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Abstract

We construct so-called T -deformations of rational, normal varieties with effective codim-
ension-one torus action by gluing together deformations of affine varieties. We then an-
alyze the properties of these T -deformations. Considering toric varieties with a subtorus
action, we show that T -deformations span the space of infinitesimal deformations for
smooth, complete toric varieties. For a T -deformation of any complete variety, we show
that there is a natural isomorphism between the Picard group of its special fiber and
a naturally defined subgroup of the Picard group of the general fiber. We show that
rational C∗-surfaces of fixed Picard number larger than two are deformation connected
via T -deformations. We prove that T -deformations of a projective variety can always be
embedded. Furthermore, we also provide sufficient criteria for the existence of partial
smoothings of certain toric varieties. Finally, we use the techniques we have developed to
provide a purely combinatorial proof that the Hilbert polynomials for geometric models
of binary symmetric trivalent trees with equal numbers of leaves are equal.
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Remarks on Notation

In this thesis, a number of mathematical objects appear whose symbols can take on a
number of sub- and superscripts: polyhedral divisors (definition 1.2.2), divisorial fans
(definition 1.2.8), divisorial support functions (definition 1.3.1), marked fansy divisors
(definition 1.4.1), and divisorial polytopes (definition 1.4.4). The utilization of sub- and
superscripts is essentially uniform for all these objects. We try to clarify it on the example
of a polyhedral divisor D on a variety Y :

• Subscripts: A symbol appearing as a subscript represents a divisor or (not neces-
sarily closed) point on Y . For a divisor P , the scripted symbol DP represents the
coefficient of D at P , whereas for a point y, Dy :=

∑
y∈P DP .

• Superscript indices: A superscript index denotes a combinatorial decomposition of
the corresponding coefficient. For example, DP = D0

P + D1
P is an equation stating

that the polyhedron DP is the Minkowski sum of the polyhedra D0
P and D1

P .

• Superscripts with parentheses: A superscript appearing with parenthesis is used
to denote elements of a family coming from a combinatorial decomposition of the
scripted object. For example, given a Minkowski decomposition of D, we have a
family of polyhedral divisors D(s), see section 2.2. For any fixed s, the coefficients
of the polyhedral divisor D(s) can be recovered as above via subscript, i.e. D

(s)
P .

• Other superscripts: Other possible superscripts include index sets e.g. I or J ,
or the designation “tot”, or a combination of both. For example, the notation
DI represents a polyhedral divisor attained via intersection over the elements of
I. On the other hand, Dtot represents a polyhedral divisor for the total space
of a deformation coming from a Minkowski decomposition, and DI,tot represents
intersections of these polyhedral divisors for the total space, see section 3.2

viii



Introduction

A fascinating subject of study in the field of algebraic geometry is deformation theory.
The goal of this theory is, given some algebraic scheme, to systematically determine all
ways in which this scheme can be deformed, i.e. how the defining algebraic data can be
perturbed in a way such that the corresponding geometric objects vary ‘continuously’.
The applications of this theory are widespread, be it from the classification of singularities
to the study of moduli spaces.

In general, the aforementioned goal is intractable. Thus, it is often necessary to
restrict to the study of special cases, for example, complete intersection singularities,
normal surface singularities, or Fano or Calabi-Yau varieties. Another special case for
which much progress has been made is that of toric varieties. In a series of papers
including [Alt95], [Alt97], and [Alt00], K. Altmann has succeeded in describing many
aspects of the deformation theory of toric singularities. More recently, deformations of
nonaffine toric varieties have been studied by A. Mavlyutov in [Mav04] and [Mav05].
The author of this dissertation has also studied deformations of nonaffine toric varieties
in [Ilt09b] for the special case of partial resolutions of toric surface singularities.

A natural generalization of toric varieties are T -varieties, that is, normal varieties
admitting an effective action by an algebraic torus T . K. Altmann and J. Hausen began
the systematic study of such varieties in [AH06], joined by H. Süß in [AHS08]. Their main
result is that, similar to the case of toric varieties, a T -variety X can be described in terms
of convex combinatorial data with dimension equal to the dimension of T , together with
a k-dimensional variety, where k = dim X − dim T . We call k the complexity of X. The
combinatorial data appearing in this description bears the name polyhedral divisor in the
affine case and divisorial fan in the nonaffine case.

The topic of this dissertation is the deformation theory of normal rational varieties
admitting an effective codimension-one torus action, that is, rational complexity-one T -
varieties. For the affine case, R. Vollmert has constructed so-called T -deformations, which
arise from combinatorial decompositions of polyhedral divisors, see [IV09] and [Vol10].
We however focus on the case of nonaffine rational complexity-one T -varieties. It is
important to keep in mind that any toric variety can also be considered as a rational
complexity-one T -variety. Thus, our results also provide new results for deformations of
nonaffine toric varieties.

We now provide an overview of the structure of this thesis, as well as stating our main
results. The first two chapters present necessary background information and previous
results. While this thesis is designed to be as self-contained as possible, we expect the
reader to have some background in algebraic and toric geometry, say on the level of
[Har77] and [Ful93]. In chapter 1 we introduce T -varieties. In addition to presenting
the general construction of T -varieties from polyhedral divisors and divisorial fans, we
specialize to the complexity-one case, where we recall results regarding divisors on T -
varieties, complete and projective T -varieties, and singularities of T -varieties. In chapter
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2, we then introduce the necessary notions from deformation theory, as well as presenting
Vollmert’s construction of T -deformations of affine rational complexity-one T -varieties.

Chapter 3 contains the most essential construction of this thesis. Here, we provide a
combinatorial criterion which allows one to glue affine T -deformations together to get a
deformation of an arbitrary rational complexity-one T -variety. We also call the resulting
deformations T -deformations. As in the affine case, the fibers of such a T -deformation
are rational complexity-one T -varieties, and we can describe them combinatorially via
a family of divisorial fans. In this chapter, we also begin the first investigations of this
construction. In particular, we state criteria for T -deformations to be separated and
proper, show how the construction simplifies for complete T -varieties, provide necessary
and sufficient criteria for one-parameter T -deformations to be locally trivial, and compute
the image under the Kodaira-Spencer map for certain one-parameter T -deformations.

In chapter 4, we present the first application of our T -deformations by considering
T -deformations of toric varieties. We focus especially on the case of smooth toric varieties
coming from a full-dimensional fan with convex support, for which we provide an explicit
description for the vector space of infinitesimal deformations. Our theorem 4.3.2 then
implies the following:

Main Result 1. Let X0 be a smooth complete toric variety. Then T -deformations of X0

span the vector space of infinitesimal deformations.

We move on to consider the behaviour of T -invariant Cartier divisors under T -
deformation in chapter 5. We do this by lifting invariant divisors on the fibers of a
T -deformation to an invariant divisor on the total space. It turns out that for any fiber
of a T -deformation, there is a naturally defined subgroup Pic′ of the Picard group which
maps injectively to the Picard group of the special fiber. Combining theorem 5.1.8 and
theorem 5.2.2 gives us our second main result:

Main Result 2. Let X0 be a complete rational complexity-one T -variety with some T -
deformation π. For any fiber Xs of π, there is a natural isomorphism π̄s,0 : Pic′(Xs)

∼
→

Pic(X0) preserving Euler characteristic and intersection numbers.

In chapter 6, we turn to the study of rational C∗-surfaces, that is, smooth, complete,
rational two-dimensional complexity-one T -varieties. We present a simplified description
of T -deformations, and discuss how T -deformations behave with respect to blowing up
and blowing down. In theorem 6.3.2 we then show that rational C∗-surfaces with equal
Picard number are connected by T -deformations:

Main Result 3. Let X and X ′ be rational C∗-surfaces with equal Picard number larger
than two. Then there is a sequence of rational C∗-surfaces X = X0, X1, . . . , Xj = X ′

such that for each i ≥ 0, X i and X i+1 are fibers of some common T -deformation.

Chapter 7 concerns itself with the study of T -deformation of projective T -varieties.
After proving some basic results concerning quotients of T -varieties by C∗ actions, we
show in theorem 7.2.1 the following:

Main Result 4. Let X0 be a T -variety with some fixed projectively normal embedding.
Then any T -deformation of X0 can be realized as an embedded deformation with respect
to the embedding of X0.
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We then introduce another combinatorial gadget to more handily describe embedded
deformations. As an application, we consider deformations of geometric models for binary
symmetric phylogenetic trivalent trees as studied by W. Buczyńska and J. Wísniewski
in [BW07]. We then use the combinatorial nature of our T -deformations to provide a
purely combinatorial proof of the following result, which was previously proven using
deformation theory:

Main Result 5. The geometric models for binary symmetric phylogenetic trivalent trees
with equal numbers of leaves have equal Hilbert polynomials.

In chapter 8, we show how the construction of affine T -deformations can be modified
to create deformations which are no longer homogeneous of degree zero. We then apply
this technique to construct multidegree deformations of certain toric varieties. While we
no longer have exact descriptions of all the fibers of such deformations in combinatorial
terms, we show that these multidegree deformations are isomorphic to T -deformations
when we restrict to certain strata of the base space. Thus, we do retain information on
some of the fibers of the deformation, and this is often enough to make certain claims
about the general fiber. One special case is our corollary 8.3.4, which shows the existence
of certain partial smoothings for toric Fano varieties:

Main Result 6. Let ∆ be a Gorenstein reflexive polytope and let X0 be the toric Fano
variety associated to the face fan of ∆. Suppose X0 is smooth in codimension d, and that
∆ = ∆0 + . . . + ∆r for lattice polytopes ∆i whose faces of dimension less than or equal
to d generate smooth cones in height one. Then X0 admits a smoothing in codimension
d + 1.

Several portions of this dissertation have appeared in a number of preprints authored
or coauthored by the present author. Chapter 3 contains some material from [IV09], and
4 contains material from [Ilt09a] and [IV09]. Furthermore, chapters 5 and 6 contain a sig-
nificant amount of material from [HI09]. However, any constructions or results presented
in this dissertation without further attribution are solely due to the current author. A
complementary approach to the study of deformations of nonaffine toric varieties has
been begun by A. Mavlyutov in [Mav09]. His independently developed approach con-
structs deformations from similar combinatorial ingredients by using the homogeneous
coordinate ring of a toric variety.
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Chapter 1

T -Varieties

In this chapter, we shall recall a number of basic notions which will be utilized throughout
the remainder of this dissertation. In section 1.1, we set some general notation. Essential
is the combinatorial description of T -varieties via polyhedral divisors and divisorial fans;
we cover this in section 1.2. After this, we will concentrate on complexity-one T -varieties.
We give descriptions of invariant Weil and Cartier divisors in section 1.3. In section 1.4 we
recall a simplified description of complete complexity-one T -varieties in terms of marked
fansy divisors. Finally, we discuss singularities of complexity-one T -varieties in section
1.5.

1.1 General Notation

We will be working over an arbitrary algebraically closed field of characteristic zero which
we will denote by C. For any variety X, let C(X) denote its field of rational functions. For
f ∈ C(X), let V (f) denote the effective part of div(f). We call a variety X semiprojective
if A := Γ(X,OX) is a finitely generated C-algebra and X is projective over Spec A. For
any Q-Cartier divisor D on a scheme X, we will write H i(X, D) for the cohomology group
H i(X,O(D)). Consider any module B graded by a group G. For any g ∈ G, we denote
the homogeneous piece of B of degree g by B(g).

Let N denote a lattice with dual M , and let NQ and MQ be the associated Q vector
spaces. Let TN := N ⊗ C∗ = Spec C[M ] be the torus with cocharacter group N and
character group M . For any point v ∈ NQ, let µ(v) denote the smallest positive integer
such that µ(v) · v is in N . For any cone σ ⊂ NQ, we denote its dual cone by σ∨. For any
subset S ⊂ NQ, we denote the closure of the cone spanned by positive linear combinations
of S by cone(S).

For any polyhedron ∆ ⊂ NQ, let tail(∆) denote its tailcone, that is, the cone of
unbounded directions in ∆. Thus, ∆ can be written as the Minkowski sum of some
bounded polyhedron and its tailcone. Now for u ∈ tail(∆)∨ ∩M , denote by face(∆, u)
the face of ∆ upon which u achieves its minimum. We denote the relative interior of ∆
by relint(∆).

Recall that a polyhedral subdivision C in some vector space V is a set of polyhedra in
V closed under intersections, such that all inclusions are face relations. We furthermore
impose the convention that all elements of C have trivial lineality space. If C is any
polyhedral subdivision in NQ, we denote by tail(C) the tailfan of C, that is, the set of
all cones tail(∆) for ∆ ∈ C, which is easily seen to form a fan. For any polyhedral
subdivision C, the support of the subdivision, denoted by |C|, is the union of all elements
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of C. A subdivision is complete if its support is NQ. For any integer k, C(k) denotes the
set of all elements of C of dimension k.

We introduce several abuses of notation. Where convenient, we identify a polyhedron
∆ with the polyhedral subdivision containing all its faces. Likewise, for any ray ρ ⊂ NQ,
we also use ρ to denote its minimal lattice generator as long as no confusion can arise.

1.2 Polyhedral Divisors and T -Varieties

We begin by defining our main objects of study.

Definition 1.2.1. A T -variety is a normal variety X together with an effective torus
action T × X → X. The complexity of a T -variety X is the dimension of X less the
dimension of T .

Note that complexity zero T -varieties are simply toric varieties, which are in one to one
correspondence with polyhedral fans. This correspondence was generalized to arbitrary
complexity by K. Altmann and J. Hausen in [AH06] for the affine case, and together with
H. Süß in [AHS08] for the general case. In the following, we will recall this generalization.

Consider a smooth semiprojective variety Y over C and let σ ⊂ NQ be a pointed
polyhedral cone.

Definition 1.2.2. A polyhedral divisor on Y with tail cone σ is a formal sum

D =
∑

P

DP ⊗ P,

where P runs over all prime divisors on Y such that

(i) For all prime divisors P , DP is either the empty set or a polyhedron with tailcone
σ;

(ii) DP = σ for all but finitely many P .

We can evaluate a polyhedral divisor for every element u ∈ σ∨ ∩M via

D(u) :=
∑

P
DP 6=∅

min
v∈DP

〈v, u〉P

in order to obtain an ordinary divisor on Loc(D), where Loc(D) := Y \
(⋃

DP =∅ P
)
. We

will use these evaluations to restrict our interest to a subclass of polyhedral divisors.

Definition 1.2.3. A polyhedral divisor D is called proper if for all u ∈ σ∨ ∩M , D(u)
is Cartier and semiample and if for all u ∈ (relint σ∨) ∩M , D(u) is big. Recall that a
divisor is semiample if a multiple is globally generated, and that a divisor is big if some
multiple has a section with affine complement.

Remark 1.2.4. If D is a polyhedral divisor on a curve Y , we define the degree of D to
be deg(D) =

∑
DP . Then D is proper if and only if deg(D) is strictly contained in σ and

for all u ∈ σ∨ with minv∈deg(D)〈v, u〉 = 0 it follows that a multiple of D(u) is principal.
Note that if Loc(D) is affine, then deg(D) = ∅, and D is automatically proper.
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To a proper polyhedral divisor we associate an M-graded C-algebra and consequently
an affine scheme admitting a TN -action:

X(D) := Spec
⊕

u∈σ∨∩M

H0(Y,D(u)) · χu.

Theorem 1.2.5 ([AH06] Theorems 3.1 and 3.4). X(D) is a TN -variety of complexity
equal to the dimension of Y . Furthermore, any affine TN -variety can be constructed in
this manner. The construction of X(D) comes with a surjective rational quotient map
pD : X(D) 99K Loc(D) which is a morphism if Loc(D) is affine.

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

(a) D0

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

(b) D1

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

(c) D∞

Figure 1.1: A proper polyhedral divisor on P1

Example 1.2.6 (A proper polyhedral divisor on P1). In figure 1.1, we picture three
two-dimensional polytopes D0, D1, and D∞, all with the same tailcone. Thus, D =
D0 ⊗ {0} + D1 ⊗ {1} + D∞ ⊗ {∞} is a polyhedral divisor on P1. Furthermore, from
remark 1.2.4, it follows that D is in fact proper. The corresponding T -variety X(D) is in
fact just A3 with a (C∗)2-action. We can see this by an explicit calculation. tail(D)∨ is
generated by [1, 0] and [−1, 1]. For u = [u1, u2] ∈ tail(D)∨ we have

D(u) = u2 · {0} if u1 ≥ 0;

D(u) = u1 · {1}+ u2 · {0} if u1 ≤ 0.

One then easily checks that the coordinate ring of X(D) is generated by χ[1,0], χ[0,1], and
y · χ[−1,1], where y ∈ C(P1) is such that div(y) = {1} − {0}.

We now wish to glue these affine varieties together; this requires some further defini-
tions.

Definition 1.2.7. Let D =
∑

P DP ⊗ P , D′ =
∑

P D
′
P ⊗ P be two proper polyhedral

divisors on Y with tail cones σ and σ′.

• We define their intersection by

D ∩ D′ :=
∑

P

(DP ∩ D
′
P )⊗ P.

• We say D′ ⊂ D if D′
P ⊂ DP for every prime divisor P ∈ Y .

• For y ∈ Y a not necessarily closed point, set Dy :=
∑

y∈P DP , where summation is
via Minkowski addition.
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• D′ is a face of D i.e. D′ ≺ D if D′ ⊂ D and for each y ∈ Loc(D′) there is a pair
(wy, Dy) ∈ (σ∨ ∩M) × |D(wy)| such that y /∈ supp(Dy), D′

y = face(Dy, wy), and
face(D′

v, wy) = face(Dv, wy) for all v ∈ Loc(D) \ supp(Dy).

If D′ ⊂ D then we have an inclusion

⊕

u∈σ′∨∩M

H0(Y,D′(u)) ⊃
⊕

u∈σ∨∩M

H0(Y,D(u))

which corresponds to a dominant morphism X(D′)→ X(D). This is an open embedding
exactly when D′ ≺ D, see proposition 3.4 of [AHS08].

Definition 1.2.8. A divisorial fan is a finite set S of proper polyhedral divisors such that
for D,D′ ∈ S we have D ≻ (D′ ∩ D) ≺ D′ with D′ ∩ D also in S. For a not necessarily
closed point y ∈ Y , the set of all Sy defined by the polyhedra Dy, D ∈ S is called a slice
of S. The tailfan of S is the fan formed by the tailcones tail(D) for D ∈ S. We say that
a subset I ⊂ S induces S if any D ∈ S is an intersection of elements of I.

Remark 1.2.9. In general Sy need not be a polyhedral subdivision. However, for points
y corresponding to some prime divisor P , SP := Sy is indeed a subdivision.

For polyhedral divisors D,D′ ∈ S, we may glue the affine varieties X(D) and X(D′)
via

X(D)← X(D ∩ D′)→ X(D′)

to get a scheme X(S).

Theorem 1.2.10 ([AHS08] Theorems 5.3 and 5.6). X(S) is a normal scheme of dimen-
sion dim Y + dim NQ with an effective torus action by TN . Furthermore, all TN -varieties
can be constructed in this manner.

Remark 1.2.11. A divisorial fan S on a curve Y is called complete if all slices Sy are
complete subdivisions of NQ and Y is complete. For any divisorial fan S on a curve, X(S)
is complete if and only if S is complete. Completeness of T -varieties can be characterized
in higher complexity cases as well, but this is slightly more complicated. Furthermore,
note that X(S) is always separated if S is a divisorial fan on a curve.

Remark 1.2.12. Throughout this thesis, we will especially be interested in rational
complexity-one T -varieties. Since a T -variety coming from a divisorial fan on Y is bira-
tional to the product of Y and a torus, these varieties are exactly those arising from the
case Y = P1.

Example 1.2.13 (The projectivized cotangent bundle of P2). We consider now an ex-
ample of a divisorial fan S on P1 which is induced by six proper polyhedral divisors.
The only nontrivial slices of S are at 0, 1, and ∞, and are pictured in figure 1.2. The
coefficients of the six inducing polyhedral divisors are never ∅; the coefficients belonging
to a common polyhedral divisor share a color (and can be recognized by the fact that
their tailcones are equal). Note that the polyhedral divisor D from example 1.2.6 is one
of the six inducing polyhedral divisors. The corresponding variety X(S) is in fact the
projectivized cotangent bundle of P2, see example 8.5 in [AHS08].
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Figure 1.2: Divisorial fan slices for P(ΩP2)

Remark 1.2.14. An important class of examples of T -varieties arises by considering a
subtorus action on a toric variety. This can be made explicit as follows. Consider some
lattice N ′ with Σ′ a polyhedral fan in N ′

Q. Let TV(Σ′) denote the corresponding toric
variety; see [Ful93] for details on toric varieties. As usual, let M ′ be the dual lattice
of N ′. Now, consider some surjection of lattices deg : M ′

։ M ; this corresponds to
a monomorphism of tori TN →֒ TN ′

. If deg∗ is the dual homomorphism and N ′′ the
cokernel of deg∗, we then have the following exact sequence of lattices

0 // N
deg∗

// N ′

s

cc

p
// N ′′ // 0

where we have chosen some cosection s.
Now let Σ′′ be the coarsest common refinement of the images of the cones of Σ′ in

N ′′
Q. Then Y = TV(Σ′′) is the Chow quotient of TV(Σ′) by the action of TN . Note that

each ray ρ of Σ′′ corresponds to an invariant prime divisor Dρ on TV(Σ′′). Now, for any
cone σ′ ∈ Σ′, define the polyhedral divisor

Dσ′

=
∑

ρ∈Σ′′(1)

s(p−1(ρ) ∩ σ′)⊗Dρ.

Then Dσ′

is in fact proper, and these polyhedral divisors fit together to a divisorial fan
SΣ′

. Furthermore, X(SΣ′

) is exactly the variety X(Σ′) endowed with the action of the
subtorus TN .

We will especially be interested in the above situation where the action of the subtorus
has complexity one. This arises by choosing some primitive degree R ∈ M ′ and setting
M = M ′/〈R〉. Then N = N ′ ∩ R⊥ ⊂ N ′. In this case, Y = P1 and the divisorial fan SΣ′

consists of polyhedral divisors Dσ′

for each σ′ ∈ Σ′, where

Dσ′

= s(σ′ ∩ [R = 1])⊗ {0}+ s(σ′ ∩ [R = −1])⊗ {∞}.

Note that we define the set [R = a] to be {v ∈ NQ|〈v, R〉 = a}, that is, the set of points
in NQ for which R takes the value a.

Example 1.2.15 (A toric Fano surface). We consider a downgrade of the unique toric
Fano surface with four A1 singularities. The fan Σ′ corresponding to this surface, gener-
ated by four two-dimensional cones, is pictured in figure 1.3(a). We consider the subtorus
T generated by the basis vector (1, 0). The quotient of TV(Σ′) by T is just P1. The preim-
ages of the two primitive generators of the corresponding fan are pictured in the previous
figure as dark gray dashed lines. We take the cosection s just to be the natural projection.
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Figure 1.3: Fan and divisorial fan for a toric Fano surface

The slices of the divisorial fan SΣ′

, with labeling, are shown in parts (b) and (c) of
figure 1.3. The four two-dimensional cones of Σ′ correspond to four proper polyhedral
divisors D, E ,F ,G which induce SΣ′

. Note that D and F have complete locus, whereas
E and G both have affine locus.

1.3 Divisors on Complexity-One T -Varieties

We will be dealing extensively with invariant divisors on complete T -varieties with codi-
mension one torus action; these divisors have been described in [PS08] in combinatorial
terms. We will mainly be interested in Cartier divisors, but Weil divisors will also be of
interest. In this section, we recall the results of [PS08].

Let C be any polyhedral subdivision in NQ with tailfan Σ. Consider some continuous
function f : |C| → Q which is affine on the elements of C. We call f a Q-support function.
For such a Q-support function, we define the linear part of f to be the function

tail(f) : | tail(C)| → Q

where for any ∆ ∈ C, if f|∆ = 〈·, u〉 + a, then tail(f)| tail ∆ = 〈·, u〉. We say that f is
integral or just a support function if for any v ∈ |C| and k ∈ N with k ·v ∈ N , k ·f(v) ∈ Z.

Let Y be a smooth projective curve and S a divisorial fan on Y ; set Σ = tail(S). Note
that now the prime divisors of Y are just its closed points.

Definition 1.3.1. A (divisorial) support function on S is a formal sum of the form

h =
∑

P∈Y

hP ⊗ P

where hP : |SP | → Q are support functions such that:

(i) tail(hP ) is the same for all P . We call tail(hP ) the linear part of h and denote it by
tail(h);

(ii) hP 6= tail(h) for only finitely many P .

We say that h is principal if there exists u ∈M and f ∈ C(Y ) such that for all P ∈ Y and
v ∈ |SP |, hP (v) = −〈u, v〉 − νP (f), where νP (f) is the order of f in P . We say that h is
Cartier if for every D ∈ S with complete locus, the restriction h|D of h to D is principal.
By SF(S) and CaSF(S) we respectively denote the groups of all support functions and
Cartier support functions on S, where we take the addition to be the natural addition of
functions.
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Let T-CDiv(X(S)) denote the group of T -invariant Cartier divisors on X(S). Now,
for any element h ∈ CaSF(S), we can associate an invariant divisor Dh ∈ T-CDiv(X(S))
as follows. We first will define an invariant open covering U(S) of X(S). Let P be the
set of all P ∈ Y such that SP is nontrivial. For P ∈ Y and D ∈ S with noncomplete
locus, set

D(P ) = D +
∑

Q∈P
Q 6=P

∅ ⊗Q.

We take U(S) to consist of the open sets X(D(P )) for D with noncomplete locus together
with the sets X(D) for D with complete locus.

We now define Dh locally with respect to the covering U(S). Indeed, for P ∈ Y and
D ∈ S with noncomplete locus, the restriction of h to D(P ) is principal; let uD,P and fD,P

denote corresponding elements of M and C(Y ). Likewise, for D with complete locus, the
restriction of h to D is also principal; let uD and fD once again denote corresponding
elements. Restricted to an open set X(D(P )) for D with noncomplete locus, we take Dh

to be div(fD,P · χ
uD,P ). Likewise, restricted to an open set X(D) for D with complete

locus, we take Dh to be div(fD · χ
uD).

Theorem 1.3.2 ([PS08] Proposition 3.10). The above construction gives a well-defined
divisor Dh ∈ T-CDiv(X(S)). The corresponding map CaSF(S) → T-CDiv(X(S)) is an
isomorphism of abelian groups taking principal support functions to principal divisors.

We now briefly turn our attention to Weil divisors. Let D be a proper polyhedral
divisor on a curve Y with tailcone σ. There are exactly two types of invariant prime Weil
divisors on X(D):

(i) Closures of codimension-one orbits in X(D);

(ii) Families of closures of codimension-two orbits in X(D).

Proposition 1.3.3 ([PS08] Propositions 3.13 and 3.14). There are one-to-one correspon-
dences

(i) Between divisors of type (i) and pairs (P, v), P ∈ Y and v a vertex of DP ;

(ii) Between divisors of type (ii) and rays ρ of tail(D) such that ρ ∩ deg(D) = ∅.

Denote such divisors by respectively D(P,v) and Dρ. For any h ∈ CaSF(S), we have

Dh = −
∑

ρ

tail(h)(ρ)Dρ −
∑

(P,v)

µ(v)hP (v)D(P,v).

Proposition 1.3.4 ([PS08] Corollary 3.28). Consider h ∈ CaSF(S) for some complete
divisorial fan S. Then Dh is ample if and only if h is strictly concave, and if for all
D ∈ S with noncomplete locus and tail(D) full-dimensional, the linear extension of h|D

has strictly negative degree when evaluated at 0.

