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Abstract

The continuously increasing demand on safe and cost-efficient tunnel constructions world-

wide has led to the development of seismic systems as a predictive tool ahead of tunneling.

These seismic systems are either specialized for hard rock or soft rock excavations. In this

study, the hypothesis is tested, if artificial intelligence approaches are capable to deduce

automatically and in real time critical rock parameters out of seismic observations. The

hypothesis is tested in hard rock environments, using combined geological and seismic

observations of the Faido Adit (Gotthard Base Tunnel - Switzerland) and the Glendoe

Tunnel (Hydro Electric Power Plant near Loch Ness - Scotland UK).

The evaluation of geotechnical rock-mass behavior in hard rock is commonly based on a

rock-mass classification. Especially, a fast assessment of the hard rocks´ bearing capacity

is mandatory to quickly ascertain the required structural tunnel support. Therefore, a

user-oriented geotechnical interpretation of seismic results in real time is tested. Within

this study, a support vector machine (SVM) is applied to the discovery and automated

prediction of relationships between seismic P- and S-wave velocities with heuristic rock-

mass classification systems, such as the widely used Rock Quality Designation (RQD) index

or the Rock Mass Rating (RMR) factor. The data available for this task were acquired

during two field surveys in hard rock using the Integrated Seismic Imaging System ISIS and

geotechnical mapping of the rock mass. The first survey was carried out in the gneisses of

the Faido Adit, which is part of the Gotthard Base Tunnel in Switzerland. Seismic velocity

data from a 2-D tomography with a cells size of 0.5 m in direction of the excavation along

a 448 m long seismic profile have been used. The second seismic survey took place along a

300-m long profile in quartz schists and quartz-mica schists in the headrace tunnel of the

Glendoe Hydro Electric Power Plant in the Scottish Highlands. The Glendoe Tunnel was

excavated with a tunnel-boring machine (TBM), such that adaptations had to be made to

the seismic setup of the TBM-integrated seismic measurements. These adaptations let to a

1-D tomography with a cell size in tunnel direction of 4 m and therefore, to a considerably

reduced resolution in the available seismic velocity data, compared to the Faido Adit data

set. Thus, the SVM approach was applied separately to the two data sets. As there may

exist some direct or indirect link between rock-mass classes and tunnel-driving parameters,

such as the thrust force, the penetration rate, the cutter-head torque and the cutter-head

speed, these properties were included in the data base of the Glendoe Tunnel survey. The

tunnel-driving parameters exhibit a much higher spatial resolution than the seismic data,

such that their information content was first explored by training and testing a SVM solely
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on this data with a resolution of 1 m. In both data sets, 3 RQD classes and 2 RMR classes

were distinguished. Two fundamentally different results are achieved during rock-mass

classification based on the data sets from the Faido Adit and the Glendoe Tunnel:

1. Based on high-resolution seismic data from the Faido Adit, the classification of RQD

or RMR classes proofed feasible.

2. Based on either tunnel-driving data, or else tunnel-driving and seismic data combined,

from the Glendoe Tunnel with lower resolution, the RQD and RMR classification

did not provide satisfying results.

The variability in the rock-mass quality, expressed either as RQD or RMR, is extremely low

for the Faido Adit, leading to strong proximity of most data samples to the class boundaries.

The detection of patterns that link the rock-mass classes to the seismic velocities in the

Faido Adit data set is therefore remarkable, especially for the small number of training

samples available and despite a strong tendency to overfit.

For the Glendoe Tunnel, the training and testing of the SVM reveals that the classes

were not or poorly classified by the automated classification approach. The models based

exclusively on tunnel-driving parameters show severe cases of overfitting and extremely

low generalization ability. These results do not rule out that higher order correlations

exist between tunnel-driving parameters and rock-mass classes in general, but no evidence

on this has been discovered in this study.

The additional use of seismic body-wave velocities in the Glendoe Tunnel has been

inevitably accompanied by a significant reduction of the data set. Adding the seismic

velocities to the data base did not influence the classification result positively. This let to

the assumption that the data set is by far too small for a proper learning process, such

that no rules were learned from the data set and the prediction failed in consequence.

The quality and spatial resolution of the seismic observations is therefore crucial for

the reliability of the prediction of rock-mass classes. The quality and cell size of the

underlying seismic tomography strongly depends on the seismic layout during the data

acquisition, such that the careful planning of the seismic survey can be determined as a

key requirement for the success of a fast and automated rock-mass classification and the

detection of hazardous zones in the rock mass.

Nevertheless, even with the limited size of the available data sets, it was possible to show

that SVMs are a powerful tool in real time expert systems for geotechnical applications.

It has been proven within this study that it is possible to predict rock-mass classes out of

high resolution seismic data with high accuracy.



Zusammenfassung

Die Entwicklung speziell auf den Tunnelbau abgestimmter seismischer Systeme zielt darauf

ab, den stetig wachsenden Ansprüchen an die Sicherheit im Tunnelbau, bei gleichzeitiger

Kostenreduktion, gerecht zu werden. Diese seismischen Methoden sind auf die speziellen

Anforderungen im Hart- oder Lockergestein angepasst. In der vorliegenden Arbeit wird die

Hypothese getestet, dass Methoden der Künstlichen Intelligenz genutzt werden können,

um automatisiert und zeitnah kritische Gesteinsparameter aus seismischen Beobachtungen

abzuleiten. Zur Überprüfung dieser Hypothese wurden seismische und geologische Daten

aus zwei Feldeinsätzen in Hartgestein verwendet, und zwar aus dem Faido Zugangsstollen

(Gotthard Basis Tunnel - Schweiz) und dem Glendoe Tunnel (Wasserkraftwerk am Loch

Ness - Schottland).

Besonders im Hartgestein erfolgt eine zeitnahe Einteilung der geotechnisch relevanten

Eigenschaften meist über Systeme zur Gesteinsklassifikation. Die geotechnische Klassifika-

tion von Gesteinen dient vor allem der Abschätzung der Standfestigkeit des Gebirges vor

Ort, als wichtiger Voraussetzung zur Ermittlung des nötigen Ausbaus und damit für die

Stabilität und Sicherheit des Tunnels. Da eine umfassende, anwendungsorientierte und

zeitnahe, geotechnische Interpretation der im Hartgestein gewonnenen seismischen Daten

bisher nicht gewährleistet ist, wurde in der vorliegenden Arbeit eine auf seismischen Daten

basierende Routine zur automatischen und zeitnahen geotechnischen Gesteinsklassifikation

mit Support Vektor Maschinen (SVMs) entwickelt. Der Ansatz wurde auf zwei verbreitete

Systeme zur Gesteinsklassifikation angewendet: den Rock Quality Designation (RQD)

Index und den Rock Mass Rating (RMR) Faktor. Datensätze aus zwei Feldeinsätzen im

Hartgestein, die mit dem Integrated Seismic Imaging System ISIS durchgeführt wurden,

standen hierfür zur Verfügung. Der erste Feldeinsatz erfolgte über eine Profillänge von

448 m in den Gneisen des, im Sprengvortrieb errichteten, Faido Zugangsstollens zum

Gotthard Basis Tunnel (südliche Schweiz). Die seismischen Geschwindigkeiten entlang des

Profils im Faido Zugangsstollens basieren auf einer 2D-Tomographie mit einer Zellgrö-

ße entlang der Tunnelachse von 0.5 m. Der zweite Feldeinsatz wurde in Quarzschiefern

und Quarzglimmerschiefern entlang eines 300 m langen Profils im Triebwassertunnel des

Wasserkraftwerkes Glendoe (schottisches Hochland) durchgeführt. Der Glendoe Tunnel

wurde maschinell vorgetriebenen, wodurch entsprechende Anpassungen in der Geometrie

der seismischen Datenakquisition nötig wurden. Diese Anpassungen führten zu einer ver-

ringerten Qualität und Auflösung der seismischen Daten, woraus eine 1D-Tomographie

mit 4 m Zellgröße entlang der Tunnelachse berechnet wurde. Die Datensätze des Faido
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Stollens und des Glendoe Tunnels wurden daher getrennt evaluiert.

Es wurde ein Zusammenhang zwischen Vortriebsparametern der Tunnelbohrmaschine, wie

Vortriebspressenkraft, Penetration sowie Drehmoment und Drehzahl des Schneidrads, mit

dem RQD und RMR angenommen. Die Vortriebsparameter wurden daher in den Ansatz

zur automatischen Vorhersage von Gesteinsklassen integriert. Da die Vortriebsparameter

eine sehr viel höhere Auflösung als die seismischen Daten besitzen, wurden diese über 1 m

große Intervalle gemittelt und zuerst separat betrachtet. In beiden Feldstudien wurden drei

RQD-Klassen, sowie zwei RMR-Klassen unterschieden. Zwei grundsätzlich verschiedene

Ergebnisse wurden für die Gesteinsklassifikationen auf Grundlage der Daten aus dem

Faido Zugangstollen oder dem Glendoe Tunnel erreicht:

1. Basierend auf den höher aufgelösten seismischen Daten des Faido Zugangsstollens

konnte eine erfolgreiche Gesteinsklassifikation sowohl für die RQD als auch für die

RMR-Klassen vorgenommen werden.

2. Basierend auf den niedriger aufgelösten Daten des Glendoe Tunnels konnten keine

zufriedenstellenden Klassifikationsergebnisse erreicht werden. Dies gilt sowohl für

eine getrennte Betrachtung von Vortriebsparametern mit einer höheren Auflösung

von 1 m, als auch für den kombinierten Datensatz aus seismischen Daten und

Vortriebsparametern mit einer Auflösung von 4 m.

Die Variabilität des RQD und RMR im Datensatz des Faido Stollens ist gering. Die erfolg-

reiche Klassifikation ist daher, insbesondere trotz der geringen Anzahl von zur Verfügung

stehenden Datenpunkten und einer deutlichen Tendenz des SVM-Models hin zu Überan-

passung an die Trainingsdaten, bemerkenswert. Eine Analyse der Ergebnisse zum Glendoe

Tunnel zeigte, dass die Klassen nicht oder sehr schlecht klassifiziert wurden. Die SVM-

Modelle der RQD und RMR Klassifikation, die ausschließlich auf Vortriebsparametern

basieren, zeigten extreme Anpassung an die Trainingsdaten und geringe Generalisations-

fähigkeit. Diese Ergebnisse schließen zwar nicht aus, dass generell ein Zusammenhang

zwischen Vortriebsparametern und Gesteinsklassen bestehen kann, in dieser Arbeit konnte

dies jedoch nicht verifiziert werden. Der Einbezug der seismischen Geschwindigkeiten, mit

einhergehender Reduktion der Datensatzgröße, ergab keine positive Beeinflussung des

Ergebnisses. Dies lässt den Schluss zu, dass der Datensatz eine zu geringe Anzahl und

Qualität an Datenpunkten aufweist, so dass keine Regeln für die Klassifikation aus den

Daten abgeleitet werden konnten und eine Vorhersage in der Konsequenz nicht möglich ist.

Die Qualität und räumliche Auflösung der Tomographie ist daher entscheidend für die

Aussagekraft einer Vorhersage von Gesteinsklassen. Dies hängt stark von der Anordnung

der Quellen und Empfänger während der seismischen Datenakquisition ab. Eine umsichtige

Planung der Datenakquisition ist daher unerlässliche wichtige Voraussetzung für eine
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erfolgreiche automatisierte Gesteinsklassifikation.

Trotz einer stark limitierten Größe der zur Verfügung stehenden Datensätze konnte gezeigt

werden, dass SVMs als mächtiges Werkzeug in einem Expertensystem für geotechnische

Fragestellungen genutzt werden können. Es konnte in dieser Arbeit gezeigt werden, dass

eine genaue Vorhersage von Gesteinsklassen, basierend auf hochauflösenden seismischen

Messungen, möglich ist.
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1 Introduction

The rapid development of infrastructure in both industrialized and developing countries

has led to an ever-increasing amount of tunnel excavation in host rocks considered to be

geotechnically difficult. These rocks have, for example, strong variations in rock-mass

characteristics, or structural features such as faults and fracturing. Detailed knowledge

of such obstacles enables engineers to make adjustments to the excavation procedure

and the tunnel design as the excavation proceeds, thereby making optimal use of time

and resources. The cost-efficiency and, most importantly, the safety of tunneling, is thus

strongly influenced by an accurate knowledge of the host rocks’ geotechnical behavior.

