2 Solvability and smoothness of solutions of

the semiperiodical Dirichlet problem

for mixed type equations

2.1 Separability of a mixed type operator

In this chapter the role of coefficients for the separability of a mixed type

operator in an unbounded domain is studied.

Consider the operator
Lu = —k(y)ugy — uyy + a(y)ug + c(y)u (2.1.1)

originally defined in Cg? (§2), where k(y) is a sectionally continuous function in
R=(-00, +00) and yk(y) > 0 for y #0, k(0)=0 (as y=0). Here C§5(€2) is a set of
infinitely differentiable functions, satisfying the conditions: u(—m,y) = u(w,y),

u,(—m,y) = u,(m,y) and finite as functions of the y variable, where
Q={(z,y): —7<zx<m, —00<y<+00}.

It is easy to show that the operator L admits closure in the metric of Ly(£2)
and the closure is also denoted by L. As usually we denote the domain of the

operator by D(L).

Definition. The operator L is called separable if for all functions u(z, y)€ D(L)

the estimate

[=F(y)ter = wyylly + [la(y)ully + le(y)ull, < C(([Lully + [lully)

holds, where C' > 0 is a constant not depending on u(x,y).

Here and in the following || - ||2 denotes the norm of Ly(€2).
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The basic result of this section is formulated in the following theorem.
Theorem 2.1.1. Let the conditions :

i) a(y) and c(y) are piecewise continuous functions in any compact set in

R and |a(y)| = d¢ > 0;

i) c(y) < coa®(y) for any y € R, where ¢y > 0 is a fized number;

a(y) c(y)

1) 1 = sup —= < 00, fig = SUp —= < 0
y—tj<1 a(t) y—tj<1 ¢(t)

be fulfilled. Then the quantity

| = B (Y)ee — yyll2

Y = sup 2.1.2
oty Tull + Tl 212

is finite if and only if
infe(y) = ¢ > —o0. (%)

yeR
The necessity will be proved without involving some auxiliary assertions

whereas the proof of sufficiency needs a few auxiliary lemmas.

Consider the operator [,, (n = 0,+ 1,+2,...) defined by the equality
lyu = —u"(y) + (n°k(y) + ina(y) + c(y))u(y) (2.1.3)

originally defined in C§°(R), the set of infinitely differentiable and finite func-
tions in R=(-00, +00), where k(y) is a sectionally continuous function in any

compact set in R and a bounded function in R; yk(y) > 0 for y #0 and k(0)=0.

The operator (2.1.3) admits closure in Ly(R) and the closure is also denoted
by [, and henceforth, referring to the expression (2.1.3), we will mean this

closure.

Let D(l,) denote the domain of definition of an already closed operator [,,,

consisting of finite functions which together with their derivatives up to second

order belong to Ly(R).

The following lemmas hold for the operator [,,.
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Lemma 2.1.1. Let the conditions i) and (*) be fulfilled. Then the operator

l,+AFE is continuously invertible for sufficiently large A > 0.

Lemma 2.1.2. Let the conditions i)-iii) and the condition (*) be fulfilled.

Then the estimate
o) [n]* (L + AB) Y|, < C(A)S{%Hp(y)ln\“s&j(ln +AE) |,
holds for sufficiently great X > 0, where the operator l,, ; defined by the equality
Lju=—u"(y) + (n*k(y) + ina(y) + c(y))u
and the boundary conditions

uw(A-) =u(Ay) =0,
j j
where A—and A+ are the left and right ends of the intervals A; = (j—1, j+1);
J

j
p(y) is a continuous function in R; c(\) is a constant depending on A and «

=0,1.

Lemma 2.1.3. Let the conditions of Lemma 2.1.2 be fulfilled. Then
Ha(y)\n|(ln + )\E)_1H2_>2 < 00

|c(y)(ln + AE) |, < oo.

The proofs of the lemmas 2.1.1-2.1.3 and the proof of sufficiency of the
main theorem will be borrowed from the work [28] and will be cited here in a

more compact form for completeness.

Proof of Lemma 2.1.1. Consider the scalar product

(e + X, —inad] = | [ alg)luPdy —in [ (u? + (02K(s) + ) + N]aPldy).

00 —

where u(y) is arbitrary function belongs to C§°(R).
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Hence, using the Cauchy-Bunyakovskii inequality, it is not difficult to obtain

the following estimate
[(n + AE)ully = |nfdo][ull,- (2.1.4)

And in case n =0 (i.e. Iy = —u"(y) + c(y)u(y)) the following inequality
holds for sufficiently large A > 0

1o + AE)ully = 6]lull, (2.1.5)

where § = infc(y) + A > 0.
YyeR

Indeed, considering the scalar product

(o + AE)u )| = / aly) uf*dy — in / (e(y) + )|ufdy

owing to the Cauchy-Bunyakovskii inequality, we have (2.1.5).

Now, combining (2.1.4) and (2.1.5), we find

[(n += AE)ully = co[n] +1)lully, (2.1.6)

where ¢y = min {@ é}

Consider the operator [, ; cited in Lemma 2.1.2.

When the conditions i) and (*) are fulfilled the operator [, ; + AE has a
continuously inverse operator for sufficiently large A > 0 defined in the whole
of Ly(A;) and the inequalities

C

1
H(ln,j + AE) UHQ_Q = R (2.1.7)
”iﬂ~+AEY1 > o (2.1.8)

hold for the inverse operator, where ¢ > 0 is a constant.

Let us prove these assertions.
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Integrating by parts it is not difficult to find the estimate
[+ AE)ully = crf|ull,

for sufficiently large A > 0, for every u(y) € D(l,;), where ¢; > 0 is a constant.

Now if we show that the range set of the operator is everywhere dense in
Ly(A;) then it is clear that the operator [, ; + AE has a continuous inverse for
sufficiently large A > 0.

Let us suppose the opposite, i.e. the range set R(l, j+AE) is not everywhere

dense in Ly(A;). Then there exists a element v € La(v # 0) such that
(u, Iy j0) = (ln,v) =0 (2.1.9)

holds for all u € D(l,, ;) = D(l,,; + AE), where [}, ; is a conjugate operator to

the operator [, ; defined by the equality
Fu=—0"(y) + (n?k(y) +ina(y) + c(y))v(y).

From (2.1.9) it follows that [} ;uv=0. Since k(y), a(y) and c(y) are bounded
and continuous functions in the segment A; then the function (n?k(y) - ina(y)+

c(y)) v € Lo(A;) and therefore v” € Ly(A;).

Now, integrating by parts the expression
j+1
0=<utiyv>= [ uly)~ () + TPRG) — maly) + o)}y

j—1

by virtue of the arbitrariness of u € D(l, ), we have easily made sure that

v(A) = v(A])=0. From here, integrating by parts, we have

15500, = ellvllz:

where ¢; > 0.
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From the last inequality, by virtue of [} ;v = 0, it follows that v = 0. Thus

we have come to a contradiction that proves the assertion.
It remains to prove the inequalities (2.1.7) and (2.1.8).