Example 1.3.5 (An anticanonical divisor on a toric Fano surface). We now consider
the toric Fano surface X(S) from example 1.2.15 with S := SΣ′

. We define a divisorial
support function h ∈ CaSF(S) by h = h0⊗{0}+h∞⊗{∞}, where h0 = h∞ are depicted
in figure 1.4(a). The linear part of h is then pictured in figure 1.4(b). Now, using
proposition 1.3.3, we have that Dh = D(0,−1) + D(0,1) + D(∞,−1) + D(∞,1). Furthermore,
from proposition 1.3.4, we have that Dh is ample. In fact, one can easily check that Dh

is an anticanonical divisor for X(S).
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Figure 1.4: A divisorial support function for a toric Fano surface

1.4 Marked Fansy Divisors and Divisorial Polytopes

We now recall some results from [IS09] on complete and projective complexity-one T -
varieties. We first show how the combinatorial data describing a complete complexity-
one T -variety can be simplified to a so-called marked fansy divisor. Then we recall
a correspondence between polarized complexity-one T -varieties and so-called divisorial
polytopes.

As usual, let Y be a curve. Different divisorial fans S,S ′ on Y can in fact yield the
same T -variety X(S) = X(S ′). The differing divisorial fans simply correspond to different
open affine coverings. On the other hand, divisorial fans with identical slices might yield
differing T -varieties, even in the complexity-one case. For example, one could blow up
the toric Fano surface from example 1.2.15 by adding a ray through (1, 0) to the fan Σ′

of figure 1.3 without changing the slices of the corresponding divisorial fan. However, for
complete complexity-one T -varieties, we can save the situation by noting that the entire
information needed to reconstruct our T -variety can be recovered from the (unlabeled)
slices of the divisorial fan together with the additional information of those polyhedral
divisors with complete locus. This motivates the following definition:

Definition 1.4.1. A marked fansy divisor on a curve Y is a formal sum Ξ =
∑

P∈Y ΞP⊗P
together with a fan Σ and some subset M ⊂ Σ, such that

(i) ΞP is a complete polyhedral subdivision of NQ, tail(ΞP ) = Σ for all P ∈ Y , and
ΞP = Σ for all but finitely many P ;

(ii) For full-dimensional σ ∈ M the polyhedral divisor D(σ) =
∑

∆σ
P ⊗ P is proper,

where ∆σ
P is the unique element of ΞP with tail(∆σ

P ) = σ;

(iii) For σ ∈M of full dimension and τ ≺ σ, we have τ ∈M if and only if

deg(D(σ)) ∩ τ 6= ∅;

(iv) If τ ≺ σ and τ ∈M, then σ ∈M.

We say that the elements of M are marked. The support of a fansy divisor is the set of
points P ∈ Y , where ΞP differs from the tailfan Σ.

Now, given any complete divisorial fan S on Y , we can associate a marked fansy
divisor, by setting Ξ =

∑
SP ⊗ P and adding marks to the tailcones of all D ∈ S with

complete locus. We call this marked fansy divisor Ξ(S). The fact that all polyhedral
divisors in S with the same tailcone either all have complete or noncomplete locus follows
from a simplified face relation for complexity-one T -varieties, see [IS09] proposition 1.1.
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Example 1.4.2 (Two marked fansy divisors). We can associate a marked fansy divisor
to the divisorial fan S of example 1.2.13 for P(ΩP2). Indeed,

Ξ(S) = S0 ⊗ {0}+ S1 ⊗ {1}+ S∞ ⊗ {∞}

with marks on all nonzero cones of tail(S). Likewise, we can associate a marked fansy
divisor to the divisorial fan SΣ′

of example 1.2.15 for the toric Fano surface. Indeed,
Ξ(SΣ′

) = SΣ′

0 ⊗ {0}+ SΣ′

∞ ⊗ {∞} with marks on the cones [0,∞) and (−∞, 0].

Proposition 1.4.3 ([IS09] Proposition 1.6). For any marked fansy divisor Ξ, there exists
a complete divisorial fan S with Ξ = Ξ(S). If for two divisorial fans S,S ′ we have that
Ξ(S) = Ξ(S ′), then it follows that X(S) = X(S ′).

We can make the first claim of the above proposition explicit. Let P be the set of
points in P1 for which ΞP isn’t trivial. For each P ∈ P and ∆ ∈ ΞP with tail(∆) /∈ M,
we have a polyhedral divisor D(P, ∆) = ∆ ⊗ P +

∑
Q∈Q∪P\P ∅ ⊗ Q. Likewise, for each

σ ∈M of full dimension, we have a polyhedral divisor D(σ), see definition 1.4.1. These
polyhedral divisors induce a divisorial fan S via intersection, see [IS09], proposition 1.6,
and Ξ(S) = Ξ.

By the above proposition, we can thus define X(Ξ) to be X(S) for any S with Ξ =
Ξ(S). We can similarly define CaSF(Ξ) to be CaSF(S) for any S with Ξ = Ξ(S).
Furthermore, every complete complexity-one T -variety can be described via a marked
fansy divisor. We thus can avoid divisorial fans and work instead with the somewhat
more handy notion of marked fansy divisors. If we are only interested in describing
projective complexity-one T -varieties together with a polarization, there is an even more
handy description, namely that of divisorial polytopes:

Definition 1.4.4. A divisorial polytope (Ψ, �) consists of a lattice polytope � ⊂ MQ

and a piecewise affine concave function

Ψ =
∑

ΨP ⊗ P : �→ DivQ Y,

such that

(i) deg Ψ(u) > 0 for u in the interior of �;

(ii) For u a vertex of �, deg Ψ(u) > 0 or λΨ(u) ∼ 0 for some λ ∈ N;

(iii) For all P ∈ Y , the graph of ΨP is integral, i.e. has its vertices in M × Z.

We often will call the pair (Ψ, �) simply Ψ.

We now show how to associate a marked fansy divisor and support function to a
divisorial polytope (Ψ, �). We begin by setting Ψ∗

P (v) = minu∈�(〈v, u〉 −ΨP (u)), which
is a piecewise affine concave function on NQ. Now let ΞP be the polyhedral subdivision
of NQ induced by Ψ∗

P and take Ξ(Ψ) =
∑

ΞP ⊗ P . Furthermore, we add a mark to an
element σ ∈ tail(Ξ) if (deg ◦Ψ)|Fσ

≡ 0, where Fσ ≺ � is the face where 〈·, v〉 takes its
minimum for all v ∈ σ.

Theorem 1.4.5 ([IS09] Theorem 3.2). There is a one-to-one correspondence between
divisorial polytopes and pairs (X,L) of complexity-one varieties with an equivariant ample
line bundle gotten by sending

Ψ 7→ (Ξ(Ψ),O(DΨ∗)).
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Furthermore, the global sections of DΨ∗ are

⊕

u∈�∩M

H0(Y, Ψ(u)).

Remark 1.4.6. Let Ψ be a divisorial polytope. Then the corresponding T -variety is the
Proj of ⊕

k∈Z≥0

⊕

u∈k·�∩M

H0(Y, k ·Ψ(u/k)).

However, this Z-graded algebra is generated in degree one if and only if DΨ∗ is very ample
and gives a projectively normal embedding.

Let Ξ be a marked fansy divisor on a curve Y , and h ∈ CaSF(Ξ) such that Dh is
globally generated and ample. Then the sections of Dh determine a map f : X(Ξ)→ Pn;
we denote the image of f by X. Note that X also comes with a natural complexity-one
T -action, but in general X need not be normal. By C(X) we denote the affine cone over

X with respect to this embedding; let C̃(X) be the normalization of C(X). The following

proposition tells us how to describe C̃(X) in terms of a polyhedral divisor:

Proposition 1.4.7 ([IS09] Proposition 4.1). With h as above, set

D =
∑

P

conv(Γ−hP
)⊗ P

where Γ−hP
is the graph of −hP . Then D is a proper polyhedral divisor on Y and C̃(X) =

X(D).
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(b) D0 = D∞

Figure 1.5: A divisorial polytope and affine cone for a toric Fano surface

Example 1.4.8 (A toric Fano surface). We now consider a divisorial polytope and an
affine cone for the toric Fano surface X presented in example 1.2.15. Consider first the
divisorial polytope Ψ = Ψ0⊗{0}+Ψ∞⊗{∞} on P1, with Ψ0 and Ψ∞ as pictured in figure
1.5(a) and � = [−1, 1]. Then one easily checks that Ξ(Ψ) is the marked fansy divisor for
the aforementioned Fano surface, and Ψ∗ is the support function h from example 1.3.5.
We now consider the embedding of X given by Dh, i.e. the anticanonical embedding.
This embedding is in fact projectively normal, and the cone over X is equal to X(D),
where D = D0 ⊗ {0} + D∞ ⊗ {∞} is a polyhedral divisor on P1 and D0 and D∞ are as
pictured in figure 1.5(b).
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Remark 1.4.9. Just as in remark 1.2.14 where we consider a toric variety with a subtorus
action, we can consider a polarized toric variety with some subtorus action. Let ∆ ⊂M ′

Q

be a polytope in some lattice M ′, and consider an exact sequence of lattices

0 // Z
F // M ′

deg
// M //

s∗

dd
0

where we have chosen some section s∗. Consider the map Ψ∆ : deg(∆)→ Div(P1) given
by

(Ψ∆)0(u) = max{a ∈ Q | FQ(a) + s∗(u) ∈ ∆ ∩ deg−1
Q (u)},

(Ψ∆)∞(u) = −min{a ∈ Q | FQ(a) + s∗(u) ∈ ∆ ∩ deg−1
Q (u)}.

Then (Ψ∆, deg(∆)) is a divisorial polytope. Moreover, Ψ∆ corresponds exactly to the
toric variety and the ample divisor coming from ∆ but with the restricted torus action
of TN .

1.5 Singularities

We will be interested in criteria for smoothness and mildness of singularities for rational
complexity-one T -varieties. We briefly recall several results in this direction from [Süß08].

Definition 1.5.1. Let ∆ be a polyhedron in NQ. We say that ∆ is conically smooth/term-
inal/canonical if cone(∆ × 1) ⊂ (N × Z)Q is smooth/terminal/canonical.1 We say that
∆ is conically smooth in dimension d if all faces of ∆ with dimension less than or equal
to d are conically smooth.

Consider now a polyhedral divisor D on Y = P1.

Proposition 1.5.2 ([Süß08] Theorem 3.1). Suppose Loc(D) = P1. Then X(D) is smooth
if and only if there exist two special points 0,∞ ∈ Y along with lattice vectors vP ∈ N
for all P ∈ Y such that

(i) Only finitely many vP 6= 0;

(ii)
∑

P∈Y vP = 0;

(iii) DP + vP = tail(D) for P 6= 0,∞;

(iv) The cone

cone

(
((D0 + v0)× 1) ∪ ((D∞ + v∞)×−1)

)

is smooth.

Proposition 1.5.3 (cf. [Süß08] Theorem 3.3). Suppose that Loc(D) ( P1. Then X(D)
is smooth/has terminal singularities/has canonical singularities if and only if for all P ∈
Loc(D), DP is conically smooth/conically terminal/conically canonical. Likewise, X(D)
is smooth in codimension d+1 if and only if for all P ∈ Loc(D), DP is conically smooth in
dimension d. Furthermore, the singularity in any fiber p−1

D (P ) is algebraically isomorphic
to the toric singularity

TV(cone(DP × 1)).

1Note that a cone is smooth/terminal/canonical if the corresponding affine toric variety has the same
property. These properties have easy combinatorial characterizations, see for example [Dai02].
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Proof. Since Y = P1, one easily checks that we can replace the analytic isomorphism
from [Süß08], theorem 3.3 with an algebraic one. The smoothness/terminal/canonical
properties then follow from this isomorphism.
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Chapter 2

Preliminaries on Deformations

In this chapter, we recall necessary results on deformations of algebraic varieties. Section
2.1 contains some basic definitions and standard results. We then describe the construc-
tion of homogeneous deformations of affine, rational, complexity-one T -varieties in section
2.2.

2.1 General Deformation Theory

For general facts on deformation theory, we refer to [Ser06].

Definition 2.1.1. A deformation of a scheme X0 is a flat family of schemes π : X → B
with 0 ∈ B such that π−1(0) = X0. In other words, we have a cartesian diagram

X0
�

�

//

��

X

π

��

0
�

�

// B.

X is called the total space of π and B is called the base space. For any s ∈ B, we denote
π−1(s) by Xs.

Given deformations π : X → B and π′ : X ′ → B of X0, an isomorphism of π′ with
π is a map φ : X → X ′ over B inducing the identity on X0. For any scheme X0, we
actually have a contravariant functor DefX0 where DefX0(B) is the set of deformations of
X0 over B modulo isomorphism, and morphisms are mapped to the natural pullbacks.

We will also be interested in deformations of line bundles:

Definition 2.1.2. Let X0 be a scheme and L0 a line bundle on X0. A deformation of
the pair (X0,L0) consists of a deformation π : X → B of X0 together with a line bundle
L on X such that L|X0

= L0. For any s ∈ B, we denote L|Xs
by Ls.

Given deformations (π,L) and (π′,L′) of (X0,L0), an isomorphism between these pairs
is an isomorphism φ of the deformations π and π′ with L = φ∗(L′). As above, we then
have a contravariant functor Def(X0,L0), where Def(X0,L0)(B) is the set of deformations
of (X0,L0) over B modulo isomorphism, and morphisms are mapped to the natural
pullbacks.

We will also concern ourselves with embedded deformations:
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Definition 2.1.3. Let X0 →֒ Pn be a projectively embedded variety. An embedded
deformation π of X0 consists of a projective variety X →֒ PN

B such that the projection π
to B is a deformation of X0, and the embedding of X restricts to the embedding of X0.
In other words, we have the following diagram:

Pn �

�

// Pn
B

||

X0
�

�

//
.

�

>>
}

}
}

}
}

}
}

}

��

X

π

��

.

�

>>
}

}
}

}
}

}
}

}

0
�

�

// B.

An isomorphism of embedded deformations is an isomorphism of the ambient projec-
tive spaces along with an isomorphism of deformations which is compatible with the em-
beddings of the total spaces. As above, we then have a contravariant functor DefX0 →֒Pn,
where DefX0 →֒Pn(B) is the set of embedded deformations of X0 →֒ Pn over B modulo
isomorphism, and morphisms are mapped to the natural pullbacks.

For any projective variety X0 →֒ Pn, we then have a natural transformation

DefX0 →֒Pn → Def(X0,OX0
(1)) .

Likewise, for any scheme X0 and line bundle L0 we have a natural transformation

Def(X0,L0) → DefX0

which simply forgets the line bundle.
We introduce some more terms and notation:

Definition 2.1.4. Let π : X → B be a deformation of X0.

(i) We call π a k-parameter deformation if B is an open subset of Ak.

(ii) Let C[ǫ] be the C-algebra in one variable with the relation ǫ2 = 0. We call π a
first-order deformation if B = Spec C[ǫ].

(iii) Let a torus T = TN act on X0. We call π homogeneous with respect to this action
if T acts on X and B and the maps π and X0 →֒ X are T -equivariant.

(iv) We say that π is homogeneous of degree zero if π is homogeneous and the action of
T on B is trivial.

Remark 2.1.5. Consider a homogeneous deformation π with respect to some torus T .
The action of T preserves fibers of π if and only if π is homogeneous of degree zero.

Now, given any schemes X0 and B, one always has a deformation of X0 with base
space B, namely, the product family π : X0 × B → B. We say that any deformation is
trivial if it is isomorphic to the product family. We say that a deformation π : X → B
is locally trivial if X admits an open cover U such that for each U ∈ U, π|U is a trivial
deformation. We will need the following theorems later:

Theorem 2.1.6 ([Ser06] Theorem 1.2.4). Let X0 be a smooth variety, and π a first-order
deformation of X0. Then π is locally trivial.
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Theorem 2.1.7 ([Ser06] Proposition 1.2.9). Let X0 be a variety. There is a one-to-one
correspondence

κ :

{
isomorphism classes of first-order
locally trivial deformations of X0

}
→ H1(X0, TX0)

called the Kodaira-Spencer correspondence with κ(ξ) = 0 if and only if ξ is trivial.

Let π : X → B now be a one-parameter deformation of some scheme X0, where
we have fixed some isomorphism B ∼= Spec C, where C is some localization of C[t] with
0 = V (t). Then we have a map Spec C[ǫ]→ B (canonical up to scaling) given by mapping
t to ǫ. This gives us a first-order deformation

πǫ : X ×B Spec C[ǫ]→ Spec C[ǫ]

by pulling back π. We say that π is infinitesimally (locally) trivial if πǫ is (locally)
trivial. We can extend κ to map infinitesimally locally trivial one-parameter deformations
to elements of H1(X0, TX0) by setting κ(π) = κ(πǫ); we call this the Kodaira-Spencer
map. This map gives us an important invariant of any infinitesimally locally trivial
one-parameter deformation.

For any variety X0, we set T 1
X0

= DefX0(Spec C[ǫ]). This carries the structure of a
C-vector space. Note that if X0 is smooth, then we in fact have T 1

X0
= H1(X0, TX0). We

say that X0 is rigid if T 1
X0

= 0. In this case, all first-order deformations are trivial.

2.2 Deformations of Rational, Affine, Complexity-

One T -Varieties

In this thesis, we will be studying deformations of nonaffine, rational, complexity-one
T -varieties. In order to do this, we first need to understand the affine case. This has
been studied in section 3 of [IV09] as well as [Vol10]. We summarize the essential results
here.

Definition 2.2.1. Let α = (α1, . . . , αr) be an r-tuple of natural numbers. An α-term
Minkowski decomposition of a polyhedron ∆ consists of polyhedra ∆i, i = 0, . . . , r all
with tailcone tail(∆) such that

(i) ∆ = ∆0 + α1 ·∆1 + . . . + αr ·∆r.

Furthermore, we call an α-term Minkowski decomposition α-admissible if:

(ii) For any u ∈ tail(∆)∨∩M , at most one of the evaluations min〈∆i, u〉 is non-integral.

(iii) For each 1 ≤ i ≤ r with αi > 1, ∆i is a lattice polyhedron.

For example,

b b b

b b

=
b b

+
b b

b

is an α-admissible Minkowski decomposition of a non-lattice polyhedron with tailcone 0
for α = (1).
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Remark 2.2.2. In the above definition, we also allow ∆ = ∅, in which case we replace
tail(∆) with some cone σ of our choice. Note that if ∆ 6= ∅, the second condition above
is equivalent to the following: for all vertices v of ∆, at most one of the corresponding
vertices vi of ∆i, i = 0, . . . , r is not a lattice point.

Now let D be a proper polyhedral divisor on Y = P1. As usual, let P be the set of
points P in Y such that DP is nontrivial. Consider a finite set of points Q of Y along
with an αQ-admissible Minkowski decomposition

DQ = D0
Q +

rQ∑

i=1

αi
QD

i
Q.

for each Q ∈ Q, where if DQ = ∅ we take σ = tail(D). We call this data a Minkowski
decomposition of D. As we shall see, this data encodes an r-parameter deformation of
X(D), where r =

∑
Q∈Q rQ.

For each point P ∈ P1, let yP ∈ C(Y ) be a rational function with its sole zero at P .
Let tQ,1, . . . , tQ,rQ

be coordinates on ArQ for Q ∈ Q, and set tQ,0 = 0 and α0
Q = 1. Let B

be any open affine neighborhood of the origin in
∏

Q∈Q ArQ such that a divisor on P1×B

of the form V (y
αi

Q

Q − tQ,i) doesn’t intersect any divisor of the form V (yP ) or V (y
αj

P

P − tP,j)
for P 6= Q and respectively P ∈ P or P ∈ Q. We then set Y tot = P1 × B, and consider
the polyhedral divisor

Dtot =
∑

P∈P\Q

DP ⊗ V (yP ) +
∑

Q∈Q
0≤i≤rQ

Di
Q ⊗ V (y

αi
Q

Q − tQ,i)

on Y tot. This is in fact a proper polyhedral divisor. We set Xtot = X(Dtot). Consider
now the composition of the quotient map X(Dtot) 99K Y tot with the projection to B.
This can be extended to a morphism π : Xtot → B. For any s = (sQ,i) ∈ B, we define a
polyhedral divisor on P1:

D(s) =
∑

P∈P\Q

DP ⊗ V (yP ) +
∑

Q∈Q
0≤i≤rQ

Di
Q ⊗ V (y

αi
Q

Q − sQ,i).

D(s) is in fact also proper, and we have D(0) = D. These polyhedral divisors encode the
desired deformation:

Theorem 2.2.3 ([IV09]). π : Xtot → B is an r-parameter deformation of X(D), and
for any s ∈ B, π−1(s) = X(D(s)).

We call deformations of the above form T -deformations. Note that a T -deformation
is always homogeneous of degree 0. Before finishing this section, we note the following
fact:

Lemma 2.2.4. If D has affine locus, then Loc(Dtot) is affine.

Proof. Since D has affine locus, Loc(Dtot) = Y tot \ V (f) for some nontrivial f ∈ C(Y tot).
Now because Y tot = P1

B and B is affine, the claim follows from [Har77], proposition
II.2.5(c).

19



-3 -2 -1 0 1 2 3
0

1

2

3

(a) D0

-3 -2 -1 0 1 2 3
0

1

2

3

(b) D0
0

-3 -2 -1 0 1 2 3
0

1

2

3

(c) D1
0

Figure 2.1: A Minkowski decomposition for the cone over a toric Fano surface

Example 2.2.5 (Cone over a toric Fano surface). Consider the proper polyhedral divisor
D from example 1.4.8; X(D) is the cone over a toric Fano surface. We can decompose
D0 as D0 = D0

0 + D1
0 as pictured in figure 2.1. This gives us a deformation π of X(D).

Note that the fiber of π at some s 6= 0 can’t be toric, since D(s) has nontrivial coefficients
at 0, s, and ∞.
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Chapter 3

Homogeneous Deformations of

Nonaffine T -Varieties

This chapter contains the essential construction introduced in this dissertation, and forms
a basis for all following chapters. In section 3.1, we introduce Minkowski decompositions
of polyhedral subdivisions, and show how they behave especially nicely for polyhedral
subdivisions with convex support. In section 3.2 we show how these decompositions can
be used to construct deformations of nonaffine rational complexity-one T -varieties. In
section 3.3 we provide criteria for these deformations to be separated and proper, as
well as specializing to deformations of complete T -varieties. In section 3.4 we discuss
the special case of locally trivial deformations. Finally, in section 3.5 we compute the
image of the Kodaira-Spencer map for certain infinitesimally locally trivial one-parameter
deformations.

3.1 Minkowski Decompositions of Polyhedral Subdi-

visions

As we saw in section 2.2, the essential ingredient for the construction of T -deformations
of affine T -varieties was Minkowski decompositions of polyhedra. For T -deformations of
nonaffine T -varieties, this role will be played by Minkowski decompositions of polyhe-
dral subdivisions. In this section, we introduce these decompositions, and prove some
preliminary results concerning them.

Definition 3.1.1. Let C be any polyhedral subdivision in NQ and α ∈ Nr. An α-term
Minkowski predecomposition of C consists of α-term Minkowski decompositions

∆ = ∆0 + α1 ·∆1 + . . . + αr ·∆r

for all ∆ ∈ C such that

(i) If ∆ ∩∇ 6= ∅ with ∆,∇ ∈ C, then (∆ ∩ ∇)i = ∆i ∩∇i for any i ∈ {0, . . . , r}.

Such a predecomposition is called a decomposition if additionally

(ii) We have ∑

i∈I

⋂

∆∈I

∆i ≺
∑

i∈I

⋂

∆∈J

∆i

for any J ⊂ I ⊂ C and I ⊂ {0, . . . , r}.
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Figure 3.1: A Minkowski predecomposition

Finally, any α-term Minkowski (pre)decomposition of C is α-admissible if for each ∆ ∈ C,
the corresponding decomposition of ∆ is α-admissible, see definition 2.2.1.

Remark 3.1.2. Definitions quite similar to the above have appeared for example in
[AHS08] (see definition 7.3) and [Mav09] (see section 3). Likewise, the fan decompositions
in section 5 of [IV09] are a special case of Minkowski decompositions.

Condition (ii) in the above definition appears somewhat cumbersome. However, if C
has convex support, it follows automatically from condition (i):

Proposition 3.1.3. Let C be a polyhedral subdivision with convex support. Then any
α-term Minkowski predecomposition of C is a decomposition.

Remark 3.1.4. If |C| is not convex, the above proposition need not hold. Consider
for example the polyhedral subdivision C pictured in the left of figure 3.1. Then the
following gives a (1)-term Minkowski predecomposition of C:

(−1.5, 0)(−.5, 1) = (−.5, 0)(.5, 1) + (−1, 0)

(1.5, 0)(.5, 1) = (.5, 0)(−.5, 1) + (1, 0)

(−1.5, 0)(1.5, 0) = (−.5, 0)(.5, 0) + (−1, 0)(1, 0)
(−1.5, 0) = (−.5, 0) + (−1, 0)
(1.5, 0) = (.5, 0) + (1, 0)
(−.5, 1) = (.5, 1) + (−1, 0)
(.5, 1) = (−.5, 1) + (1, 0)

However, it is clearly not a decomposition, since (−.5, 0)(.5, 1) and (.5, 0)(−.5, 1) do not
intersect in a common face.

In order to prove the above proposition, we introduce something quite interesting in
its own right: the cone of Minkowski summands. This was first introduced by K. Altmann
in [Alt97] for compact polyhedra. We now generalize it to polyhedral subdivisions with
convex support as follows:

Let C be a polyhedral subdivision of NQ with convex support. Let E ⊂ C(1) be
the set of compact edges in C. Set V := QE ; for any v ∈ V and e ∈ E, denote the
e-component of v by ve. Now for each edge e ∈ E, fix some orientation; we can thus
identify e with a vector ~e of NQ. For any compact two-face τ ∈ C(2), define its sign
vector

ετ = (ετ
e)e∈E ∈ V
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by

ετ
e :=

{
±1 if e ≺ τ

0 otherwise

such that
∑

e∈E ετ
e~e = 0. This determines ετ up to sign, and we choose one of both

possibilities.

Definition 3.1.5. For any polyhedral subdivision C with convex support, its cone of
Minkowski summands is

coneMS(C) :=

{
v ∈ V

∣∣∣∣
ve ≥ 0 for all e ∈ E∑
veε

τ
e~e = 0 for all compact τ ∈ C(2)

}
.

One easily checks that coneMS(C) is a pointed polyhedral cone. Furthermore, it is at
least one-dimensional, containing the vector 1, where 1e = 1.

We now show how, given v ∈ coneMS(C), to construct a set of polyhedra Cv. Consider
any sequence γ of edges e ∈ E defining a noncyclic path from vertices w1 to w2 in C(0).
For e ∈ γ, set εγ

e to 1 if e was oriented from w1 to w2 and −1 if not. Now for any ∆ ∈ C,
fix some vertex w∆ ∈ ∆(0). We set

∆̃v := conv

{
∑

e∈γ

veε
γ
e~e
∣∣∣ γ ⊂ ∆(1) noncyclic path

}
+ tail(∆).

In other words, we get the polyhedron ∆̃v by scaling the compact edges of ∆ according
to v and translating w∆ to the origin. Now fix some w0 ∈ C(0). Then set

∆v := ∆̃v +
∑

e∈γ

veε
γ
e~e

where γ is a path from w0 to w∆. Finally, set Cv := {∆v | ∆ ∈ C}. One easily checks that
the whole construction is independent of all choices except that of w0; different choices
of w0 correspond to uniform translation of the elements of Cv. Note that C1 is just some
translation of C.

Consider now ∆,∇ ∈ C such that ∆ ∩ ∇ 6= ∅. Then it follows immediately from
definition 3.1.5 and the above construction that ∆v ∩ ∇v = (∆ ∩ ∇)v. Furthermore,
consider v0, . . . , vr ∈ coneMS(C) and some α ∈ Nr. Then ∆v0 + . . .+∆αrvr = ∆v1+...+αrvr .
In particular, if v0 +

∑
i≥1 αivi = 1, we get an α-term Minkowski predecomposition of

C1. On the other hand, one easily checks that (modulo uniform translations) all α-
term Minkowski predecompositions arise in this way. Thus, coneMS(C) parametrizes
possible “summands” in predecompositions of C. From proposition 3.1.3 it will follow
that coneMS(C) in fact parametrizes possible summands in decompositions of C.

