
Chapter 3

Prioritization of gene regulatory

interactions

3.1 Background

We extend our module analysis in the previous chapter to identification of refined reg-

ulatory interactions in modules. While computational methods have been developed to

derive numerous modules from heterogeneous genome-wide data sources (Bar-Joseph

et al., 2003; Ihmels et al., 2002; Lemmens et al., 2006; Segal et al., 2003; Tanay et al.,

2004; Wu et al., 2006; Xu et al., 2004; Yu and Li, 2005) as discussed in Chapter 1,

individual links between regulatory proteins and target genes still need experimental

verification. Those studies mainly focused on identification of modules as indepen-

dent or inter-connected functional units in regulatory networks (Chapter 1). However,

experimentalists face the challenge to verify predicted modules in their functional con-

texts at the level of all individual links. This is currently impossible as the number

of regulatory links in modules predicted from large-scale data analyses is in the order

of thousands. In this chapter, we aim to provide a simple way to prioritize individual

regulatory interactions in transcriptional modules as an attempt to overcome the exper-
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3.2 Overview of our approach

imental issue.

The previous chapter investigated transcriptional modules by integrating three types of

data sources: chromatin immunoprecipitation on microarray (ChIP-chip), gene expres-

sion and functional annotations. The data integration aims to compensate limitations

of a single type of data source alone. ChIP-chip data alone do not possess functional

regulatory information and gene expression data alone do not contain physical binding

information. We have achieved such compensation by identifying modules using dif-

ferent data sources in the previous chapter. Such identified modules by data integration

are likely to contain functional or regulatory (we use these two terms interchangeably)

interactions between transcription factors (TFs) and target genes. Here we further de-

velop a method to utilize those functional modules with a goal of prioritizing individual

TF-gene regulatory interactions. This chapter is based on our published work in Lee

et al. (2008).

3.2 Overview of our approach

This section provides an overview of our approach with a toy example as shown in

Figure 3.1. Our approach starts with putative transcriptional modules (PTMs) derived

from genome-wide ChIP-chip data (Step 1 in Figure 3.1). In the figure we show a toy

example of ChIP-chip binary data matrix and corresponding 4 PTMs, M1 to M4. Each

module contains a set of transcription factors (triangles) and a set of target genes (cir-

cles) connected by links between all of them. The genes in M2 and M3 are numbered

for an illustration purpose below.

In Step 2 we identify a subset of PTMs which are (1) coherent in expression profiles of

target genes and at the same time (2) enriched in functional categories. This subset of
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3.2 Overview of our approach

PTMs are “coherent modules”. That is, both gene expression and functional annota-

tion data are used to extract functional signals after binding signals are retrieved from

ChIP-chip data. In the given example in the figure, M1 and M4 are meant to be non-

coherent and hence discarded altogether. Colours of genes in both coherent modules,

M2 and M3, symbolize different functions. ‘Blue’ and ‘red’ functions are meant to

be coherent (enriched) in the respective modules. Notice that the ‘red’ function is co-

herent in both modules. The fictitious ‘M ’-shaped expression profiles are also shown

to be coherent as well in both modules. The red expression profile belongs to gene 5

which is annotated to the coherent ‘red’ function.

All links between TFs and target genes in those identified coherent modules are con-

sidered candidate functional links. The goal is then to narrow down those candidate

functional links to core functional links in Step 3. Our key strategy is to focus on the

intersections of gene sets of coherent modules for all enriched functional categories.

This is illustrated by the gene 5 in Step 2 which belong to both coherent modules. The

gene is annotated to the common coherent ‘red’ function in both modules. The union

of regulators in M2 and M3 is predicted to functionally regulate the gene in this illus-

tration. We term such genes “coherent linker genes”. Notice that gene 6 belonging to

both modules is not a coherent linker gene because its annotated ‘yellow’ function is

not coherent in the modules. This short list of TF-gene pairs is our final list of predicted

functional pairs and consequently has priority over the others in coherent modules for

further mechanistic analysis or experimental validation.

Below we detail our approach in a formal way, show how to evaluate it, and provide a

few case studies.
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3.2 Overview of our approach

Figure 3.1: Overview of our method. This figure shows our 3-step approach to prior-
itize gene regulatory links from coherent modules. See the text for details.
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3.3 Coherent modules

3.3 Coherent modules

Our prioritization is based on functional modules which are defined by coherence of

module genes in terms of their expression profiles and functional annotations as was

done in Chapter 2. This section formalizes a method to derive putative transcriptional

modules from ChIP-chip data and the way we define coherent modules, highlighting

some differences from Chapter 2.

