
Chapter 2

Functional analysis of transcriptional

modules

2.1 Background

In order to investigate transcriptional regulation, we start with groups of genes and

their regulators in which target genes regulated by common transcription factors (TFs)

show similar properties such as mRNA expression levels and functional annotations.

Those groups are often called transcriptional modules. We are particulary interested

in global properties of transcriptional modules using three different types of genome-

wide data: TF-DNA binding (ChIP-chip), mRNA expression, and functional annota-

tion data. This chapter is based on transcriptional modules derived from ChIP-chip

data. The main objective here is to identify condition-invariant and condition-specific

modules which show functional signals, which are detected by coherence in both ex-

pression profiles and functional annotations among module genes.

We start with a comprehensive list of transcriptional modules derived from ChIP-chip

data by Lee et al. (2002). As mentioned in Introduction, ChIP-chip data provide phys-
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2.2 Transcriptional modules from binding data

ical binding information rather than functional regulatory information. To overcome

this problem of the ChIP-chip binding data, we integrate gene expression and func-

tional annotation data with the binding data. By this data integration, we identify a

subset of those modules which also show expression and functional coherence of tar-

get genes, i.e., functional signals. Keeping in mind the distinct regulatory mechanisms

in different cellular conditions we use four different expression datasets for comparison

of identified modules. Despite incompatible experimental conditions between different

types of data sources, we identify condition-invariant and condition-specific modules

which are claimed to be active in the respective conditions and show that identified

coherent functions of genes in modules are relevant to respective conditions.

2.2 Transcriptional modules from binding data

A transcriptional module (TM) is defined to be a pair consisting of a set of transcription

factors (F ) and a set of their common target genes (G). Every factor in F is assumed to

bind all genes in G (see Figure 1.1 for an example). We investigated a comprehensive

list of 724 putative TMs generated by Manke et al. (2003) from the ChIP-chip data ma-

trix of Lee et al. (2002) at a binding p-value threshold of 0.001. The experiments were

conducted in rich media with 106 TFs and only 1671 (37%) of all analyzed 4532 inter-

genic regions have one or more binding sites assigned below the binding threshold. The

number of corresponding genes for those intergenic regions is 2363 based on the result

of Lee et al., and each module contains a group of transcription factors and target genes

instead of intergenic regions bound by the transcription factors. Each intergenic region

assayed is assigned to one or two downstream neighbouring genes (considering diver-

gently transcribed genes; http://web.wi.mit.edu/young/regulatory code/). This list of

2363 genes provides the background set for subsequent statistical analysis. The name

of each module is given from the names of the TFs in each module as modules are

16



2.3 Characterization of functional modules

identified by the combinations of TFs. We removed two modules, named GAT1 and

MSN2 (i.e., corresponding to the two TFs respectively), which have only one target

gene because we need at least two target genes to calculate an expression correlation

coefficient in subsequent analysis, so the actual number of modules we investigated is

722 without the two. The maximum number of transcription factors in a module is 10

and the maximum number of target genes in a module is 273 (module ABF1).

One does not claim that each TM completely defines the transcriptional interactions

between TFs and target genes as discussed in Introduction. We normally need to filter

out false ones from given data by the help of other informations. Here we are interested

in utilizing expression data to identify functional modules as below.

2.3 Characterization of functional modules

Once a list of modules from binding data is given, we examine expression coherence of

modules to detect a functional signal. We use mRNA expression profiles for identifica-

tion of expression coherence of target genes within each module. For expression data,

we use four different datasets from four publications (Hughes et al., 2000; Ihmels et al.,

2002; Roberts et al., 2000; Spellman et al., 1998). The usage of different expression

datasets serves to detect different functional signals in different cellular conditions. We

name them after the first authors and here analyze the 722 ChIP-chip derived modules

using each of the expression datasets separately as below.