Example 3.1.6 (A two-dimensional subdivision). Consider the two-dimensional poly-
hedral subdivision C pictured in figures 3.2(a) and (c). Then #E = 6, and there are
two compact two-faces which give rise to four linearly independent equations; coneMS(C)
is consequently two dimensional. By attaching numbers to edges in figures 3.2(a) and
(c), we represent two elements v1, v2 ∈ coneMS(C) which in fact generate the cone. The
corresponding sets of polyhedra Cvi are pictured in figures 3.2(b) and (d), where in this
case we have chosen w0 = (0, 2).
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Figure 3.2: Generators for coneMS(C)

Proposition 3.1.7. As constructed above, Cv is a polyhedral subdivision with convex
support for any v ∈ coneMS(C). Furthermore, if C is complete, then Cv is complete.

Proof. In this proof, ∆, ∇, and � will always be elements of C. For 0 ≤ t ≤ 1, set
v(t) := t · 1 + (1 − t) · v. Now if for all t, ∇ ∩ � = ∅ implies ∇v(t) ∩ �v(t) = ∅, then Cv

is clearly a polyhedral subdivision. Thus, for the moment we will be assuming that this
isn’t the case. Then the set

{0 ≤ t ≤ 1 | There exist ∇, � ∈ C with ∇ ∩� = ∅, ∇v(t) ∩�v(t) 6= ∅}

isn’t empty, and we take t0 to be the maximal element. Note that we can actually assume
that there are ∇, � ∈ C such that ∇∩ � = ∅ but relint(∇v(t0)) ∩ relint(�v(t0)) 6= ∅, and
that the codimension of both ∇ and � is larger than zero.

We claim that t0 = 0; suppose not. If both ∇ and � were contained in the boundary
of C, then they would have to intersect, so we assume that ∇ isn’t in the boundary. Then
the polyhedra

{∆v(t0) | ∆ ∈ C, ∇ ≺ ∆}

surround the relative interior of ∇v(t0). Thus, there is some δ > 0 and some ∆ ∈ C such
that ∇ ≺ ∆ and ∆v(t0+δ) ∩�v(t0+δ) 6= ∅. But then ∆ ∩� 6= ∅, and for all t we have

∇v(t) ∩�v(t) = ∇v(t) ∩∆v(t) ∩�v(t) = ∇v(t) ∩ (∆ ∩�)v(t).

Both polyhedra in the intersection on the right hand side of the above equation are faces
of ∆v(t). Thus, if ∇v(t) ∩�v(t) 6= ∅ for some t > 0, this must hold for all t > 0. It follows
that t0 must in fact be 0.
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Now, if both∇ and � are contained in the boundary of C, it is clear from construction
that ∇0 ∩ �0 is a face of both ∇0 and �0. Thus, we can again assume that ∇ isn’t in
the boundary of C. Then we note that the polyhedra

{∆v | ∆ ∈ C, ∇v ≺ ∆v}

surround the relative interior of ∇v. Thus, there is some δ > 0 and some ∆ ∈ C such
that ∇v ≺ ∆v and ∆v(δ) ∩�v(δ) 6= ∅. Since δ > t0 = 0, it follows that ∆ ∩� 6= ∅. Then
we have

∇v ∩�v = ∇v ∩∆v ∩�v = ∇v ∩ (∆ ∩�)v.

Since both ∇v and (∆ ∩ �)v are faces of ∆v, their intersection must be a face of both
polyhedra.

The convexity of |Cv| follows easily from construction. If C is complete, then |Cv| is
unbounded in every direction, so since it is convex as well, Cv must be complete.

We now return to the proof of proposition 3.1.3:

Proof of proposition 3.1.3. Let |C| be convex, and consider any α-term predecomposition
of C. Then let v0, v1, . . . , vr ∈ coneMS(C) correspond to this predecomposition. Now, fix
some I ⊂ {0, . . . , r}. Set v :=

∑
i∈I vi. One easily checks that vi ∈ coneMS(Cv) for all

i ∈ I.
We claim that for any I ⊂ C,

∑

i∈I

⋂

∆∈I

∆i =
⋂

∆∈I

∑

i∈I

∆i. (3.1.1)

Indeed, if right hand side is equal to ∅, the equality is immediate. On the other hand,
if this isn’t the case, the equality follows from the fact that the vi for i ∈ I give a
predecomposition of Cv, coupled with repeated used of property (i) from definition 3.1.1.

Property (ii) from definition 3.1.1 follows from equation (3.1.1) together with the fact
that Cv is a polyhedral subdivision.

3.2 T -Deformations of Nonaffine T -Varieties

Let Y = P1 and let S be a divisorial fan on Y . We now show how to construct homo-
geneous deformations of the rational nonaffine T -variety X(S). This is done by gluing
together T -deformations of affine T -varieties.

Definition 3.2.1. Fix some finite set of points Q ⊂ P1. A Minkowski (pre)decomposition
of S consists of αQ-admissible Minkowski (pre)decompositions of the polyhedral subdivi-
sions SQ for Q ∈ Q.

Consider now some Minkowski decomposition of S. We shall show how this can be
used to construct a deformation of X(S). Now, for any D ∈ S, Q ∈ Q, and 0 ≤ i ≤ rQ,
let Di

Q be the corresponding summand in the Minkowski decomposition of the polyhedral
subdivision SQ if DQ 6= ∅, and take Di

Q = ∅ otherwise. Thus, for each D ∈ S, we have a

Minkowski decomposition giving rise to polyhedral divisors Dtot and D(s) on respectively
Y tot and P1, where Y tot = P1 × B is defined as in section 2.2. For each such polyhedral
divisor D, we also have a T -deformation πD : X(Dtot) → B. To get a deformation of
X(S), we will glue the deformations of πD together.
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For any I ⊂ S, we set

DI =
⋂

D∈I

D; DI,tot =
⋂

D∈I

Dtot; DI,(s) =
⋂

D∈I

D(s).

Note that DI ∈ S. We then set

Stot =
{
DI,tot

}
I⊂S

; S(s) =
{
DI,(s)

}
I⊂S

.

Proposition 3.2.2. Stot is a divisorial fan on Y tot. Likewise, each S(s) is a divisorial
fan on P1.

We will prove this proposition shortly, but first we wish to state the main theorem of
this section:

Theorem 3.2.3. The maps πD : X(Dtot) → B glue together to a flat family π :
X(Stot) → B such that for s ∈ B, π−1(s) = X(S(s)). Thus, π is an r-parameter de-
formation of X(S).

We call a deformation π of the above form a T -deformation as well.

Remark 3.2.4. T -deformations of non-affine varieties are also homogeneous of degree
zero. This follows from the fact that they are locally homogeneous of degree zero, and
all gluing respects the T -action.
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Figure 3.3: A T -deformation of a toric Fano surface

Example 3.2.5 (A T -deformation of a toric Fano surface). We construct a T -deformat-
ion of the toric Fano surface from example 1.2.15. Let S be the divisorial fan SΣ′

from this
example. It is induced by four polyhedral divisors D, E , F , G, and contains five further
polyhedral divisors gotten via intersections. Now, we define a Minkowski decomposition
of S0 as follows:

[1,∞) = [0,∞) + [1,∞)
[−1, 1] = [−1, 0] + [0, 1]

(−∞,−1] = (−∞,−1] + (−∞, 0]
{1} = {0} + {1}
{−1} = {−1} + {0}

This leads to the decompositions

D0 = [0,∞) + [1,∞)
E0 = [−1, 0] + [0, 1]
F0 = (−∞,−1] + (−∞, 0]

(D ∩ E)0 = {0} + {1}
(F ∩ G)0 = {−1} + {0}
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with the decomposition of the 0-coefficient for the four remaining elements of S simply
given by ∅ + ∅. We thus get a deformation π of X(S). In figure 3.3, we show the slice
S0, along with the slices in V (y0) and V (y0− t) of Stot. By looking at the divisorial fans
S(s) for s 6= 0 and using proposition 1.5.3, one sees that π smoothes the A1 singularity in
the chart X(E). However, the singularities in the charts X(D), X(F), and X(G) are not
smoothed by this deformation.

Remark 3.2.6. If we are only given a predecomposition of S, we can still construct
a deformation of X(S) as follows. Indeed, we still get a Minkowski decomposition of
every D ∈ S as described above. One can show that if D ≺ E , then Dtot ≺ E tot. Thus,
we can construct a scheme X̃tot by gluing X(Dtot) and X(E tot) along X((D ∩ E)tot) for
any D, E ∈ S. We can then naturally glue the deformations πD together to get a map
π̃ : X̃tot → B. Then the special fiber of π̃ is still X(S), and this deformation is also
homogeneous of degree zero. However, it has the distinct disadvantage that X̃tot and
the general fibers of π̃ may not be describable via divisorial fans. Furthermore, it can
be shown that if X̃tot is separated, then the predecomposition must have in fact been
a decomposition, and X̃tot = X(Stot). Thus, in all further discussion we will only be
considering true decompositions.

The remainder of the section is dedicated to proving proposition 3.2.2 and theorem
3.2.3. We split up the proofs into several smaller lemmata. Note that we will only be
proving the claim of 3.2.2 for Stot. The proof for S(s) is similar, and left to the reader.

Lemma 3.2.7. (i) Consider polyhedra ∆0 and ∆1, and set ∆ = ∆0 + ∆1. For any
w ∈ tail(∆)∨ we have face(∆, w) = face(∆0, w) + face(∆1, w).

(ii) For any polyhedra ∆ and w ∈ tail(∆)∨, face(tail(∆), w) = tail(face(∆, w)).

Proof. The proof of (i) is straightforward and left to the reader. The second claim follows
from the first by writing ∆ = ∆c + tail(∆) for some compact polyhedron ∆c.

Lemma 3.2.8. Consider polytopes ∇i ⊂ ∆i for 1 ≤ i ≤ n. Set ∆ :=
∑n

i=1 ∆i and
∇ :=

∑n
i=1∇

i and let I be any subset of {1, . . . , n}.

(i) For any w ∈ (tail ∆)∨ with face(∆, w) = ∇, we have face(
∑

i∈I ∆i, w) =
∑

i∈I ∇
i.

(ii) For any w ∈ (tail ∆)∨ with face(∆, w) = face(∇, w), we have face(
∑

i∈I ∆i, w) =
face(

∑
i∈I ∇

i, w).

Proof. Note that the first claim follows from the second. Indeed, if ∇ = face(∆, w), then
w is constant on ∇, and must also be constant on ∇i. Thus, ∇i = face(∇i, w).

For part (ii), observe that ∇i ⊂ ∆i implies min〈∇i, w〉 ≥ min〈∆i, w〉 for 1 ≤ i ≤ n.
But ∑

min〈∇i, w〉 = min〈∇, w〉 = min〈∆, w〉 =
∑

min〈∆i, w〉

so we in fact have min〈∇i, w〉 = min〈∆i, w〉. Coupled with ∇i ⊂ ∆i we then get that
face(∇i, w) ⊂ face(∆i, w). Applying lemma 3.2.7, we then have the following diagram:

face(∆1, w) + . . . + face(∆n, w) = face(∆, w)
∪ ∪ ‖

face(∇1, w) + . . . + face(∇n, w) = face(∇, w).

We can conclude that the inclusions must be equalities and again apply lemma 3.2.7.
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Lemma 3.2.9. Let D′,D be proper polyhedral divisors on some curve C with D′ ≺ D,
Loc(D) complete, and Loc(D′) not complete. Then for any w ∈ tail(D)∨ with

face(tail(D), w) = tail(D′),

we have deg(D(w)) > 0.

Proof. Let y be the general point of C. Then from D′ ≺ D and the conditions of definition
1.2.7, we find wy such that face(tail(D), wy) = tail(D′) and deg(D(wy)) > 0, since the
fact that some coefficients of D′ are the empty set implies the existence of a divisor
Dy ∈ |D(wy)| with nontrivial support. From this it follows that deg(D) ∩ tail(D′) = ∅.

Now let w be as in the statement of the lemma. The hyperplane determined by
〈·, w〉 = 0 intersects tail(D) in exactly tail(D′). Thus, it cannot intersect deg(D), since
deg(D) ⊂ tail(D). It follows that deg(D(w)) = (deg(D))(w) 6= 0, so it must be strictly
positive.

Lemma 3.2.10. For any I ⊂ S with Loc(DI) = P1, we have (DI)tot = DI,tot.

Proof. From point (i) of definition 3.1.1 we have

(DI)tot =
∑

P∈P\Q

(
⋂

D∈I

D)P ⊗ V (yP ) +
∑

Q∈Q
0≤i≤rQ

(
⋂

D∈I

D)i
Q ⊗ V (y

αi
Q

Q − tQ,i)

=
∑

P∈P\Q

(
⋂

D∈I

DP )⊗ V (yP ) +
∑

Q∈Q
0≤i≤rQ

(
⋂

D∈I

Di
Q)⊗ V (y

αi
Q

Q − tQ,i)

= DI,tot.

Lemma 3.2.11. For I ⊂ S, DI,tot arises from a Minkowski decomposition of DI.

Proof. Let DI,i
Q = DI,tot

x for x = V (y
αi

Q

Q − tQ,i). Then clearly DI
Q =

∑
αi

QD
I,i
Q , and

all DI,i
Q have the correct tail cone. Thus, we just need to check the admissibility of

the decomposition. But from definition 3.1.1(ii) coupled with 3.2.8(i) we have that for
any D ∈ I there exists w ∈ tail(D)∨ such that for 0 ≤ i ≤ rQ either DI,i

Q = ∅ or

DI,i
Q = face(Di

Q, w). Thus, since the Di
Q form an admissible decomposition, the DI,i

Q must
as well.

Lemma 3.2.12. For any I ⊂ S, DI,tot is proper.

Proof. This follows directly from lemma 3.2.11 and the fact that the affine construction
of T -deformations always gives proper polyhedral divisors.

The next lemma is the essential point in the proof of proposition 3.2.2. It is rather
technical in that we must consider a number of different cases, but each case just requires
an application of some of the above lemmata.

Lemma 3.2.13. For any J ⊂ I ⊂ S, DI,tot ≺ DJ ,tot.
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Proof. For any x ∈ Y tot not necessarily closed, we define a point x̂ ∈ Y as follows. If

x is contained in some V (y
αi

Q

Q − tQ,i) for Q ∈ Q and 0 ≤ i ≤ rQ, then let x̂ be equal
to the point Q in P1. Note that such a Q, if it exists, is unique due to the way B was
constructed. In this case, we say x is special. Otherwise, if x is contained in any divisor
V (yP ) for P ∈ Y , let x̂ = P . Finally, for any other point x, take x̂ to be the general point

in P1. We now describe DI,tot
x . If x is contained in some V (y

αi
Q

Q − tQ,i), let I be the set of

all i for which this holds. Then one easily sees that DI,tot
x =

∑
i∈I

⋂
D∈I D

i
Q. Otherwise,

DI,tot
x = DI

x̂ . One can describe DJ ,tot
x similarly.

Fix now any point y ∈ Loc(DI,tot), not necessarily closed. We must show that the
requirements of definition 1.2.7 hold for this point y. Now, since DI ≺ DJ , there exists
(wŷ, Dŷ) ∈ M × |DJ (wŷ)| fulfilling the face relation of definition 1.2.7 for DI ≺ DJ and
the point ŷ. In the remainder of the proof, we will consider several cases:

(a) Loc(DI,tot) = Y tot and deg(Dŷ) = 0;

(b) Loc(DI,tot) = Y tot and deg(Dŷ) > 0;

(c) Loc(DI,tot) 6= Y tot and Loc(DJ ,tot) = Y tot;

(d) Loc(DJ ,tot) 6= Y tot.

Starting with case (a), set wy = wŷ. We take Dy to be the trivial divisor on Y tot.
Note that we have Dy ∈ |D

J ,tot(wy)|. Clearly y /∈ supp Dy. Furthermore, we claim

face(DJ ,tot
y , wy) = DI,tot

y . (3.2.1)

Indeed, if y isn’t special, then this follows from DI,tot
y = DI

ŷ and DJ ,tot
y = DJ

ŷ . For y
special, point (i) of definition 3.1.1 gives us

DI
Q =

rQ∑

i=0

αi
Q∑

j=1

⋂

D∈I

(Di
Q)

DJ
Q =

rQ∑

i=0

αi
Q∑

j=1

⋂

D∈J

(Di
Q)

whereas we automatically have

⋂

D∈I

Di
Q ⊂

⋂

D∈J

Di
Q

for all 0 ≤ i ≤ rQ. Since face(DJ
Q , wy) = DI

Q, we can thus apply 3.2.8(i) to show equation

(3.2.1). Now finally, for all v ∈ Y tot, we claim that face(DJ ,tot
v , wy) = face(DI,tot

v , wy).
Indeed, for all v we have face(DJ

v , wy) = face(DI
v , wy). For v not special the claim is then

immediate. On the other hand, for v special we use lemma 3.2.8(ii), where the hypothesis
of the lemma is once again satisfied due to point (i) of definition 3.1.1. Thus, the pair
(wy, Dy) satisfies the requirements of definition 1.2.7.

We now move to case (b). Since deg(Dŷ) > 0, clearly we can find some k ∈ N such
that |DJ ,tot(k·wŷ)| contains a divisor D such that Y tot\supp D contains only those special
points x with x̂ = ŷ, and none of the points lying in V (yP ) for P ∈ P with P 6= ŷ. We then
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set wy = k·wŷ and take Dy = D. Now, we have y /∈ supp Dy, and face(DJ ,tot
y , wy) = DI,tot

y

exactly as in case (a). We claim that we also have face(DJ ,tot
v , wy) = face(DI,tot

v , wy) for
all v ∈ Y tot \ supp Dy. If v̂ 6= ŷ, then DI,tot

v and DJ ,tot
v are both trivial and the claim

follows from the properties of wŷ. Likewise, if v̂ = ŷ and y is trivial, then DI,tot
v = DI

y ,
DJ ,tot

v = DJ
y and the claim again follows from the properties of wŷ. Finally, if v̂ = ŷ and

y is not trivial, we can apply lemma 3.2.8(ii) as in part (a). Thus, we again have that
the pair (wy, Dy) satisfies the requirements of definition 1.2.7.

We now consider case (c). Suppose first that ŷ ∈ Loc(DI). Then one easily sees that
deg(Dŷ) > 0 and one can proceed as in case (b). Thus, we have reduced to the case that
ŷ /∈ Loc(DI), from which it follows that y must be special. Let Q and I be the correspond-
ing point and index set. Now, we can find w ∈ tail(DJ ) with face(DJ ,tot

y , w) = DI,tot
y

by point (ii) of definition 3.1.1. Furthermore, by lemma 3.2.9 we have deg(DJ (w)) > 0.
Similar to in case (b), we can find some k ∈ N such that |DJ ,tot(k ·w)| contains a divisor
D such that Y tot \ supp D contains only those special points x with x̂ = ŷ and DI,tot

x 6= ∅,
and none of the points lying in V (yP ) for P ∈ P with P 6= ŷ. We then set wy = k · wŷ

and take Dy = D. The claim of face(DJ ,tot
y , wy) = DI,tot

y is satisfied automatically by our
choice of wy. The claim that face(DJ ,tot

v , wy) = face(DI,tot
v , wy) for all v ∈ Y tot \ supp Dy

is immediate for v nonspecial, and follows from lemma 3.2.8(ii) for v special. Thus, we
again have that the pair (wy, Dy) satisfies the requirements of definition 1.2.7.

The final case (d) is essentially identical to the case of (c), with the simplification that
since Loc(DJ ) is affine, we needn’t worry about the degrees of evaluations of DJ .

We are now ready to prove proposition 3.2.2:

Proof of proposition 3.2.2. First, all elements of Stot are proper polyhedral divisors due
to lemma 3.2.12. Secondly, we claim that intersections of elements of Stot are themselves
elements of Stot. Indeed, for I,J ⊂ S, we have DI,tot ∩ DJ ,tot = DI∪J ,tot. Finally, from
lemma 3.2.13 we have the necessary face relations:

DI,tot ≻ DI∪J ,tot ≺ DJ ,tot

We conclude the section with the proof of theorem 3.2.3:

Proof of theorem 3.2.3. Since the maps πD arise from a projection of the quotient map,
they agree along intersections of polyhedral divisors and we can clearly glue them together
to a map π. Flatness of π can be checked locally on each X(DI,tot) for I ⊂ S; this follows
then directly from lemma 3.2.11 and theorem 2.2.3. From this theorem, we also know
π−1
|X(DI,tot)

(s) = X(DI,(s)), so we just need to check that everything glues properly. But
for I,J ⊂ S,

π−1
|X(DI∪J ,tot)

(s) = X(DI∪J ,(s)) = X(DI,(s)) ∩X(DJ ,(s)) = π−1
|X(DI,tot)

(s) ∩ π−1
|X(DJ ,tot)

(s).

Thus, the gluing on X(Stot) induces the gluing on X(S(s)).

Remark 3.2.14. The total space Xtot of a T -deformation need not be separated. For
example, take N = Z and consider the divisorial fan consisting of polyhedral divisors

[0, 1]⊗ {0}+ ∅ ⊗ {∞}

[2, 3]⊗ {0}+ ∅ ⊗ {∞}

∅ ⊗ {0}+ ∅ ⊗ {∞}
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on P1. Then we can decompose S0 as [0, 1] = [0, 1] + {0} and [2, 3] = [3, 4] + {−1}. This
gives a T -deformation with Xtot not separated; this can be easily checked via theorem 7.5
of [AHS08] by considering the valuation ν on C(Y tot) with ν(y0) = 1 and ν(y0 − t) = 2.
However, we shall see in the following section that this kind of pathology is avoided for
T -deformations of complete T -varieties, or more generally, T -varieties whose divisorial
fans only have slices with convex support.

3.3 Separated and Proper T -Deformations

We now provide criteria for T -deformations to be separated and proper:

Theorem 3.3.1. Let S be a divisorial fan together with some Minkowski decomposition,
and π : X(Stot) → B the corresponding T -deformation. If |SQ| is convex for all Q ∈ Q,
then X(Stot) is separated. Likewise, π is proper if and only if S is complete.

Proof. Let ν : C(Y tot) → Q be a valuation with center y ∈ Y tot. Then ν defines a set
of polyhedra Stot

ν called a weighted slice, see [AHS08], section 7. Now assume that |SQ|
is convex for all Q ∈ Q. We first claim that any such weighted slice Stot

ν is a polyhedral
subdivision. Indeed, using the notation of the proof of lemma 3.2.13, if y isn’t special,
then Stot

ν is simply a dilation of a slice SP for some P ∈ Y . On the other hand, if

y ∈ V (y
αi

Q

Q − tQ,i), then elements of Stot
ν are of the form

rQ∑

i=0

λi

⋂

∆∈I

∆i

for some λi ∈ Q≥0 and I ⊂ SQ. Now let v0, . . . , vrQ ∈ coneMS(SQ) correspond to the
Minkowski decomposition of C := SQ; take v :=

∑
λiv

i. Then one easily checks that
Cv = Stot

ν , up to translation, so the claim follows by proposition 3.1.7. Furthermore, we
have that

ν(DI,tot) ∩ ν(DJ ,tot) = ν(DI∪J ,tot) (3.3.1)

for all I,J ⊂ S. Indeed, this follows from an adapted version of equation (3.1.1). An
application of the evaluation criterion of [AHS08], section 7 then shows that X(Stot) is
separated.

The claim regarding properness uses a relative version of the evaluation criterion of
[AHS08], section 7 for completeness; this is described in [Süß09], theorem 7.1. Using the
notation from [Süß09], the map π is in fact a torus equivariant morphism corresponding
to the triple (pr, F, 0), where pr : Y × B → B is the projection and F : N → 0 is the
zero map. Since pr is proper, π is proper if and only if equation (3.3.1) holds and each
weighted slice of Stot is complete by theorem 7.1 of [Süß09]. If S is complete, this follows
from the above discussion together with the last claim of proposition 3.1.7. Conversely,
if all weighted slices of Stot are complete, clearly S must be complete as well.

An application of the above theorem is that T -deformations of complete T -varieties
don’t depend on the divisorial fan being used, just the marked fansy divisor. Let us make
this precise. Consider any marked fansy divisor Ξ on P1 and fix some finite set of points
Q ⊂ P1. A Minkowski decomposition of Ξ consists of αQ-admissible decompositions for
the polyhedral subdivisions ΞQ for Q ∈ Q. Similar to the case of a decomposition of a
divisorial fan, we can associate a deformation of X(Ξ) to the decomposition of Ξ. Indeed,
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let S be any divisorial fan with Ξ(S) = Ξ. Then the decomposition of Ξ automatically
defines a decomposition of S, since the slices are the same, thus giving us a deformation of
X(S) = X(Ξ). The following proposition shows us that this construction doesn’t depend
on the choice of S:

Proposition 3.3.2. Let S,S ′ be divisorial fans on P1 with Ξ(S) = Ξ(S ′) and consider
Minkowski decompositions of S and S ′ coming from identical decompositions of slices
SQ = S ′

Q. Then the corresponding deformations π and π′ are equal.

Proof. Without loss of generality we can assume that S is the divisorial fan we described
after proposition 1.4.3. We will then show that there is an open embedding ι : X(Stot) →֒
X(S ′tot) which commutes with π and π′. Both π and π′ are proper by theorem 3.3.1, so
ι must be proper as well, and is thus an isomorphism, from which the theorem follows.

To construct ι, we simply show that every polyhedral divisor in Stot is a face of some
polyhedral divisor in S ′tot, which locally guarantees an open embedding. Since the gluings
coming from S ′tot induce gluings for Stot, this globally gives us an open embedding. Now,
it is in fact sufficient to only consider the polyhedral divisors D(P, ∆)tot and D(σ)tot, since
other polyhedral divisors in Stot are faces of these. One easily checks that the polyhedral
divisor D(σ)tot must be in S ′tot as well, since Ξ(S ′) = Ξ implies that D(σ) is in S ′ and the
slices of S ′ and S have identical Minkowski decompositions. On the other hand, consider
P ∈ P and ∆ ∈ ΞP with tail(∆) not marked. Then there is a polyhedral divisor D ∈ S ′

with affine locus and DP = ∆. One easily confirms that D(P, ∆)tot is a face of Dtot.
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Figure 3.4: A T -deformation of C(dP6)

Example 3.3.3 (A compactified cone over the del Pezzo surface of degree six). Let Ξ be
the marked fansy divisor on P1 with sole nontrivial slice Ξ0 as pictured in figure 3.4(a),
and marks on all nonzero tail cones. Then X0 = X(Ξ) is a compactification of the
(anticanonical) cone over the del Pezzo surface of degree six. Now, we can decompose
the polyhedral subdivision Ξ0 as pictured in figure 3.4 parts (b) and (c). Here, full-
dimensional elements of Ξ0 are decomposed into the sum of an element of Ξ0

0 and Ξ1
0

which have the same shade of gray (or the same tailcone). The decompositions of lower-
dimensional elements of Ξ0 are induced via intersection. This decomposition of Ξ0 gives
us a decomposition of the marked fansy divisor Ξ, and thus a T -deformation π of X0.
For s 6= 0, the fiber π(−1)(s) is isomorphic to P1 × P1 × P1. Indeed, the fiber is described
by a divisorial fan with exactly two nontrivial slices Ξ0

0 and Ξ1
0. The desired conclusion

can be reached by reversing the downgrading procedure of remark 1.2.14.
We can construct a different deformation of X0 as follows. Indeed, the polyhedral

subdivisions S0, S1, and S∞ of figure 1.2 encode a (1, 1)-admissible decomposition of Ξ0
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in a similar manner to above, where we note that the hexagon of Ξ0 is decomposed into
the sum of the three compact line segments present in figure 1.2. The generic fibers of
this deformation are then all isomorphic to P(ΩP2).

These two deformations were presented in [JR06] as examples of a Fano variety with
canonical singularities admitting two different smoothings. A combinatorial description
similar to the one presented here can be found in [Süß08].