Traditionally, the determination of the geotechnical rock-mass characteristics along the

projected roadway has been done via exploratory wells or surface investigations, such

as geological mapping and geophysical profiling. These approaches may produce either

high-resolution data sets with a restricted area of validity (exploratory wells), or low-

resolution coverage of the entire project (e.g., seismic profiling). Consequently, a detailed

knowledge of the geological variations directly along the tunnel axis is often lacking. As a

result, increasing importance is attached to research into high-resolution, non-destructive

subsurface geophysical methods, especially seismic exploration (among others, Kneib

et al., 2000; Brückel et al., 2008; Bruns et al., 2008; Dickmann, 2008; Lüth et al., 2008a).

These methods are usually adapted to the needs of specific excavation methods, as the

requirements for tunnel excavation and structural rock support in hard rock and soft

rock differ strongly. In consequence, the seismic-while-drilling data needs to be examined

with respect to its informative value regarding the rock-mass stability (among others,

Otto et al., 2002; Ashida, 2001), in order to become of importance for on-site engineering

decision-making. Especially for tunneling in hard rock, where the rock-mass stability is

particularly dependent on the properties of the discontinuity network, a technological gap

that needs to be bridged exists between seismic data acquisition and interpretation.

The Integrated Seismic Imaging System (ISIS) (Borm et al., 2003; Bohlen et al., 2007) has

been developed for hard rock excavations using different excavation methods, such as drill

and blast or tunnel-boring machine excavation. The seismic images obtained with ISIS

reflect changes in rock mass up to 200 m in front of the tunnel face. For the development

of an interpretation system, seismic data acquired with ISIS at two different test sites in

hard rock is available for this study: The Faido Adit is part of the Gotthard Base Tunnel

in Switzerland and was excavated by drill and blast, while the headrace tunnel of the

1
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Glendoe Hydro Electric Power Plant in the British Caledonides was excavated using a

tunnel-boring machine.

Depending on the mode of excavation and the rock-mass behavior, the excavation may

proceed at an advance speed of 40 to 60 m per day. The high resolution seismic data

must therefore be processed and interpreted in the short time interval of a few hours or

days to be relevant for the planning of the excavation. Moreover, the engineers on-site

are usually not trained to interpret the seismic data. Thus, the interpretation should be

done by an automated expert system to facilitate efficient engineering decision making.

To setup such an interpretation system, a self-learning algorithm has been applied to the

available seismic data from the Faido Adit and the Glendoe Tunnel.

For the evaluation of the seismic data in regard to the geotechnical rock-mass behavior,

two widely used rock-mass classification systems, the Rock Mass Rating and the Rock-

Quality Designation, are used. These rock-mass classification systems have been developed

heuristically during practical geotechnical applications over the past few decades for a

comprehensive evaluation of the rock-mass behavior.

During tunnel excavation by tunnel-boring machines, as in the Glendoe Tunnel, a wide

range of tunnel-driving parameters is automatically acquired, such as the thrust force, the

penetration rate, the cutter-head torque and the cutter-head speed. Unlike the Glendoe

Tunnel, information on the host rock is often not available from direct mapping at most

tunnel construction sites, where tunnel-boring machines (TBM) are used. This results from

the increasing use of segmental lining and closed-mode excavation. At these construction

sites, the information about changes in rock conditions is usually acquired by estimating

changes in tunnel-driving parameters (Exadaktylos et al., 2008; Fukui and Okubo, 2006;

Kim et al., 2008; Thuro and Spaun, 1997; Mito et al., 2003; Poisel et al., 1999b; Sapigni

et al., 2002; Schlicke et al., 2005; Thuro and Brodbeck, 1998; Müller, 2007), though the

correlation between geological and tunnel-driving parameters is a field of ongoing research.

To account for this development, and because a direct comparision between geotechnically

important geological features and tunnel-driving data is possible for the Glendoe Tunnel,

tunnel-driving parameters are incorporated in the automated rock-mass classification of

this data set.

1.1 Motivation

The classification of rocks in geoengineering applications is the basis for safe underground

construction work (e.g., tunnel construction) because the reinforcement is designed accord-

ing to the geotechnical specifics of the rock mass. Seismic properties and tunnel-driving
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parameters reveal information on the quality of a rock mass in terms of a particular

engineering purpose, such as tunnel construction. The dependencies of seismic or tunnel-

driving properties on single rock-mass properties and also on the engineering rock-mass

quality has been investigated in many research projects; however, in real-world applications

there is a high expected noise level and the dependencies may superimpose on each other

in unknown wayss. Therefore, stochastic ascertainability becomes difficult for the available

parameter sets and uncertainty occurs in the parameter interaction patterns. This dynamic

system of inter-dependencies among different rock-mass properties, seismic velocities and

tunnel-driving data may be best captured and interpreted using a computer based self-

learning algorithm. One of the most promising families of algorithms for the application to

real data sets is that of the support vector machines (Vapnik, 1998), which present a series

of useful features for pattern analysis in data sets. They have been successfully applied

to bioinformatics (Mohr et al., 2008), text processing (Joachims, 1998), image processing

for rock-fracture tracing (Wang and Liao, 2007), time series analysis (Rüping, 2001) and

environmental applications (Kanevski et al., 2009; Welle, 2009) or remote sensing (Ge

et al., 2008), and geohazard analysis such as debris flows (Lifeng and Youshu, 2006).

Nevertheless, the use of SVMs in geosciences is still minor.

1.2 Aim

The study presented here focuses on the development of an automated expert system for a

systematic and efficient rock-mass classification that is able to deliver results synchronously

to the excavation process and leads to enhanced safety and more cost-efficiency during

hard rock tunnel excavations. To this end, a SVM was constructed and applied to all

available data, which include either seismic data from the Faido Adit survey or seismic

and tunnel-driving data from the Glendoe Tunnel survey. This work forms the basis for

an expert system that can be integrated into a seismic-while-drilling system (e.g., ISIS) to

realize a comprehensive method of seismic prediction.
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1.3 Selection of a Self-Learning Algorithm

The development of a rock-mass classification system that incorporates seismic and tunnel-

driving data to determine the rock-mass quality along a tunnel, synchronous with the

excavation process, requires a high level of automation, both for data processing and

interpretation. The latter part, the interpretation, can be carried out by computer-based

self-learning algorithms. In this chapter the basic principles and ideas regarding different

self-learning algorithms are pointed out.

Self-learning algorithms discover underlying patterns in data sets. For example, a rock,

such as a granite, consists of defined percentages of quartz, feldspar and mica; however,

granites from various outcrops can be quite different. The definition of a granite and the

separation from other rock types is possible because a rule base has been established by

mineralogists, who defined specific rock types based on their mineralogical content. These

rules have been deduced from observations of mineralogical rock characteristics at many

outcrops over many years. This process is simply the discovery of patterns that exist in a

huge set of data. The recognition of certain patterns or principles that relate to the basic

similarities of a group or class is called knowledge discovery (Fayyad et al., 1996). The

process of recognizing underlying unknown probability distributions (patterns) in data by

use of computer-based algorithms, is called pattern recognition. Only when the pattern

that defines a group is known, the prediction of unknown cases become possible (Bishop,

2006; Nauck et al., 1994; Berthold and Hand, 2007). This is exactly the same process as

that used by a geologist to recognize and identify a granite at a new outcrop where the

geologist uses the underlying rules of mineralogically based rock identification. In the case

of computer-based pattern recognition algorithms, a model is created where the rules are

stored, after generalization of the rules is completed. Applying this model afterwards to

new and unknown data sets allows the prediction of rock types, or in case of this study,

rock-mass classes.

Data mining is the part of the knowledge discovery process where modeling, analyzing and

discovery methods are applied. Because the user needs some theoretical considerations in

order to decide on the best method to be used for a specific task and the planning and

development of the consecutive processing steps the attribute ”intelligent” often precedes

the term data mining. Intelligent data mining is also closely related to machine learning.

The two are generic terms for the development of algorithms for pattern recognition

(Bishop, 2006); however, machine learning differs from data mining as machine learning

is not necessarily concerned with finding new patterns in data. The terms are often

used synonymously in literature though, as many of the algorithms can be used for both

purposes.
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The field of intelligent data mining includes methods like artificial neural networks (ANNs),

support vector machines (SVMs), decision or regression tree analysis, Bayes-classificators,

probabilistic networks, neuro-fuzzy-systems, κ-nearest neighbor, hierarchical or probabilis-

tic clustering and fuzzy logic, as well as classical statistics (Fayyad et al., 1996; Berthold

and Hand, 2007). Several of these approaches were examined during this study to deter-

mine the algorithm that was most suitable for the given task of rock-mass classification

from seismic wave velocities and tunnel-driving data. Below only SVMs, ANNs, and

neuro-fuzzy systems are discussed; going into detail of all the aforementioned methods is

beyond the scope of this work.

There is a large variety of applications of ANN and neuro-fuzzy system to geotechnical tasks

(e.g., Alimoradi et al., 2008; Aminzadeh and de Groot, 2006; Cherkassky, 2006; Gokceoglu

et al., 2004; Shirasagi et al., 2001; Shahin et al., 2009) and, more specifically, geoscientific

questions in tunneling, such as the prediction of soil settlements (Shi et al., 1998; Nellessen,

2005), evaluation and interpretation of displacement monitoring (Großauer, 2009), tunnel-

boring machine performance (Bernardos and Kaliampakos, 2004) or geological/geotechnical

risks determined from tunnel-driving data (Grima, 2000; Mitterlechner et al., 2007; Zettler

et al., 1996) in comparison to the range in applications of SVMs that are discussed in

Section 1.8.

The rock mass and its interaction with seismic and tunnel-driving data is highly complex

(Sec. 1.6.1). It is obvious that, to capture such a complex system fully, a large data set is

needed; however, the data sets available from this study are relatively small, such that it

was necessary to select and use an algorithm for pattern-recognition that can best deal

with small sample densities in the presented rock-mass classes. SVMs give better results

for small training data sets, even though the performance of an ANN may approximate

the SVM results, when the size of the data set increases (Vanajakshi and Rilett, 2004).

Training data denominated the data samples that are presented to the algorithm for

”training” or ”learning”, that is the discovery of unknown underlying patterns in data.

After training and storage of the rules, the created model is usually ”tested” on a test

data set to validate the success of rule generalization. The test data set excludes data

samples that have been used during training.

It is of major importance for the predictive performance of a self-learning algorithm that it

generalizes well. If the used algorithm fits the training data strongly, a so-called over-fitting

takes place. Conversely, if the algorithm creates a model too simple for the data, under-

fitting occurs (Bishop, 2006). SVMs are very resistant to over-fitting, especially in regimes

where other methods are affected by the ”curse of dimensionality” (Schölkopf, 1997). The

latter is the exponential increase in volume associated with adding extra dimensions to a

(mathematical) space. Without going into too much detail, the generalization corresponds
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to the optimum balance between over- and under-fitting of the model to the training data;

however, local minima in the error function of the model occur and the generalization error

is subsequently not a simple function. While the global minimum is the smallest value of

the error function for any weight vector, other (local) minima correspond to higher values

of the error function. The main advantage of SVMs over ANNs is that the learning process

always converges to the global minimum, while the learning process of ANNs often stops

in a local minimum. Even more disadvantageous for the usage of ANNs is that it is not

possible to reconstruct if the learning process stops at some local minimum or else if the

data set does not contain enough information to generalize underlying rules in the data

sufficiently. The learning process of ANNs is often referred to as ”black box” behavior

because the intermediate steps that lead to the output of ANNs are not fully traceable by

the user; however, there are approaches, especially in neuro-fuzzy modeling, that overcome

this restriction (Nauck et al., 1994; Nauck and Kruse, 1997). Depending on the type of

neuro-fuzzy system used, the comprehensibility of the result can be enhanced and the

strongest draw-backs of fuzzy systems can be solved, which is that a comprehensive rule

base needs to be defined by the user before application. Such a rule base is large and

unmanageable for a highly complex problem setting, as is addressed in this study. Fuzzy

systems have the advantage that they are able to deal well with neighboring classes, such

as the neighboring rock-mass classes that define a rock mass to be either ”excellent” or

”very good” and have been applied in various cases in geoengineering (Fairhurst and Lin,

1985; Demicco and Klir, 2004; Großauer, 2009; Klose, 2002; Zettler et al., 1996; Poisel

et al., 1999a).