(1) Ihmels Dataset

The Ihmels dataset is composed of more than 1000 conditions compiled from 34 dif-

ferent publications (Ihmels et al., 2002). The dataset was selected to extract strong

expression signals over very diverse conditions. This dataset includes the other three
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2.3 Characterization of functional modules

Ihmels Spellman Hughes Roberts
Conds 1011 77 300 56
Genes 2333 2162 2336 2077
SSMs 20 67 33 36
EFCs 35 87 59 62

Table 2.1: Summary of module analysis results. A summary of our analysis of
functional modules is shown for the four expression datasets we analyzed. The four
columns are for the four datasets respectively and the rows are the number of condi-
tions (‘Conds’), the number of genes (‘Genes’), the number of statistically significant
modules (‘SSMs’), and the number of enriched functional categories in those SSMs
(‘EFCs’), respectively.

datasets we used (however, there were some compilation errors in the original dataset).

The data matrix consists of 6206 genes as rows and 1011 conditions as columns. 42

genes in the dataset have missing values for the maximum 86 conditions (ca. 9%)

and the matrix contains 40,048 missing values (ca. 0.6% of 6206 × 1011 = 6,274,266

data points). In order to estimate missing values, we used the impute package in R

(http://cran.r-project.org/src/contrib/Descriptions/impute.html) with default parameter

values, which use as estimates averages of non-missing expression values of k-nearest

neighbouring genes with a Euclidean metric. Considering the intersection with the

gene set from the ChIP-chip data (2363 genes; see the previous section), we finally

obtained 2333 genes and 1011 conditions for our subsequent analysis (Table 2.1).

Given a transcriptional module from the previous section and an expression dataset like

the Ihmels set, we examine expression coherence of module genes as follows. First, we

calculate Pearson correlation coefficients, r, for all pairs of expression profiles of target

genes in the module and take the average of the absolute values of the coefficients. The

reason why we take the absolute value is that we consider both positive and negative

correlations as the signals for possible co-regulation. We define this average value, ζ ,
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2.3 Characterization of functional modules

in general as follows,

ζ ≡ 1

L

L∑

k=1

|rk| , L =

(
N

2

)
, (2.1)

where L is the number of all pairs of N target genes in each module and rk is the

Pearson coefficient for a pair k. Then, we take ζ as a statistic for the significance test

of expression coherence. For background ζ values, we generated random modules of

the same size by sampling the same number of genes from the background set of 2363

genes (see the previous section). We estimated a p-value of expression coherence, pe,

for each observed module by the fraction of the number of those random ζ’s that are

equal to or greater than the observed ζ with respect to the number (K) of randomly

sampled groups, which is K = 10,000 in this study,

pe =
‖ { ζk | ζk ≥ ζ , k = 1, 2, . . . , K } ‖

K
, (2.2)

where k is an index for random modules. For the multiple testing problem, we used the

qvalue package in R (http://cran.r-project.org/src/contrib/Descriptions/qvalue.html, with

default parameter values) from the list of p-values generated. Q-values control the false

discovery rate (FDR) rather than the false positive rate (Storey and Tibshirani, 2003).

Transcriptional modules with q-values less than a threshold (τe) are considered to show

co-expression or expression coherence among target genes. Those modules are termed

SSMs (statistically significant modules), i.e.,

SSM = {TM = (F,G) : q(G, ζ) < τe} , (2.3)
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2.3 Characterization of functional modules

Figure 2.1: Expression coherence test. Distribution of 10,000 simulated ζ values
from 10,000 random modules of size 56 and the ζ value (0.218) of an example GAT3-
YAP5 module with 56 target genes using the Ihmels dataset. This module is deemed
to possess expression coherence of target genes (q-value < 0.001).

where q is the q-value and τe = 0.001 in this work. An example test is given in Figure

2.1.