3.3.1 Putative transcriptional modules from binding data

In the previous chapter we utilized transcriptional modules derived by Manke et al.

(2003) and here present a formal way of deriving them from a ChIP-chip data matrix

with a slightly different prescription. In contrast to Chapter 2, we have a different con-

straint on modules and attempt to resolve the issue of redundant relationships among

modules as we will explain below. We apply this method to the ChIP-chip data in rich

media of Lee et al. (2002). Although this original dataset has been supplemented by

new data with more TFs and conditions (Harbison et al., 2004), we mainly apply our

method to the older data in order to compare our results with other methods (Subsec-

tion 3.5.3) which also used the same data of Lee et al. (2002). A brief comparison with

another method using the updated binding data by Harbison et al. (2004) will be given

in Subsection 3.5.4. We now explain our 2-step program to generate a set of putative

transcriptional modules from binding data.

(1) Enumeration of large bicliques

Regulatory interactions between transcription factors (TFs) and target genes can be

represented as a bipartite graph, with edges going from a set of TFs to a set of target

genes. A biclique K is a bipartite graph such that an edge is realized from every vertex
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3.3 Coherent modules

of a TF set (F ) to every vertex of a gene set (G), i.e.,

K = (F + G,E), (3.1)

where E is a set of all possible edges from F to G. (i.e., ‖E‖ = ‖F‖ × ‖G‖). Input

to our method is a set of bicliques. Generally, a bipartite graph will contain a large

number of bicliques. Binding data typically are quite sparse, i.e., the number of edges

in a bipartite graph is much smaller than the size of the entire TF set multiplied by the

size of the entire gene set. For example, in the case of the ChIP-chip data introduced

above, a p-value threshold of 0.001 results in a total of 4611 regulatory interactions

and 584 bicliques generated by our program described below. Our program takes all

TF-gene interactions in the ChIP-chip data at a binding threshold as true positives.

Generally, a bipartite graph will contain a large number of bicliques. We have im-

plemented a simple enumeration algorithm for large bicliques with the constraint that

‖G‖ ≥ 5. This constraint is chosen to perform reasonable statistical assessment in our

subsequent analysis of coherent modules in Subsection 3.3.2.

Let the set F of all factors be ordered. In the first pass of our program, each factor is

inspected whether it is connected to 5 or more genes. These constitute the first set of

(trivial) bicliques. The idea is then to extend those bicliques to find the bicliques with

2 factors, then with 3 factors, etc. Now assume that a set of all bicliques with m factors

has been determined. The algorithm then runs iteratively through all the bicliques with

m factors and adds an additional factor from the ordered list of factors to each biclique,

if that factor targets 5 or more genes from the set of genes in the biclique in question.

Thereby we obtain a new biclique with m+1 factors. The gene set of this new biclique

is the intersection of the gene set in the old biclique and the set of target genes of the

newly introduced factor. Since this procedure observes the order of factors, bicliques

are not discovered repeatedly. However, at each step the algorithm may generate a new
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3.3 Coherent modules

biclique with an identical set of genes already contained in the old biclique, in which

case we discard the old one. Notice that this prescription may still result in bicliques

with the same set of genes after the whole iteration has finished.

(2) Putative transcriptional modules

Since our subsequent analysis will deal only with the gene sets induced by the bicliques

derived above, we first merge those redundant bicliques which contain identical sets

of genes, so as to avoid any computational overhead. The merged biclique is designed

to have those transcription factors which belong to two or more of the redundant bi-

cliques (i.e., TFs with multiplicity >= 2). This merging procedure was not made in the

previous chapter, where we observed subset relationships of TFs among modules (see

Figure 2.2) and treated those modules as independent. In this way, we generated 584

non-redundant bicliques from the ChIP-chip data by Lee et al. (2002), the maximum

number of TFs in a biclique being 7. We also call them putative transcriptional mod-

ules (PTMs), and they are the input to our subsequent analysis of coherent modules

(see Step 1 in Figure 3.1).