Another disadvantage of ANNs or neuro-fuzzy system is the lack of a theoretical background

to determine the optimal network size and structure. The ANN structure has to be

determined by trial and error so that the performance of an ANN or neuro-fuzzy system

also strongly depends on the prior knowledge of the user regarding the ANN behavior.

In comparison to the user-defined and often complex structures of ANNs or neuro-fuzzy

systems, SVMs constitute a straight forward and mathematically fully described approach

(cf. Sec. 1.8).

It is of great importance that a model once created can be updated during later applications,

when new data has been collected and can be presented to the algorithm. For an ANN,

the optimal network structure can change if the model is updated using new data sets. In

this case a specialist is needed to determine the best network structure so that the ANN

performance can reach its optimum. The work flow and model construction process for

the SVM stays the same, no matter how many data sets are presented. Additionally, most

data points from the first learning process can be disregarded for SVM training, as only

those data points that define the class boundaries need to be stored. ANNs, on the other
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hand, require all the presented data points every time they are trained, which may slow

down the process over time.

SVMs were selected and used for the task of rock-mass classification in this study because

of:

1. their straight forward nature,

2. the applicability to small data sets,

3. the security at which SVMs converge to the global optimum,

4. the robustness against overfitting and

5. the advantages during updating.
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1.4 Geological Rock-Mass Properties

In order to apply the notion of knowledge discovery to the task of geotechnically describing

the rock mass with seismic and tunnel-boring machine (TBM) parameters, it must first be

determined which kind of output from the automated rock-mass classification system will

shed most light on the rock-mass behavior. As single parameters, like, e.g., the uniaxial

compressive strength σc, do not describe the rock-mass behavior fully, a variety of rock-

mass classification systems has been developed heuristically during practical geotechnical

applications in the past few decades. Singh and Goel (1999) give an overview on the

most important classification systems that differ in the number and kind of rock-mass

characteristics they incorporate. The classification systems selected for this study are

the Rock Mass Rating (RMR) system and the Rock Quality Designation (RQD) index

because for these classification schemes all necessary input parameters where continuously

acquired at both test sites and both, RMR and RQD, belong to the best known and most

widely applied rock-mass classification systems worldwide. By using the RMR and the

RQD, this study also compares the automated classification results of the relatively simple

RQD that is closely related to the frequency of discontinuities, and the more sophisticated

RMR that incorporates a larger number of parameters.

In engineering geology, the rock mass must be visualized as an assemblage of intact rock

blocks separated by different types and sets of discontinuities. Thus, the characteristics

of the intact rock mass as well as the discontinuities must be considered. The term

discontinuities is a generic term for all kinds of planar structures inside a rock mass. In

this work, the subordinate term ”joint” describes a discontinuity in the rock that is either

of synsedimentary or tectonic origin but did not undergo lateral or vertical movement.

Often, joints occur in so-called joint sets that are composed of several joints of the same

spatial orientation and similar spacing. The discontinuities where lateral or vertical

movement has taken place are denominated as faults. Other discontinuities are bedding

planes in sediments, or schistosity planes in metamorphic rocks that develop because of

parallel alignment of slaty minerals, e.g., mica. In literature, the term fractures is often

used synonymously for either discontinuities or joints. Here, fracturing will refer to only

anthropogenically induced rock breakage that may occur during laboratory testing or

(tunnel) excavation.

For engineering purposes, the rock mass can never be fully described by only one parameter.

It should be noted that the importance of the properties of the intact rock mass that

determine rock-mass stability will generally be overshadowed by the discontinuity properties,

though in rocks with wide discontinuity spacing, or in weak and altered rocks, the influence

of the intact rock mass prevails (Bieniawski, 1989). The discontinuity network controls
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(McCann et al., 1990):

1. the rock-mass deformability, strength and permeability, depending on the spacing of

the discontinuities and their aperture and the degree of interconnection, etc.

2. the rock-mass anisotropy, depending on the geometry of the discontinuity sets.

Hence, all rock-mass properties are highly stress dependent because with higher stresses the

discontinuities become narrower or closed and the influence of the discontinuity network

on, e.g., the water content or the seismic velocities, decreases (cf. Sec. 1.6.1). A thorough

discussion of field and laboratory test methods for the description of the intact rock mass

and the discontinuity network can be found in the ISRM suggested methods (Ulusay and

Hudson, 2007).

1.4.1 Calculation of RMR and RQD

The present study deals with data sets obtained from two different test sites in hard rock

environments. For the classification of the single parameters, the Rock Mass Rating (RMR)

system was used. The RMR, based on field studies, was first introduced by Bieniawski

(1973) and has been enhanced several times since, most recently by Bieniawski (1989).

Though this study uses the RMR classification system, other rock-mass classification

systems like the Q-factor (Barton et al., 1974) could be integrated into the system as well.

The RMR is calculated from the following geological/geotechnical parameters according

to Bieniawski (1989):

• Uniaxial compressive strength σc ,

• Discontinuity spacing Ds,

• Rock Quality Designation index (RQD),

• Condition of discontinuities Cd including:

– roughness r,

– aperture e,

– infilling f ,

– weathering W ,

– persistence p,

• Water inflow Q,

• Correction factors for the purpose of engineering (tunneling) CFep and for the

orientation of discontinuities CFod with reference to the tunnel direction.
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The classification is based on a rating of each single parameter. The range of one input

parameter is assigned to a rating value (Rx), e.g, a rating value Rσc
= 15 is assigned to a

homogeneous unit of rock mass with an uniaxial compressive strength σc of > 250MPa.

After assigning rating values to all parameters, the RMR is simply calculated by summing

up the rating values Rx for each parameter for a specific rock mass unit:

RMR = Rσc
+ RRQD + RJs

+ RCd
+ RQ + RCFep

+ RCFod
(1.4.1)

By assigning one rating value Rx to a range of neighboring values at a specific tunnel

location, the geological conditions are obviously simplified but sufficiently well described

for rock engineering purposes. Moreover, a variety of parameter combinations can lead to

the same RMR class. A rock mass, e.g., with overall slightly smaller σc values but also

a lower discontinuity frequency may lead to the same RMR class as a rock with higher

σc values and higher discontinuity frequency.

The strength of the rock mass is included in most classification systems, including the

RMR, by which the strength limit of the rock is considered. In both the Glendoe Tunnel

and Faido Adit, σc was determined for each rock type. The test site at the Faido Adit,

presented in Chapter 2, contains two different gneiss varieties with varying textures (e.g.

augen-structure or lamination). The differences in texture leads to strong scattering in

the σc values for each gneiss variety. The average σc values at a given location l were thus

determined by calculating the harmonic mean of the measured σc values of each gneiss

texture l (l = 1, 2, ..., n) and its percentage of occurrence αl at a given tunnel position

(Klose, 2004):

σc =
Σn

l=1αlσl

Σn
l=1αl

. (1.4.2)

In this way, the derived σc values of the gneiss varieties are only approximations. In the

Faido case, the σc values differ strongly enough to distinguish between the two gneisses.

The degree of jointing, described by the total discontinuity spacing st, strongly influences

the seismic velocities (Barton, 2007; Stacey, 1974 and 1976) and is an important parameter

for rock stability as has been outlined above and discussed by Priest and Hudson (1976),

Palmström (1982) and Priest (1993). Additionally, a steady increase in jointing along the

tunnel profile may suggest an approaching fault zone. In a fault zone, the discontinuity

frequency increases irregularly from the boundary in direction of the fault core. In general,

the wider the fault core, the wider the disturbed zone will be (Giese et al., 2005). These

brittle fault structures are critical for water transport within rock masses and hence for

tunnel stability. The mean discontinuity spacing sk of each discontinuity set k = 1, ..., l is

determined along a given interval L along the profile and is used to calculate the total
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Rating Value [%] Quality Designation

90-100 Excellent
75-90 Good
50-75 Fair
25-50 Poor
<25 Very Poor

Table 1.1: Qualitative rating of the RQD into classes from rock mass regarded to be of
“very poor” to “excellent” quality (Deere and Deere, 1988; Bieniawski, 1989).

discontinuity spacing st (Priest, 1993) as follows:

st =
1

Σl
k=1

1

sk

, (1.4.3)

where 1

sk
is the mean frequency of a specific discontinuity set. Single discontinuities like,

e.g., faults, are incorporated into the calculation by including additional discontinuity

sets kx with a spacing of skx
= 1. In this work the influence of the schistosity was not

regarded because of the availability of data.

The RQD is the second most commonly used system in rock engineering and is often used

as a fast and easy way to assess rock mass and drill-core quality. The RQD (cf. Sec. 1.4)

does not fully describe the rock-mass quality (Barton, 2007) but provides a good estimate

of the rock-mass behavior in heavily jointed rock masses, considering that it is a single

parameter. Because the RQD and the seismic velocities are well known to show strong

correlations (cf. Sec. 1.6.1), the RQD is used in this work as a single output parameter

but is also included into the RMR calculation scheme. The RQD was first introduced by

Deere et al. (1967).

RQD =

∑n
i=1 x̄ti

L
100%, (1.4.4)

where xti is the length of the ith piece of core that exceeds the threshold value t ≧ 0.1m

and L is the length of the sampling line or considered interval. A summary of applications

is given in Deere and Deere (1988). As no direct cores were available for the length of

the test sites in this study, the RQD was determined indirectly. Priest and Hudson (1976)

introduced the following equation for the theoretical RQD (TRQD):

TRQD = 100e−λt (1 + λt) , (1.4.5)

where λ is the mean discontinuity frequency, linking the RQD to the total discontinuity

spacing st and t is a threshold value (cf. Equation 1.4.4).
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Apart from the overall rock strength and the mere presence or absence of discontinuities,

another factor strongly affects the geotechnical rock-mass performance. As has been

discussed above, joint conditions influence the rock-mass deformability, strength and

permeability. Joint conditions are described by the parameters roughness r, aperture e,

infilling (gouge) f , weathering W and persistence p.

The roughness r describes the nature of the asperities on the discontinuity surface and,

depending on the aperture e, controls to which degree the opposite discontinuity surfaces

can interlock. The interlocking has a great impact on potential shear movement and

also defines the extent to which water can flow through the discontinuities. Using the

classification scheme of Bieniawski (1989), five classes can be distinguished for the roughness

(“very rough”, “rough”, “slightly rough”, “smooth” and “slickensided”) and also 5 classes

for the aperture (“none”, < 0.1 mm, 0.1-1 mm, 1-5 mm and > 5 mm). The infilling f has

a two-fold influence:

1. depending on its thickness, the infilling f prevents the interlocking of the discontinuity

asperities described by the roughness r, and

2. the properties of the infilling (shear strength, permeability and deformational char-

acter) can differ strongly from those of the intact rock mass, e.g., shear movement in

hard rock often occurs preferably on discontinuity planes with soft gouge infilling

(Bieniawski, 1984).

Generally, during the field investigations the infilling was distinguished as either: “no

infilling”, “hard infilling” or “soft infilling”.

At both investigation sites, the rock mass was freshly excavated and had not been exposed

to weathering effects. The degree of weathering was therefore set to class “unweathered”

throughout and will not be further discussed here.

Another parameter influencing the discontinuity condition is the persistence p of a discon-

tinuity. A discontinuity set with high persistence p (i.e. with a trace length of hundreds of

meters) affects the behavior of the rock mass more strongly than non-persistent disconti-

nuity sets (i.e. on a scale of a meter to a few meters). Nonetheless, persistence was not

sufficiently well recorded during the field studies and could not be regarded in this work.

In hard rock, the ground-water conditions are dominated by a discontinuity network;

however, the parameter water inflow Q describes only the inflow into the tunnel, not the

degree of saturation of the rock mass. Even if the water inflow is described as very low, the

rock can be totally saturated a few meters into the rock from the tunnel surface (Marschall

et al., 1999). Water inbreaks into tunnels can be caused, for example, by drilling through

a water-bearing fault zone under pressure, which can lead to great risk for the safety
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Rating Value Quality Designation Support

81-100 Very Good Rock None
61-80 Good Rock Locally
41-60 Fair Rock Systematic, wide grid
21-40 Poor Rock Systematic, close grid
<20 Very Poor Rock Systematic, very close grid

Table 1.2: Rating of RMR classes and short description of the corresponding intensity of
tunnel support.

of humans and the success of the whole project. The water inflow is categorized after

Bieniawski (1989) as “dry”, “damp”, “wet”, “dripping” or “flowing”.