By this method, we examined all the 722 ChIP-chip-derived modules with more than

one target gene. Ranking those modules by q-values yielded 20 SSMs (Tables 2.1 and

2.2). Figure 2.2 shows the 20 SSMs and relations among them in terms of TFs. They

may be seen as redundant because of subset relationships of TFs, but we consider them

as independent in this study of the current chapter. In the next chapter we will take a

different approach to address this issue.
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2.3 Characterization of functional modules

Figure 2.2: Statistically significant modules. The figure shows a graphical represen-
tation of the top 20 significant modules (SSMs) from the Ihmels dataset. Note that
there exist subset relationships among them due to all possible TF combinations. We
assumed in this work that they are all independent modules. It may also be seen as a
hierarchical structure of the modules in terms of TFs.
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2.3 Characterization of functional modules

Table 2.2: Significant modules identified. We show some of significant modules
we identified (q-value < 0.001). 1 and 0 for each expression dataset of each column
indicates that a module in a row is significant or not according to Eq. (2.3).

Significant Modules Ihmels Spellman Hughes Roberts
FHL1RAP1 1 1 1 1
GAT3RAP1 1 1 1 1
GAT3YAP5 1 1 1 1
HIR1HIR2 1 1 1 1

FKH2MBP1 0 1 0 0
FKH2MBP1SWI4 0 1 0 0

FKH2MCM1NDD1 0 1 0 0
FKH2NDD1SWI4 0 1 0 0
MBP1SWI4SWI6 0 1 0 0
CIN5NRG1YAP6 0 0 1 0

CIN5PHD1 0 0 1 0
PHD1YAP6 0 0 1 0
DIG1STE12 0 0 0 1
FKH2NDD1 0 1 0 1
MBP1SWI4 0 1 0 1
MBP1SWI6 0 1 0 1
SWI4SWI6 0 1 0 1
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2.3 Characterization of functional modules

Following the expression coherence test, functional coherence is examined for each

of expression-coherent modules (i.e., SSMs). Function coherence is meant to be the

same as enrichment of a functional category or annotation throughout our work. To

this end, we use the functional categories provided by the Munich Information Center

for Protein Sequences (MIPS, Mewes et al., 2004) and focus on those functions which

are enriched in some SSMs. We test functional enrichment in each module upto the 3rd

level of the category hierarchy (classification version 2.0; the most detailed category

is at the 6th level, e.g. ’biosynthesis of homocysteine’ in metabolism with MIPS code

01.01.06.05.01.01). More detailed annotations were pruned at the 3rd level, resulting

in about 200 categories examined in total. They contain upto ∼750 proteins with an

average of 56, excluding the category, ‘unclassified proteins’, which contains about

2000 proteins.

Given a module and a functional category, we assess enrichment of the functional

category among target genes using the standard method (Tavazoie et al., 1999). The

assessment of function coherence for each category is done by calculating a hyperge-

ometric p-value which is defined as follows,

pf = 1−
Kf−1∑

k=0

(
Mf

k

)(
N−Mf

S−k

)
(
N
S

) , (2.4)

where f is a functional category, N is the number of all genes which are annotated to

at least one functional category, Mf is the number of all genes which are annotated to

the functional category f , S is the number of all target genes in a module of interest,

and Kf is the number of target genes in the concerned module which are annotated

to the given functional category f . A functional category for each module is deemed

coherent if pf is less than a prescribed threshold, τf (0.05 in this work). Note that we
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2.3 Characterization of functional modules

may obtain multiple coherent functions in each module. We do not correct p-values

for multiple testing because for each module, pf is defined for only those categories

in which Kf is greater than 0. Also note that statistical and biological significance are

not correlated in general, hence correction of p-values may be arbitrary with respect to

functional significance.

For the top 20 SSMs identified above, we obtained a total of 35 enriched MIPS cat-

egories (Tables 2.1 and 2.3). Ribosomal protein genes were observed in 13 different

modules, in agreement with the importance of ribosome biosynthesis in a general con-

text and the involvement of Fhl1, Rap1 and Yap5 transcription factors (TFs) in those

modules which are known to be main regulators of those genes (Lee et al., 2002).