3.3.2 Defining coherent modules

Having a set of PTMs from binding data, we use gene expression and functional anno-

tations to identify a subset of functional PTMs which define coherent modules in a sim-

ilar manner to Chapter 2. It is biologically important to have independent experimental

datasets in which cellular conditions are comparable if one tries to integrate them for

analysis. Therefore, we selected gene expression data in view of the experimental con-

ditions of the ChIP-chip data we used in this study. Gene expression experiments were

extensively done in many diverse conditions on a genome-wide scale when compared

to ChIP-chip experiments. ChIP-chip assays by Lee et al. (2002) were conducted in

rich media and we focused on elutriation conditions (size-based synchronization of cell
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3.3 Coherent modules

cycle) in expression data by Spellman et al. (1998). Two other methods they used for

the synchronization of cell cycle were involved with alpha-factor pheromone treatment

and temperature-sensitive cdc15 mutation, which introduced characteristic artifacts of

mating and heat shock respectively (Spellman et al., 1998). Those artefacts are not

expected in the conditions of the ChIP-chip assays. Therefore, we used the elutriation

data as the experiment was not involved with such artifacts. The data consist of 14

time points taken every 30 minutes for 6.5 hours. As for functional annotations, we

used the MIPS categories (Mewes et al., 2004) as in Chapter 2.

Given a PTM and an expression dataset, we use a p-value of Eq. (2.2) in Chapter 2

to assess expression coherence of module genes. Here we attempt to use p-values, pe,

without bothering the problem of multiple testing because there is no good principle

of p-value correction in a biological context. And the number of random modules, K,

is 1,000 in this chapter. Functional coherence in a PTM is assessed by the pf in Eq.

(2.4) the same way as in Chapter 2.

A PTM is then called a coherent module if both p-values, pe and pf , are less than two

thresholds, τe and τf , for expression and function coherence test respectively (Step 2

in Figure 3.1), i.e.,

CM = { TM = (F,G) | pe < τe and pf < τf } . (3.2)

We now have coherent modules (CMs) which are derived by integrating three different

data sources. Note that our module analysis in the previous chapter was concerned

with SSMs (Eq. 2.3) which were not required to have functional coherence. Our

goal of prioritization in this chapter is to utilize those CMs by examining functional

relationships among CMs as presented below.
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3.4 Prioritization of gene regulatory links

3.4 Prioritization of gene regulatory links

For a given list of coherent modules (CMs) at two parameter thresholds in Eq. (3.2),

we now focus on those functional categories which are detected as coherent in mul-

tiple CMs. For a particular coherent function, we identify all CMs which share that

function. Then, we identify common target genes in those CMs which are annotated

to that function. We refer to this identification step as “functional intersection”. Those

filtered genes are called “coherent linker genes” as they link CMs. It should be noted

that we require those coherent linker genes to appear in all those CMs. In other words,

they are claimed to possess the strongest functional signal among other genes in CMs.

Regulation of coherent linker genes by associated TFs in corresponding CMs consti-

tutes our prediction of functional TF-gene pairs (Step 3 in Figure 3.1).

In contrast to earlier works on identification of functional modules themselves (or CMs

in our case), our prioritization aims to identify highly reliable TF-gene functional links

by way of functional intersection of CMs. The criterion of the most reliable functional

links is based on the following measure of prediction accuracy, called positive predic-

tive value (PPV), given a reference dataset. A PPV is defined to be the number of

true positives (i.e., predicted TF-gene individual pairs that are found in a reference set)

divided by the number of predicted TF-gene pairs. As a reference dataset, we used a

set of 3962 TF-gene pairs which are combined results of literature collection and con-

served motifs analysis. Further details on performance measures and reference data

are given in the next section.

The prediction accuracy of PPV is dependent on the two p-value threshold parameters

to define coherent modules in Eq. (3.2): one for expression coherence (τe) and the

other for function coherence (τf ). Given two threshold parameters, we perform func-

tional intersection to identify coherent linker genes to predict regulatory TF-gene pairs.
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3.5 Evaluation of the method

τf

0.001 0.005 0.01 0.05
0.001 36 38 39.9 44.8

τe 0.005 41.5 44.1 45.8 53.1
0.01 40.2 43.1 45.1 51.1
0.05 40.2 43.5 45.8 48.5

Table 3.1: Positive predictive values (PPVs) from 16 combinations of the two parame-
ters, τe and τf . The parameter combination of τe = 0.005 and τf = 0.05 corresponding
to the highest PPV is the one we used for subsequent analysis.

