
1 Coercitive estimates and estimates of the spectrum

of mixed type operators

Before to begin the deduction of results which are obtained in this and the

next chapters, we remind on some known definitions and necessary notations.

Rn is the n−dimensional real Euclidean space; in particular, when n=2 we

have the two-dimensional Euclidean space of z=(x,y) points, where −∞ <

x <∞, −∞ < y <∞.

Ω is a domain in Rn( in particular in R2). By Ω we denote the closure of

the set Ω;

C l(Ω), l = 0, 1, ... is the set of continuous functions, which have continuous

partial derivatives in Ω up to order l; in particular, if Ω is a domain from R2,

then the partial derivatives for a function u(x, y) can be written in the form

Dαu =
∂αu

∂xα1∂yα2
, where α = α1 + α2 6 l

α1 and α2 are entire non-negative numbers.

C∞(Ω) is the set of infinitely differentiable functions in Ω;

For definiteness we assume that Ω is a domain from R2, and Ω is its closure.

Definition 1.1 The closure of the set {(x, y) ∈ Ω : u(x, y) 6= 0} is called the

supports of the function u determined in the domain Ω and denoted by supp u.

Definition 1.2 A continuous function u in Ω with suppu ⊆ Ω is called a

finite function in Ω.

C∞
0 (Ω) is the set of infinitely differentiable and finite functions in Ω;

L2(Ω) is the Hilbert space consisting of determined and Lebesgue measur-
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able functions in Ω which have the finite norm

‖u‖2,Ω =

∫
Ω

|u|2dΩ


1/2

;

W k
2 (Ω) is the space of functions from L2(Ω), which have generalized Sobolev’s

derivatives up to order k >1 which also belongs to L2(Ω) with the norm

‖f‖W k
2 (Ω) =

∑
|α|6k

|Dαf |2dΩ


1/2

.

Let A be some operator then the definition domain of A is denoted by D(A)

and the range of A is denoted by R(A).

Definition 1.2 If for any x1and x2 belonging to D(A) with x1 6= x2 follows

that y1 = Ax1 6= y2 = Ax2 , then the operator A is called one-to-one.

If A maps D(A) on R(A) one-to-one, then there exists the inverse map or

inverse operator A−1, which transforms R(A) to D(A).

Definition 1.3. An operator is called a closed operator if for arbitrary se-

quence {xn} ⊂ D(A) with xn → x0 and Axn → y0 follows that x0 ∈ D(A) and y0 =

Ax0.

Directly from this definition follows that if the operator A is not closed than

it can be extended to a closed operator. This operation is called the closure of

the operator A and the operator is called closable operator.

Definition 1.4. The operator is called completely continuous operator, if it

transforms any bounded set into a compact set or as is the same that for every

bounded sequence {xn} from D(A) the sequence {Axn} contains a converging

subsequence.

Let X and Y be normalized spaces and A be a bounded operator from X
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to Y . Let us determine a functional ϕ by the formula

ϕ(x) = (x, ϕ) = (Ax, f), x ∈ X, f ∈ Y ∗ (1.1.0)

Y ∗ is the adjoint space to the space Y .

It is easy to check that ϕ is linear and D(ϕ) = X. So, for every f ∈ Y ∗

there is an element ϕ ∈ X∗ according to the formula (1.1.0), where X∗ is the

adjoint space to the space X. Therefore the linear continuou operator ϕ = A∗f

is defined. The operator A∗ is called adjoint operator to the operator A.

Definition 1.5. The operator A, applied to the Hilbert space L2(Ω) is called

self-adjoint, if it is symmetric, i.e. if for any u, v ∈ D(A) the scalar product

relation 〈Au, v〉 = 〈u,Av〉 holds and from the identity

〈Au, v〉 = 〈u,w〉

follows that v ∈ D(A), w = Av, where v and w are fixed and u is an arbitrary

element from D(A).

Let us give now a very important notion of the spectrum and the resolvent

of an operator.

If A is a linear operator in a Hilbert space H, then the complex plane C can

be divided into two parts: a resolvent set (denoted by ρ(A)) and a spectrum of

the operator A(denoted by σ(A)), which is divided into a discrete Pσ(A) and

a continuous spectrum Cσ(A).

The resolvent set ρ(A) consists of λ for which the operator (A− λE) has a

bounded inverse operator with a dense domain in H, i.e.

ρ(A) =
{
λ ∈ C : (A− λE)−1 is defined in whole H}.

If λ belongs to the resolvent set then the operator (A − λE)−1 is called a

resolvent of the operator A and denoted by Rλ(A).
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The discrete spectrum is called a set of eigenvalues of an operator A, i.e.

Pσ(A) = {λ ∈ C : Au = λu, for some u 6= 0 ∈ H}.

In other words, when λ ∈ Pσ(A) than the operator (A − λE)−1 does not

exist.

The set of all other points of the spectrum in case of their existence is called

the continuous spectrum, i.e.

Cσ(A) =
{
λ ∈ C : the operator(A− λE)−1 exists but is unbounded

}
.

Definition 1.6. Let A is a completely continues operator. Then the eigen-

values of the operator (A∗A)1/2 are called s-values of the operator A (Schmidt

eigenvalues).

The nonzero s-values we will order according to decreasing magnitude and

observing their multiplicities and so

sk(A) = λk((A
∗A)1/2), k = 1, 2, ....

Let us give another equivalent definition of the s-values. But before we give

the definition of the notion of Kolmogorov k-widths and their properties.

Let M be a centrally symmetric subset of H(H is a Hilbert space), i.e. M

= –M

The magnitude

dk = inf
{Gk}

sup
u∈M

inf
v∈Gk

‖u− v‖, k = 0, 1, 2, ...

is called Kolmogorov k-widths of the set M , where Gk is a k-dimensional

subset.
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The k−widths have the following properties:

1)d0 > d1 > d2 > ...;

2)dk(M̃) 6 dk(M), M̃ ⊂M, k = 1, 2, 3, ...;

3)dk(nM) = ndk(M), n > 0, nM = {x′ = nx, x ∈M}.

The assertion of the following theorem allows to give a second equivalent

definition of the s-values.

Theorem 1.1. Let A be a completely continuous operator. Then sk+1(A)

(k =1,2,. . . ) coincide with the Kolmogorov k-widths of the set M=AS, the

image of the unit ball S ={x ∈ H: ‖x‖ 61} under the operator A.

In many cases this definition proves to be more convenient than the first

one.

Other notations and definitions will be given when needed.
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1.1 Estimates of the spectrum for a class of mixed type equations

Consider the mixed type operator

Lu = −k(y)uxx − uyy + a(y)ux + c(y)u, (1.1.1)

where k(y) is a piecewise continuous function in the segment [-1,1] and yk(y) >

0 for y 6=0, k(0)=0 (as y=0).

Originally we define the operator in the set C∞
0,π(Ω), consisting of infinitely

differentiable functions, satisfying the conditions: u(−π, y) = u(π, y), ux(−π, y) =

ux(π, y) and finite as functions of the variable y. Here

Ω = {(x, y) : −π < x < π, −1 < y < 1}.

We note that the operator L admit closure in the metric of L2(Ω) and the

closure we also denote by L.

The solvability of the semiperiodical Dirichlet problem for the equation,

where Lu is defined by the equality (1.1.1), was considered in the work [29].

Let us give necessary notations and definitions for further statements.

Let a function u(x, y) ∈ L2(Ω). Then the following decomposition holds

u(x, y) =
∞∑

n=−∞
un(y)e

inx

Definition 1.1.1. We call the expression [30]

Dα
xu = e

iπα
2

∞∑
n=0

nαun(y)e
inx + e−

iπα
2 −1

−1∑
n=−∞

|n|αun(y)e
inx

as the fractional derivative Dα
xu of order α>0 with respect to x of a function

u(x, y). Here the equality is understood in the metric of L2(Ω).

The main results
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Theorem 1.1.1. Let the conditions for the functions a(y) and c(y) con-

tinuous in the segment [-1,1]

i) |a(y)| > δ0 > 0, c(y) > δ > 0 be fulfilled. Then:

a) the operator (L+ λE) is continuously invertible for λ > 0;

b) the operators r(y)Dx(L+λE)−1, r(y)Dy(L+λE)−1 are bounded in L2(Ω).

Here Dx = ∂
∂x , Dy = ∂

∂y ; r(y) is a continuous function in the segment [-1,1].

c) the operator r(y)Dα
x
(L+ λE)−1 is completely continuous if 0 6 α < 1.