Moreover, we were interested in most frequently occurring TFs as generic TFs in the

top 20 modules assuming that they would not substantially change their target genes

in different conditions and contribute to the detection of strong signals by our analy-

sis applied to the large number of conditions altogether. We found that 10 out of the

top 20 modules have Fhl1 as a TF, which was previously observed in the ChIP-chip

experiments by Lee et al. as the main regulator of most ribosomal genes (Lee et al.,

2002). In addition, Fhl1 was classified into the condition-invariant category as well as

condition-enabled in the study of Harbison et al. (2004). Another study about ribo-

somal protein modules showed that they are highly conserved across species together

with Ifh1, Rap1 and Fhl1 binding motifs (Tanay et al., 2005). Hence, taking the previ-

ous studies as evidence, we confirm that Fhl1 is a generic TF from our analysis of the

large-scale expression data. Other frequently occurring regulators in the top modules

include Rap1, Yap5 and Gat3, among which Rap1 was found to be a condition-enabled

TF by Harbison et al. (2004). The fact that Rap1 regulates the same set of target genes

whenever it is activated in some conditions (i.e. condition-enabled) supports that Rap1

is also a generic TF in our analysis. Yap5 was found to be involved in regulation of
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2.3 Characterization of functional modules

ribosomal protein genes forming a multi-input motif together with Fhl1 and Rap1 by

Lee et al. (2002). Our result about Yap5 may signify its role as a generic TF in a large

number of conditions. This TF has been also found to be active in 4 out of 5 conditions

(2 endogenous and 3 exogenous conditions) by Luscombe et al. (2004). As for the re-

maining factor Gat3, we conclude that it is generic as well over diverse environmental

conditions along with the other factors since they occur in the same module. Luscombe

et al. (2004) found that Gat3 is active in 5 out of 5 distinct cellular conditions. We note

again that our motivation was to find global or generic modules and corresponding

TFs which function in a wide range of different conditions, which justifies our inves-

tigation of strong signals in the expression data of more than 1000 different conditions.

(2) Spellman Dataset

The Spellman dataset contains time series data about cell cycle with four different syn-

chronization methods including one from a previous study (Spellman et al., 1998). The

data matrix consists of 6178 genes and 77 conditions. We removed those 336 genes

with more than 30% missing values across all the conditions and then did the impu-

tation for the 5842 × 77 matrix using the impute package in R as above. 201 genes

out of our 2363 background genes had no entries in the matrix, giving us the 2162 ×
77 data matrix (Table 2.1). The Spellman dataset was selected because it gives exper-

imental conditions which are similar to ChIP-chip ones (rich medium) in the study by

Lee et al. (2002).

We retained only 715 out of the initial 722 modules because of missing genes in the

data matrix. We found 67 SSMs at a q-value threshold of 0.001 (Tables 2.1 and 2.2).

Those SSMs include the known cell-cycle complexes such as Swi4p-Swi6p (SBF) and

Mbp1p-Swi6p (MBF), illustrating the plausibility of our statistical analysis. We also

identified SSMs containing other cell-cycle related TFs: e.g. modules FKH2-MBP1-
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2.3 Characterization of functional modules

SWI4, FKH2-MCM1-NDD1, MCM1-STE12 and MBP1-SWI6. Also, the modules for

ribosome biosynthesis are among them.

The 67 SSMs contain a total of 87 coherent functional categories including ‘DNA syn-

thesis and replication’, ‘DNA damage response’, ‘organization of chromosome struc-

ture’, ‘DNA recombination and DNA repair’ and ‘mitotic cell cycle and cell cycle

control’ as most frequently enriched in the SSMs (Tables 2.1 and 2.3). This implies

that our identified SSMs are specific for the cell cycle dataset. The category ‘riboso-

mal proteins’ is also found, as expected from the result of the Ihmels dataset above.

We note that the number of SSMs is the largest among those from the four datasets

we investigated. We attribute this observation to the experimental conditions similar to

those of the ChIP-chip data we used. This motivates us to further develop this analysis

in a biological context in the next chapter.