A structure (e.g., a fault zone) poses more danger to the tunnel if the structure is nearly

parallel, or at a very shallow angle, to the tunnel axis. Structural reinforcement along the

cutface of the tunnel is very difficult to establish. The same holds true for structures that

dip against the tunnel-driving direction. During tunneling, e.g., a clay bed that dips into

the tunnel-driving direction may lead to the collapse of the head face because reinforcement

cannot be applied fast enough to counteract the building-up pressure. Subsequently, the

correction factors that account for:

(a) the kind of underground construction to be built and

(b) the direction of tunneling with respect to the main dip/dip direction of the

discontinuities have been incorporated into the RMR (Bieniawski, 1973, 1984,

1989).

Hence, the RMR is not only dependent on geological characteristics but also on the

engineering purpose - in contrast to the RQD.

For the RMR, only the “worst case” discontinuity conditions at a given location are taken

into account. This is necessary, as different discontinuities can reveal different values or

categories at the same location. For example, a discontinuity set dA might have a rough

surface, while the discontinuity set dB has a slickensided surface at a given location l, which

contains both dAand dB. In this case, the more unfavorable value “slickensided” is assigned

to the given location l (Bieniawski, 1989; Barton et al., 1974). This also holds true for the

correction factor of the discontinuity orientation. Although, the rock-mass condition is

further simplified, the method is, nonetheless, justified for geotechnical applications, as

rock-mass quality is not overestimated and construction safety is put to the fore. From a

scientific point of view, this might be regarded as problematic, because the influence of

some geotechnical parameters on the overall rock-mass behavior is determined based on

empiricism only. At the same time, other parameters that do not fit into the constructed

classification scheme are not taken into account. As an example for the RMR, e.g., the



Page 14 Introduction

block geometry might be mentioned here (Kulatilake et al., 2000, 2003). Nonetheless, the

method has shown to be of high practical importance. As the aim of the presented study

is to provide geoengineers with an easy to handle instruction model that can be integrated

into the daily work flow, the use of the RMR is justified as much as the use of the RQD.
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1.5 Tunnel-Driving Data

The use of tunnel-boring machines (TBM) for tunnel excavation has become the most

common tunneling method in the past years, because TBMs allow for cost-effective tunnel

constructions, especially in rocks with low stability and geologically and hydro-geologically

difficult environments, such as those with shallow overburden, high water pressure, high

permeability or low load-bearing capacity. During the tunneling process a huge variety of

tunnel-driving parameters pertinent to the excavation process are continuously collected.

Some of these machine parameters, such as the penetration rate, the thrust force and the

cutter head torque, contain information on the interaction between the rock mass and the

machine (Poisel et al., 1999b,a; Nellessen, 2005). Subsequently, the data has been used as

a measure for the determination of rock-mass classes (e.g., Poisel et al., 1999a) or drilling

classes with various geostatistical approaches (e.g., Aoki et al., 2007; Shirasagi et al., 2001;

Fukui and Okubo, 2006). During the field work presented in this study, tunnel-driving

parameters were only obtained during the Glendoe survey, as this tunnel was excavated

by a TBM, whereas the Faido Adit was excavated by drill-and-blast method. The tunnel

in Glendoe was excavated by an open gripper-TBM, as the lithology along this tunnel

consisted of hard metamorphites. In such an open excavation, the rock mass is still directly

accessible. Hence, a detailed mapping of the rock-mass characteristics that form the basis

for the rock-mass classification using the RQD or RMR is available in the Glendoe Tunnel.

The geological data acquisition becomes more difficult in so-called closed-mode excavations,

where segmental lining covers the entire rock behind the shield area. Hence, the utilization

of machine parameters for the assessment of the rock mass becomes even more important.

The Glendoe Tunnel data set offers a direct comparison between high-resolution geological

data and TBM parameters, which is a strong advantage of this data set. Further details

on different types of TBMs and their respective fields of application are given by Wittke

et al. (2007).

1.5.1 Operating Mode of an Open Gripper Tunnel-Boring Machine

In order to elucidate the understanding of the machine parameters and their interaction

with the rock, a short introduction on the working principle of an open gripper-TBM is

given. The cutter head is driven by hydraulic or electric motors and is mounted on the

main beam (Fig. 1.1). To loosen the rock at the tunnel face, the cutter head is rotated and

pressed against the rock by means of the thrust compactor. Thereby, the chisels that are

situated on the cutter head pass over the tunnel face in concentric circles. A dynamic cycle

develops in which the chisels first translate percussive –compressive and tensile– forces to
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Figure 1.1: Schematic illustration of the main components on the open single-gripper
tunnel-boring machine at the Glendoe construction site (top view, modified after pers.
communication Well, 2010). The motors that are powering the thrust cylinders are situated
right behind the cutter head. Those are connected to the grippers on both tunnel sides.
The grippers act as an abutment so that the tunnel machine has enough footing to press
the cutter head against the tunnel face .

the rock, followed by a phase in which shear forces dominate. During this dynamic cycle

radial cracks occur and grow until small rock fragments are chipped off the rock (Thuro

and Spaun, 1997). For achieving a sufficiently high contact pressure, the machine needs to

be propped up against lateral bracing plates, the so-called grippers (Fig. 1.1). Those are

pressed hydraulically sideways against the tunnel wall. This way, the machine is braced in

the tunnel and has sufficient footing to serve as an abutment for the thrust force (Wittke

et al., 2007). The thrust cylinders, which are located between the gripper unit and the

cutter head, push the cutter head against the tunnel face while the machine is sliding on

an invert shield or sliding shoe (Girmscheid, 2008; Wittke et al., 2007).

In the optimal case, the machine should be driven to its maximum electric capacity. To

this end, the desired speed of forward progression (the advance speed) and the speed

of the cutter-head rotation (the cutter-head speed) are estimated by the TBM-driver,

who manually controls the advance speed. The advance speed depends on the move-out

speed of the thrust compacter and is subsequently controlled by the thrust force. Apart

from this, the cutter-head torque is altered by the machine operator in the way that the

cutter-head speed stays constant at its predefined value. Thus, the values of the single

thrust cylinders (thrust-force control) and the drivetrains (cutter-head torque control) are

altered in the programmable logic controller, until the desired advance- and cutter-head
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speeds are achieved (Girmscheid, 2008). This work flow also shows that the characteristics

of driver operation influence the performance of the TBM.

The correlation of tunnel-driving parameters and geological conditions strongly depends

on the technical layout of the TBM. This is because the maximum electric capacity of a

TBM is determined by the technical potential of the machine and the prevailing geological

boundary conditions, though economic considerations could also be an influencing factor

(Schlicke et al., 2005).

Normally, all the relevant data produced during an excavation project are recorded and

stored; however, the varying technical layout of the different types of TBMs, like shielded

or open gripper machines, leads to differences in the amount and kind of parameters stored.

As the TBM layout usually does not change during a single project, the main influencing

factor for changes of the tunnel-driving parameters is linked to the rock-mass behavior,

though results from one rock type to the next or from one project to the next should not

be blindly transferred (Ribacchi and Fazio, 2005).

On most excavation sites, operations are electrically or electric-hydraulically controlled

and the tunnel-driving data is collected automatically in this framework. Therefore, the

acquired data can be processed digitally. The record interval varies between 0.1 to 1 Hz

with an average of 200 to 400 different parameters, depending on the excavation type,

thus allowing between 1.7 and 35 million data points, so called momentary values, to be

collected in one day (Nellessen, 2005). Nevertheless, the resulting large data set is not

automatically evaluated in a systematic way.

For the tunnel-driving data to be incorporated into the data base for a support vector

machine or other pattern recognition systems, the huge amount of data requires a target-

oriented limitation on the relevant parameters. Data mining methods (Bishop, 2006) could

be carried out to filter significant parameters from the data set, though the results would

need to be thoroughly reviewed. In the presented study, parameter selection was restricted

to those that have a direct or indirect link to rock quality and have therefore been used

in previous studies (e.g., Schlicke et al., 2005; Poisel et al., 1999b). Moreover, the same

parameters are collected regularly at each construction site, so that the results can be

generalized and used at other test sites.
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1.6 Relationships between Rock Quality, Seismic

Velocities and Tunnel-Driving Parameters

Many research projects have been conducted to shed light on the rock-mass behavior

in terms of practical geotechnical applications. In this Chapter the focus lies on the

rock-mass behavior of unweathered hard rock with low matrix porosity, according to the

rocks encountered at both test sites.

1.6.1 Seismic Velocities and Rock-Mass Behavior

In most cases, a rock mass is a complex and highly heterogeneous body that cannot be

fully described by only laboratory tests and local rock profiles. Information about a rock

mass can be increased by using geophysical techniques, such as seismic profiling, that

provide an indirect assessment of the engineering rock properties. Data collected during

in-situ seismic measurements are noisy and non-linearly related to the complex system of

geologic rock mass properties, leading to a highly complex interaction pattern between the

single geologic and seismic parameters. A thorough analysis of the seismic compressional-

and shear-wave velocities Vp and Vs from seismic refraction measurements for shallow

depths on various unweathered and jointed igneous and metamorphic rocks (among others

quartzites and gneisses) was done by Sjøgren et al. (1979) and Sjøgren (1984). Apart from

inherent rock properties such as the mineral composition, Vp is mainly influenced by the

following:

• stress,

• degree of jointing,

• presence of open discontinuities or discontinuities with infilling,

• ground water condition (Sjøgren et al., 1979; McCann et al., 1990).

According to McCann et al. (1990), the correlation between Vp and σc is non-linear and can

be expressed approximately by a power function of the form y = axb (r = 0.88). However,

broad scatter in the results for individual rock types, especially for rocks with low rock

strength, have been observed. Although McCann et al. (1990) showed that precise uniaxial

compressive strength σc values cannot be predicted from Vp, rock types may be classified

qualitatively (e.g., weak to very weak or strong to very strong rock).

The RQD index was introduced as a measure for the length of intact rock pieces in a

core (Eq. 1.4.4), meaning that the RQD value decreases with increasing degree of jointing.

Hence, Vp not only decreases with an increasing degree of jointing (Sjøgren et al., 1979;
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Sjøgren, 1984) but, consequently, also with decreasing RMR or RQD values. Following an

equation set up by Deere et al. (1967), Vp is correlated with the RQD factor by:

(

VpF

VpL

)2

≈ RQD, (1.6.1)

where VpF
is influenced by natural jointing, and VpL

is the sonic velocity in the intact rock

mass. Both velocities are measured in the same frequency band; however, no specification

on the exact frequency range or sampling method is mentioned (Deere et al., 1967).

Moreover, the fracture network is not the only factor influencing VpF
(e.g. water saturation

of the rock) so that the relationship in Equation 1.6.1 can only be an approximation (Deere

et al., 1967). Drawing relationships between laboratory and field measurements should

also be done with care, as there are several other factors that influence the resulting values

of VpL
(Rummel and van Heerden, 1978), such as:

• laboratory test method,

• dimension and geometry of the specimen,

• recovery process of the specimen (e.g. blasting, drilling),

• sample preparation,

• applied stress field during testing. A low stress field leads to the opening of micro

structures that reduce the measured velocities.

Sjøgren et al. (1979) stated that the influence of the jointing of the rock mass on Vp

decreases with overall decreasing Vp, which implies weaker correlations for sedimentary or

highly weathered rock; however the discontinuity frequency and consequently the RQD can

be predicted based on seismic measurements. Unusually high matrix-porosity or weathering

in metamorphic rocks with constant discontinuity frequency will cause a decrease in seismic

velocity (Sjøgren, 1984).

The non-linear relationship between increasing depth or horizontal stress and the closure

of open discontinuities leads to increased seismic velocities at depth (Bandis et al., 1983)

and is thus often called ”acoustic closure”. Therefore, both Vp and Vs values in a rock

with several discontinuity sets are likely to show stress sensitivity with greater depth or

stress level (Barton, 2007; Sjøgren et al., 1979; Stacey, 1976). Thus, Vp increases with a

simultaneous increase in hardness, RQD and density (Miranda and Mello-Mendes, 1983).