Theorem 1.1.2. Let the conditions of Theorem 1 be fulfilled. Then the

following estimate holds for the Schmidt eigenvalues

1

k
c−1 6 sk 6 c

1

k1/2 , k = 1, 2, ...,

where c > 0 does not depend on k.

Theorem 1.1.3. Let the condition i) be fulfilled. Then:

a) the spectrum σ(L−1) is a discrete set;

b) for any non-zero λ ∈ σ(L−1) the estimate:

|λk| 6 c
1

k1/2 , k = 1, 2, ...,

holds, where c > 0 does not depend on k.

Let us remind that σp denotes the set of completely continuous operators

such that

‖A‖p
σp

=
∞∑

k=1

sp
k(A) <∞,

where sk(A) are the Schmidt eigenvalues of the completely continuous operator

A.

In the following theorem we give an assertion that the resolvent of the

operator (1) belongs to the class σp.
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Theorem 1.1.4. Let the condition i) be fulfilled. Then the resolvent of the

operator L belongs to the class σp if p > 2.

For the proofs of the Theorems 1.1.1-1.1.4 we need a few auxiliary assertions

and estimates.

Auxiliary lemmas and inequalities

Lemma 1.1.1. Let the condition i) be fulfilled. Then the operator L+ λE

is continuously invertible for λ >0 and the equality

(L+ λE)−1f =
∞∑

n=−∞
(ln + λE)−1fne

inx (1.1.2)

holds in terms of L2(Ω), where (ln +λE)−1 is an inverse operator to the closed

operator (ln + λE) originally defined in C∞
0 (−1, 1) by the equality

(ln + λE)u = −u′′(y) + (n2k(y) + ina(y) + c(y) + λ)u(y) (1.1.3)

The proof of this lemma can be found in [29].

Lemma 1.1.2. Let the operator (ln +λE) be defined by the equality (1.1.3)

in the set C∞
0 (−1, 1) (n = 0,±1,±2, ...) and let the condition i) be fulfilled.

Then the estimate ∥∥(ln + λE)−1
∥∥

2→2 6
c

λ1/2 ,

holds, where c > 0 is a constant not depending on n.

Proof: For any u(y) ∈ C∞
0 (−1, 1) have

〈(ln + λE)u, u〉 =

1∫
−1

[
|u|2 + (n2k(y) + ina(y) + c(y) + λ)|u|2

]
dy (1.1.4)

From here and taking the condition i into account we find

|〈(ln + λE)u, u〉| >

∣∣∣∣∣∣
1∫

−1

ina(y)|u|2dy

∣∣∣∣∣∣ > |n|δ0‖u‖2.
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Now using the Cauchy-Bunyakovskii inequality we have

‖(ln + λE)u‖2 > |n|δ0‖u‖2. (1.1.5)

From (1.1.4) and the Cauchy inequality with ε=1 it follows that

1

2
‖(ln + λE)u‖2

2 >

1∫
−1

[
|u′|2 + (c(y) + λ)|u|2

]
dy −

1∫
−1

n2|k(y)||u|2dy.

Using the condition i) and that λ > 0 we find:

1

2
‖(ln + λE)u‖2

2 >
1

2

1∫
−1

[
|u′|2 + (c(y) + λ)|u|2

]
dy −

1∫
−1

n2|k(y)||u|2dy (1.1.6)

Combining (1.1.5) and (1.1.6) we finally have

c2‖(ln + λE)u‖2
2 > λ‖u‖2

2.

The assertion of Lemma 1.1.2 follows from the last inequality.

Lemma 1.1.3. Let the conditions of Lemma 1.1.2 be fulfilled. Then the

estimate ∥∥(ln + λE)−1
∥∥2→2 6

1

|n| · δ0
, n = ±1,±2, .... (1.1.7)

holds.

The proof of Lemma 1.1.3 follows from the inequality (1.1.5).

Lemma 1.1.4. Let the condition i) be fulfilled. Then the estimate∥∥∥∥ ddy (ln + λE)−1
∥∥∥∥

2→2
6 c,

holds, where c > 0 is a constant.

Proof. From the condition i) and inequalities (1.1.5) and (1.1.6) we have

c‖(ln + λE)u‖2
2 > ‖u′‖2

2 + ‖u‖2
2,

where c > 0 does not depend on u and n.
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Hence, ∥∥∥∥ ddy (ln + λE)−1
∥∥∥∥

2→2
= sup

f∈α2(−1,1)

∥∥∥ d
dy(ln + λE)−1f

∥∥∥
2

‖f‖2
=

= sup
u∈D(ln+λE)

‖u′‖2

‖(ln + λE)u‖2
6 c <∞.

The lemma is proved.

Now we proceed immediately to the proof of the items of the basic theorems.

Proof of Theorem 1.1.1

The proof of item a) of Theorem 1.1.1 immediately follows from Lemma

1.1.1.

Let us prove the item b) of Theorem 1.1.1. By virtue of the item a) and

Lemma 1.1.3 we have

∥∥r(y)Dx(L+ λE)−1f
∥∥2

2 =

∥∥∥∥∥r(y)
∞∑

n=−∞
in(ln + λE)−1fne

inx

∥∥∥∥∥
2

2

=

=
∞∑

n=−∞

∥∥r(y)in(ln + λE)−1fne
inx
∥∥2

2 6

≤ max
y∈[−1,1]

|r(y)|
∞∑

n=−∞
n2
∥∥(ln + λE)−1

∥∥2
2‖fn‖2

2 ≤

6 c0sup
{n}

|n|2
∥∥(ln + λE)−1

∥∥2
2

∞∑
n=−∞

‖fn‖2
2 6

c0
δ2
0
‖f‖2

2.

Hence, ∥∥r(y)Dx(L+ λE)−1
∥∥

2→2 6
c0
δ0
<∞.

Further we find the norm∥∥r(y)Dy(L+ λE)−1f
∥∥2

2 =
∞∑

n=−∞

∥∥∥∥r(y) ddy (ln + λE)−1fn(y)

∥∥∥∥2

2

6 max
y∈[−1,1]

|r(y)|
∞∑

n=−∞

∥∥∥∥ ddy (ln + λE)−1fn

∥∥∥∥2

2
6 c0

∞∑
n=−∞

∥∥∥∥ ddy (ln + λE)−1
∥∥∥∥2

2→2
‖fn‖2

2.
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Hence, by virtue of Lemma 1.1.4, we have∥∥r(y)Dy(L+ λE)−1
∥∥

2→2 6 c <∞.

The item b) of Theorem 1.1.1 is proved.

Using the operator representation and the definition of the fractional deriva-

tive we have

r(y)Dα
x
(L+ λE)−1f = r(y)e

iπα
2

∞∑
n=0

nα(ln + λE)−1fn(y)e
inx+

+r(y)
−iπα

2

1∑
n=−∞

|n|α(ln + λE)−1fn(y)e
inx.

From Lemma 1.1.1 it follows that (ln + λE) has the continuous inverse

operator (ln + λE)−1 and from Lemma 1.1.4 it is clear that the range of the

operator (ln + λE)−1 belongs to W 1
2 (−1, 1) for any n. Then from well-known

theorems of Sobolev spaces (see for example [41]) it follows that the operator

r(y)(ln + λE)−1 is completely continuous for every n and the inequality∥∥r(y)|n|α(ln + λE)−1f
∥∥

2→2 6
|n|α

|n| · δ0
, 0 6 α < 1 (1.1.8)

holds. The last inequality follows from Lemma 1.1.3.

As for every n the operator r(y)|n|α(ln + λE)−1 is completely continuous

from L2 to L2 then from well-known theorems for completely continuous op-

erators (see [48]) it follows that the operator r(y)Dα
x
(L+ λE)−1 is completely

continuous if

µ = lim
|n|→∞

µ = lim
|n|→∞

∥∥r(y)|n|α(ln + λE)−1
∥∥

2→2 = 0.

From (1.1.8) it is obvious that the number µ→0 as n→∞. The completely

continuity of the operator r(y)Dα
x
(L + λE)−1 is proved. Theorem 1.1.1 is

completely proved.
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For further statements we need some important estimates and inclusions.

Introduce the sets

M =
{
u ∈ L2(Ω) : ‖Lu‖2

2 + ‖u‖2
2 6 1

}
M̃c =

{
u ∈ L2(Ω) : ‖ux‖2

2 + ‖uy‖2
2 + ‖u‖2

2 6 c
}

˜̃Mc−1 =
{
u ∈ L2(Ω) : ‖uxx‖2

2 + ‖uyy‖2
2 + ‖ux‖2

2 + ‖uy‖2
2 + ‖u‖2

2 6 c−1
}

Then the following lemma holds.