3.4 Locally Trivial Deformations

In the following two sections, we will exclusively be considering one-parameter T -de-
formations. This is not really a limitation, since we can always restrict a k-parameter
T -deformation naturally to k different one-parameter deformations. Our goal is now to
combinatorially characterize T -deformations which are locally trivial.

Definition 3.4.1. Let ∆ be a polyhedron in NQ, and α ∈ N. An α-admissible Minkowski
decomposition ∆ = ∆0 + α ·∆1 is essentially trivial if either

(i) ∆ = ∅;

(ii) ∆1 = tail(∆) + v for some v ∈ N ; or

(iii) α = 1 and ∆0 = tail(∆) + v for some v ∈ N .

Fix a polyhedral divisor D on Y = P1, and consider a Minkowski decomposition of D
leading to a one-parameter T -deformation of X(D). We can assume that the decomposi-
tion of D comes from an α-admissible Minkowski decomposition D0 = D0

0 + D1
0. We say

that the decomposition of D is essentially trivial if the decomposition of D0 is as well.
If S is a divisorial fan on P1 with Minkowski decomposition leading to a one-parameter
T -deformation of X(S), we say the decomposition of S is locally essentially trivial if the
decomposition of all elements of S0 are essentially trivial.

The first result of this section is the following, which gives one reason why essentially
trivial decompositions are important:

Proposition 3.4.2. Let D be a polyhedral divisor on P1 with Minkowski decomposition
leading to an infinitesimally locally trivial one-parameter T -deformation. If Loc(D) 6= P1

or X(D) is smooth, then the decomposition of D is essentially trivial.

Proof. Suppose first that X(D) is smooth.1 Then by propositions 1.5.2 and 1.5.3, X(D) is
a localization of some toric variety. It follows by the downgrading procedure that D0 must
be a hyperplane section in height one of some smooth cone. If D0 = ∅, then the Minkowski
decomposition is clearly essentially trivial. Suppose thus that D0 6= ∅. Without loss
of generality, we can assume that D0 is compact, since in the current situation an α-
admissible decomposition of D0 induces an α-admissible decomposition of the convex
hull of the vertices of D0. Since D0 comes from a smooth cone, the only lattice points it
can contain must be vertices. Thus, the decomposition of D0 must be essentially trivial.

Suppose instead that X(D) has affine locus and isn’t smooth. The singularity in the

fiber p
(−1)
D (0) is isomorphic to the toric singularity X0 = TV(cone(D0×1)), and the defor-

mation of X(D) induces a deformation of this singularity, which must be infinitesimally

1In this case, every deformation is automatically infinitesimally locally trivial, see [Ser06] theorem
1.2.4.
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locally trivial. From proposition 5.6 of [Alt95] it follows that the decomposition of D0

must be essentially trivial.

Remark 3.4.3. We believe that the conditions onD in the above proposition are unneces-
sary. However, at the moment there is not enough understanding of affine T -deformations
to eliminate this.

The next theorem further demonstrates the importance of essentially trivial decom-
positions:

Theorem 3.4.4. Let D be a polyhedral divisor on P1 with essentially trivial Minkowski
decomposition. Suppose that either D has affine locus, or with at most three exceptions
DP is of the form DP = tail(D)+vP for some vP ∈ N . Then the resulting one-parameter
deformation is infinitesimally locally trivial.

As we shall see, the reason that in the above theorem we only allow three exceptions
in the complete case has to do with the fact that an automorphism of P1 is determined
by its action on three points. The case of noncomplete locus is simpler, because we can
localize to a cover where each corresponding polyhedral divisor has only one nontrivial
coefficient which isn’t the empty set. The above theorem leads to the following corollary:

Corollary 3.4.5. Let S be a divisorial fan such that all polyhedral divisors D ∈ S with
X(D) singular have affine locus. Then one-parameter infinitesimally locally trivial T -
deformations of X(S) correspond to locally essentially trivial Minkowski decompositions
of S.

Proof. By proposition 3.4.2, infinitesimally locally trivial T -deformations must come from
essentially trivial Minkowski decompositions. But by proposition 1.5.2, we have that all
polyhedral divisors in S fulfill the conditions of theorem 3.4.4. Thus, the claim follows.

In the remainder of this section, we prove theorem 3.4.4. In doing so, we will construct
a number of isomorphisms of deformations which will be useful in calculating the Kodaira-
Spencer map in the following section. The following two lemmata are essentially special
cases of proposition 8.6 in [AH06]:

Lemma 3.4.6. Let Y be a normal semiprojective variety and D a proper polyhedral
divisor on Y . For some v ∈ N and f ∈ C(Y ) let D̃ = D + v ⊗ div(f). Then there is a

canonical isomorphism φv : X(D)→ X(D̃) where φ#
v is defined by mapping χu to f 〈v,u〉χu

for u ∈M .

Proof. We have

OX( eD) =
⊕

u∈δ∨∩M

H0
(
Y, D̃(u)

)
· χu ∼=

⊕

u∈δ∨∩M

H0
(
Y,D(u) + 〈v, u〉 div(f)

)
· χu

∼=
⊕

u∈δ∨∩M

H0
(
Y,D(u)

)
· f−〈v,u〉χu

and thus φ#
v induces an isomorphism OX( eD)

∼= OX(D), since

OX(D) =
⊕

u∈δ∨∩M

H0
(
Y,D(u)

)
· χu.
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Lemma 3.4.7. Let Y be a normal semiprojective variety and γ̄ ∈ Aut(Y ). For a proper
polyhedral divisor D on Y , define γ̄(D) =

∑
P DP ⊗ γ̄∗(P ). Then there is a natural

isomorphism γ : X(D)→ X(γ̄(D)) induced by γ̄.

Proof. Similar to the proof of the above lemma, we have

OX(γ̄(D)) =
⊕

u∈δ∨∩M

H0
(
Y, γ̄(D)(u)

)
· χu

=
⊕

u∈δ∨∩M

(γ̄#)−1
(
H0
(
Y,D(u)

))
· χu.

In the following, D will always be a proper polyhedral divisor on Y = P1, and we will
consider a Minkowski decomposition of D0 giving rise to a one-parameter deformation
π of X(D). As usual, the total space of π is X(Dtot), with Dtot a polyhedral divisor
on Y tot. By instead considering the Minkowski decomposition D0 = D0 + α · tailD0,
we get a possibly different polyhedral divisor Dprod on Y tot together with corresponding
deformation πprod : X(Dprod)→ B, which is clearly just the product family.

We also need to fix some homogeneous coordinates on P1: let z0, z1 be homogeneous
coordinates such that y0 = z0/z1. Now, consider any points P1 = (1 : c1) and P2 = (1 : c2)
with Pi ∈ P. We define an automorphism γ̄P1,P2 of Y tot by considering the following map

γ̄#
P1,P2

on the homogeneous coordinate ring of Y tot:

z0 7→
(1− (c1 + c2)t)z0 + tz1

(1− c1t)(1− c2t)

z1 7→
−c1c2tz0 + z1

(1− c1t)(1− c2t)

t 7→ t

One easily checks that γ̄#
P1,P2

is invertible with inverse

z0 7→ z0 − tz1

z1 7→ c1c2tz0 + (1− (c1 + c2)t)z1

t 7→ t

Lemma 3.4.8. Assume that DP = tail(D) for P /∈ {0, P1, P2}, and D0
0 = tail(D).

Then γ̄P1,P2(D
prod) = Dtot, and the map γP1,P2 induced by γ̄P1,P2 gives an isomorphism

γP1,P2 : X(Dprod)
∼
→ X(Dtot).

Proof. Set γ̄ = γ̄P1,P2. A simple calculation shows

γ̄∗(V (y0)) = γ̄∗(V (z0)) = V (z0 − tz1) = V (y0 − t)

γ̄∗(Pi × B) = γ̄∗(V (ciz0 − z1)) = V ((1− cjt)(ciz0 − z1)) = Pi × B

where i, j ∈ {1, 2} with i 6= j. The claims then follow by definition of γ̄P1,P2(D) and
lemma 3.4.7.

The next lemma is essential for the case where D has affine locus. It tells us that for
any divisor D in Y tot with Dtot

D = ∅, the only information pertinent for πǫ is the point of
intersection of D with the fiber over 0 ∈ B.

35



Lemma 3.4.9. Consider two proper polyhedral divisors E1, E2 on Y tot such that for all
prime divisors D ⊂ Y tot, either E1

D = E2
D or D = V (yl

P − ct) with P ∈ P1, l ≥ 1, c ∈ C
such that there are li, ci with E i

Di
= ∅ for Di = V (yli

P − cit). Then X(E1)×B Spec C[ǫ] =
X(E2)×B Spec C[ǫ].

Proof. Suppose that the E i have locus Y tot. Then the statement is trivial. If not, then
Loc(E i) is affine similar to in lemma 2.2.4. Without loss of generality we can assume
E1

D ≺ E
2
D for all prime divisors D. Thus, Loc(E1) is a localization of Loc(E2) along

certain divisors of the form D = V (yl1
P − c1t). We have by assumption l2 and c2 with

yk
P

y
l2
P
−c2t

regular on Loc(E2) for 0 ≤ k ≤ l1. Now,

f :=

(
yl2

P

yl2
P − c2t

)−1

=
yl2

P − c2t

yl2
P

= 1− t
c2

yl2

and
1− t

c2

yl2
≡ 1− t

c2

yl2 − c2t
(t2)

so f is regular on Loc(E2)×B Spec C[ǫ]. Thus, without loss of generality, we can actually
assume that Loc(E2) has been localized along V (yP ). Now,

g :=

(
yl1

P − c1t

yl1
P

)−1

≡ 1 + t
c1

yl1
(t2)

so g is regular on Loc(E2)×BSpec C[ǫ]. Thus, the regular functions on Loc(E1)×BSpec C[ǫ]
and Loc(E2)×B Spec C[ǫ] are equal, and the claim follows.

Proof of theorem 3.4.4. First, suppose that D0 = ∅. Then it follows directly from lemma
3.4.9 that πǫ = πǫ

prod. Suppose instead that D0 6= ∅, but Loc(D) is still affine. Then we
can cover X(Dtot) by two open sets X(E1) and X(E2), where we take E1

D = ∅ if D = V (yP )
for P ∈ P \ {0}, E2

D = ∅ for D = V (y0) or D = V (y0 − t), and E i
D = DD otherwise. By

lemma 3.4.9, X(E2) is isomorphic to a product family modulo t2. On the other hand, by
first applying an isomorphism φv from lemma 3.4.6 and then possibly the isomorphism
γ−1
∞,∞, we get again by lemma 3.4.9 something isomorphic to a product family modulo t2.

Thus, in this case as well π is infinitesimally locally trivial.
Finally, we suppose that D has complete locus, in which case the preconditions of the

theorem guarantee at most three points P0, P1, P2 such that DPi
isn’t a lattice translated

tailcone. We first apply isomorphisms φv so that we can assume without loss of generality
that DP = tail(D) for P 6= Pi and Dj

0 = tail(D) for either j = 0 or j = 1. Now, if
D1

0 = tail(D), then X(D) is the trivial family. Otherwise, it follows that Pi = 0 for some
i, without loss of generality i = 0. Then γP1,P2 gives an isomorphism with the trivial
family by lemma 3.4.8.

3.5 The Kodaira-Spencer Map

Let S be a divisorial fan on Y = P1 such that for any D ∈ S with complete locus, for
all but up to three slices of D we can write DP = tail(D) + vP with vP ∈ N . Consider
any locally essentially trivial Minkowski decomposition of S with resulting one-parameter
deformation π. From theorem 3.4.4, we know that π is in fact infinitesimally locally trivial.
Thus, we can compute κ(π) ∈ H1(X(S), TX(S)), the image of the Kodaira-Spencer map.
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To describe κ(π), we need to introduce some notation and conventions. First of all,
we need a cover of X(S) on which πǫ is trivial. To achieve this, we can actually assume
that for all D ∈ S with affine locus, either D0 = ∅ or DP = tail(D) for all P ∈ Loc(D)\0.
Indeed, for any D with affine locus, one easily checks that we can cover X(Dtot) by
X(Dtot + ∅ ⊗ (V (y0) + V (yα

0 − t))) and X(Dtot + ∅ ⊗
∑

P∈P\0 V (yP )). Furthermore, it
follows from the previous section that this cover has the desired property.

We associate the following data to the locally essentially trivial decomposition of
S. For each D ∈ S, we set aD = 0 if either D0 = ∅ or D0

0 = D0 + ṽ0
D for some

ṽ0
D ∈ N . Otherwise, we set aD = 1 and define ṽ0

D via D1
0 = D0 + ṽ0

D. If aD = 0, we set
c1
D = c2

D = vP
D = 0 for all P ∈ P.

For any point P ∈ P1, P 6= 0, we define cP ∈ C via P = V (y0
−1 − cP ). Assume now

instead that aD = 1. For all P ∈ P \0 with at most two exceptions P 1
D and P 2

D, we define
vP
D ∈ N via DP = tail(D) + vP

D . We then set ci
D = cP i

D
, where if the previous equation

didn’t have any exceptions, we can just take ci
D = 0. We can describe κ(π) in terms of

this data as follows:

Theorem 3.5.1. Consider the open covering of X(S) given by the open sets X(D),
D ∈ S. The image of π by the Kodaira-Spencer map in H1(X(S), TX(S)) is given by the
Čech cocycle dD,E defined by

dD,E(y0) = aE(c1
E · y0 − 1)(c2

E · y0 − 1)− aD(c1
D · y0 − 1)(c2

D · y0 − 1)

dD,E(χu) =

[
(−1)aE

(
〈ṽ0

E , u〉 − aE

∑
〈vP

E , u〉

(
1 +

(c1
E − y−1

0 )(c2
E − y−1

0 )

cP − y−1
0

))

− (−1)aD

(
〈ṽ0

D, u〉 − aD

∑
〈vP

D, u〉

(
1 +

(c1
D − y−1

0 )(c2
D − y−1

0 )

cP − y−1
0

))]
· y−α

0 χu.

Proof. We calculate the Kodaira-Spencer map as described in [Ser06]. First, fix some
D ∈ S. Then as in the proof of theorem 3.4.4 we have isomorphisms

θD : X(D)× Spec C[ǫ]
∼
→ X(Dtot)×B Spec C[ǫ].

Using the explicit descriptions of the maps φv and γP1,P2 , a routine calculation shows that

θ#
D maps

y0 7→ y0 + aDt(c1
D · y0 − 1)(c2

D · y0 − 1)

χu 7→ χu + (−1)aDty−α
0

(
〈ṽ0

D, u〉 − aD

∑
〈vP

D, u〉

(
1 +

(c1
D − y−1

0 )(c2
D − y−1

0 )

cP − y−1
0

))
· χu

modulo t2. Likewise, we have that (θ#
D )−1 maps

y0 7→ y0 − aDt(c1
D · y0 − 1)(c2

D · y0 − 1)

χu 7→ χu − (−1)aDty−α
0

(
〈ṽ0

D, u〉 − aD

∑
〈vP

D, u〉

(
1 +

(c1
D − y−1

0 )(c2
D − y−1

0 )

cP − y−1
0

))
· χu

modulo t2.

Now for D, E ∈ S, set θD,E = θ−1
D θE . We then define a derivation dD,E via θ#

D,E =
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id +t · dD,E . Since θ#
D,E = θ#

E (θ#
D )−1, we can calculate that θ#

D,E maps

y0 7→ y0 − aDt(c1
D · y0 − 1)(c2

D · y0 − 1) + aEt(c
1
E · y0 − 1)(c2

E · y0 − 1)

χu 7→ χu − (−1)aDty−α
0

(
〈ṽ0

D, u〉 − aD

∑
〈vP

D, u〉

(
1 +

(c1
D − y−1

0 )(c2
D − y−1

0 )

cP − y−1
0

))
· χu

+ (−1)aE ty−α
0

(
〈ṽ0

E , u〉 − aE

∑
〈vP

E , u〉

(
1 +

(c1
E − y−1

0 )(c2
E − y−1

0 )

cP − y−1
0

))
· χu

once again modulo t2. The claim of the theorem follows.

The above formula is admittedly quite technical. This is the price we pay for the
generality of divisorial fans we are considering. If we restrict to a special class of divisorial
fans, the resulting formula is much more manageable:

Corollary 3.5.2. Suppose that S is a divisorial fan such that for all D ∈ S with complete
locus, DP = tail(D) unless P = 0 or P = ∞ = V (y−1

0 ). Then as in theorem 3.5.1, κ(π)
is defined by the cocycle

dD,E = (aE − aD)
∂

∂y0
+ y−α

0

∑

i

〈(−1)aE ṽ0
E − (−1)aD ṽ0

D, e∗i 〉χ
e∗i

∂

∂χe∗
i

where e∗i is a basis of M .

Proof. Under the above assumptions, we always have ci
D = 0 as well as vP

D = 0. The
statement then follows directly from theorem 3.5.1.
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Chapter 4

Homogeneous Deformations of

Nonaffine Toric Varieties

As mentioned in the remark at the end of section 1.2, a toric variety can be viewed as a
T -variety by considering the action of some subtorus of the big torus. Thus, we can use
the divisorial fan decompositions of section 3.2 to construct deformations of an arbitrary
toric variety. If in particular the deformation is locally trivial, we can use theorem 3.5.1
to calculate the image of the Kodaira-Spencer map. We briefly describe this situation
in section 4.1. In section 4.2 we then give an explicit description of the vector space of
infinitesimal deformations in terms of connected components of certain graphs for smooth
toric varieties coming from a fan with convex full-dimensional support. We then use this
description in 4.3 to show that T -deformations of these varieties span this vector space
of infinitesimal deformations.

4.1 A Simplified Kodaira-Spencer Map

Let N ′ be an n-dimensional lattice with dual M ′, and let Σ be a fan on N ′
Q with corre-

sponding toric variety X0 = TV(Σ). Fix some primitive vector R ∈M ′ and set N = R⊥.
As noted in remark 1.2.14, after choosing a section from N ′ to N we get a divisorial fan
S = SΣ, where X(SΣ) describes X0 as a TN -variety; the only nontrivial slices of S are
of course at 0 and ∞.

Now, consider any Minkowski decomposition of S; this gives rise to a TN -deformation
π of X0. Without loss of generality, we can assume that Q ⊂ {0,∞}. Indeed, since
for P 6= 0,∞ DP = tail(DP ) for all D ∈ S, one can use lemma 3.4.6 to construct an
isomorphism with a deformation of the above type. We will furthermore assume that
α = 1.

Now suppose that the Minkowski decomposition of S is essentially locally trivial. Then
by theorem 3.4.4, π is infinitesimally locally trivial, and we can calculate the Kodaira-
Spencer map with theorem 3.5.1. To do this, let ei be a basis of N ′ with dual basis e∗i
such that R = e∗n. We define aσ := aDσ and vσ := ṽ0

Dσ − aσ · en, where the terms on the
right sides are as in section 3.5. Then we have the following:

Proposition 4.1.1. The image of the Kodaira-Spender map κ(π) is given by the Čech
cocycle

dτ,σ =
∑

i

〈(−1)aσvσ − (−1)aτ vτ , e
∗
i 〉χ

e∗i −e∗n
∂

∂χe∗i
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with respect to the open covering {TV(σ)}σ∈Σ of X0.

Proof. This follows directly from corollary 3.5.2 and the fact that y0 = χe∗n .

4.2 Infinitesimal Deformations of Smooth, Complete

Toric Varieties

For the next two sections, X0 will be a toric variety given by some fan Σ in the lattice
N ′. If Σ is full-dimensional, we say that X0 has no torus factors. If |Σ| is convex,
we say that X0 is semicomplete; X0 is in fact semicomplete if and only if it admits an
equivariant proper map to an affine toric variety. This class of varieties includes complete
toric varieties as well as (partial) resolutions of toric singularities.

We are interested in the vector space of infinitesimal deformations T 1
X0

. When X0 is
smooth, we simply have T 1

X0
= H1(X0, TX0). Now this vector spaces carries an M ′ grad-

ing, where M ′ is dual to N ′. Thus, we can compute it by computing each homogeneous
piece T 1

Y (−R).
For any ρ ∈ Σ(1) and R ∈M ′ with 〈ρ, R〉 = 1, let Γρ(−R) be the graph embedded in

N ′
Q with vertices consisting of primitive lattice generators of rays τ ∈ Σ(1) \ ρ fulfilling
〈τ, R〉 > 0; two vertices τ1 and τ2 are connected by an edge if they are common faces of
some cone in Σ. The main result of this section is the following:

Theorem 4.2.1. For a smooth semicomplete toric variety X0 with no torus factors,

dim T 1
X0

(−R) =
∑

〈ρ,R〉=1

max{0, dim H0(Γρ(−R), C)− 1}.

To prove the above theorem, we shall first need to calculate the cohomology of the
boundary divisors of X0; recall that the elements of Σ(1) correspond exactly to the
invariant prime divisors of X0 = TV(Σ). We denote the divisor corresponding to ρ by
Dρ.

Proposition 4.2.2. For any semicomplete toric variety X0 we have

H1 (X0, Dρ) (−R) = 0

if 〈ρ, R〉 6= 1. Otherwise,

dim H1 (Y, Dρ) (−R) = max{0, dim H0(Γρ(−R), C)− 1}.

Proof. Let Uρ(−R) = {v ∈ NQ|〈v,−R〉 < h(v)}, where h is the piecewise linear function
on Σ given by h(ρ) = −1, h(ρ′) = 0 for ρ′ ∈ Σ(1) with ρ′ 6= ρ. Then by [Dem70],
H i (X0, Dρ) (−R) ∼= H i(NQ, Uρ(−R)) for all i ≥ 0. Thus, we have the following exact
sequence coming from relative cohomology:

0→ H0(X0, Dρ)(−R)→ C→ H0(Uρ(−R), C)→ H1(X0, Dρ)(−R)→ 0.

A standard calculation shows that if Uρ(−R) 6= ∅, then H0(X0, Dρ)(−R) = 0. On the
other hand, if Uρ(−R) = ∅, then clearly H1(X0, Dρ)(−R) = 0.

Now suppose that 〈ρ, R〉 6= 1. If R = 0 then Uρ(−R) = ∅ and thus H1(X0, Dρ)(−R) =
0. Otherwise, one easily checks that Uρ(−R) deformation retracts to |Σ| ∩ [R = 1]. Since
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X0 is semicomplete, this is convex, so in particular Uρ(−R) has at most a single connected
component. Thus, H1(X0, Dρ)(−R) = 0 by the above exact sequence.

We can now assume that 〈ρ,R〉 = 1. In this case, H0(Uρ(−R), C) = H0(Γρ(−R), C).

Indeed, Uρ(−R) can be retracted to Ũρ(−R) = Uρ(−R) ∩ S, where S is the unit sphere.

Now for each cone σ of dimension larger than two in Σ, Ũρ(−R) ∩ σ can be replaced

in Ũρ(−R) with Ũρ(−R) ∩ ∂σ without changing the connectivity of the set. Thus, we

can replace Ũρ(−R) by its intersection with the union of all elements of Σ(2). This is
clearly homeomorphic to Γρ(−R). The desired formula then follows from above the exact
sequence.

The next lemma connects the cohomology of the tangent bundle with that of the
boundary divisors:

Lemma 4.2.3. [Jac94] Let X0 be a smooth toric variety with no torus factors. Then
H i(X0, TX0) ∼=

⊕
ρ∈Σ(1) H i(X0, Dρ) as M-graded groups for i ≥ 1.

Proof. Taking the long exact cohomology sequence coming from the generalized Euler
sequence1

0 7→ N1(X0)⊗OX0 →
⊕

ρ∈Σ(1)

O(Dρ)→ TX0 → 0 , (4.2.1)

and using the fact that H i(X0, N1 ⊗OX0) vanishes for i ≥ 1 gives us

H i(X0, TX0) ∼= H i(X0,
⊕

ρ∈Σ(1)

Dρ) ∼=
⊕

ρ∈Σ(1)

H i(X0, Dρ)

for i ≥ 1.

Proof of theorem 4.2.1. Combine lemma 4.2.3 with proposition 4.2.2.

-2 -1 0 1 2
-2

-1

0

1

2

Figure 4.1: S0 for a smooth toric threefold

Example 4.2.4 (A smooth toric threefold). Consider the complete fan Σ in Z3
Q with

rays ρ1 = (1, 0, 1), ρ2 = (1, 1, 0), ρ3 = (0, 1, 1), ρ4 = (−1, 0, 0), ρ5 = (−1,−1, 1), ρ6 =
ρ0 = (0,−1, 0), ρ7 = (0, 0, 1), and ρ8 = −ρ7, and top-dimensional cones generated by
ρi, ρi+1, ρ7 or ρi, ρi+1, ρ8 for 0 ≤ i ≤ 6. Then X0 = TV(Σ) is a smooth, complete toric
threefold. As above, taking R = [0, 0, 1] and ρ = ρ7, we get a slice S0 as pictured in
figure 4.1. The graph Γρ(−R) simply consists of the three nonzero vertices in the slice
S0. Thus, dim T 1

X0
(−R) = 2. Furthermore, one easily checks that this is the only degree

contributing to T 1
X0

.

1See [CLS10] for the noncomplete case.

41



The above theorem also has a number of corollaries:

Corollary 4.2.5. Let X0 be a smooth semicomplete toric surface with no torus factors.
Let X̃0 be an equivariant blow-up of X0. Then T 1

X0
⊂ T 1

eX0
.

Proof. By adding rays to a two-dimensional fan Σ, the number of connected components
of any Γρ(−R) can only increase.

In [BB96] it was shown that a smooth, complete toric Fano variety is rigid. This has
been generalized to Fano varieties with Q-factorial terminal singularities in [dFH09]. It
is possible to use our explicit cohomology calculations to generalize the first result in
another direction. In many cases, it suffices to assume weakly Fano, that is, that the
anticanonical divisor is nef:

Corollary 4.2.6. Let X0 be a complete, smooth, weakly Fano toric variety of dimension
n, and assume that there is no equivariant embedding Ã1 × (C∗)n−2 →֒ X0, where Ã1 is
the minimal resolution of a toric A1 singularity. Then X0 is rigid.

Proof. Let the roof of Σ be the support of the polyhedral subdivision consisting of sim-
plices spanned by the primitive generators of any cone in Σ. Since X0 is weakly Fano,
then the roof of Σ is in fact concave.

Consider R ∈ M and ρ ∈ Σ(1) such that 〈ρ, R〉 = 1 and take ρ1, ρ2 ∈ Γρ(−R) with
ρ1 6= ρ2. We shall show that ρ1 and ρ2 are in fact connected in Γρ(−R); the corollary
then follows from theorem 4.2.1.

We first claim that it suffices to only consider ρi which share a common cone with ρ.
Indeed, every connected component of Γρ(−R) clearly has a vertex sharing a cone with
ρ. Now let γ be the line segment connecting ρ1 and ρ2 and let γ̃ be the projection of γ
to the roof of Σ. Now, since the roof of Σ is concave,

〈v, R〉 ≥ min{〈ρ1, R〉, 〈ρ2, R〉} ≥ 1

for all v ∈ γ̃. Thus, if γ doesn’t intersect ρ, γ̃ is in Uρ(−R) and ρ1 and ρ2 are connected
in Uρ(−R) and thus also in Γρ(−R), where Uρ(−R) is as in the proof of proposition
4.2.2. Suppose on the other hand that γ intersects ρ, that is, that ρ ∈ γ̃. Then from
the concavity of the roof and 〈ρ, R〉 = 1, it follows that 〈ρi, R〉 = 1 for i = 1, 2. Since
however both ρi share common cones with ρ, one easily sees that the subfan of Σ with
rays ρ1, ρ2, and ρ corresponds to the toric variety Ã1 × (C∗)n−2, a contradiction.

Now, any weakly Fano smooth, complete toric surface which isn’t Fano does in fact
admit an embedding of Ã1, so the above result doesn’t provided anything new for n = 2.
However, we can show that non-Fano surfaces are in fact never rigid:

Corollary 4.2.7. A smooth, complete toric surface X0 is rigid if and only if X0 is Fano.