As an attempt to optimize our PPV measure, we varied the two parameters by taking

all combinations of four significant thresholds : 0.001, 0.005, 0.01, and 0.05. Then,

PPVs were calculated with respect to the reference dataset of 3962 TF-gene pairs. In

this work, we report all results based on τe = 0.005 and τf = 0.05, which gives the

highest PPV among the 16 combinations (Table 3.1).

With this combination of p-value thresholds, we obtained 89 coherent modules with a

total of 47 coherent functional categories (out of the total 557 modules tested). 20 out

of the 47 enriched functions are shared by at least two of 42 coherent modules with

common target genes, i.e., coherent linker genes. This functional intersection resulted

in 66 coherent linker genes and 18 associated TFs, yielding 177 TF-gene functional

pairs (Figure 3.2). Notice again that coherent modules themselves are not the focus of

our analysis.

3.5 Evaluation of the method

We evaluated our method in two ways. First, as validation of the method, we checked if

our method increases prediction accuracy in comparison to ChIP-chip data alone. Sec-

ond, we compared results of our method with those of other algorithms by calculating

performance measures. As performance measures, we calculated (1) positive predic-
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3.5 Evaluation of the method

Figure 3.2: Summary of our final predictions. This network diagram is a graphi-
cal representation of our final predicted 177 TF-gene functional pairs between 18 TFs
and 66 target genes (coherent linker genes). Dashed links show 24 literature-verified
pairs. Links with white arrow heads represent 85 pairs with conserved motifs. Green
and red links show additional information about expression correlation between TF-
encoding genes and their target genes: high positive (Pearson coefficients > 0.661)
and negative correlation (Pearson coefficients < -0.628) respectively. For example, the
predicted functional pair of Rap1 and TEF1 (on the bottom right) is confirmed with
respect to literature and conserved motifs. In addition, the pair shows high expression
correlation between them. We use this additional information for detailed case stud-
ies by considering those pairs as high confident among all our predictions (see Sec-
tion 3.5). Generated by Cytoscape (http://www.cytoscape.org/) and yED graph editor
(http://www.yWorks.com)
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tive value (PPV) and (2) sensitivity (SNST) which are defined as the number of true

positives (predicted TF-gene individual pairs that are found in a reference set) divided

by (1) the number of predicted TF-gene pairs (2) the number of all reference TF-gene

pairs. Notice that true negatives cannot be defined because there is no reference for the

absence of regulatory relationships between TFs and genes. Two reference datasets we

used for evaluation of our method are first presented below.

3.5.1 Reference datasets

(1) Literature collection

The first reference set we used is 1207 TF-gene pairs compiled from three literature-

curation sources : (1) Lee et al.’s curation of 1049 pairs excluding computational reg-

ulatory motif results (Lee et al., 2002) (2) TRANSFAC database for 342 pairs (Matys

et al., 2003) (version 10.4) (3) Siddharthan et al.’s curation of 72 pairs (Siddharthan

et al., 2005). Notice that the reference data may contain TF-gene pairs where TFs act

as mere DNA-binding factors rather than functional regulators.

(2) Conserved motifs

The laboratory of Richard Young recently advanced their ChIP-chip technology and

applied it to yeast with 203 TFs (Harbison et al., 2004) (compare with 106 TFs in Lee

et al. (2002)). Based on their binding data and sequence data from four yeast species,

they identified conserved binding motifs for 102 TFs using a variety of motif detection

algorithms (this was not done in the work of Lee et al. (2002)). It is widely believed

that conserved motifs across species indicate their functional roles (Cliften et al., 2003;

Doniger et al., 2005; Kellis et al., 2003). While the ‘phylogenetic footprinting’ ap-

proach will introduce errors, it provides a more comprehensive picture of regulatory

links than manual curation of literature. Hence, we take the dataset of conserved motifs

as a second reference set independently of the literature-based reference. We compiled
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2922 TF-gene pairs from the motif analysis results of Harbison et al. (2004) maintained

in the Saccharomyces Genome Database (SGD; ftp://ftp.yeastgenome.org/yeast/). The

list of 2922 pairs is derived from predicted binding sites which are conserved in at least

two Saccharomyces species, other than S. cerevisiae. Note that this set contains more

than twice as many predicted interactions as the literature reference set.