Construct the scalar product < (I, ; + AE)u, v >, where v € D(l, ;). Inte-

grating by parts and using the boundary conditions we find

1< (I + AE)u,u >| = / /| dy + /an(y) +ina(y) + (c(y) + N)|ul*]dy
’ N (2.1.10)

Using the Cauchy-Bunyakovskii inequality and the condition i) we have

2 2
coll(buj + ABE)ully = coln|’ ;IGHAH\@( )1 el (2.1.11)

From (2.1.10), using the Cauchy inequality with € > 0, we find
1
ol s+ ABY > / P+ (clw) + A= S)laPldy = [ k) uPldy
Aj

Combining this inequality with the inequality (2.1.11) we have

1 2 €
(5 + ) g+ 2B > [ WP+ (=) + 3= DluPlay

2e
Aj

+ [ (e fa(o)* = k(o) luf)dy
Aj
From the last inequality, taking the condition (*) into account, we obtain

for sufficiently large A > 0
()| (T g + AB)ully = Allullz, (2.1.12)

where ¢(¢) = ¢y + 5. The inequality (2.1.12) proves the inequality (2.1.7).
From (2.1.10), owing to (2.1.12), the inequality (2.1.8) easily follows.
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Consider the operator K defined by the equality

Kf=) ¢illyj+ AE)pif, f € La(R),
j

where {¢;} is a set of nonnegative functions from C¢°(R) such that }_ ¢; =1,
supp ¢; C Aj and UAJ- = R. ’

It is not difﬁcultj to show that K f € D(l,). Now, applying the operator
(I,+AE) to the operator Kf, we have

_ d _
(g +AE)Kf = f+ 3 ¢ (o + AE) g f +2) Pidy (Inj + AE) i f.
J J

Owing to arbitrariness of f we can see that the equality is fulfilled for any
function f € Ly(R). From the inequalities (2.1.7) and (2.1.8) it is not difficult
to find the estimate

/
, i fIP eI v
| (lnj + AE)Kf||2 < || f]]2 + 24C§ z + Vi < 00

From the aforecited discourses and from the inequality (2.1.6) we conclude

that the operator [, ; + AE has a continuous inverse in the space Ly(R) for
sufficiently large A > 0. Lemma 2.1.1 is proved.

Proof of Lemma 2.1.2. Let the conditions 7)-ii) be fulfilled. Then owing

to Lemma 2.1.1 and the fact that [,, ;+AE is continuously invertible the equality
(ln+ AE) " f = (In+ AE) " Buaf + My f (2.1.13)

holds for any function f € C§° (R), where

Buaf = [E =Y (Il +AE) @; (lnj + AE) " ;| f,
j

Muf = Z 0ij (l; +AE) o f.
J
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It is easy to obtain the following estimates for a sufficiently large A > 0

R

= =l +AE) | < —=. 2.1.14
)\ 9 dy ( 5J + ) ( )
Now from the representation of the operator B, ), and from the fact that

(s +2E) | <

2 VA

> gpj2 =land f— ) gq? f = 0 we find the following expression for B, )
J J

d
Bof = 22% (lnj + AE)” f+290 lnj +AE) " ¢;f.

Let us estimate the norm of the operator B, . Due to the fact that only

the functions ¢,_1, ¢;, @j+1 are not equal to zero in A; = [j — 1, j+ 1] we

have
o TN J 2
ENTEDY Z[sa}’(ln,j+AE)_1¢jf+2w}@(lm+AE)_190}f] dy.
j==00;7 =1

Hence, taking into account that (a 4+ b + ¢)* < 3 (a* 4+ b* + ¢*) and (a + b)* <

2
2
: |S0jf|2),
2

From the estimates (2.1.14) and the last inequality it is clear that if A > 0

2 (a2 -+ bz), we have

d
[Buaf |2 < 2463 (H(zn,j Bl I + Hd—yun,j 7B

J

where ¢ = maX{‘sD]| |90 |}

is a sufficiently large number then || B, || < 1. Then by a well-known theorem
of functional analysis (see for instance [53-54]) the operator £ — B, has a

continuous inverse operator (I, + AE) ™" and due to (2.1.13)
(In + AE) ™" = M\ (E — By)) ™"

holds. This implies that the operator p(y)|n|* (I, + A\E) ™" is bounded (or un-

bounded) in conjunction with the operator p(y)|n|" M, y, i.e. the inequality

lp@)nl" @+ 28) 7| < e o)l Mol
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is correct, where a = 0, 1; p(y) is a continuous function.

From this inequality and from the definition of M,, , we obtain the proof of

Lemma 2.1.2.

Proof of Lemma 2.1.3. The estimate
(ln,j+)\E)_1H <

‘ 2~ c(y))

holds for the operator (I,; + AE) ™", where ¢(j;) = miAnc(y) (the proof of this
YEA;

estimate can be found in the work [28]).

According to the last estimate and Lemma 2.1.2 we have

_ C
)@y (g +28) 7| < e supd? < oo,

j c(t)

Similarly we find the second inequality. Lemma 2.1.3 is proved.

Hc (y) (lnj + )\E)_1H2 < c(A)sup

J

Let us proceed to the proof of the main theorem, i.e. we prove the necessity

and sufficiency of the theorem assertion.
Proof of Theorem 2.1.1.

Necessity. Let u(x,y) € D(L). Since the system {emx}zo:_oo is complete in
Lo (£2) then the decomposition

u(z,y) = Y un(y)e™

n=—oo

holds for u(z,y) in the metric of Ls.

It is not difficult to determine that

= ()]
T2 ) T )L + e, (2.1.15)

where u(y) € D(ly), lou = —u"(y) + c(y)u(y).
Indeed, it is clear from the representation of the function u(z,y) when
n = 0. In particular this representation implyies that u(y) € D(ly) C D(L),

wherefrom in view of the definition of v (2.1.15) follows.
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Let the conditions )-44) be fulfilled and the condition (*) be not satisfied
and the quantity ~ be finite.

Let us take the sequence of disjoint intervals

Ak:[—g+wk —+7rk} {%Ak R, k=0, +1, +2 ...

Let c(y) = — (k* + 1) for y € Ay. It easy to prove that the condition i) is

fulfilled for the function c(y).

Consider the function sequence

Slnk(y_yk_%)v yeAkv
2 (y) =
07 Yy ¢ Ak
where v, is the middle point of the interval Ay.
Let
17 |y| < 50
a(y) = 2 and a(y) € C° (£, 2).
0, [yl >3

We replace the function u(y) € D(ly) by a sequence of functions o (y — i) 21 (y)
(yx is the middle point) . Then

(o ly—y) = W) +elw)a(y —w) 2 (y) = —aly =y sink (y — = 5 ) -
—2ka’ (y — yi,) cos k (y — Yp — g) — " (y — yp—)sink (y — Yk — g) —
(2.1.16)

—(a(y — k) 2 (?J))” = Ko (y — yk)sink (y Yk — z) —

2
T _ m
—2ka’ (y — yy) cos k (y — Yy — 5) —a" (y —yp)sink (y — 5) . (2.1.17)

Estimate the norm of the expressions (2.1.16) and (2.1.17)

H_ (a (y - yk) 2k (?J))// + C(y)oz (y — yk) 21 (y)H2 < ¢; + 2key + s,

"

|- (= w2 )

, > k2ep — 2key — c3,
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where

. T
o~ fotr—mysink (y— =)
T
CQZ‘QI(Q_Qk)COSk(y_yk_§> )
. T
%:‘d%y—mﬁmk@rﬂm—g)t

All the norms are finite due to the fact that the functions tend to zero
outside of Ay (since they are finite).
Now, using the inequality (2.1.15) and the last estimates, we find

k201 — 2]602 — C3
c1 + 2kcy +c3

Letting k£ tend to infinity we obtain that v tend to oco. It contradicts to the

finiteness of «. The necessity is proved.

Sufficiency. Let the conditions 7)-ii7) and (*) be fulfilled. Let us prove that
7y is finite.

Considering the scalar products < (L+AE)u, v > and < (L+AE)u, u, >,
taking into account the conditions ¢) and (*), it is not difficult to obtain for

the operator L
(L + AE) ully = cf|ull

for all w € D(L), where ¢ > 0 is a constant.