Proof. If X0 is Fano, it is rigid by [BB96]. On the other hand, suppose that X0 isn’t
Fano, and let Σ be the corresponding fan. Then there must be some ρ ∈ Σ(1) together
with R ∈M such that 〈ρ, R〉 = 1 and 〈ρ′, R〉 ≥ 1 for rays ρ′ ∈ Σ(1) adjacent to ρ. Then
Γρ(−R) has two connected components, so T 1

X0
(−R) 6= 0 by theorem 4.2.1.

We end the section with another statement regarding toric surfaces:
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Corollary 4.2.8. Any smooth semicomplete toric surface X0 with no torus factors is
unobstructed, that is,

H2(X0, TX0) = 0.

Proof. Using Serre duality with lemma 4.2.3, we have

H2(X0, TX0) ∼=
⊕

ρ∈Σ(1)

H2(X0, Dρ) ∼=
⊕

ρ∈Σ(1)

H0(X0,−Dρ −
∑

ρ′∈Σ(1)

Dρ′).

The terms on the right hand side are clearly zero.

4.3 One-Parameter Deformations Spanning T 1

For this section we will be assuming that X0 = TV(Σ) is smooth and semicomplete with
no torus factors. Our goal is to construct one-parameter T -deformations spanning T 1

X0
.

We do this by associating a Minkowski decomposition to each connected component of
the graphs Γρ(−R) which appeared in theorem 4.2.1.

Choose some R ∈ M ′ and let ρ ∈ Σ(1) be some ray with 〈ρ, R〉 = 1. We can choose
a basis e1 . . . , en of N ′ as above in proposition 4.1.1 such that R = e∗n and ρ = en. As
above, we take S = SΣ to be the divisorial fan describing X0 with a TN -action, where
N = R⊥. We now consider the graph Γρ(−R) from the previous section; note that by
rescaling with Q>0 we can consider Γρ(−R) to be embedded in the slice S0, with vertices
of Γρ(−R) corresponding to non-zero vertices of S0 and with two vertices connected by
an edge if they are in fact connected by a one-simplex in S0.

Now for R ∈M ′, define

Ω(−R) =
{
ρ ∈ Σ(1)

∣∣ 〈ρ, R〉 = 1 and Γρ(−R) 6= ∅
}
.

Assume that ρ ∈ Ω(−R) and choose now some connected component C of Γρ(−R). This
leads to a Minkowski decomposition of the polyhedral subdivision S0 as follows. Consider
∆ ∈ S0. If ∆ ∩ C = ∅, then set ∆0 = ∆ and ∆1 = tail(∆). If instead the intersection
∆ ∩ C is nonempty, set ∆0 = tail(∆) and ∆1 = ∆.

Proposition 4.3.1. The {∆i} form an admissible Minkowski decomposition of the poly-
hedral subdivision S0.

Proof. We utilize the cone of Minkowski summands from section 3.1. Indeed, consider
the vector v ∈ coneMS(S0) with ve = 1 if e ∩ C = ∅ and with ve = 0 if e ∩ C 6= ∅
for edges e in Γρ(−R); one easily confirms that this is indeed an element of the cone
of Minkowski summands. Furthermore, (S0)v = {∆0}, and (S0)1−v = {∆1}. Thus, it
follows from proposition 3.1.7 that the {∆i} form a Minkowski decomposition of S0. The
admissibility of this decomposition follows immediately from the construction.

Now, consider the Minkowski decomposition of S coming from the above decomposi-
tion of S0. This gives us a one-parameter T -deformation of X0 which we call π(C, ρ, R).
We can now formulate one of our main results:

Theorem 4.3.2. Let X0 be a smooth semicomplete toric variety with no torus factors.
Then the one-parameter deformations π(C, ρ, R) span T 1

X0
(−R), where ρ ranges over all

rays ρ ∈ Ω(−R) and C ranges over all connected components of the graphs Γρ(−R).
Thus, T 1

X0
is spanned by T -deformations.
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Proof. To prove the theorem, we simply calculate the Kodaira-Spencer map for the above
deformations and then use the description of T 1

X0
(−R) from theorem 4.2.1. For ρ ∈

Ω(−R), let ∂(R, ρ) be the derivation taking χv 7→ 〈ρ, v〉χv−R. If we choose the basis
e1, . . . , en such that en = ρ and R = e∗n, then ∂(R, ρ) = ∂

∂χe∗n
. Applying proposition 4.1.1

we then have that the image of π(C, ρ, R) is given by

dτ,σ = (a′
σ − a′

τ )∂(R, ρ)

where a′
σ = 0 if Di

0 ∩ C = ∅ and a′
σ = 1 otherwise. Indeed, it follows from the above

construction that aσ = a′
σ. Furthermore, ṽ0

σ = 0 for all σ. Note that we will only have to
consider cones σ ∈ Σ(n), as the TV(σ) cover X0.

Now let f ∈ H0(Γρ(−R), C) and σ ∈ Σ(n). If Γρ(−R)∩σ = ∅, set f(σ) = 1, otherwise
set f(σ) = f(v) for any v ∈ Γρ(−R) ∩ σ. Combining exact sequences from the proofs of
proposition 4.2.2 and lemma 4.2.3 we then have the exact sequence

0 −−−→
⊕

ρ∈Ω(−R)

C −−−→
⊕

ρ∈Ω(−R)

H0(Γρ(−R), C)
Φ
−−−→ H1(X0, TX0)(−R) −−−→ 0

where Φ maps f ∈ H0(Γρ(−R), C) to the Čech cocycle fτ,σ = 1
2
(f(τ)−f(σ))∂(R, ρ). Now,

for ρ ∈ Ω(−R) and any connected component C in Γρ(−R) let f(C, ρ, R) ∈ H0(Γρ(−R))
be defined by f(C, ρ, R)|C ≡ −1 and f(C, ρ, R)|Γρ(−R)\C ≡ 1. Then we have that
Φ(f(C, ρ, R)) is equal to the image of π(C, ρ, R) in H1(X0, T

1
X0

) by the above calculation.
Furthermore, one easily sees that the f(C, ρ, R) form a basis of H0(Γρ(−R), C)/C, where
C ranges over all connected components of Γρ(−R) except one. Thus, if we allow ρ to
vary over the elements of Ω(−R) as well, the π(C, ρ, R) span T 1

X0
(−R).
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Figure 4.2: Deformations of a smooth toric threefold

Example 4.3.3 (A smooth toric threefold). We continue example 4.2.4 and construct
Minkowski decompositions corresponding to deformations spanning T 1

X0
, where X0 was
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our smooth toric threefold. As mentioned previously, the connected components of
Γρ(−R) are simply the vertices (1, 0) (0, 1), and (−1,−1). For each vertex, we thus
get a decomposition of S0 with two summands. For the vertex v, we denote the resulting
polyhedral subdivisions by S0

0 (v) and S1
0 (v); these are pictured in figure 4.2.

Note that we can find a decomposition of S0 with three summands, where the corre-
sponding polyhedral subdivisions are S1

0 (1, 0), S1
0 (0, 1), S1

0 (−1,−1). Adding up any two
of the summands gives us one of the three original decompositions. Thus, we have in fact
found a two-parameter deformation of X0 which spans T 1

X0
.
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Chapter 5

Families of T -Invariant Divisors

Up until now, we have been primarily concerned with certain deformations of some T -
variety X0. In other words, we have been interested in properties of the functor DefX0 .
For this chapter, we switch our focus to the functor Def(X0,L) for some T -invariant line
bundle L. In section 5.1, we construct an explicit map between certain subgroups of
invariant divisors of the fibers of a one-parameter T -deformation π. We then show that
under certain conditions, this map preserves many nice properties, for example, Euler
characteristic. In section 5.2 we then prove that this map is quite often surjective, in
particular, for T -deformations of complete T -varieties.

5.1 A Map of Picard Groups

Throughout the next two sections, we will fix some rational complexity-one T -variety
X0 = X(S) together with some one-parameter T -deformation π : Xtot → B. We will
assume that π arises from a Minkowski decomposition of S occurring at the point 0 ∈ P1;
set α = α0. For any s ∈ B, denote by Xs = X(S(s)) the fiber of π over s. We denote by
α(s) the divisor V (yα

0 − s) on P1.
Our goal is now to compare the Picard groups Pic(Xs) as s ∈ B varies. Our strategy

is the following: for any fixed b ∈ B \ {0} we will identify a subgroup T-CDiv′(Xb) of
T-CDiv(Xb) such that any element of T-CDiv′(Xb) naturally lifts to an invariant Cartier
divisor on the total space Xtot. We can then restrict this divisor to any fiber Xs, giving
us an element of T-CDiv′(Xs). Thus, we will have a natural map πb,s : T-CDiv′(Xb) →
T-CDiv′(Xs). Since this map respects linear equivalence, we can then use it to compare
subgroups of the Picard groups of the fibers.

Our first task is now to identify the special subgroups T-CDiv′ which allow for natural
lifting of divisors to Xtot. This will be taken care of by the following definition:

Definition 5.1.1. For s ∈ B ⊂ P1, define CaSF′(S(s)) to consist of those h ∈ CaSF(S(s))
such that for all D(s) ∈ S(s), we can find u ∈M , and a0, as ∈ Z satisfying

(i) (h|D(s))0(v) = 〈v, u〉+ a0;

(ii) (h|D(s))η(v) = 〈v, u〉+ as for all η ∈ supp α(s).

We of course also always have CaSF′(S(0)) = CaSF(S(0)). Note that CaSF′(S(s)) =
CaSF(S(s)) if the decomposition of S is essentially locally trivial and α = 1. Finally, by
T-CDiv′ we denote the image of CaSF′ under the natural map from section 1.3.
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Fix now some b ∈ B∗ := B\{0} and choose some support function h(b) ∈ CaSF′(S(b));
this corresponds to an invariant Cartier divisor Dh(b) ∈ T-CDiv′(Xb). We will be showing
that this can be lifted to a Cartier divisor Dtot

h on Xtot. We first will need invariant open
coverings of Xb and Xtot. For P ∈ P \ {0} and D ∈ S with noncomplete locus, set

U
(b)
D,P = X

(
D(b) + ∅ ⊗ α(b) +

∑

Q∈P
Q 6=P

∅ ⊗Q
)

U tot
D,P = X

(
Dtot + ∅ ⊗ V (yα

0 − t) +
∑

Q∈P
Q 6=P

∅ ⊗ V (yQ)
)

and likewise set

U
(b)
D,0 = X

(
D(b) +

∑

Q∈P
Q 6=0

∅ ⊗Q
)

U tot
D,0 = X

(
Dtot +

∑

Q∈P
Q 6=0

∅ ⊗ V (yQ)
)
.

On the other hand, for P ∈ P and D ∈ S with complete locus, set U
(b)
D,P = X(D(b))

and U tot
D,P = X(Dtot). One easily checks that {U

(b)
D,P} and {U tot

D,P} define invariant open
coverings of respectively Xb and Xtot. These open coverings may in fact be finer than
necessary for defining the desired Cartier divisor.

For each P ∈ P and D ∈ S, let uD,P ∈ M , f
(b)
D,P ∈ C(Y ) be such that Dh(b)

|U
(b)
D,P

=

div(f
(b)
D,P · χ

uD,P ). Such f
(b)
D,P , uD,P exist since h(b) ∈ CaSF′(S(b)). Now set

f tot
D,P = f

(b)
D,P ·

(
yα

0 − t

yα
0 − b

)νη(f
(b)
D,P

)

∈ C(Y tot),

where νη is the valuation in the point η, and η is any point in the support of α(b).

Proposition 5.1.2. With respect to the open covering Xtot =
⋃

U tot
D,P , the functions

f tot
D,P · χ

uD,P ∈ C(Xtot) define an invariant Cartier divisor on Xtot which we denote by
Dtot

h .

Proof. Consider D,D′ ∈ S and P, P ′ ∈ P. It is sufficient to show

f tot
D,P

f tot
D′,P ′

· χuD,P−uD′,P ′ ∈ H0
(
U tot
D,P ∩ U tot

D′,P ′,OXtot

)
.

Setting ũ = uD,P − uD′,P ′ and choosing some η ∈ supp α(b), this is equivalent to showing

g :=
f

(b)
D,P

f
(b)
D′,P ′

·

(
yα

0 − t

yα
0 − b

)νη(f
(b)
D,P

/f
(b)

D′,P ′)

∈ H0
(
Y tot
D,P ∩ Y tot

D′,P ′,Dtot ∩ D′tot
(
ũ
))

,

where Y tot
D,P = Y tot if Loc(D) is complete and Y tot

D,P is the image of U tot
D,P under the quotient

map otherwise. This in turn is the same as showing that

νD(g) ≥ −(Dtot ∩ D′tot)D

(
ũ
)

(5.1.1)
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for all divisors D contained in Y tot
D,P ∩ Y tot

D′,P ′, where νD is the corresponding valuation.
One immediately sees that this is automatically fulfilled unless D is of the form V (yα

0 − t)
or V (yQ) for some Q ∈ P1, since both sides of the above inequality will be 0.

Now for Q ∈ P1 \ supp α(b), νV (yQ)(g) = νQ(f
(b)
D,P/f

(b)
D′,P ′). Furthermore, for η ∈

supp α(b), νV (yη)(g) = 0 and νV (yα
0 −t)(g) = νη(f

(b)
D,P/f

(b)
D′,P ′). On the other hand, we have

(Dtot ∩ D′tot)V (yQ)

(
ũ
)

= (D(b) ∩ D′(b))Q

(
ũ
)
;

(Dtot ∩ D′tot)V (yη)

(
ũ
)

= 0;

(Dtot ∩ D′tot)V (yα
0 −t)

(
ũ
)

= (D(b) ∩ D′(b))η

(
ũ
)
.

Now, since the functions f
(b)
D,PχuD,P define a Cartier divisor on Xb, we have

f
(b)
D,P

f
(b)
D′,P ′

∈ H0
(
YD,P ∩ YD′,P ′,D(b) ∩ D′(b)

(
ũ
))

where YD,P is defined similarly to Y tot
D,P . Consequently,

νQ(g) ≥ −(Dtot ∩ D′tot)Q

(
ũ
)

(5.1.2)

for Q ∈ YD,P and inequality (5.1.1) follows for the required divisors.

Having checked that Dtot
h is indeed a Cartier divisor of Xtot, we now want to describe

its restrictions to fibers Xs. This restriction (Dtot
h )s will be T -invariant, and should thus

correspond to some support function h(s). Indeed, we will be defining a support functions
h(s) ∈ CaSF(S(s)) for any s ∈ B. For s 6= 0, the combinatorial data of h(s) will be
essentially the same as that of h(b), just that the coefficients for prime divisors in α(b)
have become coefficients for prime divisors in α(s). For s = 0, things are a little more
tricky, and we have to somehow ‘add’ certain coefficients together:

Definition 5.1.3. For each s ∈ B, define h(s) ∈ CaSF(S(s)) as follows:

• For P ∈ P1 \ (supp α(s) ∪ supp α(b)) set h
(s)
P = h

(b)
P ;

• If s 6= b, set h
(s)
P = (h(b))0 for P ∈ supp α(b);

• For P ∈ supp α(s) and s 6= 0 set h
(s)
P = h

(b)
η for any η ∈ supp α(b);

• For P = s = 0, set
h

(s)
0 (v) = h

(b)
0 (v0) + αh(b)

η (vη)

where if v ∈ D0 for some D ∈ S, we take any v0 ∈ D
(b)
0 , vη ∈ D

(b)
η for any η ∈ α(b)

such that v0 + αvη = v.

Note that the requirement h(b) ∈ CaSF′(S(b)) ensures that h
(0)
0 (v) does not depend on the

choice of such v0 and vη. One easily checks that h(s) is in fact an element of CaSF′(S(s)).

Remark 5.1.4. For any support function f , let Γf denote the polyhedral subdivision of
its graph. Then one easily checks that the elements of Γ

h
(b)
0

and Γ
h
(b)
η

give an (α)-term

Minkowski decomposition of the polyhedral subdivision Γ
h
(0)
0

.
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Proposition 5.1.5. The restriction of Dtot
h to the fiber Xs for any s ∈ S is equal to

(Dtot
h )s = Dh(s).

In particular, Dtot
h is a lifting of Dh(b).

Proof. A simple calculation shows that the restriction of the functions f tot
D,P ·χ

uD,P to any

fiber Xs are exactly those determined by h(s).

In light of the two above propositions, we define a map πb,s : T-CDiv′(Xb) →
T-CDiv′(Xs) by sending Dh(b) to Dh(s). For s ∈ B∗, it is obvious from the construc-
tion that πb,s is an isomorphism. For s = 0, the matter is slightly more delicate. It is
clear from construction that πb,0 is a group homomorphism sending principal divisors to
principal divisors, with kernel contained in the set of principal divisors. Thus, πb,s always
descends to an injective map π̄b,s : Pic′(Xb) →֒ Pic′(Xs), where Pic′ is the image of CaSF′

modulo linear equivalence.
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Figure 5.1: A family of divisors for a toric Fano surface

Example 5.1.6 (A family of divisors for a toric Fano surface). We consider the de-
formation π of the toric Fano surface from example 3.2.5, with corresponding fam-
ily of divisorial fans S(s). For some b 6= 0, we consider the support function h(b) =
h

(b)
0 ⊗{0}+ h

(b)
b ⊗{b}+ h

(b)
∞ ⊗{∞}, where h

(b)
0 , h

(b)
b , and h

(b)
∞ are as pictured in figure 5.1.

Then h(b) ∈ CaSF′(S(b)). Furthermore, for this support function, we get that h(0) is the
support function from example 1.3.5. Thus, we have constructed a family of divisors Dtot

h

for π which restricts to the anticanonical divisor on the central fiber. One can actually
check that all the divisors in the family are anticanonical divisors. Note that for this
example, CaSF′(S(b)) is not equal to CaSF(S(b)).

Remark 5.1.7. The existence of an injection πb,0 : Pic′(Xb) →֒ Pic′(X0) for T -deforma-
tions is somewhat similar to the situation for smoothings of Fano varieties, see for example
propositions 3.16 and 3.17 of [Gal07]. Indeed, if X0 is an almost Fano variety with at
most Gorenstein canonical singularities and π : Xtot → B is some smoothing, then there
is an injective map Pic(Xtot)→ Pic(Xs) for all s ∈ B which is an isomorphism for s = 0.

Now if the special fiber X0 is complete, the cohomology groups of coherent sheaves
on all the fibers of π have finite vector space dimension. For invertible sheaves we then
have the following theorem:

Theorem 5.1.8. Let X0 be complete. Consider some b ∈ B∗ and any L ∈ Pic′(Xb).
Then we have

(i) hi (π̄b,s(L)) = hi (L) for all i ≥ 0 and any s ∈ B∗;
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(ii) hi (π̄b,0(L)) ≥ hi (L) for all i ≥ 0;

(iii) χ (π̄b,s(L)) = χ (L) for any s ∈ B.

Proof. Consider h(b) ∈ CaSF′(S(b)) with Dh(b)
∼= L. Then O(Dtot

h ) is a line bundle on Xtot

and thus flat over B, since π is flat. One easily checks that for s ∈ B∗, hi(O(Dh(s))) =
hi(L); this can be seen for example by comparing Čech cohomology. Now since X0 is
complete, we have that π is proper by proposition 3.3.1. The theorem then follows from
the corollary in [Mum70] section II.5, since O(Dh(s)) = O(Dtot

h )|Xs
for all s ∈ B.

Similarly, if X0 is complete, πb,s preserves intersection numbers:

Theorem 5.1.9. Let X0 be complete of dimension n and consider invariant divisors
D1, . . . , Dn ∈ T-CDiv′(Xb) for some b ∈ B∗. Then for all s ∈ B, the intersection
numbers

πs,b(D
1). · · · .πs,b(D

n)

agree.

Proof. By proposition 5.1.2, we can lift the divisor Di to a divisor D̃i on Xtot. Define
γ to be the one-cycle class attained by intersecting the divisors D̃1, . . . , D̃n. Then γs,
the restriction of γ to Xs, is the intersection of all πb,s(D

i). Thus, deg(γs) is the desired
intersection number. The theorem then follows from a direct application of proposition
10.2 in [Ful98].

Finally, πb,s maps canonical divisors to canonical divisors:

Theorem 5.1.10. If for some b ∈ B∗, K ∈ T-CDiv′(Xb) is a canonical divisor on Xs,
then πb,s(K) is a canonical divisor on Xs for all s ∈ B.

Proof. If K ∈ T-CDiv′(Xb), we can assume (after possible modification with an invariant
principal divisor) that it is of the form stated in theorem 3.19 of [PS08]. Coupled with
proposition 3.16 of [PS08], we have that K = Dh(b), with h(b) ∈ CaSF′(Xs) defined as
follows:

(i) For P ∈ Y \ {0} and v a vertex in S
(b)
P , h

(b)
P (v) = −1 + 1/µ(v);

(ii) For Q = 0 and v a vertex in S
(b)
Q , h

(b)
Q (v) = 1 + 1/µ(v);

(iii) tail(h(b)) has slope 1 along every ray of the tailfan of S(b).

Indeed, this follows immediately by taking KY = −2 · {0} in theorem 3.19 of [PS08].
For s 6= 0, it immediately follows that Dh(s) is canonical. On the other hand, one easily
checks then that h(0) ∈ CaSF(X0) is the support function defined by:

(i) For P ∈ Y \ {0} and v a vertex in S
(0)
P , h

(0)
P (v) = −1 + 1/µ(v);

(ii) For v a vertex in S
(0)
0 , h

(0)
0 (v) = 1 + 1/µ(v);

(iii) (h(0))0 has slope 1 along every ray of the tailfan of S(0).

Indeed, (i) and (iii) are immediate, and (ii) follows from the fact that any vertex v ∈ S
(0)
0

is the sum of vertices of S(b)
0 and S(b)

b , one of which must be a lattice point. Taking again
KY = −2 · {0}, we see that Dh(0) is also canonical.
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Example 5.1.11 (A compactification of C(dP6)). We return to example 3.3.3 and con-
sider the deformation π of X0 = C(dP6) = X(Ξ) to P1 × P1 × P1. Let S be any divi-
sorial fan with Ξ(S) = Ξ together with some Minkowski decomposition corresponding
to π. We first observe that for b 6= 0, T-CDiv′(Xb) ∼= Z3 × Div0(P1). Indeed, for
a1, a2, a3 ∈ Z, let h(b)[a1, a2, a3] ∈ CaSF′(S(b)) be the support function taking respective

values −a1,−a2,−a3 on the vertices (0, 0), (0, 1), (−1, 0) of S
(b)
0 , taking respective values

0, a2 − a1, a3 − a1 on the vertices (0, 0), (0,−1), (1, 0) of S
(b)
b and taking value 0 on all

other vertices. Note that this completely determines h(b)[a1, a2, a3]. It is then obvious
that any element of CaSF′(S(b)) can be written uniquely as h(b)[a1, a2, a3] + P for some
a1, a2, a3 ∈ Z and P ∈ Div0(P1). This gives the above isomorphism.

On the other hand, we also have that T-CDiv(X0) = T-CDiv′(X0) ∼= Z3 × Div0(P1).
Indeed, for a1, a2, a3 ∈ Z, let h(0)[a1, a2, a3] ∈ CaSF′(S(0)) be the support function taking

respective values −a1,−a2,−a3 at (0, 0), (0, 1), (−1, 0) of S
(0)
0 and with value 0 on the

vertex 0 of all other slices. As before, this completely determines h(0)[a1, a2, a3] and as
above, any element of CaSF′(S(0)) can be written uniquely as h(0)[a1, a2, a3] + P . Now,
if we set h(b) = h(b)[a1, a2, a3] + P , then one easily checks that h(0) = h(0)[a1, a2, a3] + P .
Thus, in this case, the map πb,0 is injective and thus an isomorphism. Factoring out by
linear equivalence, we then have Pic(X0) ∼= Pic′(Xb) ∼= Z. Note that in this example
Pic′(Xb) 6= Pic(Xb), which is of course just Z3.

Now, −K(b) := Dh(s)[2,2,2] is an anticanonical divisor for Xb. Then

−K(0) := Dh(0)[2,2,2] = πs,0(−K(s)),

and one easily checks that this is in fact an anticanonical divisor for X0. Since both
X0 and Xb are toric Fano varieties, the higher cohomology groups of −K(0) and −K(b)

vanish, so that in this case we actually have hi(−K(0)) = hi(−K(b)) for all i ≥ 0, in
particular for i = 0.

5.2 Surjectivity of πb,0

The goal of this section is to establish the surjectivity of the map πb,0 in certain cases.
We first have the following proposition:

Proposition 5.2.1. The map πb,0 is surjective if rank Pic′(Xb) = rank Pic′(X0) and |S0|
is connected.

Proof. We assume that α = 1; the proof for α > 1 is similar. Now, the map Pic′(Xb)⊗
Q → Pic′(X0) ⊗ Q induced by πb,0 is an isomorphism. However, one easily checks that
Pic′(X0) is torsion free, since multiples of a non-constant support function are still non-
constant, and Pic(P1) is torsion free. Thus, given any support function f ∈ CaSF′(S(0)),
we can find a not necessarily integral support function h̃(b) ∈ CaSF′

Q(S(b)) with h̃(0) = f ′,
where CaSFQ is defined as CaSF without the integrality condition, and f−f ′ is a principal
support function. We can correct h̃(b) by a principal support function to in fact assume
that f = f ′. It is clear from the construction of h̃(0) from h̃(b) that h̃(b) must have integral
slopes. Now consider some vertex e ∈ S0 with decomposition e = e0 + e1, with (without

loss of generality) e0 a lattice point. Set h
(b)
0 = h̃

(b)
0 − h̃

(b)
0 (e0), h

(b)
b = h̃

(b)
b + h̃

(b)
0 (e0), and

h
(b)
P = h̃

(b)
P for P 6= 0, b.

We claim that h
(b)
P is an integral support function for all P . Indeed, for P 6= 0, b

this is immediate. Furthermore, for any ∆ ∈ S0, there is u ∈ M and a ∈ Z such that
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f0 restricted to ∆ is given by a + 〈·, u〉. By construction there are a0, ab ∈ Q such that

a = a0 + ab and h
(b)
0 (respectively h

(b)
b ) restricted to ∆0 (or ∆1) is given by a0 + 〈·, u〉

(respectively ab + 〈·, u〉). Note that if a0 ∈ Z, then ab ∈ Z and vice versa. Thus, for each
∆, we must show that either a0 ∈ Z or ab ∈ Z. Note that if ∆0 or ∆1 contains a lattice
point on which h

(b)
0 or h

(b)
b takes an integral value, then a0 respectively ab is integral as

well. Thus, h
(b)
0 and h

(b)
b are integral on any ∆′i, where e0 ∈ ∆′0. Now, for any general

∆ ∈ S0 intersecting such a ∆′, ∆j ∩∆′j must contain a lattice point for either j = 0 or
j = 1, see remark 2.2.2. Thus, h

(b)
0 and h

(b)
b are integral on such ∆i as well. Proceeding

by induction using the connectedness of S0 completes the claim.
We can thus conclude that h(b) :=

∑
h

(b)
P ⊗ P is an element of CaSF′(S(b)) with

h(0) = f , which completes the proof.

We will use proposition 5.2.1 to show the following:

Theorem 5.2.2. Suppose that |S0| is convex. Then the map πb,0 : T-CDiv′(Xb) →
T-CDiv′(X0) is surjective and thus induces an isomorphism π̄b,0 : Pic′(Xb)→ Pic′(X0).