Lemma 1.1.5. Let the condition i) be fulfilled. Then the inclusions

˜̃Mc−1 ⊆M ⊆ M̃c

hold, where c > 0 is a constant not depending on u(x,y).

Proof. Let u(x, y) ∈ ˜̃Mc−1. Then

‖Lu‖2
2 + ‖u‖2

2 = ‖−k(y)uxx − uyy + a(y)ux + c(y)u‖2
2 + ‖u‖2

2 6

6 ‖−k(y)uxx‖2
2 + ‖uyy‖2

2 + ‖a(y)ux‖2
2 + ‖c(y)u‖2

2 + ‖u‖2
2 6

6 c(‖uxx‖2
2 + ‖uyy‖2

2 + ‖ux‖2
2 + ‖u‖2

2) 6

≤ c(‖uxx‖2
2 + ‖uyy‖2

2 + ‖ux‖2
2 + ‖uy‖2

2 + ‖u‖2
2) 6 c · c−1 6 1,

where c = max
y∈[−1,1]

{|k(y)|, |a(y)|, |c(y)|}.

From this it follows that

˜̃Mc−1 ⊆M.

Let now u∈M . Then by virtue of the item b) of Theorem 1.1.1 we have

‖ux‖2
2 + ‖uy‖2

2 + ‖u‖2
2) 6 c(‖Lu‖2

2 + ‖u‖2
2) 6 c,

i.e.

M ⊆ M̃c.

The lemma is proved.
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In the Definition 1.6 the notations of s-values and Kolmogorov k-widths

have been given. Therefore, referring to them, we give the two following as-

sertions.

Lemma 1.1.6. Let the condition i) be fulfilled. Then the estimate

c−1 ˜̃dk 6 sk+1 6 cd̃k, k = 1, 2, ....

holds, where c > 0 is a constant, sk+1 are singular numbers of the operator

L−1; d̃k,
˜̃dk are k-widths of the considered sets M̃, ˜̃M .

Proof. From Lemma 1.1.5 and from the properties of k-widths it follows

that

c−1 ˜̃dk 6 dk 6 cd̃k.

Hence, taking the equality sk+1 = dk (the second definition of s-values) into

account, we obtain the proof of Lemma 1.1.6.

Introduce the counting function N(λ) =
∑

dk>λ

1 of those dk are greater than

λ > 0.

Lemma 1.1.7. Let the condition of Lemma 1.1.5 be fulfilled. Then the

estimate

˜̃N(cλ) 6 N(λ) 6 Ñ(c−1λ) (1.1.9)

holds, where N(λ) =
∑

sk+1>λ

1, Ñ(λ) =
∑̃

dk>λ

1, ˜̃N(λ) =
∑̃̃

dk>λ

1.

Proof. Using Lemma 1.1.6 we find

N(λ) =
∑

sk+1>λ

1 6
∑

cd̃k>λ

1 =
∑

d̃k>c−1λ

1 = Ñ(c−1λ)

Similarly

˜̃N(cλ) =
∑
˜̃
dk>cλ

1 =
∑

c−1d̃k>λ

1 6
∑

sk+1>λ

1 = N(λ)

From here we finally come to the inequality (1.1.9). The lemma is proved.
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Now we proceed to the proofs of Theorems 1.2.2 and 1.2.3.

Proof of Theorem 1.1.2

For the function Ñ(λ) =
∑̃

dk>λ

1, ˜̃N(λ) =
∑̃̃

dk>λ

1 the estimates (proof of this

estimates can be found in [49-50])

c−1λ−2 6 Ñ(λ) 6 cλ−2 (1.1.10)

c−1λ−1 6 ˜̃N(λ) 6 cλ−1 (1.1.11)

hold, where c does not depend on λ > 0.

Let λ = d̃k then Ñ(d̃k) = k and from (1.1.10) it follows that

c−1d−2
k 6 k 6 cd−2

k .

From here,

c−1 1

k1/2 6 d̃k 6 c
1

k1/2 .

Just as before we have

c−1 1

k
6 ˜̃dk 6 c

1

k
.

And now, using Lemma 1.1.6, we find that

c−1 1

k
6 sk 6 c

1

k1/2 , k = 1, 2, .... (1.1.12)

Theorem 1.1.2 is proved.

Proof of Theorem 1.1.3

For completely continuous operators the Weyl inequality [51]

k∏
j=1

|λj(A)| 6
k∏

j=1

sj(A), k = 1, 2, ..., (1.1.13)

holds, where A is a completely continuous operator, λj(A) are eigenvalues

of this operator arranged as a sequence according to nonincreasing absolute

values, the singular numbers sj(A) are arranged as a nonincreasing sequence.
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From (1.1.12) and (1.1.13) we have

|λk|k 6
k∏

j=1

|λj| 6
k∏

j=1

sj 6 ck(k!)−
1
2

Further, using the inequality ekk! > kk(k = 1, 2, ...) we find

|λk|k 6 ck(k!)−
1
2 6 cke

k
2k−

k
2

Hence, we finally have

|λk| 6 ck−
1
2 , k = 1, 2, ...

Theorem 1.1.3 is proved.

Proof of Theorem 1.1.4 The assertion of the proof of Theorem 1.1.4

immediately follows from Theorems 1.2.1-1.2.2.
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1.2 Estimates of the spectrum of a class of mixed type equations

with coefficients of two variables

Consider the differential operator of mixed type

Lu = −k(y)uxx − uyy + a(x, y)ux + c(x, y)u (1.2.1)

where k(y) is a sectionally continuous function in [-1,1], k(0)=0, yk(y) > 0 as

y 6=0.

Originally we define the operator in C∞
0,π(Ω), the set of infinitely differen-

tiable functions, satisfying the conditions

u(−π, y) = u(π, y), ux(−π, y) = ux(π, y)

and finite as functions of the y variable. Here

Ω = {(x, y) : −π < x < π, −1 < y < 1}.

The closure of the operator L in the metric of L2(Ω) is also denoted by L.

Theorem 1.2.1. Let a(x, y) and c(x, y) be continuous functions in Ω,

satisfying the condition

i) |a(x, y)| > δ0 > 0, c(x, y) > δ > 0, δ0 is a sufficiently large number.

Then the operator (L+λE) continuously invertible for a sufficiently great

λ > 0.

Theorem 1.2.2. Let the conditions of Theorem 1.2.1 be fulfilled. Then the

following estimate holds for the Schmidt eigenvalues

c−1 1

k
6 sk 6 c

1

k1/2 , k = 1, 2, ...,

where c > 0 is a constant not depending on k.

Theorem 1.2.3. Let the conditions of Theorem 1.2.1 be fulfilled. Then:
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a) the spectrum σ((L+ λE)−1) is a discrete set;

b) for any nonzero λk ∈ σ((L+ λE)−1)

|λk| 6 c
1

k1/2 , k = 1, 2, 3, ...,

where c > 0 is a constant not depending on k.

The theorem given bellow is similar to Theorem 1.1.4 of the previous section.

Theorem 1.2.4. Let the condition i) be fulfilled. Then the resolvent of the

operator L belongs to the class σp if p > 2.

The following assertions are needed below.

Auxiliary assertions and inequalities

Consider the operator

(Lj + λE)u = −k(y)uxx − uyy + a(xj, y)ux + c(xj, y)u+ λu

where u(x, y) ∈ C∞
0,π(Ω), xj ∈ (−π, π), λ > 0.

The operator Lj + λE admits closure and the closure is also denoted by

Lj + λE.

Lemma 1.2.1. Let a(x, y) and c(x, y) be continuous functions in Ω, satis-

fying conditions i). Then the operator Lj + λE is continuously invertible for

λ > 0 and the equality

(Lj + λE)−1f =
∞∑

n=−∞
(ln,j + λE)−1fne

inx (1.2.2)

holds in the metric of L2(Ω) for it, where (ln,j + λE)−1 is an inverse operator

to the operator (ln,j + λE) defined by the equality

(ln,j + λE)u = −u′′ + (n2k(y) + ina(xj, y) + c(xj, y))u+ λu.

Proof. Since xj is a fixed number from the interval (−π, π), then in this

case the factors a(xj, y), c(xj, y) depend only on the variable y. Now the proof
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of the existence of an inverse operator to the operator (1.2.2) reduces to the

case of one-dimensional factors a(y) and c(y), i.e. of functions depending only

on one variable . Therefore, referring to Lemma 1.1.1 of the previously section,

we obtain the proof of Lemma 1.2.1.