In accordance with these findings, Tanimoto and Ikeda (1983) state that below stress levels

of 3 MPa, Vp drops rapidly, but that it is approximately proportional to the normal stress

applied to simulated fractures over a range of 3 MPa to 20 MPa. In contrast, (Stacey,

1976) argued that the influence of jointing disappears for stresses > 2 MPa - stresses
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excerted on low overburdens and dry rock conditions. Also the influence of jointing on

Vp under wet conditions and with clay infilling was negligible in the lab results of this

study. However, Stacey (1976) carried out ultrasonic laboratory tests only on marble

specimen of 0,46 m lengths and 5 cm square cross-sections with artificially induced jointing.

Tanimoto and Ikeda (1983) on the other hand used various hard rocks of variously sized

specimen for their laboratory testings. Seismic waves of constantly 400 Hz were generated

by piezoelectric transducers that where placed perpendicular to the artificially induced

jointing on both sides of the specimen.

The discontinuity conditions (aperture e, roughness r, and infilling f) influence the normal

stiffness of discontinuities and, subsequently, the acoustic closure non-linearly (Bandis et al.,

1983); however, the degree to which the infilling of discontinuities and their water content

influence the closure depends strongly on the aperture width (Stacey, 1976). Tanimoto

and Ikeda (1983) found that the discontinuity frequency [fractures

m
] has no influence on Vp

for apertures below ~ 40 µm, whereas large apertures create large changes in Vp. High

roughness of the discontinuity surface lessens the influence of present jointing on the seismic

velocities, as the opposing discontinuity surfaces interlock even at higher apertures. Results

from ultrasonic measurements (Stacey, 1976) showed that at low stresses this effect takes

place even for discontinuity apertures of less than 10 µm; however, it should be taken into

account that the acoustic coupling in nature is not as complete as in laboratory tests due

to different orientations of discontinuities, mineral coatings and infillings, weathering, and

near-surface stresses (Barton, 2007). Won and Raper (1997) found that Vs is influenced

by the opening of microcracking. The same effect also lead to an increase in the Vp

Vs
ratio

in their study. A high sensitivity of Vs to gouge thickness has been shown by Fratta and

Santamarina (2002). Vs decreases and the damping ratio increases with increasing gouge

thickness. When the joints are filled with clay, the S-wave propagation is especially slowed

down. On the other hand Vs increases and the damping ratio decreases with an increase

in normal stress. (Stacey, 1976) concluded that the shear-wave parameters are generally

more sensitive to rock mass quality than Vp.

The water content of a rock is dependent on its porosity and permeability; the discontinuity

network within a rock is the main pathway for the water flow in low porosity hard-rock

environments. Vp decreases more strongly than Vs with decreasing water saturation. (Giese

et al., 2005) states that this effect is caused by the higher impact of the water saturation

on the bulk modulus k with respect to the shear modulu µ. Vp reacts faster to changes in

the water saturation as the bulk modulus k is affected by the water saturation. Thus, Vs

is assumed to be a better indicator of changes in the lithology or the discontinuity density

as it is transmitted solely over the matrix and subsequently does not reflect changes in the

pore fluids or gases.
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McCann et al. (1990) pointed out that the dynamic moduli can be derived from Vp and Vs

by empirical derivations but that the indirect assessment of the rock condition is where

seismic measurements make their strongest contribution. In the previous sections, the

relationships between the seismic velocities and geological features have been discussed.

Furthermore, the calculation of the RMR factor from the discontinuity attributes and

more general factors such as the uniaxial compressive strength σc or the general dip

direction with respect to the tunnel direction has been shown in Section 1.4. El-Naqa

(1996) stated that it is more useful to correlate the seismic velocity to a geomechanical

classification system, e.g., the RMR, as such a system considers several features that affect

the geomechanical behavior of the rock mass, such as the discontinuity characteristics and

frequency. Some correlations done by Sjøgren et al. (1979) and El-Naqa (1996) are listed

in Table 1.2. Attempts to correlate the seismic velocities to rock-mass quality, expressed

in rock-mass classes, have been done by, e.g., Barton (2007) for the Q-system. Various

attempts to correlate the RMR classes with the Q-system have been summarized in Goel

et al. (1996).

Figure 1.2: Mean values of physical and dynamic properties of hard, unweathered igneous
and metamorphic rocks deduced from shallow refraction seismic measurements. Edyn is
the dynamic elastic rock-mass modulus, k is the bulk modulus and µ the shear modulus.
A rough correlation of RMR, discontinuity frequency and RQD with seismic velocities and
dynamic rock-mass moduli is possible; however, the influence of increasing overburden
must be considered. The compilation is based on results from Sjøgren et al. (1979) and
El-Naqa (1996).
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McCann et al. (1990) discussed the results from a geological and geotechnical survey

carried out in phyllitic rocks from the Dalradian Supergroup, which were also excavated

in the power tunnel of the Glendoe Hydro Electric Power Plan but do not crop out in

the surveyed area (Fig. 2.4). A rock-mass assessment based on the RMR classes was

done, although important factors such as potential water inflow or the orientation of

structures with respect to the tunnel alignment were not collected (McCann et al., 1990).

The results showed that, on the basis of a correlation between RMR values and seismic

velocity-measurements, an extrapolation of the rock quality between several boreholes was

feasible.

The only significant anomaly in the study of McCann et al. (1990) resulted from the

presence of weak phyllites. For these rocks, the σc values were strongly reduced, which

led to a low RMR class and low seismic velocities in spite of high RQD values. El-Naqa

(1996) observed strong correlations between seismic velocities and RMR or RQD for rock

mass classes better than ”poor”, but strong variations were also found in the classification

results for RMR and RQD if extremely weak shales and marly limestones were present.

El-Naqa (1996) interpreted the reduced rock-mass class to be caused by an increased

discontinuity frequency resulting from the impact of the drilling process on the weak rocks.

Two equations describing the reciprocal behavior between seismic velocities, Young’s

modulus Edynand the RQD and RMR have been established by El-Naqa (1996). Vp,

the in-situ bulk density ρb and the Poisson´s ratio ν were used to calculate the Young’s

modulus Edyn, as described by McDowell (1990):

Edyn = V 2

p × ρb

[

(1 + ν) (1 − 2ν)

(1 − ν)

]

. (1.6.2)

The Poisson´s ratio ν can be calculated from Vp and Vs using the following equation:

ν =

(

1

2
V 2

p − V 2
s

)

(

V 2
p − V 2

s

) (1.6.3)

Then, the RMR and RQD values were correlated with the Young’s modulus Edyn using

the following best-fit relationships:

Edyn(GPa) = 0.00039 × RQD2.54 (R = 0.78) . (1.6.4)

Edyn(GPa) = 2.3 RMR − 109.0 (R = 0.87) , (1.6.5)
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From Table 1.2 and the Equations 1.6.2 to 1.6.4, it becomes clear that the RMR rating

system and the RQD are related to the dynamic Young’s modulus of the rock mass and

thus also to the seismic velocities.

1.6.2 Tunnel-Driving Parameters and Rock-Mass Behavior

Several studies have been performed to determine the relationship between parameters

obtained from the TBM advance and the rock-mass behavior. According to (Sapigni et al.,

2002; Poisel et al., 1999b), the best performance of a TBM is recorded in fair to good rock

(40-70 RMR), though more geomechanical problems in TBM excavations may arise for

very low or very high rock strength (Ribacchi and Fazio, 2005). The rock strength is not

equal to the rock-mass quality but is an important factor for the estimation of the latter,

expressed in RMR values (very good rock quality > 80 RMR, cf. Tab. 1.2). In rocks

with high strength and wide discontinuity spacing, adequate penetration rates cannot be

achieved (Ribacchi and Fazio, 2005). Sapigni et al. (2002) describes reduced advance rates

for high rock quality to be a consequence of reduced capability of cutter indentation and

chips formation. With a simultaneous increase in hardness, RQD, density and Vp increases,

while the drilling rate decreases strongly (Miranda and Mello-Mendes, 1983). Even though

low Vp may indicate lower rock mass quality, correlations should be treated with care

because of the influence of, e.g., horizontal stress or depth as described in Section 1.6.1.

For very low rock strength, the performance of the TBM is reduced by poor stability at the

head face behind the shield (Ribacchi and Fazio, 2005). The thrust force is decreased to

avoid interlocking of the cutter head for low rock mass quality (< 30 RMR), for example,

rocks that are categorized as “soft” to “very soft”, such as schists and phyllites. Because

of the thrust reduction the performance decreases (Sapigni et al., 2002). Though Poisel

et al. (1999b) describes that low contact pressure caused low torque values for the Vereina

Tunnel, he also states that experienced tunnel-boring machine operator reported that on

very soft rock with low contact pressure, high torque values are caused by the elasticity of

the rock and the depth of penetration. The interaction patterns of rock-mass behavior and

technical parameters are thus not linear and partly ambiguous and still a field of ongoing

research.
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1.7 Seismic Systems in Tunneling

In general, the seismic systems available for commercial use in tunneling generate seismic

body waves (compressional (P-) and/or shear (S-) waves) near the tunnel wall or directly

at the tunnel face. Typical sources are explosive charges in bore holes around the tunnel

perimeter (Dickmann, 2008), vibrators integrated in the TBM cutter head (Kneib et al.,

2000; Bruns et al., 2008), or noise from the rotating cutter head of the TBM itself (Petronio

and Poletto, 2002; Brückel et al., 2008). The waves are reflected or backscattered by

heterogeneities in the rock mass and the reflections are observed by seismic receivers, also

called receivers, placed around the tunnel or at the tunnel face. The receivers can be

integrated into the TBM cutter head (Kneib et al., 2000) or the tips of rock anchors (Lüth

et al., 2008a), where they can detect the full seismic wave field. The spatial distribution

of heterogeneities is then examined by e.g. True Reflection Tomography (Otto et al.,

2002) or migration (Kneib et al., 2000; Dickmann, 2008). In general, the uniqueness and

reliability of the solution depends on multiple coverage of subsurface points and the degree

of subsurface illumination that is achieved by using large apertures. Unfortunately, neither

of these two prerequisites is available in typical tunnel construction sites, where the source

and receiver spread is restricted to the one-dimensional shape of the excavated structure

and the number of boreholes for the receivers is limited. Furthermore, the current seismic

systems suitable for underground use are normally restricted to either hard or soft rock.

In order to overcome these limitations, the Integrated Seismic Imaging System (ISIS) has

been developed (Borm et al., 2003). ISIS shows a modular hardware design including

different seismic sources and anchorings for the receivers. Moreover, the system does

not use explosives so that the measurements have got a very low impact on the tunnel

surroundings. Thus, the system can be used with a large variety of tunnel construction

and support methods (Rechlin et al., 2009) and measure continuously during the entire

constructional phase. The ISIS hardware components are currently being implemented

for routine applications during the excavation (Lüth et al., 2008a,b; Giese et al., 2005,

2006). Further research is focused on modeling and processing of data acquired under such

conditions, as well as on their integrative interpretation and new hardware development

(Lüth et al., 2009). ISIS was used for the data acquisition of this study.

The Integrated Seismic Imaging System (ISIS)

ISIS includes a non-intrusive seismic acquisition system as well as processing and imaging

tools installed several meters behind the tunnel face and thus does not interfere with

the tunnel construction work. The system may be used for the exploration of the tunnel
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near field (Klose et al., 2007; Giese et al., 2006; Borm et al., 2003) or for the detection of

geological structures ahead of the tunnel face with distances up to 200 m (Rechlin et al.,

2009; Lüth et al., 2008c). ISIS consists of four components:

• Sources: The seismic sources used during the field studies presented are pneumatic

impact hammers (Borm et al., 2003 and 2000). In order to generate an impact, the

5 kg moving mass of a pneumatic cylinder is accelerated onto a shock plate driven by

compressed air. Prior to the impact, the hammer is prestressed towards the rock with

a force equivalent of 200 kg. The prestress guarantees an optimum coupling between

the hammer and the rock. A programmable steering unit controls the impacts with

a maximum trigger error of< 0.1 ms and a repetition rate of 5 s. The resulting

impulse signals, with frequencies up to 2 kHz and a center frequency of about 800 Hz

allow for an exploration range of up to 200 m in hard rock surroundings. In order to

accommodate a range of conditions, the pneumatic hammers can be integrated into

tunnel boring machines or be operated independently.

