{zz} [10^{17} V/cm^2]$	η	α, β, γ[•]	$T_A[K]$	T _M [K]	B _{hf} [T]	Ref.
9 NN, C _{3v}	Pd(111)	10.2 (2)	0.00 (5)	0, 0, 0	>370	300	-	Hun89
10 NN, C _{2v}	1MLPd/ Ni(001)	11.2 (2) 11.4 (2)	0.00 (5) 0.00 (5)	0, 0, 0 (8) 0, 0, 0	300 373	300 300	4.1 (3) 3.9 (2)	Nr.6 Gra96
9 NN, C _{3v}	1ML Pd/ Ni(111)	11.3 (2) 11.4 (4)	0.00 (5) 0.00 (5)	0, 0, 0 (8) 0, 0, 0 (8)	320 230	300 230	4.5 (3) 4.5 (5)	Nr. 8 Nr. 15
9 NN, C _{3v}	2ML Pd/ Ni(001)	10.6 (2)	0.00 (5)	0, 0, 0 (8)	300	300	1.2 (2)	Nr. 7
9 NN, C _{3v}	2ML Pd/ Ni(111)	11.2 (3)	0.00 (5)	0, 0, 0 (8)	300	300	1.0 (4)	Nr. 11

2.4 Die Fraktion s.E. ...

...wurde von E. Hunger [Hun89] nicht erwähnt. Sie wird hier als substitutioneller Eckenplatz mit 8 nächsten Nachbarn interpretiert. Grund dafür sind der $/V_{zz}$ -Wert und der Asymmetrieparameter η . Beide Werte passen in sie Gesamtsystematik des EFG, wenn man von einem substitutionellen Eckenplatz ausgeht. Eine weitere Diskussion des EFG findet man auf Seite 66.

Lokale Umgebung	Wirt	$ V_{zz} [10^{17} \ V/cm^2]$	η	α, β, γ [•]	<i>T_A</i> [<i>K</i>]	$T_M[K]$	$ B_{hf} [T]$	Ref.
8 NN, C ₁	1MLPd/ Ni _v (111)	9.4 (3)	0.6 (1)	+/-10 (10), 10 (5), 0	250	200	2.2 (2)	Nr. 9

2.5 Die Sondenfraktion s.K. ...

...konnte dem substitutionellen Kantenplatz zugeordnet werden. Zwischen fcc- und hcp-Platz konnte nicht unterschieden werden. Stellvertretend ist der fcc-Platz skizziert.

Lokale Umgebung	Wirt	$ V_{zz} $ $[10^{17}$ $V/cm^2]$	η	α, β, γ[•]	<i>T_A</i> [<i>K</i>]	T _M [K]	B _{hf} [T]	Ref.
7 NN, C _{1s}	Pd(111)	8.0 (8)	0.95 (5)	0,20(10),0	250-400	230	-	Hun89
7 NN, C _{1s}	1MLPd /Ni _v (111) " /Ni(111)	8.5 (2) 8.4 (3) 8.6 (3) 8.5 (4)	0.85 (8) 0.88 (8) 0.9 (1) 0.9 (1)	+/-10 (10), 10 (5), 0 +/-20 (20), 20 (8), 0 +/- 20 (20), 20 (10), 0 -, 20 (15), -	250 370 200 230	200 300 170 230	1.6 (2) 1.7 (2) 1.5 (3) 1.7 (3)	Nr. 9 Nr. 10 Nr. 14 Nr. 15
7 NN, C _{1s}	2ML Pd /Ni(111) 2ML Pd /Ni _V (111)	8.3 (3) 8.4 (2)	0.85 (8)	-, 20 (10), 0 -, 20 (10), 0	320 300	300 300	0.9 (2)	Nr. 8 Nr. 12

2.6 Der freie Eckenplatz ...

...mit 6 nächsten Nachbarn wurde nicht beobachtet.

2.7 Die Fraktion f.K. ...

...konnte dem freien Kantenplatz zugeordnet werden.

Lokale Umgebung	Wirt	$ V_{zz} [10^{17} \ V/cm^2]$	η	α, β, γ[•]	<i>T_A</i> [<i>K</i>]	T _M [K]	$ B_{hf} [T]$	Ref.
5 NN, C _{1s}	Pd(111)	7.1 (4)	0.25(5)	+/-5 (5), -55 (10), 90	80-300	80	-	Hun89
5 NN, C _{1s}	1ML Pd/ Ni _v (111)	7.4 (3)	0.26 (8)	+/-20 (20), -55 (18), 90	200	170	3.6 (2)	Nr. 14

2.8 Die Richtung des magnetischen Hyperfeinfelds

Auf substitutionellen Terrassenplätzen liegt die Richtung von B_{hf} senkrecht zum EFG und damit in der Ebene. Die Richtung des MHF für substitutionelle Kantenplätze war nicht zu bestimmen.