Lemma 1.2.2. Let the conditions of Lemma 1.2.1 be fulfilled. Then the

inequalities hold:

a)
∥∥(Lj + λE)−1

∥∥
2→2 ≤

c
λ1/2 , where c > 0 is a constant;

b)
∥∥Dx(Lj + λE)−1

∥∥
2→2 6 1

δ0
;

c)
∥∥Dy(Lj + λE)−1

∥∥
2→2 6 c, where c > 0 is constant.

Proof. From the representation (1.2.2) we have

∥∥(Lj + λE)−1f
∥∥2

2 =

∥∥∥∥∥
∞∑

n=−∞
(ln,j + λE)−1fne

inx

∥∥∥∥∥
2

2

=
∞∑

n=−∞

∥∥(ln,j + λE)−1fn

∥∥2
2,

where (ln,j + λE)u = −u′′ + (n2k(y) + ina(xj, y) + c(xj, y))u+ λu.

Hence, by virtue of Lemma 1.1.2, we find∥∥(Lj + λE)−1
∥∥

2→2 6
c

λ1/2 .

Let us prove the item b). From the representation (1.2.2) we find

Dx(Lj + λE)−1f =
∞∑

n=−∞
in(ln,j + λE)−1fn(y)e

inx

From here, using Lemma 1.1.3, we compute∥∥Dx(Lj + λE)−1f
∥∥2

2 =

∥∥∥∥ ∞∑
n=−∞

in(ln,j + λE)−1fn(y)e
inx

∥∥∥∥2

2
=

=
∞∑

n=−∞

∥∥in(ln,j + λE)−1fn(y)e
inx
∥∥2

2 6
∞∑

n=−∞
n2
∥∥(ln,j + λE)−1

∥∥2
2 · ‖fn(y)‖2

2 6

6 sup
{n}

{
n2
∥∥(ln,j + λE)−1

∥∥2
2

} ∞∑
n=−∞

‖fn(y)‖2
2 6 sup

{n}

{
n2

n2δ0

} ∞∑
n=−∞

‖fn(y)‖2
2 6 1

δ2
0
‖f‖2

2.

The last inequality implyies∥∥Dx(Lj + λE)−1
∥∥2

2 6
1

δ2
0
.
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The item b) of Lemma 1.2.2 is proved.

Let us prove the item c). For this we compute the norm

∥∥Dy(Lj + λE)−1f
∥∥2

2 =

∥∥∥∥ ∞∑
n=−∞

d
dy(ln,j + λE)−1fn(y)e

inx

∥∥∥∥2

2
6

6
∞∑

n=−∞

∥∥∥ d
dy(ln,j + λE)−1fn(y)

∥∥∥2

2
6

∞∑
n=−∞

∥∥∥ d
dy(ln,j + λE)−1

∥∥∥2

2
‖fn(y)‖2

2 6

6 sup
{n}

∥∥∥ d
dy(ln,j + λE)−1

∥∥∥2

2

∞∑
n=−∞

‖fn(y)‖2
2 = sup

{n}

∥∥∥ d
dy(ln,j + λE)−1

∥∥∥2

2
‖f‖2

2.

Hence, using Lemma 1.1.4, we find∥∥Dy(Lj + λE)−1
∥∥2

2 6 c2 <∞

Lemma 1.2.2 has been completely proved.

Construct a decomposition of identity corresponding to the covering of the

segment [-π,π] with the neighborhoods ∆j, i.e. we construct N non-negative

functions ϕj(x) ∈ C∞
0 (−π, π) each of them vanishing outside of ∆j and such

that
N∑

j=1

ϕ2
j(x) ≡ 1, x ∈ [−π, π].

Let K denote the operator defined by the equality

Kf =
N∑

j=1

ϕj(Lj + λE)−1ϕjf, f ∈ L2(Ω).

Consider the action of the operator (L+ λE) on Kf :

(L+ λE)Kf = −k(y)

(
N∑

j=1

ϕj(Lj + λE)−1ϕjf

)
xx

−

−

(
N∑

j=1

ϕj(Lj + λE)−1ϕjf

)
yy

+ a(x, y)

(
N∑

j=1

ϕj(Lj + λE)−1ϕjf

)
x

+

+c(x, y)

(
N∑

j=1

ϕj(Lj + λE)−1ϕjf

)
+ λ

(
N∑

j=1

ϕj(Lj + λE)−1ϕjf

)
=
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= −k(y)

[
N∑

j=1
(ϕj)xx(Lj + λE)−1ϕjf + 2

N∑
j=1

(ϕj)x

(
(Lj + λE)−1ϕjf

)
x
+

+
N∑

j=1
ϕj

(
(Lj + λE)−1ϕjf

)
xx

]
−

−

[
N∑

j=1
(ϕj)yy(Lj + λE)−1ϕjf + 2

N∑
j=1

(ϕj)y

(
(Lj + λE)−1ϕjf

)
y
+

+
N∑

j=1
ϕj

(
(Lj + λE)−1ϕjf

)
yy

]
+

+a(x, y)

[
N∑

j=1
(ϕj)x(Lj + λE)−1ϕjf+

N∑
j=1

ϕj

(
(Lj + λE)−1ϕjf

)
x

]
+

+c(x, y)
N∑

j=1
ϕj(Lj + λE)−1ϕjf + λ

N∑
j=1

ϕj(Lj + λE)−1ϕjf =

=
N∑

j=1
ϕj

[
−k(y)

(
(Lj + λE)−1ϕjf

)
xx
−

N∑
j=1

(
(Lj + λE)−1ϕjf

)
yy

+

a(xj, y)
(
(Lj + λE)−1ϕjf

)
x

+ c(xj, y)(Lj + λE)−1ϕjf+

λ(Lj + λE)−1ϕjf
]
+ a(x, y)

N∑
j=1

(ϕj)x(Lj + λE)−1ϕjf+

+
N∑

j=1
ϕj (a(x, y)− a(xj, y))

(
(Lj + λE)−1ϕjf

)
x
+

+
N∑

j=1
ϕj (c(x, y)− c(xj, y)) (Lj + λE)−1ϕjf−

−k(y)

[
N∑

j=1
(ϕj)xx(Lj + λE)−1ϕjf + 2

N∑
j=1

(ϕj)x

(
(Lj + λE)−1ϕjf

)
x

]
−

−

[
N∑

j=1
(ϕj)yy(Lj + λE)−1ϕjf + 2

N∑
j=1

(ϕj)y

(
(Lj + λE)−1ϕjf

)
y

]
.

From the last equality, taking into account that (ϕj)y = 0, (ϕj)yy = 0, we

35



have

(L+ λE)Kf =
N∑

j=1
ϕ2

jf +
N∑

j=1
a(x, y)(ϕj)x(Lj + λE)−1ϕjf+

+
N∑

j=1
ϕj (a(x, y)− a(xj, y))

(
(Lj + λE)−1ϕjf

)
x
+

+
N∑

j=1
ϕj (c(x, y)− c(xj, y)) (Lj + λE)−1ϕjf−

−k(y)

[
N∑

j=1
(ϕj)xx(Lj + λE)−1ϕjf + 2

N∑
j=1

(ϕj)x

(
(Lj + λE)−1ϕjf

)
x

]

Introduce the notations

Mf =
N∑

j=1

ϕj (a(x, y)− a(xj, y))
(
(Lj + λE)−1ϕjf

)
x
,

Bf =
N∑

j=1
ϕj (c(x, y)− c(xj, y)) (Lj + λE)−1ϕjf−

−k(y)

[
N∑

j=1
(ϕj)xx(Lj + λE)−1ϕjf + 2

N∑
j=1

(ϕj)x

(
(Lj + λE)−1ϕjf

)
x

]
.

Lemma 1.2.3. Let the condition i) be fulfilled. Then there exists λ > 0

such that ‖B‖2→2 < 1.