Due to the last inequality and Lemma 2.1.1 we obtain that the operator L+

AFE is continuously invertible for sufficiently large A > 0 and the representation

(L+ME) ' f= i (I + AE) ™" fem® (2.1.18)

n=—oo

holds for any f € Ly (£2).

From (2.1.18) and in view of the orthonormal system {eim"}zoz_oo in Lo (—m, m)

it easily follows that

1
| <o
2—2 {n}

66

HM@D%L+X@_

Wl (L+28) |



where D2 = 2 n =0, £1, £2, p(y) is a continuous function in R.

From here and from Lemma 2.1.2 we find

Hp VDS (L + \E)™ H < ¢(A)supsup
22 {n} {5}

ity g+ 287

Now, if p(y) = a(y), p(y) = ¢(y) then according to the last inequality and

Lemma 2.1.3 we have

HM)D(L+AE < 0, H(HL+AE < .

H2—>2 H2—>2

Using the last inequalities we have
=k (y)tae — ugylly = (L + AE) u — a(y) e — c(y)u — Aufl, <

S L+ AB) ully + [Ja(y)uesly + lle(y)ully + [ Aully <

< E A+ AB)ully + @) Ds (L 4+ AB) ™ (L + AE) | +

+W@ﬂL+AE)WL+X@um+MA@+AE)WL+Xmuh<

< cf|[(L + AE) ull,,
where ¢ > ( is a constant.
This implyies that |[|—k(y)uss — uyyll, < cf|(L 4+ AE) ul|, for any u € D(L).
And it means that v < oo which is required to be proved. The theorem is

completely proved.
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2.2 Two-sides estimates of the distribution function of s-values of

a class of mixed type differential operators

Introduction and formulation of the basic results

The asymptotic distribution of eigenvalues for elliptic operators in case of
an unbounded domain with the coefficients, increasing at infinity, is completely
enough investigated in [1]. At the same time only few works are devoted to

these questions for operators of hyperbolic and mixed type.

It is obvious that the smoothness degrees of the coefficients in the domain
of definition of a mixed type operator, generally, not everywhere correspond

to the degree of the operator [2-4].

In this paper the following questions are considered for a class of operators

of mixed type in unbounded domains with increasing coefficients:
1) the existence of the resolvent (L + AE)™! for A > 0;
2) the compactness of the resolvent;
3) the smoothness of the solution of the equation Lu = f;
4) the distribution function of s - values of the operator L™,

Consider the differential operator of mixed type
Lou = —k(y)ugy — Uy + aly)uy + c(y)u, (2.2.1)

in Cg%.(€2), i.e the set, consisting of infinitely differentiable functions, satisfying
the conditions: u(—m,y) = u(m,y), u(—m,y) = u.(7,y) and being finite as
a function of the y variable, k(y) is a sectionally continuous and bounded

function in R and £(0) = 0, yk(y) > 0, for y # 0, where

Q={(zr,y): —m<zx <7 —00<y<o0},
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It is easy to show, that the operator L( allows the closure in the metric of

Lo(2) and the closure is also denoted by L.
Further, we assume, that the coefficients a(y), ¢(y) satisfies the conditions:

i) la(y)| > do > 0, c(y) > § > 0 being continuous functions in R;

a c
i1) j1p = sup ﬁ<oo,,u2: sup M<<>o;

y—i<1 a(t) <1 €(t)
ii1) c(y) < coa®(y) for y € R, ¢y is some constant.
The following theorems hold:

Theorem 2.2.1. Let the conditions i) be fulfilled. Then the operator

L + \E s continuously invertible for substantially large A > 0.

Theorem 2.2.2. Let the conditions i) be fulfilled. Then the resolvent of

the operator L is compact if and only if for any w > 0
yt+w

|1|i£n (c(t)) dt = oo, (2.2.2)

Definition 2.2.1. The operator L s called separable, if for any func-

tions uw € D(L) the estimate

| = k@)tae = uyylla + [la(y)uell2 + lle(y)ull < C (|[Lullz + [ul])
holds, where the constant C' does not depend on u(x,y) and || - ||2 is the norm
in La(Q2).
Theorem 2.2.3. Let the conditions i)-iii) be fulfilled. Then the operator
L 1s separable.

Definition 2.2.2. Let A be a completely continuous operator. Then
the eigenvalues of the operator (A*A)Y? are called s - values of the operator A

(Schmidt eigenvalues).

The nonzero s - values of the operator L~! are arranged as a sequence ac-

cording to decreasing magnitude and observing their multiplicities, so s, (L™!) =
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Me((LTYLTY, k=1,2,....
We introduce the counting function N(\) = > 1 of those s, greater than

SE>A
A > 0.

Theorem 2.2.4. Let the conditions 1)-iii) be fulfilled. Then the estimate

c! Z A2 mes (y € R:|n*+ina(y) + c(y)| < C’_l)\_l/2> <N\ <

n=—oo

<C Z A 'mes (y € R : |ina(y) + c(y)| < CA7Y)

n=—oo

where the constant C = C(uy, p2), > = —1 holds.

Existence and compactness of the resolvent of a class of

non-semibounded differential operators [,

Consider the operator
(Inj + ME) = —u" + (n®k(y) + ina(y) + c(y) + Nu, (n=0,%1,%2,...)
determined on a set of functions u, satisfying the requirements

ue Ci(D)), u(d;)=u(A])=0.

J J

Here A} and A;r are the right and left ends of the intervals

Lemma 2.2.1. Let the condition i) be fulfilled. Then there exists the
continuous inverse operator (I, ; + AE)™t for A > 0 determined in Lay(4\;),

where (I, ; + AE)™! is the inverse operator of the closure operator 1, j + \E.
Proof. Integrating by parts < (l,; + AEF)u,u > we have for all u €
D(l, ;) = D(l,,; + AE)

[(lnj + AE)UHQ %OC ully, ¢>0.



If we now show, that the set (I, ; + AE)D(l, ;) is dense in Lo hence, it follows
that the operator (I,,; + AF) has an inverse operator (I, ; + AE)~'. We prove
this using the method by contradiction.

Assume, that the set (I,,; + AE)D(l, ;) is not dense in Ly(4;).
Then there exists an element v € Ly(v # 0) such that < (I, ; + AE)u,v >=0
for all u € D(l, ;). This proves that

(L) +AE)v = —v" + (n*k(y) — ina(y) + c(y) + N)v =0

in the sense of the theory of distribution.

As the functions a(y), c(y) are bounded and continuous in the segment
A;, then the functions (nk(y) — ina(y) + c(y) + A\)v € Lo(4;) and hence
v € Ly(D\)).

For completing the proof it is enough to be convinced that the element v

()" + AE) v = 0) belongs to D(l, ), i.e.
v(A;) =v(A]) =0

J

We can be convinced in it by integrating by parts:

0=<u,((ln;) +A\E)v>= /u [—@” + (n?k(y) — ina(y) + c(y) + A) v} dy =
A

= —/u@ " dy + / (n’k(y) +ina(y) + c(y) + A) uv dy =
A A,

) J

= —/udﬁ/ + / (nzk(y) + ina(y) + c(y) + )\) uv dy =

J J

AF
= —uT’ +/6’du + / (n*k(y) +ina(y) + c(y) + A) uv dy =
AV
TN A

J J

= /E/du + / (an(y) +ina(y) + c(y) + )\) uv dy =

J J
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- /u/ T dy + / (n°k(y) + ina(y) + c(y) + A) wv dy
A, A,
We use here, that u € D(l,)

Further,

0=<u,((l,;)"+AE)v >= /u/ d@—i—/ (n°k(y) +ina(y) + c(y) + A) uv dy =
A A
At
J —/uNU dy + | (n*k(y) +ina(y) + c(y) + ) uv dy =
B A A
o~
+/ [—uﬁ + (n*k(y) + ina(y) + c(y) + A) u} vdy =
8; 9

Y
+ < (L + Nu,v > .