• Receivers: The full seismic wave field is recorded by 3-component receivers which

are mounted on the tunnel walls, and vary in position according to the excavation

type. In an open excavation process, the receivers are installed at the tip of reinforced

polymer rock anchors, mounted in three orthogonal directions. The anchors are

cemented in bore holes in the tunnel walls with two-component epoxy glue, which

strongly binds the receivers to the surrounding rock and thus ensures high acoustic

coupling (Borm et al., 2003). In tunnels constructed with segmental lining, the

receivers are screwed into pre-existing threads in the segments (Rechlin et al., 2009).

When properly orientated, the receiver rods form a radial or axial receivers array

close to the tunnel face. The full seismic wave field with signals up to 3 kHz are

recorded. Laboratory studies show a statistical error in the amplitude response of

the receivers of < 5%.

• Data acquisition system: The data acquisition unit used during the seismic

surveys in the Faido Adit and the Glendoe Tunnel was the ”SUMMIT Compact” by

Deutsche Montan Technologie GmbH (DMT).

• Software: The software of ISIS includes modules for data acquisition, processing

and imaging in 3D as well as imaging of geological and geotechnical features (Giese

and Lüth, 2008). (Bohlen et al., 2007) developed the model of Rayleigh-to-shear

wave conversion at the tunnel face. By using this model a high-resolution exploration

ahead of the tunnel face became possible.

The seismic surveys in the Faido Adit and the Glendoe Tunnel were both carried out using

the seismic acquisition and interpretation tools of ISIS. Due to the different excavation
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modi, the measurement geometry has been adapted to the conditions on the respective

tunnel construction sites as outlined in Section 2.2.
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1.8 Basic Concept of Support Vector Machines

One promising methods of pattern recognition for the application to real and complex

data sets are the support vector machines (SVMs). SVMs are part of the kernel methods

and are based on the statistical learning theory (Vapnik, 1998). Details on the statistical

learning theory and the general concept of support vector machines (SVMs) are given in

Schölkopf (1997) and Burges (1998). SVMs map data non-linearly to a high-dimensional

feature space. In this feature space a linear decision surface is constructed that separates

the data into classes. To construct the decision surface, a margin along the decision surface

is introduced and maximized between the classes in question. The intuitive idea behind

this approach is that a decision surface with a large margin is more resistant to noise and

that by maximizing the margin the solution becomes unique, ensuring high generalization

ability of the learning machine (Bishop, 2006).

In this chapter the construction of a SVM for multi-class classification is reviewed step-by-

step. First, the simplest classification problem is regarded where two classes are separable

by a linear decision surface (linear separator) with no misclassification. As real data are

rarely linearly separable, the approach will be generalized to linear classifiers that allow

for training errors (soft margin classifiers) (Cortes and Vapnik, 1995). The last step is the

introduction of the kernel trick to avoid the soft margin classifier and realize a nonlinear

classifier, which is called support vector machine. Based on the principles outlined in

this chapter, a SVM for the specific task of rock-mass classification based on seismic and

tunnel-driving data is developed in Chapter 4.

Linear Classifiers

The SVM is a supervised learning technique that was originally developed for solving

binary classification problems (with classes 1 and -1). The simplest case of classification

is the linearly separable case without misclassification. The aim is to find the optimal

decision surface that acts as the linear decision function with a maximum distance (margin)

to the nearest example vectors of the respective classes. In 2D the optimal decision surface

is a straight line, in 3D it is a plane, and in higher dimensions it is a hyperplane. The

training data set (X) , of vectors x and labels y are members of the feature space R
N of

the corresponding classification:

(X) = (y1, x1), ..., (yl, xl), yi ∈ {−1, 1} . (1.8.1)

The aim is to partition the feature space RN so that the classes are optimally separated. The
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label vector y contains the information as to which class an observational point is assigned,

while the vector xi of observation i is the sum of all measured feature characteristics at this

point and is called a feature vector. All feature vectors xi in a training data set (X) build

the feature matrix. In the area of application discussed here, an observational point would

be any point along the surveyed tunnel section. At each observational point the geological

characteristics are determined and the RMR and RQD are calculated (cf. Sec.1.4). Either

the RMR or the RQD shall be predicted and thus constitute the output vector or label

vector y. The single RQD or RMR values are thus denominated labels. A feature is then a

single parameter, e.g. the P-wave velocity, at a specific tunnel location. The values of all

seismic and machine parameters at a specific tunnel location constitute the feature vector

xi. Subsequently, the feature matrix includes the whole data set of seismic velocities and

the tunnel-driving parameters along the entire survey (cf. Fig. 4.2).

There are many possible decision surfaces separating the data (Fig. 1.3 a) but only one

that optimally separates the training points by keeping the maximal distance (maximum

margin) possible to all training points (Fig. 1.3 b). This unique decision surface, also

called the optimal hyperplane, is defined as:

H = {x|−→w · −→xi + b = 0} , (1.8.2)

where w is the normal vector on the decision surface and b is the offset. In the simple

linearly separable case, there are no data points lying inside the margin. However, data

points that theoretically lie on the hyperplane satisfy:

−→w · −→xi + b = 0. (1.8.3)

To find the optimal separating decision surface (or hyperplane in the usual case), it is

assumed that there exist training points (xi, yi) for which the following constraints hold

true:
−→w · −→xi + b ≥ +1, if yi = +1 and (1.8.4)

−→w · −→xi + b ≤ −1, if yi = −1. (1.8.5)

The feature vectors (data points) that satisfy these constraints are closest to the class

boundaries and are called support vectors, as the removal of one of these data points

would influence the orientation in space of the optimal hyperplane.
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Figure 1.3: By calculating the margin between the samples of two classes in a 2D
decision space that exhibits maximal distance to both of these classes, the position
of the optimally separating decision surface is determined. The optimal separating
hyperplane is the one that separates the data with the maximal margin possible. (a)
There are many decision surfaces that are separating the Classes blue and red (source:
Moore, http://www.cs.cmu.edu/afs/cs/Web/People/awm/tutorials/svm15.pdf). (b)
By using the training examples closest to the opposing class, the class boundaries are found
(source: merged Figure based on Kanevski et al., 2009 and Burges, 1998). The maximal
distance between the classes (maximal margin) and the optimal separating hyperplane
can then be identified because the maximal margin ρ is defined as the shortest distance
from the decision surface to the closest positive or negative training points. Those training
points are called support vectors.

As seen in Figure 1.3, a hyperplane H1 can be visualized that runs through all feature

vectors satisfying Equation 1.8.4 and a hyperplane H2 for all points satisfying Equation

1.8.5. In Figure 1.3 b these hyperplanes correspond to the dashed lines. From the Equations

1.8.3, 1.8.4 and 1.8.5 it follows that the optimal hyperplane is scaled with respect to the

support vectors.

Note that H1 and H2 are parallel to each other as they have the same normal vector so

that the maximal margin ρ is defined as the shortest distance between H1 and H2 at

each point along the surfaces. The two equalities in the Equations 1.8.4 and 1.8.5 can be

combined into one set of inequalities:

yi(
−→w · −→xi + b) − 1 ≥ 0 ∀i. (1.8.6)

Finding the optimal hyperplane is an optimization problem. To solve this optimization

problem the length of w is minimized so that the maximal margin ρ is maximized, while
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respecting the constraints in Equation 1.8.6. If ||w|| were 1, then the left hand side of

Equation 1.8.6 would equal the distance of xi to the hyperplane. Thus, w has to be

divided by ||w|| to transform w into the distance. Considering two points x1 and x2 , with

x1 satisfying Equation 1.8.4 and x2 satisfying Equation 1.8.5 and projecting them onto

the hyperplane normal vector w
||w||

, the margin that is measured perpendicularly to the

hyperplane, equals 2

||w||
(Schölkopf and Smola, 2002).

Soft Margin Classifiers

The optimization problem of finding the optimal hyperplane can be solved in the Lagrangian

formulation. In this form, the handling of the optimization problem is simplified as the

training data will only appear in the form of dot products between vectors. This allows

for the generalization of the procedure in the non-linear case. Lagrange multipliers αi,

(i = 1, ., ., l) are introduced for each of the inequality constraints. The Lagrangian Lp has

to be minimized with respect to w and b and maximized with respect to αi:

LP =
1

2
‖ w ‖2 −

L
∑

i=1

αiyi (−→w · −→xi + b) +
L

∑

i=1

αi (1.8.7)

subject to:

αi ≥ 0, i =, ..., L.

Equation 1.8.7 describes a convex quadratic programming problem, since the objective

function is itself convex, and those points satisfying the constraints also form a convex

set. The dual formulation LD of the problem is obtained after minimizing w and b and

maximizing αi. The values are inserted into L (w, b, a) and the latter is converted to:

LD =
L

∑

i=1

αi −
1

2

L
∑

i=1

aiajyiyjxi · xj, (1.8.8)

subject to:

ai ≥ 0 and
L

∑

i=1

aiyi = 0. (1.8.9)

By solving the dual problem, the values of ai, that maximize LD are attained, and the

normal vector can be calculated with w =
∑L

i=1 ayixi, where the decision surface with

maximum margin follows from the latter. The decision function for the decision surface
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thus is:

f(x) =
L

∑

i=1

yiaixi · x + b. (1.8.10)

From the above Equations it follows that if αi = 0, then yi(
−→w · −→xi + b) ≥ 1, and for αi > 0,

the equality holds: yi(
−→w · −→xi + b) = 1. The support vectors subsequently correspond to

αi > 0 and satisfy f(x, {w, b}) = +1.

As in nature the data is usually not separable without errors. The techniques developed

need to be extended for non-separable data sets by introducing so called slack variables

ξi ≥ 0 to the constraints (Cortes and Vapnik, 1995). To solve a linear but non-separable

classification problem, errors are admitted (Fig. 1.4).

The boundary conditions in the Equations 1.8.5 and 1.8.4 need then to be adjusted:

−→w · −→xi + b ≥ +1 − ξi for yi = +1 or
−→w · −→xi + b ≤ −1 − ξi for yi = −1,

(1.8.11)

subject to the constraint:

ξi ≥ 0 ∀i.

The overall sum of slack variables ξi limits the amount of training error and is integrated

into the optimization problem by the penalty parameter C > 0. The parameter C regulates

the impact of the training errors on the Equation 1.8.11. With increasing values of C,

the tolerance against training errors decreases and the margin around the separating

hyperplane also decreases. Thus, by changing the parameter C, the margin can be changed

and the tolerance to error can thus either be increased or decreased. Such a classifier is

called a soft margin classifier.
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Figure 1.4: The introduction of slack variables ξi allows training points to lie inside
the margin or even on the wrong side of the decision hyperplane, as data is often noisy
and contains outliers (source: Kanevski et al., 2009). The number of such cases can be
regulated by the penalty parameter C.

From Soft Margin Classifiers to Support Vector Machines: The

Kernel-Trick

The aim of a SVM is to map the training data into a higher-dimensional feature space

by using a mapping function Φ. In the feature space a separating hyperplane with a

maximal margin ρ can be constructed, using a kernel function that needs to fulfill the

Mercer theorem (Vapnik, 1998). In the input space, the separating hyperplane and margin

would correspond to a nonlinear decision function (Fig. 1.5). This procedure is called

the kernel-trick and is applicable because the Lagrangian formulation has been previously

introduced so that the training data appears only in the form of dot products in Equations

1.8.8 to 1.8.10.

Given a kernel function K, with:

K(x, y) = 〈φ(x), φ(y)〉, (1.8.12)

only the kernel function is needed in the training algorithm and the mapping function Φ

does not need to be known explicitly. The procedure saves computing time, especially in

very high-dimensional feature spaces. Still, all considerations of the previous sections hold

true as the separation is still done linearly but in a different space. For every function
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K
(

x, x
′

)

that satisfies the theorem there exists a feature space where the function acts

as a dot product. This way the following decision function for an optimal hyperplane for

non-linear classification problems ensures as follows:

f(x) = sign(
Ls
∑

i=1

aiyiK(si, x) + b), (1.8.13)

with si being the support vectors. The advantage of using the kernel trick is that only the

kernel function, rather than the scalar product, needs to be calculated. The most widely

used kernel functions are the polynomial and the Gaussian radial basis function (RBF)

(Vapnik, 1998). The kernelized version of a soft margin classifier is called a support vector

machine (SVM).