Proof. Estimate the norm of the operator B

‖Bf‖2
2 =

∥∥∥∥∥ N∑
j=1

ϕj (c(x, y)− c(xj, y)) (Lj + λE)−1ϕjf−

−k(y)

[
N∑

j=1
(ϕj)xx(Lj + λE)−1ϕjf + 2

N∑
j=1

(ϕj)x

(
(Lj + λE)−1ϕjf

)
x

]∥∥∥∥∥
2

2

=

=
∫
Ω

∣∣∣∣∣ N∑
j=1

ϕj (c(x, y)− c(xj, y)) (Lj + λE)−1ϕjf−

−k(y)

[
N∑

j=1
(ϕj)xx(Lj + λE)−1ϕjf + 2

N∑
j=1

(ϕj)x

(
(Lj + λE)−1ϕjf

)
x

]∣∣∣∣∣
2

dxdy 6

6
N∑

j=1

∫
∆j

∣∣∣∣∣j+1∑
j−1

ϕj (c(x, y)− c(xj, y)) (Lj + λE)−1ϕjf−

−k(y)
[
(ϕj)xx(Lj + λE)−1ϕjf + 2(ϕj)x

(
(Lj + λE)−1ϕjf

)
x

]∣∣2dxdy 6
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6
N∑

j=1

∫
∆j

∣∣∣∣∣j+1∑
j−1

ϕj (c(x, y)− c(xj, y)) (Lj + λE)−1ϕjf+

+|k(y)|
[
(ϕj)xx(Lj + λE)−1ϕjf + 2(ϕj)x

(
(Lj + λE)−1ϕjf

)
x

]∣∣2dxdy.
We use here that only ϕj−1(x), ϕj(x), ϕj+1(x) are not equal to zero in ∆j.

Hence, taking into account that ||a|+ |b|+ |c||2 6 3(a2 + b2 + c2) and by virtue

of Lemma 1.2.2, we have

‖Bf‖2
2 6 36

N∑
j=1

[∥∥ϕj (c(x, y)− c(xj, y)) (Lj + λE)−1ϕjf
∥∥2

2+

+|k(y)|2
∥∥(ϕj)xx(Lj + λE)−1ϕjf

∥∥2
2+

+|k(y)|2
∥∥(ϕj)x

(
(Lj + λE)−1ϕjf

)
x

∥∥2
2

]
6

6 36
N∑

j=1

[
max
x∈∆j

|(c(x, y)− c(xj, y))|2
∥∥(Lj + λE)−1

∥∥2
2→2‖ϕjf‖2

2+

+ max
y∈[−1,1]

|k(y)|2max
x∈∆̄j

|(ϕj)xx|2
∥∥(Lj + λE)−1

∥∥2
2→2‖ϕjf‖2

2

+ max
y∈[−1,1]

|k(y)|2max
x∈∆̄j

|(ϕj)x|2
∥∥Dx(Lj + λE)−1

∥∥2
2→2‖ϕjf‖2

2

]
.

From here, by virtue of Lemma 1.2.2 and taking the boundedness and con-

tinuity of the functions k(y), c(x, y), ϕj(x), ϕ
′
j(x), ϕ

′′
j (x) into account, we find

‖Bf‖2
2 6 36c

N∑
j=1

max
x∈∆j

|(c(x, y)− c(xj, y))|2

λ
+
c0
λ

‖ϕjf‖2
2 + 36

N∑
j=1

c1
δ0
‖ϕjf‖2

2,

where c0 = max
y∈[−1,1]

|k(y)|2max
x∈∆̄j

|(ϕj)xx|2, c1 = max
y∈[−1,1]

|k(y)|2max
x∈∆̄j

|(ϕj)x|2.

By the choice of a sufficiently small domain ∆̄j we can estimate from

above max
x∈∆̄j

|c(x, y)− c(xj, y)| by an arbitrarily preassigned small number ε > 0.

Therefore we can get the inequality

‖Bf‖2
2 6 36

[
c

λ
(ε+ c0) +

c1
δ0

] N∑
j=1

‖ϕjf‖2
2 6 36

[
c

λ
(ε+ c0) +

c1
δ0

]
‖f‖2

2
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The last inequalities proves the lemma for sufficiently large δ0 and λ.

Lemma 1.2.4. Let the condition i) be fulfilled. Then ‖M‖2→2 <
1
2 .

Proof. Estimate the norm of the operator M

‖Mf‖2
2 =

∥∥∥∥∥ N∑
j=1

ϕj (a(x, y)− a(xj, y))
(
(Lj + λE)−1ϕjf

)
x

∥∥∥∥∥
2

2

=

=
∫
Ω

∣∣∣∣∣ N∑
j=1

ϕj (a(x, y)− a(xj, y))
(
(Lj + λE)−1ϕjf

)
x

∣∣∣∣∣
2

dxdy 6

6
N∑

j=1

∫
∆j

∣∣∣∣∣j+1∑
j−1

ϕj (a(x, y)− a(xj, y))
(
(Lj + λE)−1ϕjf

)
x

∣∣∣∣∣
2

dxdy 6

6 9
N∑

j=1

∥∥ϕj (a(x, y)− a(xj, y))
(
(Lj + λE)−1ϕjf

)
x

∥∥2
2 6

6 9
N∑

j=1
max
x∈∆̄j

|a(x, y)− a(xj, y)|
∥∥Dx(Lj + λE)−1

∥∥2
2→2‖ϕjf‖2

2.

Similarly to the previous lemma we estimate from above max
x∈∆̄j

|a(x, y)− a(xj, y)|

by an arbitrarily preassigned number ε > 0 by the choice of a sufficiently small

domain ∆̄j. By virtue of Lemma 1.2.2 the norm
∥∥Dx(Lj + λE)−1

∥∥2
2→2 is esti-

mated by the number 1
δ0

. We come to the following inequality

‖Mf‖2
2 6 9

1

δ0
ε

N∑
j=1

‖ϕjf‖2
2 6

9ε

δ0
‖f‖2

2.

In the last inequality we choose ε > 0 so small (moreover, by the condition

of the lemma, δ0 is a sufficiently large number) that ‖M‖2
2→2 6 9·ε

δ0
6 1

2 . The

lemma is proved.

Proof of Theorem 1.2.1.

By virtue of the Lemmas 3.3 and 3.4, the operator (E+B+M) is bounded

together with its inverse. Therefore the setR =
{
ϕ : ϕ = (E +B +M) f, f ∈ C∞

0,π(Ω̄)
}

is dense in L2(Ω). From the Lemmas 3.3 and 3.4 for ϕ = (E +B +M) f , f ∈

C∞
0,π(Ω̄) we obtain, thatK (E +B +M)−1 ϕ ∈ D(L) and (L+λE)K (E +B +M)−1 ϕ =

ϕ. From the last equality it follows that u = K (E +B +M)−1 f is a solution
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of the equation (1.2.1).

Now it remains to show that (L+ λE)−1 is a one-to-one inverse operator to

the operator (L+ λE) (the uniqueness of the solution). It is enough for this

to obtain the inequality

c‖(L+ λE)‖2 > ‖u‖2, (1.2.3)

where c > 0 is a constant.

Owing to the fact that the representation

u = (L+ λE)−1 f = K (E +B +M)−1 f, f ∈ L2(Ω),

holds, we have

‖u‖2
2 =

∥∥∥K (E +B +M)−1 f
∥∥∥2

2
=

∥∥∥∥∥
N∑

j=1

ϕj(Lj + λE)−1ϕj(E +B +M)−1f

∥∥∥∥∥
2

2

6

6 9
N∑

j=1

∥∥ϕj(Lj + λE)−1ϕj(E +B +M)−1f
∥∥2

2 6

6 9
N∑

j=1

∥∥(Lj + λE)−1
∥∥2

2→2

∥∥ϕj(E +B +M)−1f
∥∥2

2.

Hence, by virtue of Lemma 1.2.2, we have

‖u‖2
2 6

9c0
λ

N∑
j=1

∥∥ϕj(E +B +M)−1f
∥∥2

2 6
9c0
λ

∥∥(E +B +M)−1f
∥∥2

2

Since the operator (E + B + M)−1 is a bounded operator from L2(Ω) to

L2(Ω) than the last inequality implyies

‖u‖2
2 6 c‖f‖2

2,

where c = 9c0c1

λ . From the last inequality we immediately come to the inequality

(1.2.3). Theorem 1.2.1 is proved.
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Proofs of Theorems 1.2.2 and 1.2.3

By virtue of Theorem 1.2.1 the representation

u = (L+ λE)−1f = K(E +B +M)−1f

holds for arbitrary f ∈ L2(Ω).