!

=uv

/N

J

+
Aj

By assumption < (l,; + AE)u,v >= 0, and therefore uT| = 0. Hence, by

A,
virtue of arbitrariness of the function w it follows that ’

U(A) =T(A]) =0
Thus, we finally have that
v E Ly (D), (D) =v(A))=0.
It remains to prove that the inequality

1 (1) + AE)vlla > |n| 6 |[olla,  n==+1,+2,43, ... (2.2.3)

holds. Integrating by parts the scalar product and taking into account that
the off-integral terms vanish by virtue of the boundary conditions just having

been given, we find

< ((I,)"+ AE)v,v >| = / [—v" + (n*k(y) — ina(y) + c(y) + A) v} vdy| =
A
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= / {|U'|2 + (n*k(y) — inaly) + c(y) + A) |v / — ina(y)|v|*dy| .

A JAV

J

Now, using the Cauchy-Bunyakovskii inequality, we find:
1((1.)" + AE) v]l2 = |n] 6 [Jv]l2.

By virtue of ((I,)* + AE)v = 0 it follows from the inequality (2.2.3), that
v=0.
Lemma 2.2.1 is completely proved .

Lemma 2.2.2. Let the condition i) be fulfilled. Then the inequalities

-1 _
i(z AR << (2.2.5)
dy n,j - — A1/47 L.

hold, where ¢ > 0 s a constant, A > 0.

Proof. Consider the scalar product < (I, ; + AE)u, u >

< (lnj + AE)u,u >= / [—u” + (n*k(y) + inaly) + cly) + )\)u} u dy,

where u € D(l,).

Integrating by parts the last term and using the finiteness of u(y), we find that

1< (ln; + AE)u,u >| = /]ul|2dy + / (n*k(y) + ina(y) + c(y) + A) |u|* dy.
Aj A
(2.2.6)

Hence, taking into account that a(y) does not changes the sign, we have

2
(s + AE)ul? > n? [;xenﬁnmw)\] lull (2:2.7)

J

Using the Cauchy inequality we find from (2.2.6)

1 g ’
g 4 AR+ Sl 2 [ [l 4 (o) + ) ]y — [ty

Ay A
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or

1 ’ g
oo s+ 3B = [ [l + (ctv) + 2= 5) o] dy— [wlli(w)lluP.

A, A

Taking i) into account, from the last inequality we find

1 1 /
oo Mg+ AEYE = 5 [ [l + (e0) + ) ] dy = [ o)l

A Aj
(2.2.8)
Combining the inequalities (2.2.7) and (2.2.8), we find
e(€) [l + AE)ully = Afull;. (2.2.9)

The inequality (2.2.4) is proved.

By virtue of (2.2.9) it follows from (2.2.6) that

C /
;imu¢+ﬂaw§z/[mﬁ+w@»awmﬂdy—/ﬁmwmmwy
A A
(2.2.10)
Further, multiplying both parts of the inequality (2.2.7) by °_ and then

VA

combining it with (2.2.10), we find

C ) /
T Mg+ B > |
where ¢ > 0 is a constant.

The last inequality proves Lemma 2.2.2.

Lemma 2.2.3. Let the condition i) be fulfilled. Then

W) laully = [l llully, € D), 1= 122,43, [lully = 8 ull,
forn =0;

b) clibaully = (I'lls + IN/elgulls + I/ Tnlla@ulls), w € D), n =
+1,42,43,....

where ¢ > 0 is a constant not depending on u and n.
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Proof. We have for any u € C{°(R)

(0]
|< lyu, tnu >| = /anMdy =

— / (—u// + (n*k(y) + ina(y) + C(y))u) T dy| =

o0

_ / (_u”(—z)na + (n2k(y)(—i)n + i(—i)n?aly) + (—i)nc(y)) Iul2) dy

—0o0

o0 o0

= |=in [ [P+ (b))l dy+ [ nfay)luf do

—00 —00
Hence, using the Cauchy-Bunyakovskii inequality, we find:

o

sl il > |< by i =] = [ wla(w)] Juf dy

—00
o
Iﬂnan!hdlZin2][5oh42d9227350HUH3
—0Q

From the last inequality, we have
2 2
lnully > n6g full;

The item a) of Lemma 2.2.3 is proved.

Further, consider the quadratic form

o

< lyu,u >= / [(—un + (n*k(y) + ina(y) + c(y)) u} u dy,

—00

where u € C3°(R).

Integrating the last equality, we find

(0.9]

<twu>| = | [ [+ (0Ph() + inay) + ()] fuf do

—00
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Using a property of complex numbers we have

o

-l = | [ [l + (2kGw) + ()] ol )

—0o0

From this, using the Cauchy inequality with £ > 0, we find that

1 € o , y
oz lllly + 5 llull; / 2 + ey uf?] dy - / n?[k(y)l[uldy.  (2.2.11)
On the basis of the condition i), from (2.2.11) we will have
IS Ty AT
il = 5 [ {1 P+ clul?] |k JulPdy.  (2.2.12)

Combining the inequalities a) and (2.2.12), we find the inequality

ctuully > (1]l + 1velullz) (2.2.13)

Further, consider the scalar multiplicity for any v € C§°(R)

(0.9]

< lyu,u >= / {(—un + (n*k(y) + ina(y) + c(y)) u} udy.

—00
Integrating by parts the last equality and taking into account that u € C§°(R),

we find

< lyu,u>| > /ina(y)\u\2 dy| .

—00

From this and taking condition 7) into account, we find

1 1 1
ol + 5 = 3 [ nllatlf dy + 3 [ el o ay

or

c1(e) llnully = IV Inlla(y)|ull2-

This gives us along with (2.2.13)

(@) aully > (1112 + 1v/ely) ulla + |V/Inlla(y] ullz)
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Lemma 2.2.3 is completely proved.

We take the set {¢;} of non-negative functions from C§°(R) such that

Y ei=1, supp g €Ly, UL =R
r j

(sums are taken for all the integers j without indicating the limits).

Let K denote the operator, defined by the equality

Kf=Y i+ E)  oif, f€LyR).
J

Lemma 2.2.4. Let the condition i) be fulfilled. Then the equality
(l,+ \EYK f=f— B\f (2.2.14)
holds for any f € C{°(R), where B\f = Kf = Zgo;/ (ln,j—i—)\E)_l o;f +
J

, d _
25 ¢ (g + AE) ",
] Y

Proof. Let f € C°(R) and consider the influence of the operator K on

Kf=> ¢l +AE) " ¢if, f€LR) (2.2.15)
J
Because f € C3°(R) the sum (2.2.15) is finite. Therefore, the following calcu-
lations are valid:

(ln + AE) K f = (In+ AE) Y i (lnj + AE) g f =
J

dQ
= (—d—?f+( *k(y) + ina(y) )Z% ni +AE) " oif =
d2
=07 Z 0i (lnj +AE) i f + (n°k(y) +ina(y) + c(y)) x
J

XY i (lnj +AE) @i f ==Y @) (lnj + AE) " f—
; ;
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/ 2
_22%{ lnj+AE)" gpjf} —Zapjj—yz(ln,j—l—)\E)_l%f-F
J

+(°k(Y) Y ) (lny + AE) @i f +ina(y) > @; (ny + AE) " @ f+
j j

) & .
+e(y) Y @ g+ AE) i f = - Zsojd—yQ (Inj + AE) " g f+
] J

+ Z 0i (k) (lnj + AE) " i f + ) ina(y)p; (ln; + AE) ™ ¢ f+
' j
+ Z )@; (b + AE) @i f = @) (lnj + AE) @ f—

J

23" (s + B f] = 3 (05 k() + naly) + ) )
J
X(ln7j+)‘E) (:Ojf Z@] n]_'_)‘E SOJf 2290]{ nj+)\E @jf} -

=f=> @ (lnj+AE) i f =2 gp’jd—y (Inj + AE) ' @i f.
J J
Here, we take into account that gp? = 1. Lemma 2.2.4 is proved.
J
Lemma 2.2.5. Let the condition i) be fulfilled. Then some A > 0 is
found such that ||By| < 1.