(3) Hughes Dataset

The Hughes dataset is a compendium of 300 experiments including various 276 dele-

tion mutants (Hughes et al., 2000), and taken from the Ihmels combined dataset. The

original data were published as log10-ratio values and have been transformed to log2-

ratio values in the Ihmels dataset. The data matrix consists of 6206 genes and 300

conditions without missing values. 27 genes out of the 2363 background genes did

not have entries in the dataset, giving us the 2336 × 300 data matrix (Table 2.1). The

Hughes dataset can be considered as a synthetic condition set since it contains more

than 90% deletion mutants experiments including deletions of transcription factors.

We examined all the 722 ChIP-chip modules using this dataset. We found 33 SSMs

at a q-value threshold of 0.001 (Tables 2.1 and 2.2). There are 59 significant func-

tional categories in the top 33 SSMs (Tables 2.1 and 2.3). The most frequently an-
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2.3 Characterization of functional modules

notated category is ‘carbon metabolism’. This may imply that carbon metabolism is

an important or mostly affected process in responses to abrupt perturbations of cells.

Some TFs belong to a number of SSMs: Nrg1 and Phd1 to 10 SSMs and Yap6 to 9

SSMs. Nrg1 has been implicated in negative repression of diverse processes, but the

other two factors are not known to particulary play a role in perturbed cellular condi-

tions (SGD). Those 19 modules associated with the three TFs are enriched in ‘carbon

metabolism’, ‘cellular import/export’, ‘sugar binding’, ‘cell-cell adhesion’ and ‘cell

rescue/defense/virulence’.

(4) Roberts Dataset

The Roberts dataset is concerned with MAPK signaling pathways with alpha-factor

pheromone treatment and deletion mutants (Roberts et al., 2000). We used its subset

without missing values, having the resultant data matrix of 5627 genes and 56 condi-

tions. A total of 286 genes out of the 2363 background genes were filtered out yielding

the 2077 × 56 data matrix (Table 2.1). The Roberts dataset is similar to the Spellman

dataset in that both sets are involved with alpha-factor treatment.

We retained 716 ChIP-chip modules and found 36 SSMs at a q-value threshold of

0.001 (Tables 2.1 and 2.2). There are 62 significant functional categories in the top

36 modules (Tables 2.1 and 2.3). The categories include ‘ribosomal proteins’, ‘DNA

damage response’ and ‘DNA synthesis and replication’. This list is similar to that

of the Spellman dataset because the experiments were also done with alpha-factor

pheromone treatment. This similarity was confirmed by detecting common SSMs in

the two datasets such as those containing Fkh2, Swi4, Swi6 and Mbp1. The modules

include Swi4p-Swi6p (SBF) and Mbp1p-Swi6p (MBF) complexes (Iyer et al., 2001).

The interaction between the two known complexes, for certain genes, may be deduced

from the module, MBP1-SWI4, connecting the two complexes. A more plausible point
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2.4 Condition-invariance and condition-specificity

from this dataset is that we also obtained the three SSMs containing Dig1 (a.k.a. Rst1),

Ste12 and both respectively. Those TFs are known to be downstream targets of MAPK

signalling pathways forming a complex (Roberts et al., 2000; Zeitlinger et al., 2003).

Thus, we verify, from the module DIG1-STE12, the fact that Dig1 and Ste12 act to-

gether as transcriptional regulators, and either one of the two is also thought to exhibit a

valid transcriptional activity provided that the experimental conditions from the ChIP-

chip and gene expression are comparable.

2.4 Condition-invariance and condition-specificity

We have characterized SSMs from each of the four expression datasets by identifying

coherent functional categories in them. The modules are coherent in expression pat-

terns of target genes depending on the expression dataset used. One observes that some

modules show expression coherence in all datasets while some others show coherence

in a specific dataset (Table 2.2). Such condition-invariant modules include HIR1-HIR2

module as well as others we discussed above from the Ihmels dataset. The module con-

tains the two regulators Hir1 and Hir2, six histone genes which are known targets of

Hir1 and Hir2, and one additional gene, YPR195C, which is a dubious ORF (SGD).

In our framework, YPR195C may be suggested to be functional in the histone module.