Consequently,

ux = Dx(L+ λE)−1f = DxK(E +B +M)−1f =

= Dx

N∑
j=1

ϕj(L+ λE)−1ϕj(E +B +M)−1f =

=
N∑

j=1
(ϕj)x (L+ λE)−1ϕj(E +B +M)−1f+

+
N∑

j=1
ϕjDx(L+ λE)−1ϕj(E +B +M)−1f,

‖ux‖2
2 =

∥∥∥∥∥ N∑
j=1

(ϕj)x (L+ λE)−1ϕj(E +B +M)−1f+

+
N∑

j=1
ϕjDx(L+ λE)−1ϕj(E +B +M)−1f

∥∥∥∥∥
2

2

6

6 18
N∑

j=1

∥∥(ϕj)x (L+ λE)−1ϕj(E +B +M)−1f
∥∥2

2+

+18
N∑

j=1

∥∥ϕjDx(L+ λE)−1ϕj(E +B +M)−1f
∥∥2

2 6

6 18
N∑

j=1
c0
∥∥(L+ λE)−1

∥∥2
2→2

∥∥ϕj(E +B +M)−1f
∥∥2

2+

+18
N∑

j=1

∥∥Dx(L+ λE)−1
∥∥2

2→2

∥∥ϕj(E +B +M)−1f
∥∥2

2.

Further, by virtue of Lemma 1.2.2, we have

‖ux‖2
2 6 18

N∑
j=1

(
c0
λ

+
1

δ0

)∥∥ϕj(E +B +M)−1f
∥∥2

2 6 18c1
∥∥(E +B +M)−1f

∥∥2
2,

where c1 =
(

c0

λ + 1
δ0

)
.
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Owing to the fact that the operator (E +B +M)−1 is a bounded operator

from L2(Ω) to L2(Ω), we have

‖ux‖2
2 6 c2‖f‖2

2

or

‖ux‖2 6 c‖f‖2,

where c=18c1.

Just as before we obtain the estimate for uy

‖uy‖2 6 c‖f‖2

and the estimate for u

‖u‖2 6 c‖f‖2.

Its proof is given in Theorem 1.2.1.

Thanks to these inequalities we have

‖ux‖2 + ‖uy‖2 + ‖u‖2 6 c‖Lu‖2.

Further, reproducing the computations and argument used in proving of

Theorems 1.1.2 and 1.1.3, we obtain the proof of Theorems 1.2.2 and 1.2.3.
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1.3 Properties of the resolvent and estimates of eigenvalues

for a mixed type operator

In the rectangle

Ω = {(x, y) : −π < x < π, −1 < y < 1 }

consider the operator

Lu = −k(y)uxx − uyy + a(y)ux + c(y)u (1.3.1)

with sectionally continuous and finite coefficients, originally defined in C∞
0, π(Ω),

is the set consisting of infinitely differentiable functions, finite as functions of

the y variable and satisfying the conditions

u(−π, y) = u(π, y), ux(−π, y) = ux(π, y) (1.3.2)

u(x,−1) = u(x, 1) = 0. (1.3.3)

The operator L admits closure in the metric of L2(Ω) and the closure is also

denoted by L.

Let the coefficients of the operator satisfy the conditions

a) a(y), c(y), k(y) are piecewise continuous functions in [-1,1];

c(y) > δ > 0, a(y) does not change its sign (a(y) > 0 or a(y) 6 0);

b) the condition

lim
|t|→∞

sup
y∈[−1, 1]

t2

[K∗
t (y)]

2 < c,

is fulfilled for some m > 0, where c > 0 is the fixed number and K∗
t (y) is

a averaging function defined by the equality (introduced by M. Otelbaev (see

[52]))

K∗
t (y) = inf

d>0
{d−1; d−1 >

y+d
2∫

y−d
2

Kt(τ)dτ}
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where Kt(τ) = t2(m|a(τ)| − |k(τ)|) + c(τ) > 0, ∀τ ∈ [−1, 1], −∞ < t <∞.

The basic results of this chapter is formulated in the following theorems.

Theorem 1.3.1. Let the conditions a)–b) be fulfilled. Then the operator

L+ λE is continuously invertible for a sufficiently large λ > 0.

Theorem 1.3.2. Let the conditions a)− b) be fulfilled. Then there exists a

sequence of positive eigenvalues of the operator (1.3.1) and the estimates

c−1k2 6 λk 6 ck2, k = 1, 2, ...,

hold for them, where c is a constant.

For the proofs of these theorem we need some auxiliary lemmas.

Consider the operator defined by the equality

ltu = −u′′(y) + (t2k(y) + ita(y) + c(y))u(y)

or omitting the variable y of u we just write

ltu = −u′′ + (t2k(y) + ita(y) + c(y))u

in the set C∞
0 (−1, 1), −∞ < t <∞.

Lemma 1.3.1. Let the condition a) be fulfilled. Then the inequality

(m+1)(t2+1)||(lt+λE)u||22 >
1

2

1∫
−1

[|u′|2 + (t2(m|a(y)| − |k(y) + c(y + 1))|u|2]dy

holds for arbitrary u ∈ C∞
0 (−1, 1) and for a sufficiently large λ > 0, where

m > 0 is a constant, −∞ < t <∞.

Proof. Consider the scalar product

| < (lt + λE)u, −itu > | =
∣∣∣∣ 1∫
−1
t2a(y)|u|2dy−

it
1∫

−1
(t2k(y) + c(y) + λ|u|2dy+it

1∫
−1
u′′(y)ū(y)dy

∣∣∣∣.
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Integrating by parts the last component and using the boundedness of the

function u(y), we have

|< (lt + λE)u, − itu >| =

∣∣∣∣∣∣
1∫

−1

t2a(y)|u|2dy − it

1∫
−1

[|u′|2 + (t2k(y) + c(y) + λ|u|2]dy

∣∣∣∣∣∣.
From here

| < (lt + λE)u, − itu > | >

∣∣∣∣∣∣
1∫

−1

t2a(y)|u|2dy

∣∣∣∣∣∣.
Since a(y) does not change its sign then

| < (lt + λE)u, −itu > | >

1∫
−1

t2|a(y)||u|2dy

By virtue of the Cauchy-Bunyakovskii inequality from this it follows that

||(lt + λE)u||2 || − itu||2 >

1∫
−1

t2|a(y)| |u|2dy

On the basis of this inequality and using the Cauchy inequality with ε > 0

we find for ε=1/(t2+1)

1

2
(t2 + 1)||(lt + λE)u||22 +

1

2

1

t2 + 1
||itu||22 >

1∫
−1

t2|a(y)||u|2dy. (1.3.4)

Now we consider the scalar product

| < ltu+λu, u > | =

∣∣∣∣∣∣−
1∫

−1

u′′ ūdy +

1∫
−1

(t2k(y) + c(y + λ))|u|2dy + it

1∫
−1

a(y)|u|2dy

∣∣∣∣∣∣.
Integrating by parts the first component and using the boundedness of the

function u(y), we have

|< ltu+ λu, u >| =

∣∣∣∣∣∣
1∫

−1

[|u|2 + (t2k(y) + c(y) + λ))|u|2]dy + it

1∫
−1

a(y)|u|2dy

∣∣∣∣∣∣.
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Hence

| < ltu+ λu, u > | >
∣∣∣∣ 1∫
−1

[|u′|2 + (t2k(y) + c(y) + λ)|u|2]dy
∣∣∣∣ >

>
1∫

−1
[|u′|2 + (c(y) + λ)|u|2]dy −

1∫
−1
t2|k(y)||u|2dy

Similarly, using the Cauchy-Bunyakovsky inequality and afterwards the

Cauchy inequality with ε > 0 (ε=1/(t2+1)), we have

(t2+1)
2 ||ltu+ λu||22 + 1

2

( 1
t2+1

)
||u||22 >

>
1∫

−1
[|u′|2 + (c(y) + λ)|u|2]dy −

1∫
−1
t2|k(y)|u|2dy

Taking the condition a) into account, from the last inequality and the in-

equality (1.3.4) we finally find

(m+ 1)(t2 + 1)||(lt + λE)u||22 >

>
1

2

1∫
−1

[|u′|2 + (t2(m|a(y)| − |k(y)|) + c(y))|u|2]dy

for some m > 0 and a sufficiently large λ > 0. The lemma is proved.

Next some notations are introduced which will be useful hereinafter.

Let d(y) =[Kt*(y)]−1, then ∆d(y)(y) is the interval (y−d
2 , y+d

2), ∆(k) =

∆dk
(yk) = (yk − d

2 , yk + d
2)

From the definition of the function Kt*(y) given above it is clear that it is

positive. But, moreover, the function Kt*(y) is continuous. The proof of this

assertion can be found in the work [53]. We just note that for proving of the

continuity the Lipschitz condition is used which is sufficient for the continuity

of the function. In particular, the estimate

|[K∗
t (y0)]

−1 − [K∗
t (y)]

−1| 6 2|y0 − y|, for all y ∈ ∆d0
2
(y0)

is obtained in the work [53], where ∆d0
2

(y0) = (y0 − d0

4 , y0 + d0

4 ) ⊂ (−1, 1)
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Lemma 1.3.2. For the interval (-1, 1) there exist no more than a countable

cover {∆(k)} of disjoint intervals ∆(k) contained in the interval (-1, 1) accurate

within countable set.