Proof. Consider some f ∈ CaSF′(S(0). Although |Γf0 | isn’t convex, we can still define a
cone of Minkowski summands as in definition 3.1.5 and one easily checks that all relevant
results of section 3.1 still hold. Furthermore, the cones coneMS(S0) and coneMS(Γf0) are
naturally isomorphic. In particular, the (α)-admissible decomposition of S0 induces an
(α)-term decomposition of Γf0 , see the discussion following definition 3.1.5. But such
a decomposition corresponds to an h(b) ∈ CaSF′(S(b)) ⊗ Q, that is, we have relaxed all
integrality conditions; furthermore, f = h(0), see remark 5.1.4. But some multiple of h(b)

will be in CaSF′(S(b)), so rank Pic′(Xb) = rank Pic′(X0). The theorem then follows from
proposition 5.2.1.

We can reformulate the theorem as follows:

Corollary 5.2.3. Suppose that |S0| is convex. Then for any line bundle L on X(S), the
fiber over π of the natural transformation Def(X(S),L) → DefX(S) is nonempty.

Remark 5.2.4. If S0 is not convex, there are simple examples such that πb,0 is not
surjective. One such example can be attained by a modification of example 5.1.11. Indeed,
let X0 be the open subset of C(dP6) coming from the divisorial fan where we leave out
any polyhedral divisors which give singular T -varieties. The single nontrivial slice of
such a divisorial fan is as pictured in figure 3.4(a) with the omission of the hexagon
in the middle. We then consider the deformation π of X0 gotten by restricting our
previous deformation of C(dP6). Note that π is now locally trivial. One easily checks
that with respect to this deformation, T-CDiv(Xb) = T-CDiv′(Xb) ∼= Z5 × Div0(P1)
whereas T-CDiv(X0) = T-CDiv′(X0) ∼= Z6×Div0(P1), and thus that πb,0 isn’t surjective.
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Chapter 6

Homogeneous Deformations of

Rational C∗-Surfaces

We will now apply the techniques of chapters 3, 4, and 5 to study T -deformations of
and families of invariant divisors on smooth, complete, rational surfaces with C∗ action,
henceforth referred to as rational C∗-surfaces. In section 6.1 we recall some preliminary
facts about toric and rational C∗-surfaces. In section 6.2, we discuss T -deformations of
these surfaces and how they can be blown up and down. We prove in section 6.3 that
for a fixed Picard number larger than two, all rational C∗-surfaces can be connected via
T -deformations. Finally, in section 6.4, we give an explicit isomorphism of Picard groups
preserving the intersection pairing for rational C∗-surfaces with equal Picard number.

6.1 Rational C∗-Surfaces

A rational C∗-surface X is described by a complete marked fansy divisor Ξ on P1, with N
a rank one lattice. For the rest of this chapter, we will thus fix an isomorphism N ∼= Z.
In this case, tail(Ξ) is generated by the cones Q≥0 and Q≤0. Thus, to present the data of
Ξ, we can simply draw the slices of Ξ and note which of the cones Q≥0, Q≤0 has a mark.
In figures, we put a • on the right or left hand side to denote that Q≥0 or respectively
Q≤0 is marked.

•
| | | |

| | | |

Ξ0

Ξ∞

0 1
2 1 2

−1 − 1
2 0 1

Figure 6.1: A possible marked fansy divisor on P1.

Example 6.1.1 (A blowup of P2). Consider the marked fansy divisor pictured in figure
6.1. This corresponds to the rational C∗-surface obtained by taking the toric variety P2,
blowing up in two of the three toric fixpoints, and then blowing up in the four resulting
fixpoints of the exceptional divisors. Since this marked fansy divisor only has two non-
trivial slices, X(Ξ) is in fact still toric.

In general, complete C∗-surfaces can also be described in terms of weighted graphs,
see [OW77]. If the surface is in fact a toric variety, then this graph is circular, see
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[Ful93]. Up to isomorphism we can thus represent a smooth, complete toric surface X
by some sequence (b0, . . . , bl), where the −bi are the self intersection numbers of the
torus invariant prime divisors ordered in a suitable manner. In this case, we simply
write X = TV(b0, . . . , bl). Alternatively, if Σ ⊂ Z2 ⊗ Q is some fan such such that X is
the associated toric surface, we write X = TV(Σ). We then denote by ρi the ray of Σ
corresponding to bi. Note then that bi ·ρi = ρi−1 +ρi+1 and that the Picard number ρ(X)
of X is l − 1. Furthermore, one has has the equality

∑
bi = 3l − 9.

Let c1, c2, . . . , ck ∈ Z. The continued fraction [c1, c2, . . . , ck] is inductively defined as
follows if no division by 0 occurs: [ck] = ck, [c1, c2, . . . , ck] = c1 − 1/[c2, . . . , ck]. Now
consider some l + 1 tuple (b0, . . . , bl) defining a smooth toric surface, and suppose that
b0 < 0 and l > 2. Using induction on l, one can easily show that there exists a unique
index ξ, 1 < ξ < l such that [b1, . . . , bξ−1] is well defined and equals zero, or equivalently,
that ρξ = −ρ0. If we are in this situation, we define

γ =

ξ−1∑

i=1

(3− bi)− 3. (6.1.1)

We will use the following lemma in the next section:

Lemma 6.1.2. We always have γ ≥ 0. Likewise, b0 + bξ − γ ≥ 0. Finally, for R ∈ (Z2)∗

such that 〈ρξ, R〉 = 1, we have 〈ρξ−1, R〉 − 〈ρ1, R〉 = γ.

Proof. All statements can be easily shown by induction on the number of rays in Σ.

6.2 Degeneration Diagrams

Let π : Xtot → B be a one-parameter T -deformation of the rational C∗-surface X0. For
any s ∈ B∗, we say that X0 T -deforms to Xs = π−1(s). Conversely, we say that Xs

T -degenerates to X0. By an abuse of terminology we will call any such Xs a general
fiber. We now slightly reverse our perspective; instead of describing a way of deforming
X0, we describe degenerations of some Xs to X0.

Definition 6.2.1. Let Ξ be a marked fansy divisor on P1 giving a rational C∗-surface
and choose some s ∈ P1, s 6= 0. A degeneration diagram for Ξ consists of the pair (Ξ, G),
where G is a connected graph on the vertices of Ξ0 and Ξs such that:

(i) G is bipartite with respect to the natural partition induced by Ξ0 and Ξs;

(ii) G can be realized in the plane with all edges being line segments by embedding Ξ0

and Ξs in parallel lines;

(iii) Every vertex of G with valence strictly larger than one is a lattice point.

To a degeneration diagram (Ξ, G) we can associate a deformation π as follows. Let

Ξ(0) be the marked fansy divisor with marks identical to Ξ, Ξ
(0)
P = ΞP for P ∈ P1 \ {0, s},

Ξ
(0)
s trivial, and Ξ

(0)
0 the subdivision of Q with vertices of the form v0 + vs, with v0vs an

edge of G. Each polyhedron [v, w] in the slice Ξ
(0)
0 comes with a natural decomposition

[v, w] = [v0, w0] + [vs, ws], where v, w ∈ ΞP and v0vs, w0ws are edges of G. This gives an

admissible decomposition of Ξ
(0)
0 and thus a deformation π : Xtot → B of X(Ξ(0)), with

Xs = X(Ξ). Conversely, one easily checks that any one-parameter T -deformation of a
rational C∗-surface with fiber Xs = X(Ξ) arises from a degeneration diagram of the form
(Ξ, G) (up to isomorphism).
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•

| | | |

| | | |

Ξ0

Ξs

0 1
2 1 2

−1 − 1
2 0 1

Ξ
(0)
0

Figure 6.2: A possible degeneration diagram

Example 6.2.2 (A blowup of P2). Figure 6.2 presents a degeneration diagram for the

marked fansy divisor Ξ of figure 6.1 with s =∞. The resulting slice Ξ
(0)
0 can then be seen

quite easily as the induced subdivision on the dashed line in between Ξ0 and Ξs scaled
by a factor of two.

To distinguish between C∗-invariant Weil divisors on X0 and Xs, we write them with
a superscript, i.e. D

(0)
(v,P ) and D

(s)
(v,P ), etc. We shall now see how such deformations are

compatible with blowing up and blowing down. We will need the following lemma:

Lemma 6.2.3. Let (Ξ, G) be a degeneration diagram. For any edge v0vs of G, v0 ∈

Ξ0, vs ∈ Ξs, with (D
(0)
(v0+vs,0))

2 = −1, one of the vertices v0, vs must have valence one. If

both vertices have valence one, the deformation corresponding to (Ξ, G) is trivial.

Proof. If v0 + vs lies to the left or to the right of all other vertices of Ξ
(0)
0 , then the edge

v0vs lies to the left or right of all other edges of G as well; it is then clear that either v0

or vs must have valence one. If on the other hand v0 + vs has left and right neighboring
vertices v′, v′′ ∈ Ξ

(0)
0 , then µ(v0 + vs) = µ(v′) + µ(v′′) > 1. If neither v0 nor vs has valence

one, they must both be lattice points, in which case µ(v0 + vs) = 1, a contradiction.
The second claim follows easily from the observation that if both vertices have valence

one, G can only have one edge.

Using this lemma, it is clear how to blow down any T -deformation. Indeed, let π
correspond to the degeneration diagram (Ξ, G), and let φ : X0 → X ′

0 be the contraction
of an invariant minus one curve.

Suppose first of all that this curve is of the form D
(0)
(v,P ) for P 6= 0 or of the form Dρ

for ρ ∈ {Q≥0, Q≤0}. Then we get a new marked fansy divisor Ξ′ by respectively removing
the vertex v from the subdivision ΞP or by adding a mark to ρ. Setting G′ = G, we then
have that (Ξ′, G) is a degeneration diagram with X(Ξ′(0)) = X ′

0 and with X ′
s = X(Ξ′) a

blowdown of Xs.

•

| | |

| | | |

Ξ0

Ξs

0 1 2

−1 − 1
2 0 1

Ξ
(0)
0

Figure 6.3: Blowing down a deformation

55



On the other hand, suppose that φ blows down a curve of the form D
(0)
(v,0). Then v

corresponds to an edge v0vs of G and by the above lemma, either v0 or vs must have
valence one; assume without loss of generality that this is v0. We then get a new marked
fansy divisor Ξ′ by removing the vertex v0 from the subdivision Ξ0. Furthermore, we
have a graph G′ on Ξ′ attained from G by removing the edge v0vs. Due to the fact that
v0 had valence one in G, one easily checks that (Ξ′, G′) is a degeneration diagram.

As in the other case, we have X(Ξ′(0)) = X ′
0 and X ′

s = X(Ξ′) a blowdown of Xs. In
this manner we define the blowdown of (Ξ, G) by φ to be (Ξ′, G′). We call the deformation
corresponding to (Ξ′, G′) the blowdown of π by φ.

Example 6.2.4 (Blowing down a deformation). Consider the T -deformation π from
example 6.2.2. The special fiber has a minus one curve corresponding to the point 1/2 in

Ξ
(0)
0 . The corresponding edge of G is pictured in figure 6.3 as a dotted line segment; by

removing this edge and the vertex 1/2 of Ξ0, we get the desired blowdown of π.

It is also possible to lift a T -deformation π : X → B by an invariant blowup φ of either
the special fiber X0 or the fiber Xs. Indeed, let (Ξ, G) be the corresponding degeneration
diagram.

The first possible type of blowup of X0 or Xs is by blowing up in an elliptic fixpoint
of the C∗ action, that is, by removing a mark from either Q≥0, Q≤0. If we define Ξ′ to be
equal to Ξ with the relevant modification of the marks, we get a degeneration diagram
(Ξ′, G′) with either X(Ξ′(0)) or X(Ξ′) the desired blowup of X0 or respectively Xs.

Suppose instead that the blowup of X0 or Xs corresponds to inserting a vertex v in
the subdivision Ξ

(0)
P = ΞP for P 6= 0, s. Then if we define Ξ′ to come from Ξ by adding

the vertex v to ΞP and setting G = G′, we get a degeneration diagram (Ξ′, G′) with the
same property as in the previous case.

Suppose now that a blowup of X0 corresponds to inserting a vertex v in the subdivision
Ξ

(0)
0 . This corresponds to the insertion of a vertex ṽ in either Ξ0 or Ξs, which in turn

corresponds to a blowup of Xs.
1 So assume that we have a blowup of Xs of this form.

Then we can define a marked fansy divisor Ξ′ from Ξ similar to the previous cases.
Likewise, we can define a graph G′ on the vertices of Ξ′

0, Ξ′
s by adding an edge between

ṽ and the unique vertex connected to all neighboring vertices of ṽ.
This defines a degeneration diagram (Ξ′, G′) with the same property as above. In such

cases, we call (Ξ′, G′) a blowup of (Ξ, G) by φ.

•

| | | |

| | | | |

Ξ0

Ξs

0 1
2 1 2

−1 − 1
2 0 1 2

Ξ
(0)
0

•

| | | | |

| | | |

Ξ0

Ξs

0 1
2 1 2 3

−1 − 1
2 0 1

Ξ
(0)
0

Figure 6.4: Blowing up a deformation

Example 6.2.5 (Blowing up a deformation). Consider again the T -deformation π from

example 6.2.2. We can blow up the special fiber by further subdividing Ξ
(0)
0 at the point

1Note that the placement of the vertex in either Ξ0 or Ξs is uniquely determined if v isn’t an extremal

vertex of Ξ
(0)
0 .
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4. This leads to two possible blowups of π; the corresponding degeneration diagrams are
pictured in figure 6.4, with the added edges being dotted.

We can sum up the preceding constructions in the following proposition:

Proposition 6.2.6. Let (Ξ, G) be a degeneration diagram with corresponding special fiber
X0 and general fiber Xs.

(i) If φ : X0 → X ′
0 is a blowdown of an invariant curve, there is a unique degeneration

diagram (Ξ′, G′) called the blowdown of (Ξ, G) by φ such that X(Ξ′(0)) = X ′
0 and

X(Ξ′) is an invariant blowdown of Xs.

(ii) if φ : X ′
0 → X0 is an invariant blowup, there is a degeneration diagram (Ξ′, G′)

called a blowup of (Ξ, G) by φ such that X(Ξ′(0)) = X ′
0 and X(Ξ′) is an invariant

blowup of Xs.

(iii) if φ : X ′
s → Xs is an invariant blowup, there is a unique degeneration diagram

(Ξ′, G′) called the blowup of (Ξ, G) by φ such that X(Ξ′) = X ′
s and X(Ξ′(0)) is an

invariant blowup of X0.

We will see in section 6.4 that these constructions commute with the corresponding
maps of divisors. However, to end this section, we shortly turn our attention to T -
deformations where all fibers are toric surfaces. The following theorem tells us how a
number of these can be described nicely in terms of self-intersection numbers:

Theorem 6.2.7. Consider a smooth complete toric surface X0 = TV(b0, . . . , bl) such
that b0 < 0 and l > 2. Then there exists a homogeneous deformation of X0 with toric
general fiber

Xs = TV(b0 + γ + 2r, bξ−1, . . . , b1, bξ − γ − 2r, bξ+1, . . . , bl),

where ξ and γ are as defined in the previous section and 0 ≤ r ≤ −b0.

ρξ

ρ0

ρ1

ρl

[R = 1]

[R = −1]

(a) Σ

ρ′
ξ

ρ′
0

ρ′
1

ρ′
ξ+1

[R = 1]

[R = −1]

(b) Σ′

Figure 6.5: Possible fans from the proof of theorem 6.2.7

Proof. Let X0 = TV(Σ) for some fan Σ ⊂ Z2 ⊗ Q with rays ρi corresponding to the
numbers bi, see for example figure 6.5(a). Consider the unique R ∈ (Z2)∗ such that
〈ρ0, R〉 = −1 and 〈ρ1, R〉 = r. We will consider the C∗-action of TR⊥

. Corresponding to
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this action, we transform the fan Σ into a marked fansy divisor Ξ(0) by taking Ξ
(0)
0 to be

the subdivision induced by Σ on the line [R = 1], with ρξ set as the origin, and by taking
Q≤0, Q≥0 to be unmarked if and only if r = 0 or r = −b0, respectively. Note that the
condition on 0 ≤ r ≤ −b0 is exactly such that Σ subdivides the line [R = −1] only with
the ray ρ0. Thus, we have X0 = X(Ξ(0)).

We now construct a degeneration diagram (Ξ, G) giving special fiber X0. Indeed, let

the vertices of Ξ0 consist of those vertices v ∈ Ξ
(0)
0 with v ≥ 0. Likewise, let the vertices

of Ξs consist of those vertices v ∈ Ξ
(0)
0 with v ≤ 0. Furthermore, take the marks of Ξ to be

those of Ξ(0). We then define G to be the graph having edges v0vs with v0 ∈ Ξ0, vs ∈ Ξs

and either v0 = 0 or vs = 0. One easily confirms that (Ξ, G) is indeed a degeneration

diagram with Ξ
(0)
0 being the marked fansy divisor for the corresponding special fiber.

Now, we see that the general fiber Xs = X(Ξ) is toric, since Ξ only has two nontrivial
slices. In fact, by embedding Ξ0 and Ξs in height one and minus one respectively, we
recover a fan Σ′ with Xs = X(Ξ) = X(Σ′), see for example figure 6.5(b). Σ′ then has rays
ρ′

0, . . . , ρ
′
l ordered cyclically with ρ′

i = ρi for ξ ≤ i ≤ l or i = 0 and ρ′
i a vertical reflection

for 0 < i < ξ. Let −b′i be the self-intersection number of the divisor corresponding to
the ρ′

i; then Xs is represented by the chain (b′0, . . . , b
′
l). Now, it is immediate from this

description that b′i = bξ−i for 1 ≤ i < ξ and that b′i = bi for ξ < i ≤ l. Furthermore,

b′ξ = 〈ρ′
ξ−1, R〉+ 〈ρ′

ξ+1, R〉 = −〈ρ1, R〉+ 〈ρξ+1, R〉. (6.2.1)

We also have 〈ρξ−1, R〉 = r + γ by lemma 6.1.2. We can then rewrite equation (6.2.1) as

b′ξ = −r + bξ − 〈ρξ−1, R〉 = bξ − γ − 2r.

Since the sum of all the intersection numbers must remain constant, we also have b′0 =
b0 + γ + 2r, completing the proof.

6.3 Deformation Connectedness

Let X and X ′ be two rational C∗-surfaces.

Definition 6.3.1. We say that X and X ′ are T -deformation connected if there is a finite
sequence X = X0, X1, . . . , Xk = X ′ with X i T -deforming to X i−1 or X i−1 T -deforming
to X i for each 1 ≤ i ≤ k.

It is well-known that a Hirzebruch surface of even parity cannot be deformed to a
Hirzebruch surface of odd parity and vice versa. An obstruction to such a deformation
can be found by comparing the Chow rings. If we instead consider rational surfaces of
fixed Picard number ρ > 2, it is an easy exercise to see that all the Chow rings are
isomorphic. Thus, the obstruction to deformation we had for the case ρ = 2 no longer
exists. In fact, for rational C∗-surfaces it is sufficient to consider T -deformations:

Theorem 6.3.2. Consider the set of all rational C∗-surfaces with Picard number ρ for
any integer ρ > 2. All elements of this set are homogeneously deformation connected.

The proof of this theorem will constitute the remainder of this section. We first prove
the following lemma:
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Lemma 6.3.3. Any rational C∗-surface X can be degenerated to a toric surface via a
finite number of T -degenerations.

Proof. Let Ξ be a marked fansy divisor with X = X(Ξ). Suppose that Ξ has more than
three non-trivial slices. Then there are non-trivial slices ΞP , ΞQ with P 6= Q such that
the left-most vertex wP of ΞP and the right-most vertex wQ of ΞQ are lattice points;
this follows from the smoothness criterion of 1.5.2 and 1.5.3. Setting 0 = P, s = Q and
considering the graph G on the vertices of ΞP , ΞQ with edges of the form v0wQ and vswP

for v0 ∈ ΞP , vs ∈ ΞQ gives a degeneration diagram (Ξ, G). The corresponding special
fiber has one less non-trivial slice than X.

We can apply the above procedure inductively, and can thus assume that Ξ has at
most three non-trivial slices. If Ξ has less than three non-trivial slices, then X(Ξ) is
toric, and we are done. If as above there are non-trivial slices ΞP , ΞQ with P 6= Q such
that the left-most vertex vP of ΞP and the right-most vertex vQ of ΞQ are lattice points,
then we can once again proceed as above and degenerate to something with only two
non-trivial slices. We thus must only consider the remaining case, which is that where Ξ
has three non-trivial slices Ξ0, Ξ1, Ξ∞ and Ξ0, Ξ∞ have no extremal lattice vertices and
both extremal vertices of Ξ1 are lattice points. We show that this is actually impossible.

In this case, we can actually assume that the left-most vertex of Ξ1 is 0, and that
the right-most vertex is n. Let ul

0/v
l
0, ul

∞/vl
∞ be the left-most vertices of Ξ0 and Ξ∞

written in lowest terms and let ur
0/v

r
0, ur

∞/vr
∞ similarly be the right-most vertices. Due

to smoothness we have

−ul
0v

l
∞ − ul

∞vl
0 = 1; (6.3.1)

ur
0v

r
∞ + ur

∞vr
0 + vr

0v
r
∞ · n = 1. (6.3.2)

Furthermore, we of course have

ul
Pvr

P ≤ ur
Pvl

P (6.3.3)

for P = 0,∞. Solving equations (6.3.1) and (6.3.2) for vl
0 and vr

0, substituting for these
expressions in (6.3.3) for P = 0, and rearranging terms gives us

vr
0v

r
∞ + vl

0v
l
∞ + ul

∞vr
∞vr

0v
l
0 ≥ ur

∞vl
∞vl

0v
r
0 + vl

0v
l
∞vr

0v
r
∞n.

Combining this with (6.3.3) for P =∞ then gives us

vr
0v

r
∞ + vl

0v
l
∞ ≥ vl

0v
l
∞vr

0v
r
∞n.

This however is a contradiction, since n ≥ 1 and vl
0, v

l
∞, vr

0, v
r
∞ ≥ 2. Thus, this case never

arises and we can always degenerate to a toric surface.

In general, one can always construct a rational surface by iteratively blowing up
a Hirzebruch surface in a number of points. This can in fact be done equivariantly for
rational C∗-surfaces. For marked fansy divisors Ξ with no marks, this is stated in [OW77].
However, we know of no proof of the general case and thus provide one here as an easy
corollary of the above lemma:

Corollary 6.3.4. Any rational C∗-surface X with Picard number larger than two can be
constructed from a Hirzebruch surface by a series of equivariant blowups.
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Proof. Suppose that X = Xs isn’t a Hirzebruch surface. By lemma 6.3.3, we know that
X degenerates to some toric variety X0 via T -deformations. But there is an invariant
minus one curve on X0 which can be blown down, since X0 is toric, see [Ful93]. Blowing
down the deformations from X0 to Xs as in proposition 6.2.6 gives us a new general fiber
X ′

s which is an invariant blowdown of Xs. The proof then follows by induction on the
Picard number.

We will collect several more lemmata we shall need:

Lemma 6.3.5. Consider a smooth fan Σ with rays ρ0, . . . , ρl. Let Σ1 and Σ2 be the
smooth fans attained by inserting a ray between ρ0 and ρ1 respectively ρ1 and ρ2. Then
TV(Σ1) is T -deformation connected to TV(Σ2).

ρ0

ρ1

ρ2
[R = 1]

[R = −1]

Figure 6.6: Example fan in proof of lemma 6.3.5

Proof. As in the proof of theorem 6.2.7, we transform Σ into a marked fansy divisor Ξ.
For P1 6= P2 ∈ P1, let ΞP1 and ΞP2 to be the subdivisions induced by Σ on the affine
lines [R = 1] and [R = −1], where R ∈ (Z2)∗ is such that 〈ρ1, R〉 = 0 and 〈ρ0, R〉 < 0.
We do not mark Q≥0, and mark Q≤0 unless there is ξ 6= 1 such that 〈ρξ, R〉 = 0. Then
X(Ξ) = X(Σ). See for example figure 6.6.

Now, for some s ∈ P1 \ {P1, P2}, let Ξ̃ be the marked fansy divisor with Ξ̃P = ΞP for
P 6= s, and Ξ̃s the subdivision of Q with vertices 0 and 1. For i = 1, 2, let Gi be the graph
on the vertices of Ξ̃s and Ξ̃Pi

with edges vsw for either vertices vs = 0 ∈ Ξ̃s and w ∈ Ξ̃Pi
or

vertices vs = 1 ∈ Ξ̃s and w the right-most vertex in ΞPi
. Setting Pi = 0, one easily checks

that (Ξ̃, Gi) is a degeneration diagram with general fiber X(Ξ̃) and special fiber TV(Σi),
see for example figure 6.7. Thus, we have T -deformations from both TV(Σ1) and TV(Σ2)
to some common rational C∗-surface, making them T -deformation connected.

Remark 6.3.6. The two deformations constructed in the above proof can be naturally
glued together to give a flat family Xtot over P1 with fibers X0 = TV(Σ1) and X∞ =
TV(Σ2). In this family, the fiber over any point s ∈ P1 is simply the blowup of TV(Σ) in
s, where we have identified the base space P1 with the divisor corresponding to the ray
ρ1.

Lemma 6.3.7. The set {TV(b0, 0, bξ, 1, 1) | b0 + bξ = 3} is T -deformation connected.
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•

| | | |

| | | |

| |

Ξ̃P1

Ξ̃P2

Ξ̃s

0 1
2 1 2

−1 − 1
2 0 1

(a) i = 1

•

| | | |

| | | |

| |

Ξ̃P1

Ξ̃P2

Ξ̃s

0 1
2 1 2

−1 − 1
2 0 1

(b) i = 2

Figure 6.7: Example degeneration diagrams in proof of lemma 6.3.5

Proof. Consider b0, bξ and b′0, b
′
ξ such that b0 + bξ = b′0 + b′ξ = 3. Due to symmetry we can

assume that b0, b
′
0 have the same parity. Let b′′0 = −max{|b0|, |b

′
0|}. Then TV(b′′0, 0, n−

b′′0, 1, 1) deforms to both TV(b0, 0, bξ, 1, 1) and to TV(b′0, 0, b′ξ, 1, 1) by theorem 6.2.7, so
the desired set is T -deformation connected.

We now turn to the proof of the theorem:

Proof of theorem 6.3.2. We will prove the theorem by induction on ρ. Suppose that
ρ = 3. From lemma 6.3.3 we have that any rational C∗-surface can be degenerated to a
toric surface via T -deformations. Furthermore, one easily checks that every toric surface
with Picard number 3 is of the form TV(b0, 0, bξ, 1, 1). Thus, for ρ = 3 the statement
then follows from lemma 6.3.7.

Assume that the theorem holds for Picard number ρ, and consider any two rational C∗-
surfaces X1, X2 with Picard number ρ+1. By again applying lemma 6.3.3, we can assume
without loss of generality that X1 and X2 are toric. Let X̃ i be an invariant blowdown
of X i. Then X̃1 and X̃2 are T -deformation connected by the induction hypothesis, and
this series of deformations and degenerations can be blown up to connect X̂1 and X̂2,
where X̂ i is an invariant blowup of X̃ i. Thus, we must only show that X̂ i and X i are
T -deformation connected, that is, any two invariant blowups in a point of a common
toric surface are T -deformation connected. But this follows from repeated application of
lemma 6.3.5, proving the theorem.

6.4 An Isomorphism of Picard Groups

As in the previous sections, we will consider a one-parameter T -deformation π : Xtot → B
of a rational C∗-surface X0 with Xs = X(Ξ) for some marked fansy divisor Ξ. The
map πs,0 : T-CDiv(Xs) → T-CDiv(X0) can be described quite nicely in terms of Weil
divisors and the corresponding deformation diagram (Ξ, G).2 Indeed, consider following
proposition:

Proposition 6.4.1. The map πs,0 is defined by:

D(s)
ρ 7→ D(0)

ρ D
(s)
(vP ,P ) 7→ D

(0)
(vP ,P )

D
(s)
(v0,0) 7→

∑

v0v∈E(G)

µ(v)D
(0)
(v0+v,0) D

(s)
(vs,s) 7→

∑

vsv∈E(G)

µ(v)D
(0)
(v0+v,0)

2Note that since everything here is smooth, we have T-CDiv = T-CDiv′, see the note at the end of
definition 5.1.1.
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for any P ∈ S \ {0, s}, vP ∈ ΞP , v0 ∈ Ξ0, vs ∈ Ξs, and ρ ∈ tail(Ξ), where E(G) is the
set of edges of the graph G.