Proof. We estimate the norm of the operator B):

1 _ ! d —_
IBASI3 = 11Y @) (Inj + AE) lef+22¢jd—y(ln,j+w) oiflls =
J J

> 2
/ Z% (lnj+AE)" @Jf‘|‘22903d (nj +AE)" %f dy =
Tl i
j+l Jj+1 d 2
_Z/ ZQOJ ”J+/\E) 903f+2903d (Ln ,J‘I‘)‘E) wif| dy.
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Here, we have used that in Zj =[j—1,7+1] only p;_1, ¢;, pjy1 # 0. From
this and by virtue of the Holder inequality we find that
_ d _
181 < 2160 3 (1o + AB) i + 1 (s + ABY 313
J
where ¢y = ma:z:{\gpﬂ, gp;}
From the last inequality, using Lemma 2.2.2, we have

_ d _
1B I3 < 24e (H (0 + XE)™ Bl I+ 1 (1 + AE) ||§Hsojf|\§) <

J

J

C C
< 24¢y (Z (m”%‘f”% + W%’f%)) <

C C
< 24¢, Wz/|¢jf‘2dy+wz:/\¢jf\2dy <

I e I e

1 1
< 24¢yc W/Z’%ﬂ?dwaW/Z!%fI?dy <
Y J oo

1 1
< 2deoe | 1173 / (Zqﬁ) PPy + 137 / (Zw?) [FPdy | <
RPN J RPN J

1 2 1 2 2
< 2tare (5 1B + 51l F18) 11 <

1 1
< 24coe (W - W) 1 £113- (2.2.16)
The last inequality proves the lemma for substantially large positive .

Theorem 2.2.5. Let the condition i) be fulfilled. Then the operator

(l,+AE) is continuously invertible for substantially large A > 0 and the equality
(I, +\E) ' = K(E— B\ (2.2.17)

holds.
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Proof. The operator (E—BJ) is bounded along with its inverse operator.
Therefore the set M = {9 = (E — B\)f : f € C§°(R)} is dense in Ly(R).
From the inequality (2.2.13) we find for ¢ = (F — BA)f, f € C3°(R) that
K(E — B\ Yo € D(I,) and (I, + \E)K(E — B\)"'¢ = . Hence, we have
that y = K(E — B\)"!f is a solution of the equation (I, + AE)y = f. The
uniqueness follows from Lemma 2.2.3 Thus Theorem 2.2.5 is proved.

Theorem 2.2.6. Let the condition i) be fulfilled. Then the operator

(1)1 is completely continuous if and only if for any w > 0

yt+w

‘1|im c(t)dt = oo, (2.2.18)
yl—oo
y

Proof. Necessity. Let the condition of the lemma do not hold. Then

there exists a sequence of intervals Q4(y;) C R such that

sup / c(t)dt <0, where d >0 (2.2.19)

Qaly;)
i.e. when the intervals QQ4(y;), preserving the length, diverge to infinity.

Let w(z) € C5°(Q(0)) and consider the set of functions such that u;(y) =
w(y — y;). It is not difficult to establish the inequality
| = uj + (n*k(y) + inaly) + c(y))ull3 < e
by virtue of (2.2.19), where ¢ does not depend on j.
Assume
Fi(y) = —u; + (0*k(y) + ina(y) + c(y))u;,
sup F(y) € Qa(y;)

Now we show that F}(y) weakly converge to zero:

<BW.ow) > = | [ Borwi| =| [ Beved) <
—0o0 Qaly;)



1 /2

/2 1
2 2
< /Fj(y)dy /v(y)dy (2.2.20)
Qal(y;) Qa(y;)

So v € Le(R), it is obvious that [ v?*(y)dy — 0 as j — oco. Hence and from
Qaly;)
(2.2.20) it follows that the sequence {F;} — 0 weakly.

It is directly seen that
Juj(y)|la = ¢ > 0. (2.2.21)

For this reason, if the operator (1)~

is compact, then {u;} must converge to
zero in the Lo norm. But this is impossible by virtue of (2.2.21). The necessity

is proved.

Sufficiency. Let Li(R,c(y)) denote the space obtained by supplement-

ing the norm
1/2
Jus iRl = | [ [l + ) luP] dy
R

From Lemma 2.2.3 it follows that
R(l,") € Ly(R, c(y)).

By virtue of results of [1], any bounded set in L3(R, c(y), aa(y)) is compact in
Lo(R) if and only if the condition

Q*(y) — o0 as |y| — oo, (2.2.22)
y+g
is fulfilled, where Q*(y) = ciznfo d' > [ c(t)dt
y=%

From this it follows that it is enough to show the equivalency of the condi-

tions (2.2.22) and (2.2.18).

Let (2.2.22) be not fulfilled. Then there exists a sequence of points y,,

n =0,1,2,..., and a constant ¢ > 0 such that Q*(y) < ¢;. By virtue of the
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equality

Tt P

d1 = /c(t)dt,

dn
xn_T
which follows from the definition of Q*(y), we obtain that there exists intervals

A\, diverging to infinity, preserving the length such that
/ c(t)dt < cq.
Dy,

The last inequality shows that the condition (2.2.18) is not fulfilled.

On the other hand if condition (2.2.18) is not fulfilled, then there exist
pairwise disjoint intervals A, of same length, diverging to infinity. From the
definition of Q*(y), we obtain, that Q*(y,) < c1, where y,, is the center of A,,.
This means that (2.2.22) is not fulfilled. From this it follows that (2.2.22) and

(2.2.18) are equivalent. The sufficiency of Theorem 2.2.6 is proved.
Weighted estimates for the non-semibounded operator [,

Lemma 2.2.6. Let the conditions i) — iit) be fulfilled. Then the inequal-

ities
1
(I +AE) oo £ ———, n=41,42, ... (2.2.23)
nlla(y;)]
2
i+ AE) gy < ——, 2.2.24
O e T ES: (2.2.24)

hold for any j € N, where c(y;) = min c(y), |a(y;)| = min |a(y;)|.
yeA,; yeA,

Proof. For any u € Cj°(4,) we have

< (gt AEJu,u >= | [ [+ (n2h(w) + e(0) + Nful] dy + in [ a(w)luPdy].
v v (2.2.25)
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Hence, taking the condition 7) into account and using the Cauchy-Bunyakovskii

inequality, we find

[(lnj + AE)ull2||ull2 > M/Q@HM%yEH”H@?WK@WM@ZMMa@ﬂWM@
Yes;
A

Therefore
o 12
(g + ABYl3 > |l - la@I] ull,  n=+1,42,...  (22.26)

By the definition of the operator norm the following computations hold:

(I +AE) " fll2 [[ull2
[(Inj + AE) |22 = sup == S1p
’ feLs 1f1]2 weD () [ + AE)ulla
Now, using the inequality (2.2.26), we find that
1

[(Tn; + AE) 22 < , n=%1,42, ...