The proof of this lemma will be borrowed from the work [53] and will be

cited here for completeness of the statement.

Proof. Let us take an arbitrary point y1 ∈(-1, 1) and assign ∆(1) = ∆d(y1),

d(y1)=[Kt∗(y1)]
−1. Suppose that ∆(1) does not cover (y1, b). Among the inter-

vals {∆d(y)(y) : y1 6 y < d, d(y) = [K∗
t (y)]

−1} there are both overlapping

(for example, the interval ∆(1) is itself) and disjoint intervals with the interval

∆(1). The last statement follows from the following property of K∗
t (y): from

the definition of K∗
t (y) easily follows that [K∗

t (y)]
−1 →0 as y →1, therefore

∆(1) and ∆d(y) do not intersect if y is close to 1.

Consider the function ψ(y) = y− [K∗
t (y)]

−1

2
in the segment [y1, 1]. The range

of values of this function is y1−ε 6 ψ(y) 6 1. Therefore y1+
d1

2
∈ (y1−ε, 1).

From here, by virtue of the continuity of ψ(y) there exists a y ∈ (y1, 1) such

that ψ(y) = y1 + d1

2 , i.e. the left end of ∆d(y) coincide with the right end of

∆(1). We denote by y2 the least among such (it exists), ∆(2) = ∆d(y)(y2). If

on some step (y1, y) is contained in {∆(n)}n6k (accurate within the ends of

intervals) then the construction process of intervals to the righthand side from

∆(1) is completed. Otherwise it can be proceeded indefinitely.

The constructed intervals must cover (y1, 1) since otherwise their centers

will converge to a point y < 1 in which [K∗
t (y)]

−1 = lim
k→∞

[K∗
t (yn)]

−1 = 0. It is

contrary to the continuity and the positiveness of this function in the interval

(-1, 1). In exactly the same way intervals be constructed to the left side from

∆(1). Lemma 1.3.2 is proved.

Lemma 1.3.3. Let the conditions a) and b) be fulfilled. Then there exist a
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constant c0 > 0 such that the inequality∫
∆d(y)

[|u′|2 + (t2(m|a(τ)| − |k(τ)|) + c(τ)|u|2]d(τ) ≥

≥ c−1
0

 ∫
∆d(y)

|u′|2dτ + d−2(y)

∫
∆d(y)

|u|2dτ


holds for any u ∈ C∞

0 (∆d(y)(y)), where ∆d(y)(y) ⊂ (−1, 1) and m > 0 is a

constant.

Reproducing the computations and arguments used in the work [53] we

obtain the proof of the next lemma.

Lemma 1.3.4. Let the conditions a)− b) be fulfilled. Then the estimate

||(lt + λE)u||2 > c||u||2 (1.3.5)

holds for λ > 0 for all u ∈ D(lt), where c > 0 is a constant.

Proof. Based on the Lemmas 1.3.1–1.3.3 we have

(t2 + 1)(m+ 1)||(lt + λE)u||22 >
1

2

1∫
−1

[|u′|2 + (t2(m|a(y)| − |k(y)|)+

+c(y) + λ)|u|2]dy >
1

2

∑
{k}

 ∫
∆dk

(yk)

|u′|2dy + d−2
k (yk)

∫
∆dk(yk)

|u|2dy

,
where the constant c0 from Lemma 1.3.3 without loss of generality is taken as

1 in every interval ∆d(yk).

From here

m(t2 + 1)||(lt + λE)u||22 >
1

2

∑
{k}

d−2
k (yk)

∫
∆dk

(yk)

|u|2dy >

> inf
y∈(−1, 1)

[K∗
t (y)]

2
∑
{k}

∫
∆dk

(yk)

|u|2dy = inf
y∈(−1, 1)

[K∗
t (y)]

2

1∫
−1

|u|2dy =
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= inf
y∈(−1, 1)

[K∗
t (y)]

2||u||22.

From the last inequality, taking into account the condition b), we find

(m+ 1)(t2 + 1)||(lt + λE)u||22 > t2c||u||22

From this we finally obtain the inequality (1.3.5). The lemma is proved.

Lemma 1.3.5. Let the conditions a) − b) be satisfied. Then the operator

lt+λE is continuously invertible for λ > 0.

Proof. Lemma 1.3.4 implyies that there exists a bounded inverse operator

for the operator lt+λE in the range R(lt+λE). Now if we show that the range of

the operator lt+λE is everywhere dense in L2(-1, 1) then the inverse operator

(lt+λE)−1 will be continuous in the whole of L2(-1, 1).

Assume by contradiction that the range is not dense in L2(-1, 1). Then

there exists an element υ∈ L2 (υ 6=0) such as υ⊥R(lt+λE), i.e.

< ltu+ λu, υ >= 0 for all u ∈ D(lt).

Then it is clear by the Riesz theorem that υ∈ D(lt*) and this means lt*υ∈

L2(-1,1), where lt*is a conjugate operator to lt, i.e. the equality

< (lt + λE)u, v >=< u, (l∗t + λE)υ >= 0

holds and

(l∗t + λE)υ = −υ′′ + (t2k(y)− ita(y) + c(y) + λ)υ = 0.

As a(y), c(y), k(y) are bounded functions then (t2k(y) – ita(y) + c(y)+

+λ)υ∈ L2 (-1,1). From here υ′′∈ L2(-1,1).

Now if we show that υ=0 this will be to contradiction and the lemma will

be proved.
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Indeed, consider the scalar product

〈u, l∗tυ + λυ〉 = 0.

The following computations are correct for it

0 = 〈u, l∗tυ + λυ〉 =
1∫

−1
u
[
−ῡ′′ + (t2k(y)− ita(y) + c(y) + λ)υ

]
dy =

= −
1∫

−1
uῡ′′dy +

1∫
−1

(t2k(y) + ita(y) + c(y) + λ)uῡdy = −
1∫

−1
ud(ῡ′)+

1∫
−1

(t2k(y) + ita(y) + c(y) + λ)uῡdy =

= −uῡ′|1−1 +
1∫

−1
ῡ′du+

1∫
−1

(t2k(y) + ita(y) + c(y) + λ)uῡdy =
1∫

−1
u′dῡ+

+
1∫

−1
(t2k(y) + ita(y) + c(y) + λ)uῡdy = u′ῡ|1−1 −

1∫
−1
u′′ῡ dy+

+
1∫

−1
(t2k(y) + ita(y) + c(y) + λ)uῡdy = u′ῡ|1−1 +

1∫
−1

(ltu+ λu) · ῡdy =

= 〈(lt + λE)u, υ〉+ u′ῡ|1−1 = 0.

By assumption< (lt+λE)u, υ >= 0 and it implies u′ῡ|1−1 = 0 or u′(1)ῡ(1)=u′(–

1)ῡ(–1) .

Let ῡ(1)=α, ῡ(–1)=β. Assume that α 6=0 or β 6=0 and by virtue of arbitrari-

ness of the function u we take

u(y)=(y+1)2(y–1), ( u(–1) = u(1)= 0 ).

Then

u′(y)=2(y2–1) + (y+1)2 and u′(–1)=0, u′(1)=4.

From this it follows that ῡ(–1)=ῡ(1)=0 or that is the same υ(–1)=υ(1)=0.

Now it easy to prove that the inequality

‖(l∗t + λE)υ‖2 > ‖υ‖2
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holds for the function υ∈ L2(−1, 1), υ(–1)=υ(1)=0 which follows from the

similar computations and reasoning obtained for the operator lt.

Owing to lt*υ+ λυ=0 from the last inequality it follows that υ=0. Lemma

1.3.5 is completely proved.

Consider the operator

L′u = −k(y)uxx − uyy − a(y)ux + c(y)u

originally defined in C∞
0,π(Ω).

It is easy to prove that the L′ admits closure and the closure is also denoted

by L′.

Lemma 1.3.6. Let the conditions a)− c) be fulfilled. Then

D(L) ⊆ D(L′∗),

where D(L) and D(L′∗) are the domains of definition of the operator L and

the conjugate operator to the operator L′.