3.5.2 Validation

For the purpose of validation of our method, we compared the performance measures

from our predicted TF-gene pairs and the original ChIP-chip data we used at a bind-

ing p-value threshold of 0.001 (4611 TF-gene pairs between 96 TFs and 2326 genes).

We removed all uncharacterized genes from the ChIP-chip results for the purpose of

validation to avoid a possible bias of our method towards annotated genes resulting

from MIPS functional data we integrated. This leaves us with 3598 TF-gene pairs be-

tween 95 TFs and 1837 genes. As shown in Table 3.2, we obtained higher PPVs at

the expense of lower SNSTs, which is to be expected as we aimed at prioritization of

regulatory links.

In addition, we investigated whether coherent modules themselves or functional inter-

section alone could have given us better performance than our combined strategy. We

validated each of the two steps separately, (1) identification of coherent modules (CMs)

and (2) functional intersection among CMs. The two performance measures were cal-

culated and compared with our predictions from the combined strategy by taking (1)

all TF-gene pairs from CMs themselves and (2) TF-gene pairs from functional inter-

section among PTMs, respectively. First, taking all pairs in CMs without functional

intersection does not yield higher PPVs at the expense of SNSTs for both reference

sets (column ’CM’ in Table 3.2), indicating that functional intersection is an impor-

tant step. Second, we took TF-gene pairs from functional intersection of the initial
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PTMs (584 modules derived from the ChIP-chip data) without applying the expression

coherence test. This functional intersection from the initial PTMs yields higher PPV

than our predictions (18.2% vs. 13.6%) for the literature reference but lower PPV than

ours (24.5% vs. 48%) for the conserved motif reference (column ’FI TM’ in Table

3.2). This suggests that functional intersection is the key to good performance with

respect to literature which consists of experimentally verified interactions. However,

using conserved motifs as a reference, the PPV (24.5% after functional intersection)

is lower than the PPVs from either the ChIP-chip results alone (32.7%) or CMs above

(35.8%) (see Table 3.2). On the other hand, the SNSTs after this functional intersec-

tion are lower than our predictions for both reference sets (Table 3.2). Therefore, the

combination of both prescriptions is important for detecting regulatory signals from

ChIP-chip data.

3.5.3 Comparison with other methods

As a second evaluation of our performance, we compared our predicted TF-gene pairs

with those of the previous two algorithms : GRAM (Bar-Joseph et al., 2003) and MA-

Networker (Gao et al., 2004), using the results provided in their original papers. Bar-

Joseph et al. used the same ChIP-chip data along with a compiled expression dataset

(over 500 conditions) to produce clusters of genes and regulators. We took TF-gene

pairs in their final 106 clusters in rich media conditions. Gao et al. also used the same

ChIP-chip data along with a compiled expression dataset (over 700 conditions). Their

algorithm aimed to identify functional and non-functional target genes based on TF ac-

tivity profiles they inferred using a multivariate regression model. We used the results

of functional target genes and their TFs for comparison.

The GRAM algorithm predicted 1518 TF-gene pairs (in rich media condition) and the

MA-Networker 1272 pairs. 66 pairs from GRAM and 67 pairs from MA-Networker
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overlap with our 177 pairs and 39 pairs were predicted by all the three algorithms

(469 pairs overlap in GRAM and MA-Networker). We observe that our method has

higher PPV than the two methods and lower in SNSTs for both reference sets (columns

‘GRAM’ and ‘MA-Networker’ in Table 3.2). On the other hand, the two overlaps of

66 pairs and 67 pairs with the two algorithms give rise to yet higher PPVs with respect

to the literature reference : 27% and 18% respectively. For the conserved motif ref-

erence case, the overlaps yield 50% and 45% PPVs respectively, which are similar to

our performance of 48%. Of the 39 pairs predicted by all three algorithms, 10 pairs are

found in the literature reference and 16 pairs in the conserved motif reference (25%

and 41% PPVs respectively).

To illustrate the generic applicability of our approach, which does not depend on our

definition of modules, we applied the functional intersection to the 106 final modules

of the GRAM algorithm. This may be considered as analogous to our expression coher-

ent modules in the absence of incorporation of functional annotation data. Then, PPVs

were calculated and compared with those of their final modules for the two reference

sets. The functional intersection yielded 23 pairs between 13 TFs and 9 genes (i.e.,

coherent linker genes) with higher PPVs than their own modules; 43.5% and 30.4%

for the literature and conserved motif reference sets respectively (as compared with

6.3% and 24.6% in row ‘PPV’ and column ‘GRAM’ in Table 3.2). This illustrates that

our approach of functional intersection may be applied to any set of modules identified

in other works to yield more reliable regulatory links.