[nlla(y;)]
The inequality (2.2.23) is proved.

From the inequality (2.2.25), by virtue of the Cauchy inequality with ¢ > 0,

we find that
c(y;) + A
Ly + AE)ul|3 + =22 |ju||3 >
2@()+Agu,f+ Jullg + Jul} >
1P+ (elu) + Nlal] dy — [ wlk(w)lJuPd,
A, A,

where € = c(y;) + A

1 c(y;)

ln;i+AE)u /u dy + ———— j /quy /Qky ul’dy

sy T AP 2 1o i ()]
(2.2.27)

Dividing both parts of the inequality (2.2.26) by 2(c(y;) + ) gives

L, sz L 2229

n U - u 4.

2(c(y;) +A) " 283 2(c(y;) +A



As a result, combining (2.2.27) and (2.2.28), we get the inequality
1
c(y;) + A

R [2<c?;ff)+A> —k<y>] fdy (2220

(g + AE)ull; >

J

If one takes the conditions #7)-iii) into account, then from the last inequality

it is easy to check

/ C(y) +>\
1Ly + AE)ull3 > [lu|l3 + =5—]|u|)3.

c(y;) + A 2
Hence,
2[| (1 + AB)ull3 > (e(y;) + A% [[ull3 (2.2.30)
By virtue of (2.2.30), the estimate
lnj + AE) Mamy < ———
H( i ) H2 2 C(yj) i A

is obvious. The lemma 2.2.6 is proved.

Remark. Let
(Iny + AEYu =" + (n%k(y) +i(a(y) + Xo)n + (c(y) + X)) u
be defined in Ly(R), where the sign of the real number Ay coincides with the
sign of a(y).

Consider the equation
(In + AE)u = u" + (n*k(y) + ina(y) + (c(y) + Nu = f € Ly(R)
or
u + (nk(y) + i(a(y) + Xo)n + (c(y) + Nu — idonu(y) = f. (2.2.31)

According to Theorem 2.1 the operator (I, ), + AE) generates a one-to-one

transformation and by Lemma 2.2.3 the estimate

1

[, AE) Mgy < ————
H( ,>\o+ ) ”2 2 = |n\(5—|—>\0)
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holds. From this it follows that the above equation is equivalent to the equation
v — iAol + AE) v = f, (2.2.32)

where (I, + AE)u=v, u= (I, + \E) v

From the last inequality it is clear that

A
lidon(Ln, + /\E)_IHQHQ < ] ol < 1.

(0 + Xo)
According to the conditions ii)-iii) this inequality shows, that we can guarantee
the correctness of the inequality

N 2
Co (a(yj> + Ao)

G T el I

selecting corresponding cg, .

Lemma 2.2.7. Let the conditions of Lemma 2.2.6. be fulfilled and let
A > 0 be such that | B)|| < 1. Then the estimate

o)l (L + AE) U < (V) sup [|p(y)Inl*@;(ln; + AE) M3 (2.2.33)
J

holds, where a=0,1 and p(y) is a continuous function in R.

Proof: Itisseen from representation (2.2.16), that the operator p(y)|n|*(l,+
AE)~! is bounded (or unbounded) along with the operator p(y)|n|*K(E —
BM)~L. For this reason the following aim will be a norm estimate of the last

operator p(y)|n|*K(E — BA)™L. For any f € La(R) we have
lp()In|* (L + AE) 113 = llp(y) In|* K (E — BA) 3 =

= o) Y @i(lug + AE) o) (E — BNl =
J

(0.9]

]

—00

2

> pW)Inl"e;(ln; + AE) o (E — BA) ' f| dy <
j
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j+1

<2/

It is easy to verify that in A; = [j — 1,5 4+ 1] only ¢,_1, ¢j11, ¢; # 0. Taking

2

‘n|a90j< nj T AE)” %(E - B>\)_1f dy.

this into account, by virtue of the Holder inequality, we have

lp@)ln|* (., + AE) 3 <

J+1 2

J+1
<Z/ D I+ AEY e = BN dy <
J+1]+1
<32/Z|p 105 (bs + NE) 5B — B [ dy <
j-1771

<12y lo(y)n|* @i + AE) 9y (E = BN £} <
J
<126y p(y)lnl* e (g +AE) " Blei(E = BN fI3 <
J

< 12¢sup [|p(y)|n|*p; (L + AE) 3 Y llos (B = BA) /I3 <

J j

< 12es0p p(5) |21 + AE) 1\122/ os(E = By =

RN

— 12¢sup [ p(y) 105 (L + AE) 12 / Z% (E—BNf) d
J

= 12csup ||p(y)[n|“p;(ln; + AE)_1H2H(E — BN Hfl; <
J

< 12¢sup [|p(y)[nl"@;(ln; + AE) RI(E — BA) a2l f]l2 <

J

< 12¢(A) sup || p(y)[nl“e;(ln; + AE) 31 13-
J

From here we have
()] (L + AE) M5 < 12 ¢(N) sup [|p(y)In|*p;(ln; + AE) )3
j

Lemma 2.2.7 is proved.
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Lemma 2.2.8. Let the conditions of Lemma 2.2.7 be fulfilled. Then the

following estimates hold:

a) ||c(y)(ln + AE)H|,_, < a1 < oo;

b) |lina(y)(ly + AE) Y|, ., < ¢ < 00;

c) H—(ln + \E)! < 3 < 0.
dy 22
Proof. By Lemma 2.2.7
e+ M),y < () sup el + AE) ;s

From here and from lemma 2.2.6 we find that

o)+ AB) ],y < e sup ety + AE) |,y <

. maxc
< ¢(\) ey 140 < ¢(\) sup =2 Y <en) sup W <
< c(A\)sup <c(AN)sup——— <c sup —= < ¢ < 00.
iocy) + A ;- minc(y) i< ()
Y&y

Further,

[ina(y)(l, + AE)'],_, < (M) Sup [ina(y)e;(l; +AE) |,y <

[n| max |a(y)|

yeEN
< ¢(N) sup [nl|a(y) e || (L + AE) ™ < ¢(A) sup :
j it g ) la = i Inllay;)]
max la(y)] o)
y .
< c(AN)sup ——— < ¢(\) sup —=% < ¢y < o0.
P o] = Y e =@
Y&

Similarly, we obtain that

d
Hd—(ln + )\E’)_1 <c3 < o0
Yy

2—2

Lemma 2.2.8. is proved.

Lemma 2.2.9. Let the conditions of Lemma 2.2.7. be fulfilled. Then the

estimate

]|z + llina(y)ulls + HC(@/)USH; < c(lllnull2 + [lull2) (2.2.34)



holds, where ¢ > 0 1s a constant.