Figure 1.5: The training data is mapped into a higher-dimensional feature space by
using a mapping function Φ (source: Schölkopf and Smola, 2002). In this feature space, a
separating hyperplane with a maximal margin ρ can be constructed. The class separation
would necessitate a nonlinear decision boundary in the input space (left hand side) but in
the higher dimension, the data are separated by a linear hyperplane (right hand side).

Applications of SVMs

SVMs play an important role in machine learning since they are one of the few theoretically

well-founded methods that show promising performance on real-life data (Schölkopf and

Smola, 2002). The field of applications for SVMs includes various implementations in

bioinformatics (Mohr et al., 2008), text processing (Joachims, 1998), image processing

applied to rock-fracture tracing (Wang and Liao, 2007), time series analysis (Rüping, 2001)

and environmental applications (Kanevski et al., 2009; Welle, 2009) or remote sensing (Ge
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et al., 2008), while Vanajakshi and Rilett (2004) compared the performance of artificial

neural networks and SVMs for the prediction of traffic speed. In the field of geoengineering,

SVMs have been applied to, e.g., assessing debris flow hazard (Lifeng and Youshu, 2006)

and landslide susceptibility mapping (Yao et al., 2008).



2 Field Investigations

Two different data sets, created from surveys taken at hard rock tunnel sites, are employed

as a base for the development of an automated rock-mass classification. The first survey

took place in the Faido Adit, which is part of the Multifunctional Station Faido (MFS)

of the Gotthard Base Tunnel (GBT) in southern Switzerland (Amberg, 2006). Both the

Leventina gneiss and the Lucomagno gneiss, which both belong to the Penninic Gneiss

Zone, are exposed in the adit. The second data set was acquired in metamorphic quartz

schists and quartz-mica schists during the construction work for the Glendoe Hydro Electric

Power Plant in Scotland.

In this chapter, the general geological settings of both surveys are presented. The techniques

that were applied for acquiring geological data are discussed and the geological data along

the Faido Adit and the Glendoe Tunnel surveys are described. Then, the set-up for

the seismic data acquisition is highlighted, and the data from the seismic surveys are

presented for the Faido Adit and Glendoe Tunnel surveys. The chapter concludes with the

description of the tunnel-driving parameters acquisition for the Glendoe Tunnel survey.

2.1 Geological Setting

2.1.1 The Faido Adit

Seven seismic profiles were measured by a team from the GFZ German Research Centre

for Geosciences between September 2000 and June 2001 in the Faido Adit, which is an

escape and rescue adit of the Gotthard Base Tunnel. The breakthrough of the GBT took

place in October 2010 and its approval for the use of public transportation shall take

place in 2017. From that time onwards the GBT will constitute an important link in the

Trans-European Transport Network (TEN-T).

With a length of 2600 m and a radius of 5 m, the Faido Adit was excavated by drill-and-

blast method. The lithology exposed along the Faido Adit is separated into two units:

the Leventina Gneiss (LeG) and the Lucomagno (LuG) Gneiss. These gneisses comprise

the Penninic Gneiss zone and separate it into two parts - the southern (LeG) and the

northern (LuG) sections. While the LeG constitutes a nappe made up of orthogneisses, the

LuG has a mixed lithology with ortho- and paragneisses of slightly varying mineralogical

35
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composition. The LeG/LuG boundary is complex and overprinted by isoclinal folds (Etter,

1999; Pettke and Klaper, 1992; Casaopra, 1939). In Figure 2.1 the regional geological

setting and a strongly simplified geological cross section along the Faido Adit and GBT are

depicted. The Leventina-Lucomagno boundary is visible in the adit between tunnel meter

1880 and 2180 (Fig. 2.2 f). Both the LeG and LuG gneisses are composed of multiple

deformed and metamorphically overprinted rocks of mainly granitic origin. The LeG and

LuG exhibit various fabrics from laminated, augen-structured to porphyric or schistic.

In both gneiss varieties, parallel mica minerals and aligned quartz and feldspar minerals

(Casaopra, 1939) characterize the well developed schistosity. In the LeG, the older

schistosity ss1 that generally dips 10-30° N, is overprinted and folded irregularly by

schistosity ss2 that developed during the Alpine orogenesis. The ss1 is not visible at a

macro scale in the Faido Adit and therefore not included in this work as micro-structures

are not incorporated into the RQD or RMR classification schemes; however, their influence

on the seismic velocities is acknowledged. From an average dip of 10-30° S in the LeG, the

ss2-schistosity steepens to almost a 90° dip at the Leventina/Lucomagno nappe-boundary

and stays at a dip angle of 70 to 90° S in the LuG.

Rock-Mass Properties along the Faido Survey

The geological data in both surveys was semi-quantitatively acquired from a strictly

geoengineering point of view during the excavation process. The usual way of mapping

rock-mass characteristics, referred to as geologic features in the following chapters that

are concerned with SVMs, is to determine homogeneous areas for each geologic feature

along the tunnel profile. That means, the surveyed tunnel section is separated into areas

of constant values for a specific feature characteristic, e.g., areas of constant σc values.

As the determined value holds true for each point inside the homogeneous area, the

geological feature is regarded to be continuously logged along the profile (Bieniawski,

1973). Therefore, even if the, e.g., σc values are only determined when variations in the

lithology occur, the data can be used jointly afterwards with a constant grid-size sampling

of seismic velocities (cf. Sec. 2.2.1 and Sec. 2.2.2).

In the Faido Adit, measurements were restricted to the left (in the advance direction) or

NW tunnel side along seven seismic profiles, each of ~70-meter length. The geological data

mapped along the curved tunnel perimeter are projected onto a two-dimensional plane,

called an unrolled geological cross section (Fig. 2.2). Four major faulted and fractured

zones that are encountered along the surveyed sections are depicted in Figure 2.3. A fault

zone occurs between 960-980 m but continues outside the survey for several meters (Fig.

2.2 a) and a gentle dipping mylonitic shear zone is visible between 1170 to 1200 m (Fig.
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Figure 2.1: Overview of the geographic position and geological setting of the Faido Adit
in southern Switzerland (modified after Klose, 2004). A) location of the construction site.
B) simplified geological map and C) sketch of the geological cross section along the Faido
Adit 12 and part of the Gotthard base tunnel 23 .
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2.2 b). This shear zone is important to tunnel constructions because it runs parallel to the

tunnel axis so that the impact of the structure on the tunnel support design is significant,

because a stronger reinforcement is required along the whole structure. A densely fractured

zone occurs around 2200 m (Fig. 2.2 f) and a smaller, 30-cm thick cataclastite is found at

tunnel meter 2410 in Figure 2.2 g.

The σc values were quantitatively measured perpendicular to the schistosity for both the

Leventina gneiss (LeG) and Lucomagno gneiss (LuG). The relationships between the

uniaxial compressive strength σc and the gneiss varieties were determined by Schneider

(1997) during the excavation of the Polmengo Adit, which also belongs to the tunnel

construction work for the GBT. The σc values, for both the LeG and LuG, at a given

tunnel location were determined by averaging the σc values of the gneiss fabrics (Eq.

1.4.2 and Klose, 2004). The averaged results of σc values along the adit are depicted in

Figure 2.3. The gneiss varieties and the water inflow Q were determined from tunnel-face

maps. For a more detailed description and listing of the average σc values, refer to Klose

(2004), who investigated the relationships between single geological features and seismic

parameters in the Faido Adit with self-organizing maps, a special type of ANNs.

The discontinuity properties, such as the discontinuity spacing and orientation, are semi-

quantitatively measured along the seismic profiles (Klose, 2004). The infilling f was

classified as either ”none” or ”hard infilling” (cf. Chap. 1.4), while the aperture e varied

from 1 to 3 mm, and also only two roughness r classes (”very rough” and ”rough”) were

determined (the survey areas are marked light gray in Fig. 2.3). The water inflow Q,

outlined in the tunnel-face map descriptions, was characterized by Klose (2004) as mostly

”dry” and partially as ”dripping”.
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Figure 2.2: Unrolled geological cross sections (exaggeration 5:1) along the seismically
surveyed NW tunnel wall of the Faido Adit between tunnel meter 880 m and 2240 m
(modified after Klose, 2004): (a) a cataclastic fault zone crops out between 960 m to the
end of the profile at 980 m but continues outside the survey, (b) a mylonitic shear-band
occurs between 1170 and 1200 m. In (d) irregular small scale folding is apparent between
1858 m and 1920 m while in (f) a larger fold structure is sketched between 1582 and 1663
m. The LuG crops out only in cross sections (e) and (f) (shaded dark gray) between tunnel
meter 1880 m and 2190 m. The rock in (e) is folded as general orientation of fractures and
schistosity are depicted in the stereographic plots above the corresponding cross section.
The black bars on top of the cross sections mark the start and end of the seismic survey
layout.
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Figure 2.3: Rock-mass properties (σ, st, Q, f, e, r, TRQD, RMR) along the Faido Adit
(modified after Klose, 2004). Tunnel sections, where seismic surveys took place are
highlighted light gray. Darker gray bars mark geotechnically interesting geological events.
At 960-1005 m and 2410 m a cataclastite is visible, a mylonitic shear band occurs at
1170-1200 m, the LeG/LuG boundary crops out at 1880 m and at 2200 m. At 2200 m a
densely fractured zones has been mapped.

In general, the rock along the surveyed sections of the Faido Adit show geotechnically

homogeneous behavior, so that the major discrepancies in rock-mass characteristics are

expected in the densely fractured or faulted areas. The cataclastite at 960-1005 m is defined

by extremely low σc, but has a less marked reduction in st values, resulting in relatively
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high TRQD-values. Moreover, a higher water inflow Q was determined. At tunnel meter

2410 m, a thin but densely fractured cataclastic zone crops out that is reflected in the

very low TRQD and st values. The σc values of the LuG are low compared to those of

the LeG, but the other features do not show significant changes where the LuG crops

out. Thus, the reduction of RMR-values is not very distinctive. On the other hand, the

mylonitic shear band does not influence the uniaxial compressive strength σc, but at this

point the increased fracture aperture e, combined with a decrease in fracture roughness r

and no discontinuity infilling f , leads to geotechnically unfavorable rock conditions. The

RMR-values are thus relatively low at this tunnel location.

The main orientation of each discontinuity family is depicted in stereographic equal area

plots above the corresponding cross section in Figure 2.2. As outlined in Klose (2004), the

three main joint sets (j1, j2, j3) show the following orientations:

Joint Set Dip Direction Dip Angle

[°] [°]
j1 356 84
j2 125 80
j3 90 79

Table 2.1: Orientation of the three major joint sets occurring in the Leventina and
Lucomagno gneisses along the Faido Adit.

2.1.2 Geological Setting of the Glendoe Tunnel

In 2007, seismic measurements were carried out in the headrace tunnel of the Glendoe

Hydro Electric Power Plant along a 300-m long profile in a cooperation between the GFZ

German Research Center for Geosciences and Herrenknecht AG. Along the seismic profile,

geotechnically relevant geological parameters and tunnel-driving parameters from the

excavating open gripper tunnel-boring machine were collected. The power plant is situated

at the southeastern lakefront of Loch Ness near Fort Augustus in the Inverness-shire

(Scottish Highlands/UK) and has a capacity of 100 MW. The headrace tunnel –the lower

part of the main tunnel–, is 8.1 km long and 4.8 m wide. The power plant started producing

electricity in December 2008 but was forced to close temporarily in July 2009 because of

a rockfall near the top of the main tunnel, which connects the water reservoir and Loch

Ness with an altitude difference of 600 m. At the present time, the power station remains

unoperational.

The tunnel-construction site is situated to the southeast of the Great Glen Fault that

crosses Loch Ness and constitutes the border between the Neoproterozoic Moine and
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Dalradian Soupergroup (Dempster et al., 2002). The SE-NW striking headrace tunnel,

in which the survey took place, is built into the regionally metamorphosed strata of the

Dalradian metasediments (Fig. 2.4). The rocks along the tunnel profile are dominated by

interbedded sequences of quartz-mica schists, micaceous quartz schists and quartz schists

(Jacobs, 2004; SSE, 2004a). Metapelites and Metapsammites of amphibolitic facies are

interbedded at a scale of 5-20 cm, so individual rock types cannot be mapped (May and

Highton, 1997). As a result of three separate tectonic events that occured during the

Caledonian Orogenesis (Johnson et al., 1979; Jacobs, 2004), the strata along the tunnel

alignment is occupied by large NE-SW trending folds (May and Highton, 1997). The

latter include the Corrieyairack Synform and, further to the NW, the complimentary Tarff

Anticline and Tarff Syncline (Fig. 2.4). Minor related folds, formed during the regional

deformation, plunge at low to moderate angles in the same direction as the NNE-trending

subvertical axial plane of the Tarff Syncline (May and Highton, 1997).