So far our analyses were based on the ChIP-chip data by Lee et al. (2002) to compare

with the two algorithms, GRAM and MA-Networker. In order to check our perfor-

mance using different datasets and compare with a more recent study, we applied our

method to the updated and larger ChIP-chip dataset by Harbison et al. (2004) and com-
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pared with the recent algorithm, ReMoDiscovery (Lemmens et al., 2006) which used

that dataset. Lemmens et al. (2006) developed a module discovery algorithm (similar

in spirit to the GRAM algorithm) which integrates ChIP-chip, gene expression and

(in contrast to our method, GRAM and MA-Networker) conserved motif datasets in

a concurrent way. By applying our method to the same ChIP-chip and gene expres-

sion data (Harbison et al., 2004; Spellman et al., 1998) as in their study, we predicted

108 regulatory interactions and yielded 14.8% PPV with respect to the literature ref-

erence (we did not consider the conserved motifs from Harbison et al. as a reference

as this would be circular). For a comparison, we used their “seed modules” which

contain 134 TF-gene interactions, a comparable number of predictions to ours. Their

134 predictions yielded 12.9% PPV with respect to the literature reference. Although

the prediction accuracies are similar, there is only little overlap between the predicted

sets of regulatory interactions (9 interactions in common, 3 of them are found in the

literature reference), indicating the complementarity of these two methods.

3.5.4 Difficulty of comparisons

In general, it is difficult to directly compare the performance of different algorithms

which are designed for different purposes. Our comparison of published results high-

lights the fact that different approaches have so far been used with different aims and

yield different trade-offs between specificities and sensitivities. A more comprehen-

sive evaluation study would require re-running different algorithms in different regions

of parameter space. Notice though that in this work we did not vary p-value thresh-

olds of ChIP-chip results to adjust PPV or sensitivity as was done by Bar-Joseph et al.

(2003), for instance.

Therefore, we caution the reader about the interpretation of our comparison results.

The increase of our PPV at the expense of sensitivity against GRAM and MA-Networker
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should be expected considering the fact that we integrated one additional data source

of functional annotation with the two data sources of ChIP-chip and gene expression

which the other two algorithms used for their predictions. One point to make, how-

ever, is that while we utilized functional annotation data for the purpose of prediction,

they used annotation data for validation of their prediction. Note also that because the

validation using annotation data involves over-representation or enrichment of genes

in sets of genes, it cannot serve for validation of all predicted functional target genes.

In addition, while those works utilized gene expression data to derive coherent mod-

ules from ChIP-chip binding data, their published work did not focus on individual

regulatory interactions. Their predicted interactions are simply all members of statis-

tically predicted modules themselves. In contrast, our predictions do not exclusively

aim at modules, but individual regulatory interactions, which we obtained by means

of functional intersection. By this prioritization approach we purposefully predicted

less functional associations (less sensitivity), but doubled PPV with respect to the lit-

erature reference (Table 3.2). Although this validates our approach, it may illustrate

a limitation of the literature reference which covers only a fraction of all experimen-

tally verified genes to date. Because of this limitation we also compared the different

methods with respect to a more comprehensive reference set of predicted regulatory

interactions. These predicted interactions are based on updated ChIP-chip data and

sequence conservation across other yeast species. We took them as an indication for

functional interactions. Using this reference set, we achieved 48% as compared to 25-

39% from the two other works (Table 3.2). We stress that all methods compared here

have their own specific aims and merits although they share the overall goal to derive

functional interactions from physical interactions (as provided by ChIP-chip).