Proof. Using Lemma 2.2.8., we have
le()ullz = lle() (LA AE) " (lat AB)ulla < lle(y) latAE) " w2 [ (Lt AE)ull2 <

< a(l(ln + AE)ull2) < e ([(nullz + Mlull2) < er - c2(A) ([ (nullz + [lull2) <
< ¢ ([[(nullz + llull2) (2.2.35)
for any u € D(l,).
Just as before

lina(y)ullz = llina(y)(ln + AE) " (L + AE)ull2 <

< Jina(y)(ln + AE) Masll (b + AE)ull2 < c1([[(hn + AE)ulls) <
< &1 (I (tualla + Mala) < erea() ([ Gutlls + ulla) <
< e (l(ulls + l[ull2) (2.2.36)
Ll = 150+ AE) " (1 + AE)ull2 <
dyu 2 — dy n n Ull2 >
< e[t + AB)ulla) < e (l(ualls + [lulls). (2.2.37)

Now, combining (2.2.35)-(2.2.36), we arrive at the inequality (2.2.34). Lemma

2.2.9. is proved.
Separability of the operator [}

Consider the operator
Tu=—u + (n” +ina(y) + c(y)) u (2.2.38)

in Ly(R) (n = 0,41, +2, 43, ...)
Lemma 2.2.10. Let the conditions i)-ii) be fulfilled. Then

a) the operator I + \E is continuously invertible for A > 0;
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b) for any u € D (1,) the estimate
" : 2 2 2 2
I = + inull + lima(wyull + eyl < e (ol + Julf) — 2.2.39)

holds, where ¢ = c(u1, p2, A).
The proof of item a) is similar to the proof of Theorem 2.1.
For the proof of item b), we need a few lemmas.

Consider the operator

b= —u’ + (n® +ina(y) + c(y)) u,

where A; = (j — 1,5+ 1), A; and A;r are the left and right end points of
the intervals A, j = £1,42,£3,... .

Lemma 2.2.11. Let the conditions i) be fulfilled. Then there exists the
continuous inverse operator (I ; + AE)~" defined in La(A;).
This lemma can be proved just as Lemma 2.2.1.

Lemma 2.2.12. Let the conditions i) be fulfilled. Then the inequalities

1
1+ AB) ],y < 5 (2.2.40)

d . 1
Hd—y(l% +AE) » < <17 (2.2.41)

1

+ 1 ,

[+ 2B, , < Rl (2.2.42)
1
+ -1 . .

[+ s < o ey 0L ER S (2243)
I+ 2B, , < # n=+41,4+2 43, .. (2.2.44)

hold, where c(y;) = min c(y), |a(y;)| = min [a(y)|.

(ISTAW (ISTAW
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Proof. Consider the scalar product < (l;;j + AE)u,u >, where u €
CP(R). Integrating by parts and taking into account that the integral free

terms will vanish, we find

< (l:[’j + AE)u,u >= /\u/|2 + [nQ + ina(y) + c(y) + A] |u|?dy (2.2.45)
A

J

From this, using the Cauchy-Bunyakovskii inequality, we find
1@, + Ayl ull, > / 2 4+ A] [uf*dy. (2.2.46)
A

Now, from (2.2.46)

(55 + AE)ul, > Al (2.2.47)
(02, + Ayl > [ oy (2.9.48)
A

J

follows. From the attained estimates follows (2.2.40) and (2.2.44).

Using the Cauchy-Bunyakovskii inequality and taking (2.2.47) into account,
we have from inequality (2.2.45)

112
b x|,
The inequality (2.2.41) is proved. From inequality (2.2.45) it follows that

< (Ly; + AE)u, u >| > /na(y)|u\2dy :

Aj

< (Ly; + AE)u, u >| > /c(y)\u\Qdy.
Aj

From this, taking conditions i) into account, we have
| (55 + AE)u HQ > |nlla(y)] |ully, n=+1,42,43, ...,

|WL+AE\% c(y;) [Jull, -



The inequalities (2.2.42) and (2.2.43) are proved. Lemma 2.2.12 is completely

proved.
Proof of the item b) of Lemma 2.2.10.

Introduce an operator defined by the equality
Kf= Z% (I, +AE) " oif, f € La(R).

It is easy to find the representation

(If +A\E) ' = K(E+ By ", (2.2.49)

where
—1 /d -1
B\f = Z% (I} + \E) @jf+2z¢jd—y(z;j+w) 0if.
J

The details of the proofs are just as in the conclusion of (2.2.16) and we will

not state them here. The proof can be finished now using Lemma 2.2.12.

From the equality (2.2.49) we have

[+ AE) |,y = [[W"K(E+ By) |,
Hz’na(y)(l,f + )\E)_lHQﬁ2 = Hma(y)K(E + B,\)_1H2_)2 ,
le@)(Ly +AE) [,y = e K (E + By) |,y -

Hence, since the operator (E + B))~! is bounded, we find that

|n*(Ly + AE) A [In* Kl s

)|
2%2

lina(y) (7 +AE) |,y < (W) lina(y) K|y,

@) (L +AE) |,y < ) le@) K oy -

From these inequalities and from the definition of K, we find the inequalities

HnQ(l:[ + AE)” < ¢(A) S{g}P Hn2g0j(l;:j + AE)~
j

il il
22 2—-2’
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Hina(y)(l;f + /\E)_lH2H2 < ¢(A) sup Hz’na(y)apj(l;j + /\E)_1H2_>2 ,
j
Hc(y)(li+/\E)ilH2_>2 sc S{ul}pH l+ +AE) 1H2—>2'
j
By virtue of inequality (2.2.44) we have
I+ AB) |,y < eV sup [0, + AE) [, <
{7}
2
< ¢(A\)n® sup |max ||| H(l:{] + >\E)_1H2_>2 < c()\)% < 0. (2.2.50)
{7}

In exactly the same way, taking the condition #7) into account and using the

estimates (2.2.42)-(2.2.44), we find

lina(y)(ty + AB) |,y < c(N)sup [[inaly)e; (1 + AE) |, _, <

{7} ’ SR
< el sup fmaxlay)es| aw)] 47+ 2E) ], <
{7} |v€R,
maxo(y) L e
yel,; yel.
< ¢(N)|n| sup - < () P <
gy (Inf+ Dlaly;)l (In]+1)  min [a(y)|
(ISTAY
< ¢(A) sup o) ., (2.2.51)
ly—t]<2 a(t)

e() (I +AE) |,y < (A S{upH Veily; + )|, , <

max c(y)
< c(A)sup |e(y)e;] [|( (Ly;+ )\E)_1||2_>2 < ¢(A) Sup& <
{4} gy <)
max c(y) )
yeds; cly
<cAN)sup —— < ¢(A) sup —= <c. 2.2.52
W min c(y) W R, () (2252
Y&y

Using inequalities (2.2.50)-(2.2.52), we have
I =a'll3 =1l (I +AE) u— (n* +inaly) + c(y) + A) ull3 <

< (I +AE) ullz + lIn*ullz + !ggna(y)UHE +lle(y)ullz + [ Mullz <



<\ (G +AE) ul3 + |n? (17 + AE) ™ (I + AE) u3+
+Hlina(y) (I + AE) ™ (I + AE) w3+
Hle) (1 +AB) ™ (1 + AE) ul3 < cl| (5 + AE) ulf} <
< c(A) (T ull3 + [lull3) -

From this it follows that
12 + In*ull3 + llina(y)ullz + lle)ullz < e (1allz + llull)
for all uw € D(I}), where ¢ = c(u1, po, N).

Estimates of the s - values of the operator ([,)!

Introduce the sets

M = {u € Ly(R) : ||—u" + (n°k(y) + ina(y) + c(y)) qu < 1},

N ,
M, = {u € Ly(R) : ||o/]]5 + |Jina(y)ulls + [le(y)ul3 < c} :

~
~

M= {u € Ly(R) : ||—u" + (n® + ina(y) + c(y)) qu < col} :

where ¢ = c(p1, p2), co = c(u1, p2, A).
Lemma 2.2.13. Let the conditions i)-iii) be fulfilled. Then the inclusions

~
~

M+ C M C M,

hold, where ¢ = c(p, p1), co = (1, p2, A).