Proof. According to the definition of a conjugate operator the equality

〈L′u, v〉 = 〈u, L′ ∗v〉

holds for any u(x, y) ∈ D(L′), v(x, y) ∈ D(L′ ∗). If we prove that the last

equality also holds for any v ∈ D(L) then the assertion of the lemma will be

proved.

Let un(x, y) ∈ C∞
0,π(Ω) and un → u ∈ D(L′), vn(x, y) ∈ C∞

0,π(Ω) and

vn → v ∈ D(L). Then the following equality holds for any un, vn ∈ C∞
0,π(Ω)

〈L′un, vn〉 = 〈un, Lvn〉. (1.3.7)

Let us prove this equality. We have for any u, v ∈ C∞
0,π(Ω) (index n for un,
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vnis omitted here in order to avoid complications in the notations):

〈L′u, v〉 =
∫
Ω

(−k(y)uxx − uyy − a(y)ux + c(y)u)v̄dxdy =
∫
Ω
−k(y)uxxv̄dxdy−

−
∫
Ω
uyyv̄dxdy −

∫
Ω
a(y)uxv̄dxdy +

∫
Ω
c(y)uv̄dxdy = −

1∫
−1
k(y)

[
π∫

−π

v̄dux

]
dy−

−
π∫

−π

dx
1∫

−1
v̄duy −

1∫
−1
a(y)

[
π∫

−π

v̄du

]
dy +

∫
Ω
c(y)uv̄dxdy = −

1∫
−1
k(y)

[
uxv̄|π−π−

−
π∫

−π

uxdv̄

]
dy −

π∫
−π

[
uyv̄|1−1 −

1∫
−1
uydv̄

]
dx−

1∫
−1
a(y)

[
uv̄|π−π −

π∫
−π

udv̄

]
dy+

+
∫
Ω
c(y)uv̄dxdy.

By virtue of the boundary conditions (1.3.2)-(1.3.3) we have for functions

from C∞
0,π(Ω)

〈L′u, v〉 = −
1∫

−1
k(y)

[
π∫

−π

v̄xdu

]
dy−

π∫
−π

[ 1∫
−1
v̄ydu

]
dx−

1∫
−1
a(y)

[
π∫

−π

v̄xudx

]
dy+

+
∫
Ω
c(y)uv̄dxdy = −

1∫
−1
k(y)

[
uv̄x|π−π −

π∫
−π

uv̄xxdx

]
dy−

π∫
−π

[
uv̄y|1−1 −

1∫
−1
uv̄yydy

]
dx

−
1∫

−1

π∫
−π

a(y)uv̄xdxdy +
∫
Ω
c(y)uv̄dxdy.

And owing to the boundary conditions (1.3.2)-(1.3.3) we finally have

〈L′u, v〉 =

∫
Ω

u(−k(y)v̄xx − v̄yy + a(y)v̄x + c(y)v̄)dxdy = 〈u, Lv〉.

It proves the inequality (1.3.7).

Now proceeding to the limit in the equality (1.3.7) we have

〈L′u, v〉 = 〈u, Lv〉.

The lemma is proved.

Proof of Theorem 1.3.1

Let u(x, y) ∈ C∞
0,π(Ω) and Lu=f . Then the representation

(L+ λE)uk = (L+ λE)
k∑

n=−k

un(y)e
inx =

k∑
n=−k

(ln + λE)une
inx
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holds for the operator L+λE, where uk =
k∑

n=−k

un(y)e
inx and uk(x, y) →

u(x, y), as k →∞.

By virtue of Lemma 1.3.5 we have for λ > 0 (replace the index t by n in

the operator lt)

||(L+ λE)uk||22 =
k∑

n=−k

||(ln + λE)un||22 >
k∑

n=−k

c2||un||22 = c2||uk||22.

Proceeding to the limit in this inequality we finally have

‖(L+ λE)u‖2 > c‖u‖2

and make sure that the last estimate holds for any u(x, y) ∈ C∞
0,π(Ω).

Since the operator allows the closure then by virtue of the continuity of the

norm the last estimate holds for every u(x, y) ∈ D(L).

Now we show that the kernel of the operator L contains only the null ele-

ment, i.e. N(L)=Ker(L)={0}.

Reproducing the computations and arguments used for proving of invertibil-

ity of the operator ln+λE, we obtain that the operator l′n+λE has a continuous

inverse operator (l′n + λE)−1, where

l′n + λE = −u′′ + (n2k(y)− ina(y) + c(y) + λ)u.

It is known that the equality

f(x, y) =
∞∑

n=−∞
fn(y)e

inx

holds for any f ∈ L2(Ω). It is easy to show from here that

uk(x, y) =
k∑

n=−k

(l′n + λE)−1fn(y)e
inx

is a solution of the problem

(L′ + λE)u = fk, (1.3.1′)
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u|−π = u|π, ux|−π = ux|π, (1.3.2′)

u(x,−1) = u(x, 1) = 0, (1.3.3′)

where

fk(x, y) =
k∑

n=−k

fn(y)e
inx.

By virtue of Lemma 1.3.5 we have for λ > 0

‖fk(x, y)‖2
2 = ‖(L+ λE)uk‖2

2 =
k∑

n=−k

‖(l′ + λE)un‖2
2 >

> c2
k∑

n=−k

‖un‖2
2 = c2‖uk‖2

2

or

‖fk(x, y)‖2 > c‖uk‖2. (1.3.8)

From this and from fk(x, y) → f(x, y) it follows that the sequence {uk(x, y)}∞k=1

is fundamental.

By virtue of the completeness of the space L2(Ω) we have

uk(x, y) → u(x, y) ∈ L2. (1.3.9)

Therefore, there exists a strong solution of the problem (1.3.1′) − (1.3.3′)

for every f(x, y) ∈ L2.

One can immediately prove that the definition of a strong solution is equiv-

alent to the closure of the operator L′ + λE originally defined in
o
W

2

2,π(Ω).

From aforesaid it follows that the range set of the operator L′+λE coincides

with the entire L2(Ω), i.e.

R(L′ + λE) = L2(Ω). (1.3.10)

From the general theory of linear operators it is well known that

L2(Ω) = R(L′ + λE)⊥N((L′ + λE)∗)
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From this and from (1.3.10) we find that N((L′ + λE )∗) = {0}.

Consequently, using Lemma 1.3.6, we have

N(L+ λE) = Ker(L+ λE) ⊆ N((L′ + λE)∗) = Ker((L′ + λE)∗) = {0}

i.e. N(L+λE)=Ker(L+λE)={0}.

Reproducing the computations and arguments used for proving of the in-

equality (1.3.8) and using the completeness of the space L2(Ω), we obtain that

there exists the unique strong solution of the problem (1.3.1)-(1.3.3) for any f

such that

c‖u‖2 6 ‖f‖2

and the representation

u = (L+ λE)−1f =
∞∑

n=−∞
(ln + λE)−1fn e

inx

holds for it, where c > 0 is a constant. Here we use the fact that Ker(L+λE)={0}.

The theorem is completely proved.

Proof of Theorem 1.3.2. We will find the eigenfunctions of the problems

(1.3.1)-(1.3.3) in the form

u(x, y) =
∞∑

n=−∞
un(y)e

inx.

Then we have the Sturm-Liouville spectral problem for the functions u(y)

−u′′(y) + (n2k(y) + ina(y) + c(y))u = λu, (1.3.11)

u(−1) = u(1) = 0. (1.3.12)

When the condition a) is fulfilled and in case n=0 the problem (1.3.11)-

(1.3.12) will take the form

l0u = −u ′′(y) + c(y)u = λu,
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u(−1) = u(1) = 0.

It easy to prove that the domain of the operator l0 coincide with the space

W 2
2 (−1, 1) owing to the boundedness of c(y).

Let M0 denote the unit disk in W 2
2 (−1, 1). The two-sided estimates

c−1λ−
1
2 6 N0(λ) 6 cλ−

1
2

holds for the k−widths of the set M0, where N0(λ) is a quantity of the

k−widths
0
dk of the set M0 greater than λ > 0 and c > 0 is a constant.

From the last inequality and from the properties of N0(λ) we have

c−1 1

k2 6
0
dk 6 c

1

k2

Moreover, taking the self-adjointness of the operator l0 and the correctness

of the equality λk+1(l
−1
0 ) =

0
dk into account, we finally have for the eigenvalues

of the operator l0

c−1k2 6 λk(l0) 6 ck2 , k = 1, 2, ....

The theorem is proved.
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