Proof. This follows directly from the description of h(0) in section 5.1 and proposition
1.3.3.

An important fact is that, in a sense, such a map of Cartier divisors is compatible
with blowing up or down. More specifically, in the above setting, let φ0 : X0 → X ′

0 be an
invariant blowdown of a minus one curve with E(0) the corresponding exceptional divisor.
Let π′ be the blowdown of π by φ, with X ′

s the general fiber of π′. From the description
of the blowdown of a degeneration diagram, one easily confirms that we have an invariant
blowdown φs : Xs → X ′

s; let E(s) be the corresponding exceptional divisor.

Proposition 6.4.2. In the above situation, πs,0(E
(s)) = E(0). Furthermore, the following

diagram commutes:

T-CDiv(X0) T-CDiv(Xs)
πs,0

oo

T-CDiv(X ′
0)

φ∗
0

OO

T-CDiv(X ′
s)

φ∗
s

OO

π′
s,0

oo

Proof. The claim regarding the exceptional divisor follows from the description of the
blowdown of a degeneration diagram and from proposition 6.4.1. Indeed, if (Ξ, G) is the
degeneration diagram corresponding to π and E(0) corresponds to some edge e of G, then
E(s) corresponds to the vertex of e with valence one, which then obviously maps to the
desired divisor, since the other vertex of e must have height one. If on the other hand
E(0) is some other divisor of X0, the claim is immediate from proposition 6.4.1.

The commutativity of the diagram follows from the description of h(0) in section 5.1.
Indeed, the pullback of an invariant Cartier divisor Dh on a T -variety X(Ξ′) to some
blowup X(Ξ) corresponds to the same piecewise affine function h. Furthermore, one
easily sees from the description of h(0) that further refinement in a divisorial fan Ξ does
not affect the construction of h(0).

Example 6.4.3 (Hirzebruch surfaces). We look at an explicit description of the map π̄s,0,
where π is a deformation of a Hirzebruch surface. If X(Ξ) = Fr, i.e. the rth Hirzebruch
surface, and Ξ admits a non-trivial degeneration diagram, we can assume that Ξ0 has
vertices − 1

r+ξ
, 0 and that Ξs has vertices 0, 1

ξ
for some ξ > 0. We call this marked fansy

divisor Ξ(r, ξ). Note that with the exception of the case r = 0, ξ = 1, there is only one
possible graph G making (Ξ(r, ξ), G) into a degeneration diagram. Indeed, this is the
bipartite graph where both 0 vertices have valence two and the other two vertices have
valence one. For the case r = 0, ξ = ±1, there is also the possibility of the bipartite
graph G̃ where both 0 vertices have valence one and the other two vertices, in this case
lattice points, have valence two. In any case, the degeneration diagram (Ξ(r, ξ), G) (or
(Ξ(r, ξ), G̃)) has corresponding special fiber Fr+2ξ. The difference between G and G̃
corresponds to a flip on the total space of the deformation.

For any Hirzebruch surface Fr with r > 0, let η be the divisor class of the fiber
of the ruling on Fr, and let ζ be the unique class with ζ2 = r and η.ζ = 1. Now
considering the isomorphism X(Ξ(r, ξ)) ∼= Fr, η and ζ can respectively be represented by

D
(s)
(0,s) and D

(s)
(1/ξ,s). Consider now the deformation π from Fr+2ξ to Fr determined by the

degeneration diagram (Ξ(r, ξ), G) and assume r > 0. Then π̄s,0(η) can be represented by
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D
(0)
(1/ξ,0) and π̄s,0(ζ) can be represented by (r + ξ)D

(0)
(−1/(r+ξ),0) + D

(0)
(0,0). One easily checks

that

π̄s,0(η) = η (6.4.1)

π̄s,0(ζ) = ζ − ξη (6.4.2)

where by abuse of notation, the η, ζ on the right hand side of the equalities represent
classes in Pic(Fr+2ξ).

The case of r = 0 requires slightly more care, since there are two possible rulings on
F0. Fix an isomorphism F0

∼= X(Ξ(0, ξ)) and consider the ruling of F0 given by the
quotient map of the C∗-action on X(Ξ(0, ξ)); note that this doesn’t depend on ξ. Then
η and ζ can be represented exactly as above. For π corresponding to the degeneration
diagram (Ξ(0, ξ), G), we once again have equations (6.4.1) and (6.4.2). On the other hand,
for π corresponding to the degeneration diagram (Ξ(0, 1), G̃), we have π̄s,0(η) = ζ−η and
π̄s,0(ζ) = η. Thus, if in this case we instead consider the other possible ruling of F0 (and
thus swap η and ζ), we once again have equations (6.4.1) and (6.4.2).
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Chapter 7

Homogeneous Deformations of

Projective T -Varieties

In this section we turn our attention exclusively to T -deformations of projective T -
varieties. We first state some results regarding C∗-quotients of complexity one T -varieties
in section 7.1. In section 7.2 will show that one-parameter T -deformations of a projective
variety can always be lifted to embedded deformations. In section 7.3 we approach de-
formations of projective T -varieties via decompositions of divisorial polytopes. This has
the advantage of providing a completely combinatorial proof that Hilbert-Ehrhart poly-
nomials remain constant under embedded T -deformation. Finally, in section 7.4, we use
these techniques to provide a combinatorial proof that the Hilbert-Ehrhart polynomials
of certain phylogenetic models are equal.

7.1 Quotients of T -Varieties by C∗ Actions

Before considering deformations of projective T -varieties, we first need to gather some
information concerning quotients of T -varieties by a C∗-action. Our approach is similar
to that of [AH08], but we are not only considering cones over projectively normal T -
varieties. For details on quotients by tori in general, including good quotients, we refer
to [BH06].

We first set some notation for the section. Let N be a lattice, and take N ′ = N ⊕ Z;
we denote the dual lattices by M and M ′. Let e0 be a primitive generator of Z in N ′,
and let e∗0 ∈ M ′ be such that 〈e0, e

∗
0〉 = 1 and e∗0

⊥ = N . The inclusion Z →֒ N ′ induces
a monomorphism of tori C∗ →֒ TN ′

with quotient TN . Let pr denote the projection
N ′ → N .

For any semiprojective variety Y and proper polyhedral divisor D on Y with respect
to the lattice N ′, we define pr(D) to be

pr(D) =
∑

P

pr(DP )⊗ P.

Note that pr(D) technically need not be a polyhedral divisor, since the corresponding tail
cone may not be pointed. However, we can still associate an M-graded C-algebra and
thus an affine scheme X(pr(D)) just as in section 1.2.

Lemma 7.1.1. The good quotient of X(D) by the natural C∗-action is X(pr(D)).
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Proof. Let σ = tail(D), D̃ = pr(D), and σ̃ = tail(D̃). Then σ̃ = pr(σ), and one easily
checks that σ̃∨ = σ∨ ∩MQ.

Note that the good quotient of X(D) is equal to

Spec

(
⊕

u∈σ∨∩M ′

H0(Y,D(u))

)C∗

.

However, we have

(
⊕

u∈σ∨∩M ′

H0(Y,D(u))

)C∗

=
⊕

u∈σ∨∩M

H0(Y,D(u)) =
⊕

u∈σ̃∨∩M

H0(Y, pr(D)(u)).

In many cases of most interest to us, pr(D) is in fact not a proper polyhedral divisor,
and X(pr(D)) will have dimension less than rank N . Thus, we are interested in other
quotients of X(D), where we have removed some closed TN ′

-invariant subvariety Z. We
first need to understand how to construct an open cover of X(D) \ Z. From now on, we
assume that Pic Y ∼= Z. We choose the above isomorphism such that Z≥0 is the cone of
ample divisors. Thus, all divisors on Y have a well-defined degree, and we can define the
degree of any polyhedral divisor D on Y similar as in remark 1.2.4 to be

deg(D) =
∑

P

deg(P ) · DP .

Now, for any u ∈ tail(D)∨ ∩ M , we define face(D, u) =
∑

face(DP , u) ⊗ P ; this is a
polyhedral divisor.

In this situation, we define the set SD to consist of those polyhedral divisors face(D, u)
for u ∈ σ∨ ∩M ′ \ 0 with (deg(D))(u) = 0, as well as face(D, u) + ∅ ⊗D for u ∈ M ′ with
(deg(D))(u) > 0 and any effective 0 6= D contained in the support of D. Likewise, we
define the set pr(SD) to consist of all pr(D′) for D′ ∈ SD.

Theorem 7.1.2. Consider D, SD, and pr(SD) as above and assume that σ = tail(D)
is full dimensional and contains e0 in its relative interior. Then S := SD and pr(S) :=
pr(SD) are divisorial fans on Y . Furthermore, X(pr(S)) is a good quotient of X(S) by
the natural C∗ action, and the Chow quotient X(D)//chC∗ is equal to X(pr(S)).1

For the proof of theorem 7.1.2, we use the following lemma, which is similar to lemma
1.4 of [IS09].

Lemma 7.1.3. Assume that tail(D) contains e0 in its relative interior. Consider u ∈
σ∨ ∩M ′ \ 0.

(i) If (deg(D))(u) = 0, then face(D, u) is proper and a face of D. Furthermore,
pr(face(D, u)) is a proper polyhedral divisor.

(ii) If (deg(D))(u) > 0, then for any effective divisor D with deg D > 0, face(D, u) +
∅ ⊗D is proper and a face of D. Furthermore, pr(face(D, u) + ∅ ⊗D) is a proper
polyhedral divisor.

1 Here we slightly abuse notation by defining the Chow quotient to be the inverse limit over all GIT
quotients.
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Proof. First, note that since e0 is in the interior of tail(D), it is not contained in the
tail of face(D, u). Thus, tail(pr(face(D, u))) must be pointed, so both pr(face(D, u))
and pr(face(D, u) + ∅ ⊗D) are polyhedral divisors. Furthermore, tail(pr(face(D, u)))∨ is
not a face of tail(face(D, u))∨, so pr(D′) will be proper if D′ is, for D′ = face(D, u) or
D′ = face(D, u) + ∅ ⊗D.

Now, suppose that (deg(D))(u) = 0, and set D′ = face(D, u). Then tail(D′) =
tail(D) ∩ u⊥, and tail(D′)∨ = tail(D)∨ + Q · u. Consider some w′ ∈ tail(D′)∨, which we
write as w + k · u for some w ∈ tail(D)∨. Then

D′(w′) =
∑

P

min〈D′
P , w + k · u〉 ⊗ P = D(w) + kD(u),

since deg kD(u) = 0. Thus, D′(w′) is big or semiample exactly when D(w) is. Further-
more, if w′ is in the interior of tail(D′), then w is in the interior of tail(D). This shows
the properness of D′; the face relation D′ ≺ D is immediate.

Suppose on the other hand that (deg(D))(u) > 0 and set D′ = face(D, u) + ∅ ⊗ D.
Then any divisor on Loc(D′) is ample, so D′ is proper. Furthermore, D′ ≺ D by lemma
6.8 of [AHS08].

Proof of theorem 7.1.2. The fact that S is a divisorial fan follows directly from lemma
7.1.3. To see that pr(S) is a divisorial fan, we must check that for D′,D′′ ∈ S with
D′ ≺ D′′, we have pr(D′) ≺ pr(D′′). This is done similar to in the proof of lemma 7.1.3
and is left to the reader.

It is immediate that X(pr(S)) is a good quotient of X(S), since for each D′ ∈ S,
X(pr(D′)) is a good quotient of X(D′) by lemma 7.1.1. To see that X(pr(S)) is the
Chow quotient of X(D), note that X(S) = X(D) \ Z, where Z is the union of all closed
torus orbits of X(D). Since the weight monoid of the C∗ action on X(D) is just Z≥0, the
Chow quotient of X(D) is equal to the GIT quotient of X(D) corresponding to the ray
Z≥0. The corresponding set of semistable points is the complement of those points whose
orbit cone is simply 0; this is easily seen to be Z.

7.2 Embedded Deformations

The basic question we wish to consider here is the following: when can an arbitrary
one-parameter T -deformation of a projective T -variety be realized as an embedded defor-
mation? The following theorem says that this is always possible for projectively normal
embeddings:

Theorem 7.2.1. Let X0 be a projective, rational, complexity-one T -variety together with
some projectively normal embedding. Then any one-parameter T -deformation of X0 can
be realized as an embedded deformation with respect to the embedding of X0.

We now present a construction we will use to prove the theorem. The setup is the
following: let S be a complete divisorial fan on P1 and consider any h ∈ CaSF(S) such that
Dh is very ample and the embedding it determines is projectively normal. Now consider
any α-admissible Minkowski decomposition of S0 giving a one-parameter T -deformation
π : X(Stot) → B. For some b 6= 0, let h(b) be any support function in CaSF′(S(b)) such
that Dh(b) ∈ π−1

b,0 (Dh).
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We now define the polyhedral divisor D on P1 by

D =
∑

P

conv(Γ−hP
)⊗ P

where Γ−hP
⊂ NQ + Q is the graph of −hP . Likewise, set

D0
0 = conv(Γ

−h
(b)
0

); D1
0 = conv(Γ

−h
(b)
b

).

Then one easily checks that D0 = D0
0 +α ·D1

0 is an α-admissible Minkowski decomposition
of D0, which gives us a polyhedral divisor Dtot on some Ỹ tot, as well as polyhedral divisors
D(s′) on P1. We now consider the following projective varieties:

Proj(D(s)) := Proj
⊕

u

H0(P1,D(s)(u))

Proj(Dtot) := Proj
⊕

u

H0(Ỹ tot,Dtot(u))

where the Z grading of the algebras on the right hand side is given by the natural
projection onto N⊥. Proj(D(s)) is projective over C, and Proj(Dtot) is projective over
B̃ := Spec H0(Ỹ tot,OỸ tot) →֒ P1. Let π̃ : Proj(Dtot)→ B̃ be the structure map.

Proposition 7.2.2. π̃ is a flat family with fibers

π̃(−1)(s) = Proj(D(s)) = X(S(s))

and with
O(1)|π̃(−1)(s) = O(Dh(s)).

Furthermore, over B ∩ B̃, π ∼= π̃. In other words, π̃ realizes the deformation π as an
embedded deformation with respect to the embedding given by Dh.

Proof. The Minkowski decomposition of D gives us a deformation π̂ : X(Dtot) → B̃
of X(D). Furthermore, X(D(s)) and X(Dtot) are just the affine cones over Proj(D(s))
and Proj(Dtot). Now, the equality π̃(−1)(s) = Proj(D(s)) is immediate; the equalities
X(S(s)) = Proj(D(s)) and O(1)|π̃(−1)(s) = O(Dh(s)) follow directly from proposition 1.4.7.

We now must show that over B ∩ B̃, π ∼= π̃. This is equivalent to showing that

X(Dtot)//chC∗ ∼= X(Stot)

where the C∗ action corresponds to the above Z grading and we now consider both Dtot

and Stot as (polyhedral/fansy) divisors on P1 × (B ∩ B̃). Now from theorem 7.1.2, we
have X(Dtot)//chC∗ = X(pr(SDtot

)), where pr and SDtot
are defined as in section 7.1.

Using the strict concavity of h from proposition 1.3.4, it is then not difficult to see that
the elements of pr(SDtot

) with no ∅-coefficients are exactly the elements of Stot with no
∅-coefficients. One further sees that the remaining elements of Stot and pr(SDtot

) can be
localized to some common covering, so that indeed X(pr(SDtot

)) = X(Stot).

Proof of theorem 7.2.1. Let π be any T -deformation, and let h be a support function
corresponding to the embedding of X0. Then by theorem 5.2.2, we can find a support
function h(b) as in the above construction with Dh(b) ∈ π−1

b,0 (Dh). The claim then follows
from proposition 7.2.2.
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Example 7.2.3 (An embedded deformation of a toric Fano surface). Consider the de-
formation of the toric Fano surface X0 from example 3.2.5, and let −KX0 = Dh be the
anticanonical divisor from example 1.3.5, with h the corresponding support function.
Now, −KX0 gives a projectively normal embedding of X0. Recall from example 5.1.6
that we have a support function h(s) such that h(0) = h. Thus, we can apply proposition
7.2.2, and find that we can realize π as an embedded deformation with respect to the
above embedding. In fact, this realization is just the projectivization of the deformation
from example 2.2.5.

7.3 Decompositions of Divisorial Polytopes

We now change perspective from the previous section. Instead of trying to lift some
T -deformation to an embedded one, we try to find a natural construction for any em-
bedded T -deformation. Now, in toric geometry, the natural description of embedded
toric varieties is via polytopes. Likewise, the natural description of embedded T -varieties
is via divisorial polytopes. Thus, it is not surprising that our description of embedded
T -deformations should involve decompositions of divisorial polytopes:

Definition 7.3.1. Let Ψ : � → divQ P1 be a divisorial polytope. An α-admissible one-
parameter decomposition of Ψ consists of two piecewise affine functions Ψ0

0, Ψ1
0 : � → Q

such that:

(i) ΓΨi
0

has lattice vertices for i = 0, 1;

(ii) Ψ0(u) = Ψ0
0(u) + αΨ1

0(u) for all u ∈ �;

(iii) For any full-dimensional polyhedron ∇ ⊂ � on which Ψ0 is affine, Ψi
0 has non-

integral slope on ∇ for at most one i ∈ {0, 1};

(iv) If α 6= 1, then Ψ1
0 always has integral slope.

For brevity, we call an α-admissible one-parameter decomposition of a divisorial poly-
tope simply a decomposition. Now, consider any decomposition of some Ψ. Then we
construct a T -deformation of X(Ξ(Ψ)) as follows: Set

D =
∑

P

conv(Γ−Ψ∗
P

)⊗ P

and decompose D0 = D0
0 + α · D1

0, where

Di
0 = conv(Γ−(Ψi

0)
∗).

One easily confirms that this is an α-admissible Minkowski decomposition of D0. Thus, we
get a polyhedral divisor Dtot on Y tot and deformation π̃ : X(Dtot)→ B of X(D). Taking
the natural C∗ quotient gives us a deformation π : X(Dtot)//chC∗ → B of X(D)//chC∗.
We call the total space of π Xtot and denote fibers π−1(s) by Xs.

Given the above decomposition of Ψ, define Ψtot : �→ DivQ Y tot by

Ψtot(u) =
∑

P 6=0

ΨP (u)⊗ V (yP ) + Ψ0
0(u)⊗ V (y0) + Ψ1

0(u)⊗ V (yα
0 − t).
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Likewise, for any s ∈ B, define Ψ(s) : �→ DivQ P1 by

Ψ(s)(u) =
∑

P 6=0

ΨP (u)⊗ V (yP ) + Ψ0
0(u)⊗ V (y0) + Ψ1

0(u)⊗ V (yα
0 − s).

One easily checks that Ψ(s) is in fact a divisorial polytope.

Theorem 7.3.2. π is a T -deformation of the projective T -variety X(Ξ(Ψ)) with Xs =
X(Ξ(Ψ(s))). Furthermore, if the divisor DΨ∗ corresponding to Ψ is very ample and gives a
projectively normal embedding, π can be realized as an embedded deformation with respect
to the embedding given by DΨ∗ with total space

Xtot = Proj
⊕

k∈Z≥0

⊕

u∈k·�∩M

H0(Y tot, k ·Ψtot(u/k)).

Proof. By theorem 7.1.2, the total space of π is the T -variety X(pr(SDtot
)). It is not diffi-

cult to check that pr(SDtot
) arises as Stot for some divisorial fan S on P1 with Minkowski

decomposition. The description of the fibers follows from

Xs = X(D(s))//chC∗ = X(Ξ(Ψ(s)))

with the second equality coming from proposition 1.4.7.
Now suppose that DΨ∗ is very ample and gives a projectively normal embedding.

Then the embedding of X(Ξ(Ψ)) is realized via

Proj
⊕

k∈Z≥0

⊕

u∈k·�∩M

H0(P1, k ·Ψ(u/k))

and the coordinate rings of X(D) and X(Dtot) are generated in degree 1 with respect to
the natural Z grading. Thus,

X(Dtot)//chC∗ = Proj
⊕

k∈Z≥0

⊕

u∈k·�∩M

H0(Y tot,Dtot(u, k))

= Proj
⊕

k∈Z≥0

⊕

u∈k·�∩M

H0(Y tot, k ·Ψtot(u/k)).

-2 -1 0 1 2
-1

0

1

(a) Φ0
0

-2 -1 0 1 2
-1

0

1

(b) Φ1
0

Figure 7.1: A decomposition of a divisorial polytope
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Example 7.3.3 (A toric Fano surface). We consider the divisorial polytope Ψ from ex-
ample 1.4.8. We can construct a decomposition of Ψ with functions Ψ0

0, Ψ1
0 as pictured

in figure 7.1. Since Ψ corresponds to a projectively normal embedding of the toric Fano
surface X0 from example 1.2.15, we thus get by theorem 7.3.2 that the above decomposi-
tion of Φ encodes an embedded deformation of X0. In fact, this is exactly the embedded
deformation we constructed in example 7.2.3.

Remark 7.3.4. It is straightforward to generalize the notion of one-parameter decom-
positions of divisorial polytopes to multi-parameter decompositions involving multiple
coefficients. These can be then used to construct multi-parameter deformations similar
to above. We leave the details for the reader to work out.

Now, for the remainder of the section, suppose that DΨ∗ is very ample and gives a
projectively normal embedding. The total space of π then comes with a twisting bundle
O(1) which can be restricted to each fiber:

O(1)s := O(1)|Xs
.

The Hilbert polynomial for a fiber π−1(s) is then defined to be the polynomial such that

Hs(k) := dim H0(Xs,O(k)s)

for all k ≫ 0. It is well known that in such a flat family, Hs is independent of s, see
theorem 9.9 of [Har77]. However, in the case of the above T -deformations, we can easily
see this combinatorially:

Corollary 7.3.5. Suppose DΨ∗ is very ample and gives a projectively normal embedding.
Then O(1)s = D(Ψ(s))∗ for all s ∈ B, and Hs does not depend on s.

Proof. The embedding of Xs is given by

Proj
⊕

k∈Z≥0

⊕

u∈�
k·u∈M

H0(P1, k ·Ψ(s)(u)).

Thus, by proposition 1.4.7, O(1)s = D(Ψ(s))∗ .
We now show that Hs = H0 for any s ∈ B. Indeed, for k ≫ 0,

Hs(k) =
∑

u∈�
k·u∈M

dim H0(P1, Ψ(s)(u)) =
∑

u∈�
k·u∈M

(deg⌊Ψ(s)(u)⌋+ 1)

=
∑

u∈�
k·u∈M

(
∑

P∈P1

⌊Ψ
(s)
P (u)⌋+ 1

)
.

Furthermore, we have

⌊Ψ
(0)
P (u)⌋ =

{
⌊Ψ

(s)
P (u)⌋ P 6= 0, s

⌊Ψ
(s)
0 (u)⌋+ ⌊Ψ

(s)
s (u)⌋ P = 0

for any u ∈ � with k · u ∈ M , with the case P = 0 following from definition 7.3.1.
Combining this with the above equation completes the claim.
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Example 7.3.6 (Some toric fivefolds). This example will play an important role in the
following section. Define � ⊂ Q4 by

� = conv
{

(0, 0, 0, 0), (1, 1, 1, 1), (1, 1, 0, 0), (0, 0, 1, 1),

(1, 0, 1, 0), (0, 1, 0, 1), (1, 0, 0, 1), (0, 1, 1, 0)
}

and consider it as a lattice polytope in the sublattice of Z4 generated by its vertices. �

is in fact the convex hull of two squares intersecting in a point. Consider piecewise linear
concave functions fi : �→ Q for i = 1, 2, 3, 4 where the values of fi at the vertices of its
graph are as in the following table:

u f1(u) f2(u) f3(u) f4(u)
(0, 0, 0, 0) 0 0 0 0
(1, 1, 1, 1) 0 0 0 0
(1, 1, 0, 0) 1 −1 2 −2
(0, 0, 1, 1) −1 1 0 0
(1, 0, 1, 0) 0 −1 1 0
(0, 1, 0, 1) 0 −1 1 0
(1, 0, 0, 1) −1 0 1 0
(0, 1, 1, 0) −1 0 1 0

One easily checks that fi has integral slopes for i = 1, 2, 3, 4.
Now, set Ψ = (f3 + f4) ⊗ {0} + (f1 + f2) ⊗ {∞} and Ψ′ = (f2 + f3) ⊗ {0} + (f1 +

f4)⊗ {∞}. One easily checks that both Ψ and Ψ′ are divisorial polytopes which in fact
give projectively normal embeddings. Furthermore, the coefficients of Ψ and Ψ′ at 0 and
∞ each have a natural decomposition of the form fi + fj . These decompositions thus
correspond to embedded deformations of X(Ξ(Ψ)) and X(Ξ(Ψ′)). One thus sees that it
is possible to deform both X(Ξ(Ψ)) and X(Ξ(Ψ′)) to the T -variety X(Ξ(Ψ′′)), where

Ψ′′ =

4∑

i=1

fi ⊗ Pi

for any four distinct points Pi ∈ P1.

7.4 Deformations of Phylogenetic Models

In [BW07], W. Buczyńska and J. Wísniewski investigate projective toric varieties which
are geometric models of binary symmetric phylogenetic trivalent trees. One main result
is that geometric models of trees with the same number of leaves can be connected
via embedded deformations; in particular their Hilbert-Ehrhart polynomials are equal.
In this section, we provide alternate proofs of these statements using decompositions
of divisorial polytopes. In fact, we show that the relevant geometric models are T -
deformation connected (see definition 6.3.1). Furthermore, the proof of the equality of
certain Hilbert-Ehrhart polynomials can be formulated in completely combinatorial terms
without the use of algebraic geometry or deformation theory.

We adopt the following notation and definitions from [BW07] with slight modification;
those further interested in phylogenetic trees may refer to this paper for more details.
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Figure 7.2: Trees connected by an elementary mutation along e0

Let T be a tree with edges E and vertices V . Let L be the subset of V consisting of
vertices with valence one, and let N be the complement of L. We call elements of L and N

respectively leaves and nodes. We call T trivalent if all elements of N have valence three.
Now set

M(T) :=
⊕

e∈E

Z · e

with N(T) the associated dual lattice. There is a canonical inclusion of V in N(T) where
for some v ∈ V we set v(e) = 1 if the edge e contains v and v(e) = 0 otherwise.

To a tree T as above, we can also associate a polytope ∆(T):

Definition 7.4.1. The polytope model of T is the convex hull in M(T)Q of
{

u =
∑

aiei

∣∣ ai ∈ {0, 1} and v(u) ∈ 2Z for all v ∈ N

}
.

For any tree T, denote by M̂(T) the sublattice of M(T) generated by the vertices of
∆(T). Now recall that a polytope ∆ in a lattice M is normal if the semigroup

cone(∆× {1}) ∩M × Z

is generated in height one.

Proposition 7.4.2 ([BW07] Proposition A.5). If T is trivalent then ∆(T) is a normal

polytope in the lattice M̂(T).

For any trivalent tree T, we denote the projective toric variety associated to ∆(T) in

the lattice M̂(T) by X(T) and call it the geometric model of T. In this case, the Hilbert

polynomial of X(T) is equal to the Ehrhart polynomial of ∆(T) in the lattice M̂(T), that
is, the function

k 7→ k ·∆(T) ∩ M̂(T).

Thus, we will speak of the Hilbert-Ehrhart polynomial associated to T.
Now consider four trees T1, . . . , T4, each with some marked leaf li, and let τ be a

permutation of the set {1, . . . , 4}. Then we can create a new tree considering the union
of the four trees after identifying the leaves lτ(i) and lτ(i+1)

for i = 1, 3 and then joining
lτ(1) with lτ(2) via a new edge e0.