50



3.6 Biological examples

3.6 Biological examples

We now continue with detailed inspections of some of our systematic results shown

in Figure 3.2. It is well known that activity profiles of TF proteins are not nec-

essarily reflected in expression profiles of the corresponding genes because of post-

transcriptional and post-translational regulations of TFs (Greenbaum et al., 2002). We

took, however, any such correlation as an additional indicator of a functional rela-

tionship among our predictions and aimed at identifying all TF-target pairs with high

correlation for detailed analysis. To this end, we calculated Pearson coefficients for our

predicted TF-gene pairs and compared them with a background distribution of Pear-

son coefficients for all pairs between ∼200 TFs of Harbison et al. (2004) and all other

genes. By taking those observed pairs whose coefficients fall within 5% of both tails

from the distribution of all the coefficients (the two thresholds being 0.661 and -0.628),

we obtained a list of 46 highly correlated pairs between 13 TFs and 27 target genes:

33 positively and 13 negatively correlated pairs (green and red links in Figure 3.2 re-

spectively). In the following we restricted ourselves to some of these more specific

TF-gene pairs.

3.6.1 Functionally interacting proteins

As an application from our functional TF-gene predictions, the 46 pairs with high

expression correlation can provide a basis for identifying functional interactions of

proteins. We hypothesize that those target genes regulated by the same TF(s) with

high expression correlation have related roles in more specific biological processes

than those encapsulated by the 3rd level MIPS category. In Figure 3.2, we observe

that some groups of genes are highly correlated with their common TFs. They in-

clude known examples such as the associations between Hir2 and the six histone genes

(Prochasson et al., 2005), and the known role of Ino4 in the regulation of FAS1 and
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FAS2 (Schweizer and Hofmann, 2004).

As another such group of genes, our method yielded a group of 5 genes, KRE6, EXG1,

SCW4, PSA1 and HXK2, which are highly correlated with their common regulator

Swi6 (Figure 3.2). All these genes share a high-level annotation of ‘C-compound and

carbohydrate metabolism’. There is no literature evidence for the transcriptional reg-

ulation by Swi6, but all genes were found to have binding sites of Swi6 conserved in

at least one other yeast species (Harbison et al., 2004). Previous experimental studies

show that 4 out of the 5 gene products, Kre6, Exg1, Scw4 and Psa1, are related to

the cell wall synthesis and that cell wall genes are controlled by cell cycle progression

where Swi6 has a regulatory role (Lesage and Bussey, 2006; Zhang et al., 1999). The

4 proteins are specifically implicated in synthesis of either glucose chains (glucans) or

mannose-bound proteins (mannoproteins) which are two main inter-connected compo-

nents of the cell wall.

The remaining protein, Hxk2 (hexokinase 2), is known to be a major upstream regula-

tor of the glucose signalling pathway, which also impedes on cell wall genes. Specifi-

cally, a glucan synthase subunit, Gsc2, is regulated by Hxk2 via Snf1 and Mig1 (Lesage

and Bussey, 2006; Rolland et al., 2002). Hence, it is possible that Hxk2 is function-

ally related to the 4 other gene products through glucose regulation and utilization for

glucan synthesis. Glucose signalling is also known to act downstream on the cell-

cycle, although the precise mechanisms are not yet fully understood (Newcomb et al.,

2003). Our result may suggest a possible feedback onto glucose regulation through the

regulatory interaction of Swi6 with HXK2.
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3.6.2 Conserved binding sites for three regulators of CIS3

We predicted two target genes CIS3 and UTH1 regulated by three TFs, Swi6, Fkh2

and Ndd1. The expression profile of CIS3 (glycoprotein-encoding gene in cell wall)

is highly correlated with all those three TFs (Pearson coefficients are 0.856, 0.801 and

0.765, respectively), which additionally supports functional regulation of the gene by

the three TFs. On the other hand, UTH1 is not well correlated with the TFs (Pearson

coefficients are between -0.1 and 0.3), hence we do not postulate a functional interac-

tion between CIS3 and UTH1, in contrast to the analysis in the previous subsection.

While conserved binding sites for all the three TFs were found upstream of UTH1,

Harbison et al. (2004) did not identify any conserved binding sites upstream of CIS3.

As we predicted that the three TFs functionally regulate CIS3, we searched for any

putative binding sites of those TFs and their conservation across species in the up-

stream region of the gene. To this end, we used the matrices for Swi6, Ndd1 and

Fkh2 provided by Harbison et al. (2004) and scanned the 1kb upstream region of CIS3

for matrix hits above the balanced thresholds introduced by Rahmann et al. (2003).

We set the GC content of the background model to 50%. All putative binding sites

detected are located within 34 base pairs (Figure 3.3). For the investigation of con-

servation of the putative TFBS region, we used the fungal sequence alignment tool in

SGD (http://yeastgenome.org/) and found a high degree of conservation for 4 ortholo-

gous upstream regions (Figure 3.3).