In the case of the Roberts dataset about the MAPK signaling pathways, the Dig1 and

Ste12 related modules were identified as strongly coherent among others in contrast

to the other datasets (Table 2.2). This illustrates that the binding of Dig1 and Ste12

observed in rich media ChIP-chip condition may indeed account for the coherence of

certain targets in some other conditions such as the pheromone response. It remains,

however, an open question whether additional factors could play a role, especially be-

cause we observed reduced expression coherence of these targets in the other datasets.

In fact, Zeitlinger et al. (2003) proposed a model to account for this specific mating
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2.4 Condition-invariance and condition-specificity

response due to changes in a third factor, Tec1.

Also, the observation from the comparison of enriched functions is that there are cer-

tain unique categories which are characteristic in each dataset as well as common en-

riched functions (Table 2.3). For example, ‘ribosomal proteins’ occurs as an enriched

category in certain modules of each of all the expression datasets. Two categories,

‘mitotic cell cycle and cell cycle control’ (MIPS code 10.03.01) and ‘nuclear and chro-

mosomal cycle’ (MIPS code 10.03.04), are found to be enriched in the top modules of

the Spellman and Roberts datasets, both of which are relevant to cell cycle processes.

On the other hand, only the Roberts dataset has an enriched category, ‘regulator of G-

protein signalling’, which is in line with the experimental focus of these experiments

on pheromone response involving signalling of G-proteins (Roberts et al., 2000). This

functional comparison distinguishes this particular dataset from others and tells us

about specific features of the cell’s states most involved in the experimental condi-

tions. This fact supports our approach to identify the SSMs relevant to the data in

terms of over-represented functions among target genes in those modules.

However, a comprehensive analysis requires more ChIP-chip data for conditions com-

parable to the expression data. In this work, we used the binding data as provided by

Lee et al. (2002). This dataset gives us binding information for 106 regulators assayed

in rich media condition. The initial set of ChIP-chip modules was fixed regardless of

expression data we used for integration. It has been pointed out that the binding of

TFs to potential targets is condition-dependent. Subsequent works have highlighted

this dependency (Bar-Joseph et al., 2003; Harbison et al., 2004; Luscombe et al., 2004;

Zeitlinger et al., 2003). Yet, this limitation in data integration is unavoidable because

of lack of ChIP-chip data compared to expression data. Therefore, our assumption is

that the groups of genes and TFs derived from ChIP-chip assays do not change their
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2.5 Summary

regulatory interactions in different conditions. This is likely to be unrealistic, but under

that assumption we were able to examine expression changes of those modules using

diverse expression datasets available. More careful utilization of condition variables in

gene expression and binding data will certainly result in improved results (e.g., more

comprehensive and precise condition-specific sets of SSMs and coherent functional

categories). Unless we take great care of those experimental or cellular conditions,

transcriptional mechanisms would be elusive in large-scale data analysis.

2.5 Summary

We have presented an approach to investigate transcriptional regulation in terms of

groups of transcription factors and target genes, called transcriptional modules. To

detect functional signals in modules, we applied statistical analyses of expression and

functional coherence to ChIP-chip derived modules. Four different expression datasets

were utilized to characterize their respective functional features. The identified func-

tional modules include condition-invariant and condition-specific ones, showing dy-

namic behaviours in a condition dependent way. In order to give more support and

evidence, one can think of integrating more diverse data types, e.g. protein-protein in-

teractions, orthologous genes and subcellular localization in a fashion similar to what

we used to establish coherent modules. On the other hand, one has to be careful about

data integration because it is impossible to have different types of data under the ex-

actly same cellular conditions. Since transcription phenomena are highly dynamic and

condition-dependent, it is often biologically implausible to combine two types of data

conducted in different laboratories, even in rich media. We may also have to use sub-

sets of an expression dataset from the same study separately. In the next chapter, we

pay more attention to such an issue of experimental conditions and attempt to prior-

itize TF-gene links from such identified modules by focusing on common functional
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2.5 Summary

categories among modules.
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