Proof. Let u € Mcal. Then, by virtue of Lemma 2.2.10, we find
: 2
[taully = [|=u" + (n*k(y) +inaly) + c(y) u, <

2 2
< [l=u"ll3 + [[?k(y)ull; + lina(y)ull; + lle(y)ull; <

2 2 . 2 2
< [I=u"ll; + [|n*ull, + llina(y)ully + lle(y)ully <
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< ¢ H—u" + (n2 +ina(y) + c(y)) qu < eyt <1,
where cg = c(p1, p2, A).

Therefore u € M, i.e. ]\N460—1 C M. Let now u € M. Then, by virtue of

Lemma 2.2.9, we have
2 . 2 2
[='[l5 + [lina(y)ully + [[e(y)ull; <

. 2
< clllull; = [|—u" + (R*k(y) + inaly) + c(y)) ull, <
From this it follows that M C ]\N4 e

Lemma 2.2.14. Let the conditions of Lemma 2.2.13 be fulfilled. Then
the estimates

Caldk < Sk+1 < Cdk; k= 1727 ey

hold with constants ¢ = c(pu1, o), co = (1, f2, A), where sy 1 are the singular

~

numbers of the operator (1,)71, dy, dy, chk are the widths of the respective sets
M, M, M.
Proof. From Lemma 2.2.13 and from the relations of the widths we have

Caldk S dk S Cdk.

Hence, taking the equality si.1 = d; into account, we obtain the proof of

Lemma 2.2.14.

Lemma 2.2.15. Let the conditions of Lemma 2.2.14 be fulfilled. Then

the estimates

hold, where ¢ = c(u1, p2), co = c(p, p2, A).
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Proof. By the definition of the function N(\) and by virtue of Lemma
2.2.14, we have

NyY= ) 1<) 1= ) 1= N,

Skp1>A cdp>A de>c1)

Similarly

CO)\ Z 1= Z 1< Z 1= N
dk>co)\ co dk>>\ Sk41>A

Lemma 2.2.15 is proved.

Lemma 2.2.16. Let the conditions i)-iii) be fulfilled. Then the estimates
AN Y2mes (y e R:|n” +ina(y) + c(y)| < c‘l)\_l/2> <N <
< cA'mes (y € R: |ina(y) + c(y)] < eX™'),

hold, where ¢ = c(p1, p2), 2 = —1, N(X) = >_ 1 are the number of sy, is

Sp>A

greater than X\ > 0; sy are the singular numbers of the operator (I,)™L.

Proof. By L;a(y)’c(y) and L%,a(y),c(y) we denote the space obtained by

replenishment of C§°(R) concerning the norms

00 1/2
’u, L3 a(yyety) | = /[\u"\2+|n2+ina(y)+0(y)IQWI2} dy | .
00 1/2
Uy L afy)ey)| = / [Iu'\2+Iina(y)+0(y)lz\U\2} dy

It is clear that M C Lg a(y).c(y)? ]\N4 C L% a(y)cly): And now the proof of Lemma
2.2.16 follows from Lemmas 2.2.14 and 2.2.15 and from the results of [1].

Proofs of Theorems 2.2.1-2.2.4

Proof of Theorem 2.2.1. From Theorem 2.2.1 we find, that
k

up =Y (o +AE) " fuly)e™ (2.2.53)

n=—=k
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is a solution of the equation

(I + AE)uy, = fi, € Ly(9), (2.2.54)
k
where fo 2 f fo= ) Fuly)ei,

(L, + \E)u = —u + (an(y) +ina(y) + c(y) + A) u
By virtue of an inequality of Lemma 2.2.3 we have
[l < cl[ fill, (2.2.55)

where ¢ is a constant not depending on k.

As f L2, f, then from (2.2.55) we find that
lurx = umllz < cl[fi = fmllz = 0 for k,m — oo.

Hence, by virtue of completeness of the space Lo, it follows that there exists a

unique function u € Ly(€2), such that
up — u for k — oc. (2.2.56).
From (2.2.54), (2.2.55) it follows, that
|lug —ull2 = 0, ||fx — fll2— 0 for k& — oo.

The last inequality shows that u € Ly(€2) is a solution of the equation Lu = f
and from (2.2.53) we have that

w= (L+\E)'f = i (Ly + AE) o (y)e™ (2.2.57).

n=—oo

Theorem 2.2.1 is proved.

Proof of Theorem 2.2.2. Using Lemma 2.2.3, it is easy to see that

lim H(ln + )\E)71H2_>2 = 0.

n[—00
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Seeing this, from (2.2.57) it follows that the operator (I, + AE)™! is compact
if and only if (I, + AE)~! is completely continuous. And now the proof of the

theorem follows from Theorem 2.2.2.

Proof of Theorem 2.2.3. From (2.2.57) and from the fact that the

system {emx}zo . in Lo(—m, ) is orthonormal we make sure that

oD+ AB) o = sup ol (4 AB) Moo (2259

(0]
where D¢ = — and a=0,1, p(y) is a continuous function in R.

- Oa©
Indeed, for any f(z,y) € Lo(R2)

oo

lp(W) DL+ AE) ' fll5= D llp@)In|* (U, + AE) " .13, (2.2.59)

where f(z,y) =< fuly),e™ > n=0,%1,42, ... .
Seeing this, we find, that

lp() | (10 + AB) " fulla < lp(y) D3 (L + AE) ™ £,

from which we have
o) n|* (L + AE) Moo < ||p(y) DL + AE) ™ |a—o. (2.2.60)

On the other hand, from (2.2.59) we have

lp(y)Dg (L +AE)" fl3 < sap o) (L + AE) oz D Ifull® =
= sup o)) (1 + AE) a2l ful 5.
As a result we obtain the inequality
lp(y) D (L +AE)~" fll2 < sup lp()In|* (L + AE) ™. (2.2.61)

Owing to the inequalities (2.2.60), (2.2.61) we obtain the proof of inequality

(2.2.58).
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From inequality (2.2.61), as p(y) = ¢(y), by virtue of Lemma 2.2.8 we find
le(y) (L, + AE) Y| < ¢ < o0.
In exactly the same way
la(y)Da(ly + AE) " fll2—2 < €2 < 00

follows. Or for any u € D(L)
le(y)ulla < () (LAAE) " (LAAE)ulla < [le(y) (LHAE) " ool (LHAE)ulls <

< ¢ ([ (Lullz + Allull2) < cren(A) (1(Lullz + llull2) < e(A) ([(Lullz + [[ull2)
where ¢(\) = c1e1(N);

lay)uallz < la(y) Da(L + AE) (L + AE)ul|> <
< la(y) Da(L + AE) oo L + AE)ul|» <

< ([[(L + AE)ull2) < caca(A) ([[(Lullz + flull2) < e(A) (I (Lullz + [[ull2) -

With the help of these inequalities we deduce the inequalities
| = F(y)uee = uyyll2 = (L + AE)u — a(y)u, — c(y)u — Aullz <

< L+ AB)ullz + lla(y)uallz + le()ullz + IAullz < cX) ([(Lullz + [lull2) -

So, we have proved that
| = E@)ter = uyyll2 + lla)ualle + [le(y)ulls < c(X) ([(Lullz + [ull2)

Theorem 2.2.3 is proved.

Proof of Theorem 2.2.4. From Theorem 2.2.1 it follows that

L= L faly)e™, (2.2.62)

n=—oo

where f =< f,(y), e"® >.
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From (2.2.62) it follows that if s is a singular point of the operator L™,
then s is a singular number of one of the operators ;! and vice versa, if s is a
singular number of one of the operators [;;1, then s is a singular point of the

operator L.

From this and from Lemma 2.2.16 the proof of Theorem 2.2.4 easily follows.
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