Definition 7.4.3. Suppose trivalent trees T and T
′ arise from the above construction by

considering the same four trees Ti, see for example figure 7.2. Then we say that T and T
′

are connected by an elementary mutation along e0. We say that two trees are mutation
equivalent if there exists a sequence of elementary mutations from one to the other.
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Lemma 7.4.4 ([BW07] Lemma 2.18). Any two trivalent trees with the same number of
leaves are mutation equivalent.

Now, in [BW07] lemma 2.23 it is shown that for any elementary mutation, a projective
flat family can be found with the corresponding geometric models as fibers. Combining
this with the above lemma yields that the geometric models of all trivalent trees with some
fixed number of leaves are connected by embedded deformations, and that in particular
the Hilbert-Ehrhart polynomials are equal. Here, we can use our theory of T -deformations
to replace this lemma with the following:

Proposition 7.4.5. Suppose two trivalent trees T and T
′ are connected by an elementary

mutation. Then there are embedded T -deformations π of X(T) and π′ of X(T′) which
have an isomorphic embedded fiber. Thus, X(T) and X(T′) are connected via embedded
deformations.

Proof. Let Ti be trees such that T is created from Ti as above with respect to the per-
mutation τ = id. Assume that T

′ is created from Ti with the permutation τ ′ exchanging
2 and 3; other cases can be dealt with similarly. For i = 1, . . . , 4, let ei be the sole edge
containing li in Ti. Now let M ′ = M(T) = M(T′) and let deg be the projection from
M ′ to the orthogonal complement of e0 where we are using the standard scalar product
on M ′. Note that the images under deg of M̂(T) and M̂(T′) are equal; we denote this

image lattice by M . Now, the restriction of deg to M̂(T) and M̂(T′) determines divisorial
polytopes Φ : ∇ → DivQ P1 and Φ′ : ∇′ → DivQ P1 in M coming from the polytopes ∆(T)
and ∆(T′) as in remark 1.4.9; here we take the natural section coming from the natural
splitting of M ′. One easily confirms that in fact ∇ = ∇′.

Consider now the lattice M ′′ generated by ei, i = 1, . . . , 4, and let φ : M ′ → M ′′ be
the projection. Let �, Ψ, Ψ′, and fi be as in example 7.3.6, where the lattice in which we
consider � is simply equal to the image of M under φ. Furthermore, one easily checks
that φ(∇) = �. For any function f : �→ Q, we can pull it back to a function on ∇:

φ∗f(u) := f(φ(u))

for all u ∈ ∇. Likewise, we can pull back divisorial polytopes from � to ∇. One easily
checks that φ∗Ψ = Φ and φ∗Ψ′ = Φ′. Furthermore, we can pull back the decomposition of
Ψ and Ψ′ to decompositions of Φ and Φ′. Since ∆(T) and ∆(T′) are normal in M̂(T) and

M̂(T′), we get embedded deformations π and π′ corresponding to these decompositions,
both of which have a fiber corresponding to φ∗Ψ(1).

Corollary 7.4.6. For any trivalent trees T and T
′ with the same number of leaves, T

and T
′ have the same Hilbert-Ehrhart polynomial.

Remark 7.4.7. Our proof of the above corollary is completely combinatorial. Indeed,
we can completely forget about T -deformations and just use our combinatorial proof of
corollary 7.3.5.
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Chapter 8

Non-Homogeneous Deformations

The T -deformations we have been considering have had the special property that they are
homogeneous of degree zero. This has the advantage that we have been able to explicitly
describe the fibers of our deformations. However, it is often beneficial to consider more
general deformations, for example if one wants to construct partial smoothings. In this
last chapter, we will consider certain deformations which are not homogeneous. In section
8.1, we introduce a general technique which can be used to ‘perturb’ a T -deformation
of an affine T -variety so that it is no longer homogeneous. In section 8.2 we consider
the case that the variety of interest is actually toric, and show that the restrictions of
such a perturbed T -deformation to certain linear strata of the base space are in fact
(homogeneous degree zero) T -deformations. Finally, in section 8.3, we show how this
technique can be used to construct partial smoothings of nonaffine toric varieties.

8.1 A General Technique

The technique we use to perturb a homogeneous deformation is not original; see for
example section 6.2 of [AvS09] and section 6.6 of [AvS00]. More recently, it was employed
by A. Mavlyutov in [Mav09]. However, we present it for the first time here in the context
of T -deformations.

Let D be a proper polyhedral divisor on Y = P1 along with some α-admissible Min-
kowski decomposition D0 = D0

0 + α1 · D1
0 . . . + αr · Dr

0. Let π : Xtot → B be the
corresponding T -deformation as constructed in section 2.2. Now for each i = 1, . . . , r,
consider regular functions f 1

i , . . . , f li
i with f j

i ∈ H0(Xtot,OXtot). We use these functions
to turn π into a non-homogeneous deformation with d =

∑r
i=1 li parameters.

This is done as follows. Let X be the subvariety of Xtot×
∏r

i=1 Ali given by equations

ti =

li∑

j=1

ti,j · f
j
i (8.1.1)

where ti,j are coordinates on the ith term of the product
∏r

i=1 Ali, and ti are coordinates
on B. Let π′ : X →

∏r
i=1 Ali be the map induced by the projection. By considering

the embedding Xtot →֒ Xtot ×
∏r

i=1 Ali defined by id×{0} we then have the following
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diagram:

X(D) �

�

//

��

Xtot
))

π
��

X
�

�

//

π′
��

Xtot ×
∏r

i=1 Ali

ww

0
�

�

// B
∏r

i=1 Ali

It is immediately clear that the image of X(D) in Xtot ×
∏r

i=1 Ali actually lies in X .
There it is cut out by the equations ti,j = 0 and is thus a complete intersection, since
dimX = dim X(D) + d. Thus we have the following:

Proposition 8.1.1. After restricting the base space to some neighborhood of the origin,
π′ is a deformation of X(D).

Proof. Since X(D) is a complete intersection in X , arbitrary perturbations of the defining
equations give a flat family around the origin.

Since we have essentially multiplied the deformation parameters with arbitrary regular
functions, we can no longer expect that this deformation is homogeneous with respect to
the TN action.

8.2 Multidegree Deformations of Toric Varieties

We now show how the above non-homogeneous deformations can be used to combine
certain T -deformations of toric varieties. Let ∆ be a full-dimensional polyhedron in a
lattice N with α-admissible Minkowski decomposition ∆ = ∆0 + α1 ·∆1 + . . . + αr ·∆r.
Let τ1, . . . , τl be a collection of facets of ∆ together with primitive weights u1, . . . , ul ∈M
such that face(∆, uj) = τj and

min〈∆, uj〉 = 〈τj , uj〉 = −αj ,

where αj ∈ N and αj divides all αi. For 1 ≤ i ≤ r and 1 ≤ j ≤ l set βi
j = αi/αj .

We call the Minkowski decomposition of ∆ together with the collection of facets {τj} a
multidegree deformation datum.

We use this data to construct a nonhomogeneous deformation of X(D), where D =
∆ ⊗ {0} + ∅ ⊗ {∞} is a polyhedral divisor on P1. Let σ be the cone generated by
(∆, 1) ⊂ N × Z. Note that X(D) is in fact the toric variety TV(σ) determined by σ, see
remark 1.2.14.

Let π : Xtot → B be the deformation of X(D) coming from the given α-admissible
Minkowski decomposition of ∆. Note that the deformation parameter ti has degree
[0, . . . , 0, αi] in the M ×Z grading corresponding to the characters of the big torus acting
on X(D). The total space Xtot is actually also toric. Indeed, fix some basis b1, . . . , bn

of N . Consider now the lattice Ñ = N × Zr+1; here we take basis b̃1, . . . , b̃n, c̃0, . . . , c̃r,
where b̃i is the image of bi under the natural inclusion and c̃i, i = 0, . . . , r is the image
under inclusion of the standard Zr+1-basis. Now consider the cone

σ̃ = cone(conv∪r
i=0(∆i + c̃i))
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where we implicitly consider the inclusion of N in Ñ . Then Xtot = TV(σ̃), and the

inclusion TV(σ) →֒ TV(σ̃) corresponds to the lattice map N × Z→ Ñ sending (bi, λ) to

b̃i + λ ·
(
c̃0 +

∑r
j=1 αj · c̃j

)
.

Now, the characters χβi
j [uj ,αj ] are regular functions on X(D) = TV(σ), since [uj, αj] ∈

σ∨. Taking M̃ to be the lattice dual to Ñ with dual basis b̃∗i , c̃
∗
i , one easily checks that

each βi
j [uj, αj] lifts to a unique ũj

i ∈ σ̃∨ ∩ M̃ . We thus set f j
i = χeuj

i for i = 1, . . . r and
j = 1, . . . , l and apply the construction of the previous section to get a d = r · l-parameter
deformation π′ of X(D) = TV(σ). We call the deformation π′ a multidegree deformation.

Remark 8.2.1. If ∆ is a reflexive Gorenstein polytope, then the deformation π′ we just
constructed has already been constructed by A. Mavlyutov, see [Mav09], remark 6.3.
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Figure 8.1: A multidegree deformation datum

Example 8.2.2 (A multidegree deformation of the cone over a toric Fano surface). We
consider the polytope ∆ and its (1)-admissible Minkowski decomposition ∆ = ∆0 + ∆1

as pictured in figure 8.1. We consider all facets τ 1, τ 2, τ 3, τ 4 as shown in the figure. This
is a multidegree deformation datum, with corresponding primitive weights u1 = [1, 0],
u2 = [0, 1], u3 = [−1, 0], u4 = [0,−1], and αj = βi

j = 1 for all i, j. IfD is the corresponding
polyhedral divisor, it turns out that X(D) is in fact the same cone over the toric Fano
surface from example 1.4.8, although with a different torus action. This can be seen by
viewing both varieties as toric varieties. In this example, we then have

ũ1
1 = [1, 0, 1, 0] ũ2

1 = [0, 1, 1, 0]

ũ3
1 = [−1, 0, 0, 1] ũ4

1 = [0,−1, 0, 1]

Note that we have in fact embedded the total space of π′ in a toric variety as well.
Indeed, consider the lattice N = Ñ ×Zr·l with basis bi, cj , dj,k, which are respectively the
images under inclusion of bi, c̃j, and the standard Zr·l basis. Then the total space of π′

is embedded in the toric variety TV(σ), where

σ = σ̃ ×Qr·l
≥0.

The embedding is given by the equations

χc∗i − χαic∗0 =
l∑

j=1

χd
∗

i,j+uj
i ,
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where b
∗

i , c
∗
j , d

∗

j,k is the natural dual basis of M = Hom(N, Z), and uj
i is the lift of ũj

i to

M given by the natural splitting of M̃ .
We now wish to analyze certain special strata of the deformation π′. Fix some 1 ≤

ν ≤ l. Consider the sublattice Nν := [uν ]⊥ × Z ⊂ N × Z together with some cosection s
which respects the splitting of Nν . Set

σ+
ν = s(σ ∩ [[−uν , 0] = 1]);

σ−
ν = s(σ ∩ [[−uν , 0] = −1]).

Then Dσν = σ+
ν ⊗{0}+σ−

ν ⊗{∞} is a proper polyhedral divisor on P1 whose corresponding
T -variety is simply TV(σ) with action by the torus TNν . The Minkowski decomposition
of ∆ induces an α-admissible Minkowski decomposition τν = τ 0

ν + α1 · τ 1
ν . . . + αr · τ r

ν .
Now, take

σ0
ν : =

1

αν
s(τ 0

ν × {1}) + tail(σ+
ν )

σi
ν : = s(τ i

ν × {0}) + tail(σ+
ν ), 1 ≤ i ≤ r.

Then σ+
ν = σ0

ν + β1
ν ·σ

1
ν + . . . + βr

ν ·σ
r
ν is a βν-admissible Minkowski decomposition, where

βν := (β1
ν , . . . , β

r
ν). Denote the deformation corresponding to this decomposition by πν ;

its deformation parameters have degrees [βi
ν · uν , 0] for 1 ≤ i ≤ r with respect to the

M ×Z-grading. In this setting, for (s1, . . . , sr) ∈ Ar, define the proper polyhedral divisor

Dν,(s) = σ0
ν ⊗ {0}+

r∑

i=1

σi
ν ⊗ V (y

βi
ν

0 − si) + σ−
ν ⊗ {∞}.

Note that the fibers of πν are just X(Dν,(s)).
The content of the following proposition is that the deformation π′ in a sense combines

all the deformations πν :

Proposition 8.2.3. The deformation π′ restricted to ti,j = 0 for j 6= ν is canonically
isomorphic to the T -deformation πν.

Proof. Restricting π′ to ti,j = 0 for j 6= ν has the following effect: We replace N by

Nν = N/〈di,j〉j 6=ν

and identify basis vectors of N with their images in Nν . Taking σν to be the image of
σ in Nν , we have that the total space of the restriction of π′ is embedded in TV(σν) by
requiring that the polynomials

gi := χc∗i − χαic∗0 − χuν
i χd

∗

i,ν (8.2.1)

vanish for i = 1, . . . , r.
We will use the techniques of [AHS08], proposition 5.5 to construct a polyhedral

divisor giving the restriction of π′; this is a generalization of the downgrading we presented
in remark 1.2.14. After possible basis change (and reordering of Minkowski summands if
all αi = 1), we can assume that min〈αi ·∆i, uν〉 = 0 for i 6= 0 and thus that min〈∆0, uν〉 =
−αν . Furthermore, we can assume that b2, . . . , bn is a basis for [uν ]⊥ ⊂ N and that
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s(b1) = 0, where s is the cosection from above. Using the splitting of N ν , we extend s to
a cosection s : Nν → Nν . Consider the exact sequence

0 −−−→ Nν −−−→ Nν
p

−−−→ N̂ −−−→ 0

where we have taken N̂ to be the quotient N ν/Nν. We take a basis b̂1, ĉ1, . . . ĉr, d̂1, . . . , d̂r

of N̂ such that the map p sends

b1 7→ b̂1 bi 7→ 0, 2 ≤ i ≤ n

c0 7→
r∑

i=1

αiĉi cj 7→ −ĉj , 1 ≤ j ≤ r

dk,ν 7→ d̂k

Let M̂ be the dual lattice of N̂ with corresponding basis b̂∗1, ĉ
∗
i , d̂

∗
j .

Let Σ be the fan in N̂Q induced by the images of all faces of σν . Then the Chow
quotient of TV(σν) by the action of TNν is TV(Σ). Let Y tot be the image of the total
space of the restriction of π′ in TV(Σ). We wish to describe this more closely. To do so,
we consider two special charts of TV(Σ). Let σ̂min and σ̂max be the images of the faces
of σ on which uν

i is respectively minimized and maximized for all i. It is immediate that
both these cones must belong to Σ.

We first focus on σ̂min. Calculating the images of the relevant rays of σ, we have

σ̂min = 〈v0, v1, . . . , vr, w1, . . . , wr〉

with

v0 = −b̂1 +

r∑

i=1

βi
ν ĉi, vi = −ĉi 1 ≤ i ≤ r, wi = d̂i 1 ≤ i ≤ r.

Thus, TV(σ̂min) = A1+2r. We will take v∗
i , w

∗
j to be a dual basis. Note that we also have

s
(
σ ∩ p−1(v0)

)
= σ0

ν , s
(
σ ∩ p−1(vi)

)
= σi

ν , 1 ≤ i ≤ r (8.2.2)

and
s
(
σ ∩ p−1(wj)

)
= tail(σ+

ν ). (8.2.3)

Now, on the torus T
bN , the image of V (gi) is given by V (ĝi) ∩ T

bN , where we take

ĝi := 1− χbc∗i − χβi
ν

bb∗1+bc∗i χ
bd∗i ,

see [Bir07]. On the other hand, the image of V (gi) in TV(σ̂min) is given by setting

ĝi · χ
−βi

ν
bb∗1−bc∗i = 0,

since the left hand side is regular on TV(σ̂min) and irreducible. Indeed, this can be seen
by rewriting the above equation as

χv∗i − (χv∗0 )βi
ν = χw∗

i
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which is just a hyperplane in A1+2r.
In general, Y tot is contained in the intersections of the images of V (gi) in TV(Σ), but

may actually be smaller if the intersection isn’t irreducible. But on the chart TV(σ̂min),
the intersection of the images of V (gi) is just Ar+1, so we in fact have that Y tot

|TV(bσmin) =

Ar+1. For this chart, we can choose coordinates y, t1, . . . , tr on this space such that the
restrictions of the toric divisors corresponding to vi is given by the equation yβi

ν = ti for
i ≥ 1 and y = 0 for i = 0.

We now turn shortly to the chart TV(σ̂max). Let Ĥmax denote the r-cycle correspond-

ing to the face of σ̂max where we omit rays generated by the d̂i. This r-cycle must in fact
lie in Y tot. Indeed, consider the face σmax of σν which is spanned by all rays on which uν

is maximal, omitting the rays di,ν ; it defines an r-cycle Hmax on TV(σν). Furthermore,
since p(σmax) = σ̂max, the quotient map restricted to TV(σmax) is in fact regular, and thus

the image of Hmax under the quotient map is Ĥmax. We now just need to check that V (gi)
contains Hmax for each i. Note that we have that neither c∗i , c∗0, nor uν lie in −σν . Thus,
the monomials χc∗i , χc∗0 , and χuν are not invertible in TV(σν), and so Hmax ⊂ V (gi). We

can conclude that Ĥmax ⊂ Y tot as desired.
We now have enough information to conclude that Y tot = P1×Ar. Indeed, we have a

natural map Y tot → Ar, whose fibers in the chart σ̂min are affine lines and whose fibers in
the chart σ̂max contain a point not in the previous previous chart; thus, the fibers must
all be P1. Extending our coordinates for Y tot in the chart σ̂min (where y is the coordinate

on P1), we have that Y tot ∩ Ĥmax is given by the equation y = ∞. Thus, all the toric

divisors on TV(Σ) corresponding to rays of σ̂min not of the form d̂i restrict to y−1 = 0. We

ignore toric divisors corresponding to rays d̂i, since the associated polyhedral coefficient
is trivial as we see from equation (8.2.3).

We must now check that the divisors given by the equations y = 0, y = ∞, yβi
ν = ti

have the correct polyhedral coefficients. But this follows from equation (8.2.2) for all
divisors excluding y =∞. But the coefficient for y =∞ must be σ−

ν , since we know that
the special fibers of π′ and πν are equal.

Example 8.2.4 (A cone over a toric Fano surface). We continue example 8.2.2, and re-
strict the corresponding deformation π′ to the stratum t1,j = 0, j 6= ν for ν = 1. Choosing
the natural cosection s, we get that Dσν is exactly the polyhedral divisor of example 1.4.8.
Furthermore, the decomposition σ+

ν = σ0
ν + σ1

ν is exactly the decomposition of example
2.2.5. By proposition 8.2.3, the restriction of π′ is thus equal to the deformation π1, where
π1 was the deformation from example 2.2.5.

8.3 Constructing Partial Smoothings

We now show how multidegree deformations can be used to construct partial smoothings
of nonaffine toric varieties. Let N be a lattice, and ∆ ⊂ NQ a polytope containing the
origin in its interior. By Σ(∆) we denote the face fan of ∆, that is the set of all cones of
the form cone(τ) for τ ≺ ∆. Then X0 = TV(Σ(∆)) is a projective toric variety. We can
also consider the cone σ = cone(∆ × {1}) ⊂ (N × Z)Q and the associated toric variety
TV(σ). Then the Chow quotient of TV(σ) by the subtorus C∗ ⊂ TN×Z corresponding
to the one-parameter subgroup generated by (0, 1) ∈ N × Z is in fact X0. Thus, we call
TV(σ) the cone over X0 and denote it by C(X0). Now any deformation of C(X0) which
is homogeneous of degree 0 in the natural Z grading descends to a deformation of X0.
We shall thus consider degree 0 deformations of C(X0) to construct deformations of X0.
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Consider now a multidegree deformation datum ∆ = ∆0 + α1 ·∆1 + . . . + αr ·∆r with
facets τ1, . . . , τl. This gives us a deformation π′ of C(X0), which is homogeneous of degree
0 with respect to the Z grading, and we thus get an r · l-parameter deformation π̂ of X0.

Proposition 8.3.1. Choose some 1 ≤ ν ≤ l. Along the r-dimensional stratum given by
ti,j = 0 for j 6= ν, the fiber of π̂ over t1,ν = s1, . . . , tr,ν = sr equals X(pr(SDν,(s)

)).

Proof. This is just a combination of proposition 8.2.3 and theorem 7.1.2.

Now, since we know some of the fibers of π̂, we can reach some conclusions about its
general fiber. For any 1 ≤ ν ≤ l, denote by Zν the (possibly empty) singular locus of
Uν := TV(cone(τν)), and set dν = codim(Zν , Uν).

Theorem 8.3.2. For any 1 ≤ ν ≤ l, the deformed germ of Zν in the general fiber
of π̂ is smooth in codimension dν + 1 if 1

αν
τ 0
ν , τ 1

ν , . . . , τ r
ν are conically smooth in dimen-

sion dν. Furthermore, if Zν is an isolated singularity, then the deformed germ of Zν

in the general fiber of π̂ is smooth/terminal/canonical if 1
αν

τ 0
ν , τ 1

ν , . . . , τ r
ν are conically

smooth/terminal/canonical.

Proof. For the first part, it is enough to show that there is some fiber of π̂ in which the
general point of Zν has been smoothed. Thus, we restrict to the stratum ti,j = 0 for j 6= ν,

where we know by proposition 8.3.1 that the fibers are of the form X(pr(SDν,(s)
). One

easily checks that for each fiber away from zero, the polyhedral divisor for the deformation
of the chart Uν has affine locus, and polyhedral coefficients 1

αν
τ 0
ν , τ 1

ν , . . . , τ r
ν . Since these

polytopes are conically smooth in dimension dν, the deformation of Uσ must be smooth
in codimension dν + 1 due to proposition 1.5.3. In particular, the general point of Zν has
been smoothed.

The second claim is shown completely analogously, where we make use of the fact that
the property of being canonical or terminal is preserved under deformation, see [Kaw99]
and [Nak04], corollary 5.3.

The following corollary is immediate:

Corollary 8.3.3. Let d = min1≤ν≤l dν and suppose that X0 \
⋃

Zν is smooth in codi-
mension d + 1. If for all 1 ≤ ν ≤ l 1

αν
τ 0
ν , τ 1

ν , . . . , τ r
ν are conically smooth in dimension

d, then the general fiber of π̂ is smooth in codimension d + 1. Likewise, if X0 only has
isolated singularities which are all contained in the charts Uν, and 1

αν
τ 0
ν , τ 1

ν , . . . , τ r
ν are

conically smooth/terminal/canonical for all 1 ≤ ν ≤ l, then the general fiber of π̂ is
smooth/terminal/canonical.

A special case of the above is the following:

Corollary 8.3.4. Let ∆ be a Gorenstein reflexive polytope and let X0 = TV(Σ(∆)) be
smooth in codimension d. Suppose ∆ = ∆0 + . . . + ∆r for lattice polytopes ∆i which are
conically smooth in dimension d. Then X0 admits a smoothing in codimension d + 1.

Proof. The decomposition ∆ = ∆0 + . . . + ∆r together with all facets τi of ∆ defines a
multidegree deformation datum with αi

j = 1 for all i. Any τ i
ν is then a face of ∆i.

Example 8.3.5 (A toric Fano surface). Let ∆ be the Gorenstein reflexive polytope
from figure 8.1 with the multidegree deformation datum from example 8.2.2. Then
X0 = TV(Σ(∆)) is just the singular toric Fano surface from example 1.2.15 with four
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A1 singularities. By corollary 8.3.4, X0 admits a smoothing. If π̂ is the deformation of
X0 corresponding to the above datum, then restricting π̂ to t1,ν = 0 for some ν gives a
smoothing of exactly one of the four A1 singularities. Indeed, we see this for ν = 1 by
combining example 8.2.4 with example 7.2.3; for other values of ν this is similar. Look-
ing at a fiber over a general point in the base space, we have then smoothed all four
singularities.

Example 8.3.6 (A toric Fano threefold). Let S be the convex hull of the origin and three
standard basis vectors in Z3, and take ∆ = 4 ·S + (−1,−1,−1). Then ∆ is a Gorenstein
reflexive polytope giving rise to a toric Fano threefold X0; note that the singular locus of
X0 has dimension one. Now, ∆ admits the decomposition S +S +S +(S +(−1,−1,−1)),
where each summand is conically smooth. Thus, X0 admits a smoothing in codimension
two.
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[PS08] Lars Petersen and Hendrik Süß. Torus invariant divisors. arXiv:0811.0517v2
[math.AG], 2008.

[Ser06] Edoardo Sernesi. Deformations of algebraic schemes, volume 334 of
Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of
Mathematical Sciences]. Springer-Verlag, Berlin, 2006.
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Zusammenfassung

Diese Dissertation befasst sich mit Deformationen von rationalen, normalen Varietäten
mit einer Toruswirkung der Komplexität eins. Solche Varietäten lassen sich durch poly-
edrische Divisoren und divisorielle Fächer kombinatorisch beschreiben, die von K. Alt-
mann, J. Hausen und H. Süß entwickelt wurden. Ziel dieser Arbeit ist es, mithilfe dieser
Kombinatorik die Deformationstheorie dieser Varietäten zu erforschen.

R. Vollmert konnte bereits zeigen, dass eine kombinatorische Zerlegung eines poly-
edrischen Divisors zu einer Deformation der zugehörigen affinen Varietät führt. Der Kern
dieser Dissertation besteht darin, ein Verfahren anzugeben, wie diese Deformationen von
affinen Varietäten verklebt werden können, um Deformationen von nicht zwangsweise af-
finen Varietäten zu konstruieren. Die daraus hervorgehenden Deformationen werden als
T -Deformationen bezeichnet.

Nach der Einführung von T -Deformationen werden ihre grundlegenden Eigenschaften
untersucht. Kriterien für die Separiertheit und Eigentlichkeit einer T -Deformation werden
angegeben, sowie ein Kriterium für lokale Trivialität. Für den Fall von lokaler Trivialität
wird das Bild der Kodaira-Spencer Abbildung berechnet.

Diese ersten Untersuchungsergebnisse lassen sich anwenden, um zu zeigen, dass die
T -Deformationen einer glatten, kompletten, torischen Varietät den Vektorraum der infi-
nitesimalen Deformationen dieser Varietät aufspannen. Das heißt, dass man allein durch
T -Deformationen viele Informationen über die Deformationsmöglichkeiten einer solchen
Varietät erhält. Als zweite Anwendung werden T -Deformationen von rationalen Flächen
mit C∗-Wirkung untersucht. Hier wird gezeigt, dass alle solche Flächen mit einer fixierten
Picard-Zahl größer zwei durch T -Deformationen ineinander überführbar sind.

Die Theorie der T -Deformation wird weiterentwickelt, um Familien von Divisoren
und projektiv eingebettete Deformationen zu untersuchen. Es stellt sich heraus, dass
es bei T -Deformationen von glatten kompletten Varietäten eine natürliche Isomorphie
zwischen den Picard-Gruppen der Fasern gibt. Diese Isomorphie verallgemeinert sich
zu einer Abbildung zwischen Untergruppen der Picard-Gruppen im nicht glatten Fall.
Diese Abbildung wird anschließend benutzt, um die Einbettbarkeit von T -Deformation
zu untersuchen. Insbesondere wird gezeigt, dass alle T -Deformationen von projektiven
Varietäten einbettbar sind.

Zudem werden noch zwei weitere Anwendungen besprochen. Zum einen liefert die zu-
grundeliegende Kombinatorik von T -Deformationen einen rein kombinatorischen Beweis
dafür, dass die geometrischen Modelle von binären symmetrischen trivalenten phyloge-
netischen Bäumen mit gleicher Blattanzahl identisch sind. Zum anderen ermöglichen
T -Deformationen auch die Konstruktion von partiellen Glättungen gewisser torischer Fa-
novarietäten.
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