It is worth noting that Ndd1-Fkh2 interactions have been suggested to be important

in regulating G2/M-specific genes in cell cycle together with the MADS box protein,

Mcm1, forming a permanent protein-DNA complex (Koranda et al., 2000). In fact, the

position specific frequency matrix of Ndd1 from the study of Harbison et al. (2004)

is very similar to that of Mcm1, so we were able to detect a binding site overlapping
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Figure 3.3: Conservation of TF binding sites of predicted regulatory interactions
The figure shows alignment of 4 orthologous 1kb promoter regions for CIS3 and TF
binding sites. We show only the region (-636 to -669 upstream of the TSS) which
contains conserved binding sites for all predicted regulators (Swi6, Fkh2 and Ndd1).
We used the six-species alignment from SGD (including S. mikatae, S. paradoxus and
S. kudriavzevii), but removed from the SGD output S. castellii which is more distant,
and S. bayanus which has a small intergenic region of only 30 nucleotides. Consensus
motifs of the TFs from Harbison et al. (2004) are shown in the box using the IUPAC
code. We denote degenerate binding sites of Swi4 and Mcm1 in blue. See the text for
more details.
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with that of Mcm1 (Figure 3.3). This indicates that Ndd1 could act as a functional

co-factor, which does not necessarily bind DNA and cannot be distinguished from

Mcm1 in ChIP-chip assays and motif scans. Hence, our method using gene expression

correlations between TFs and their regulated genes is useful to detect a functional

regulator (Ndd1) rather than a DNA-binding factor (Mcm1). Similarly, Swi6 is known

to have a regulatory function forming SBF or MBF complexes with Swi4 or Mbp1

respectively (Iyer et al., 2001). We found a binding site of Swi6 overlapping with

the binding site of Swi4 which is known to be a DNA-binding factor (Figure 3.3).

As before, it may not be possible to differentiate between the binding properties of

these two factors from binding data alone. These inspections show that our method

correctly predicted TFs which have a regulatory function among the components of the

TF complexes, even though the regulatory relationship may be indirect. Furthermore,

the two complexes, Swi6-Swi4 (SBF) and Ndd1-Fkh2-Mcm1, may interact with each

other through Fkh2 on the basis of the identified binding sites. On the other hand, a

previous study on cell cycle by the Young laboratory identified CIS3 as a target of two

cell cycle activators, the SBF complex and Fkh2, but not as a target of the Ndd1-Fkh2-

Mcm1 complex (see Table 1 in Simon et al., 2001). Hence, our results suggest a new

regulatory link between the Ndd1-Fkh2-Mcm1 complex and CIS3. It might also be

the case that Fkh2 recruits either the SBF complex or the two other components of the

Ndd1-Fkh2-Mcm1 complex according to distinct cell-cycle phases. Taken together,

this detailed investigation highly supports our prediction of the functional regulatory

links between CIS3 and the three TFs.

3.7 Summary

In this chapter we proposed a simple method to obtain reliable individual TF-gene

regulatory interactions from functional modules. Starting with putative transcriptional
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modules from ChIP-chip data, we first derived modules in which target genes show

both expression and function coherence. The most reliable regulatory links between

transcription factors and target genes were then established by identifying intersec-

tion of target genes (coherent linker genes) among coherent modules for each enriched

functional category. We demonstrated that our method increased the fraction of func-

tional interactions with respect to two different reference datasets of literature and

conserved motifs, at the expense of sensitivity. Finally, we investigate our predictions

in more detail and focus on those predicted TF-gene pairs whose expression profiles

are highly correlated with each other. This further enables us to suggest functional

interaction among gene products and novel conserved binding sites for those pairs.

By the design of functional intersection, our predictions suggest multiple transcription

factors for each gene. This could be taken as a sign of combinatorial regulation where

each factor is not sufficient to regulate their common target gene. The inference of

combinatorial regulation requires further analyses, such as the vicinity of binding sites

or a comparison of expression coherence of target genes by a set of multiple factors

with that by each of the factors individually. Our predicted list of multiple transcription

factors did not result from such analyses since we did not pursue the issue explicitly.

Combinatorial regulation by multiple transcription factors will be investigated in the

next chapter.
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