The surveyed tunnel section is located in the northwestern flank of the Tarff Syncline,

which is part of the Tarff Banded Formation, consisting of quartz-mica schists, quartz

schists, and quartzites. The classification of rocks in the tunnel survey into one of these

lithologies depends on the mica content and the spacing of the foliation (SSE, 2004a), such

that:

• Quartz-mica schists (QMS) are generally thinly banded with a well developed

schistosity and mm-thick bands of mica.

• Quartz schists (QS) are mostly thick beds displaying faint schistosity (mainly ob-

servable in thin sections) and have a mica content < 10%.

• Quartzites (Q) form beds of 50 to 500-mm width and contain little to no mica.

The primary discontinuities of the rock mass are formed by a foliation developed along

the mica-rich beds, which most likely corresponds to the original orientation of the

sedimentary bedding planes (May and Highton, 1997). Large- and small-scale folding

caused the development of a schistosity, which, according to televiewer results (Jacobs,

2004), often seems to coincide with the foliation. In the planning phase of the construction

site, preliminary investigations suggested that the Rheidean fault, interpreted from linear

features in the British Geological Survey (BGS) mapping (BGS, 1993) as well as in aerial

photographs, might be exposed in the surveyed tunnel section (Fig. 2.4). This was not

validated during the survey.
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Figure 2.4: Geological setting of the Glendoe Hydro Electric Power Plant. (a) Overview
of the regional geology and the location of the construction site. (b) Geological map of the
construction site area SE of Loch Ness in the Scottish Highlands (based on: Jacobs, 2004,
BGS, 1993, BGS, 1996 and Fettes, 1979). (c) Geological cross section along the power
tunnel (source: SSE, 2004b).
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Rock-Mass Properties along the Glendoe Survey

During the seismic measurements in the Glendoe Hydro Electric Power Plant, geological

mapping of a tunnel wall was carried out by Herrenknecht AG (Heim, 2007). In Figure

2.5, the unrolled perimeter map of the tunnel wall is depicted. The lithologies encountered

are quartz schist and quartz-mica schist. The quartz schist crops out between -6440 m

and -6490 m, alternating with quartz-mica schist on a small scale between -6440 and -6340

m as well as between -6165 and -6152 m. The major part of the surveyed tunnel section is

composed of quartz-mica schist. The rock is characterized by small-scale faults and joints,

striking mostly WSW-ENE, with a major dip direction of 60° S. Similarily, the schistosity

typically dips 55-60° SE (Fig. 2.5). No characteristic joint sets could be distinguished

along the survey, in accordance with the evaluation of televiewer loggings in the Tarff

Banded Formation (SSE, 2007, 2004b). From the above findings, it follows that the rock

along the surveyed section of the Glendoe Tunnel is geotechnically quite homogeneous

and the main foliation and fracture orientation in the rocks are generally the same. The

rock condition (and the stability of the excavation) is therefore expected to depend mainly

on the degree of jointing, the condition of the discontinuities, and the presence of local

sheared zones.

The geological tunnel-wall mapping done by Herrenknecht (Heim, 2007) indicated several

fault zones of one to several meters width along the geological tunnel profile (Fig. 2.5

b). The location and appearance of the more important of these zones are summarized in

Table 2.2.

Tunnel Meter Specification
from to

-6485 -6482 single fault ~1 m in width
-6409 -6405 single fault ~1 m in width
-6373 -6358 increased number of faults
-6334 -6322 increased number of faults
-6322 -6319 rock intensely faulted and fractured
-6257 -6253 ~2m wide fault zone
-6253 -6225 increased number of smaller faults
-6157 -6148 strongly faulted
-6090 -6083 strongly faulted

Table 2.2: Location and appearance of geotechnically important structures along the
Glendoe Tunnel surveyed area. The most pronounced faulting and fracturing occurred
between tunnel meter -6329 and -6319, where the TBM-gripper sank into the tunnel wall.
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Figure 2.5: Unrolled geological cross section along the seismic survey in the Glendoe
Tunnel. (a) Stereographic projection of the main dip of schistosity. (b) Stereographic
projection of the main dip of faults and joints. (c) Unrolled geological tunnel wall mapping
of the surveyed tunnel section. The white bars mark gaps in the geological dataset. The
tunnel reference meter are in ascending order from -6490 to -6040, as the tunnel was
referenced from -8100 m to 0 during construction, from the water reservoir to the Loch
Ness, respectively (based on the tunnel wall mapping by Heim, 2007).
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From a borehole investigation, it was determined that the general uniaxial compressive

strength σc of the Tarff banded formation is approximately 65.85 ± 45.14(MPa) (Jacobs,

2004; SSE, 2004a) and that the cohesion along the banding and foliation is generally

strong, thus the banding does not constitute weak zones in the rock. During the survey,

quartz-mica schist and quartz schist were recorded. The σc values of these rock types do

not significantly differ from each other, as described in the ground reference report by SSE

(2004a).

The fractures are mainly closed but show high aperture e of 300 to 400 mm between

tunnel meter (TM) -6257 and -6249 and near meter -6094, coinciding with fault zones as

indicated in Figure 2.6 and Table 2.2. Such a large aperture is unrealistic, however, and

does not match the scetches made of the geological situation during the excavation. It

is therefore concluded that these values are likely to be caused by a transcription error.

Four out of five possible classes for fracture roughness r (from rough to slickensided, cf.

Sec. 1.4) were recorded, and over large distances the roughness r is predominantly smooth.

The geotechnically most unfavorable class ”slickensided” was only identified outside of the

seismic survey area, near -6050 m. The roughness is thus generally stronger in the gneisses

of the Faido Adit than in the quartz-schists and quartz-mica schists of Glendoe. For the

fracture infilling f the classes ”no infilling”, ”hard infilling” were determined. More exact

classification was not possible due to the semi-quantitative nature of the data acquisition.

Three out of five classes were recorded for the water inflow Q along the profile. Those are

”dry”, ”damp” and ”wet”, which indicates that no major water inflow took place; only two

significant fault zones between -6257 and -6249 m were water-bearing.

As mentioned above, the rock exposed in the Glendoe Tunnel was continuously unweathered.

The total discontinuity spacing st, as also outlined above, includes all kinds of discontinuities

but does not include the schistosity. The graph in Figure 2.6 clearly shows that st is low

along all faulted zones. The TRQD was determined from the reciprocal of st that equals

the discontinuity frequency 1

st
(Eq. 1.4.5). The two parameters, total discontinuity spacing

st and TRQD, hereafter refered to as RQD for convenience, strongly influence the RMR

but σc has no effect here, as it stays constant throughout the Tarff Banded Formation.

The latter exhibits values that are mainly classified as ”fair” to ”good”. The classes ”very

good” and ”poor” are only realized in small intervals. Both the RQD and RMR do reflect

low values along densely faulted and fractured areas; however, the realized range of values

is small so that the classification by SVMs deals only with small variations in the data.
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Figure 2.6: Rock-mass properties (stQ, f, e, rRMR, TRQD) along the seismic survey in
the Glendoe Tunnel. The seismic survey area is highlighted light gray. Darker gray bars
mark faulted to densely faulted areas.
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2.2 Seismic Measurements

2.2.1 Seismic Data Acquisition in the Faido Adit

Seven seismic campaigns, approximately 70 m in length, were done between tunnel meter

880 and 2440 during the excavation of the 2600 m-long, NE-SW oriented Faido Adit. The

measurement campaigns were carried out at intervals of about 200 m. Each seismic profile

began less than 10 m behind the advancing tunnel face. As the tunnel was excavated with

the drill and blast method, the seismic source (cf. Sec. 1.7) was moved independently.

Eight to ten 3-component receivers, installed on rock anchors drilled two meters deep into

the left tunnel wall (referring to the tunnel advance direction, cf. Sec. 1.7), were recording

simultaneously along each profile. One rock anchor was positioned on the opposite wall of

the tunnel to control several guided waves along and around the tunnel surface.

Figure 2.7: General source and receiver geometry of the seismic surveys in the Faido
Adit. The 2-D tomograms were calculated along planes that extend perpendicularly from
the left tunnel wall (source: Klose, 2004).

Average distances between the receivers of around 9 m and a source point interval of 1 to

1.5 meters were realized. The maximum source-receiver offsets were between 50 to 70 m.

An overview of the seismic measurements can be found in Giese et al. (2005). For a more

detailed description of the seismic data, refer to Klose (2004).

The S- and P-waves showed average velocities of 3200 m
s

and 5640 m
s

, respectively. In

general the P-waves displayed frequencies of 800 to 1000 Hz and the S-waves frequencies of

400 to 600 Hz with a wave length of about λ = ν
f

≈ 4.8m to 8.8 m. P- and S-wave velocity

tomograms were computed by imaging elastic rock mass properties along the tunnel with

the commercial software package PROMAX (Klose, 2004). The travel-time tomographic

inversions were generated as horizontal planes connecting the geophone anchors and the

source points (Fig. 2.7).
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Figure 2.8: Seismic P- and S-wave velocities along the seismic profiles in the Faido Adit
(source: Giese et al., 2005 and Klose, 2004).

Several tomograms with cell sizes (x,y), where x is the cell length in tunnel advance

direction and y the horizontal distance perpendicular to the tunnel wall, were evaluated

(cell sizes: 4x1 8x2, 12x3, 16x4 and 20x5 m) and then combined into one model of cell

length x = 0.5 m. A detailed description of the layout of the tomograms can be found in

Giese et al. (2005). The seismic velocities were acquired (Fig. 2.8) from the tomograms

along scanlines 5 m deep into the tunnel wall to avoid the influence of the excavation

damage zone (EDZ). In the tunnel near-field, micro-cracks develop and previously-existing

cracks open as a result of the excavation process, forming the EDZ. The influence of the

EDZ decreases from the tunnel wall into the rock (Martino and Chandler, 2004). Klose

(2004) argues that the differences between the geology mapped along the tunnel wall and

the geology at a depth of 5 m are negligible, and the use of the latter rather than the

former allows for a realistic comparison between seismic and geological data.

2.2.2 Seismic Data Acquisition in the Glendoe Tunnel

The main purpose of the survey in Glendoe was to show that on-site predictions of

geologically hazardous structures in advance of tunneling are feasible using ISIS. The
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method employs tunnel surface waves (TS-waves) that are converted into body waves at

the tunnel face for the predictions of structures along the projected roadway (Fig. 2.10).

The TS-waves propagate along the tunnel walls, dominating the wave field, as shown by

finite-difference modeling and field observations at the Gotthard Base Tunnel construction

site (Bohlen et al., 2007; Lüth et al., 2008a; Jetschny et al., 2010). It was shown by

Lüth et al. (2008c) and Rechlin et al. (2009) that successful predictions can be made by

visually comparing migration results and geological mapping, even though this requires

the application of a homogeneous seismic velocity model.

The position of the pneumatic impact hammers was adapted to the characteristics of the

open-gripper TBM by mounting them onto the grippers on each side of the tunnel boring

machine via steel plates (Fig. 2.10). The hammers were triggered during each down-time

of the TBM. Down-time occurs about every two meters, when a stroke is finished and

the grippers are moved forward (cf. Sec. 1.5). In total, 289 source points with one to

five repetitions were realized in the 4.8 m-wide tunnel between tunnel meter -6488.5 and

-6195.3.

Figure 2.9: Schematic illustration (source: Lüth et al., 2009) of the shot (red triangles)
and receiver (black dots) points of the seismic survey in the Glendoe Tunnel. Three
interruptions (A,B,C) took place due to logistic problems. A: Movement of the data
acquisition station. B: Safety inspection of the new data acquisition station. C: ~1h
interruption with simultaneous fast TBM advance.

At each source point, also called shot points, a wave field is excited by a seismic source,

here a pneumatic impact hammer. The excited wave field was usually recorded by four

3-component receivers, drilled one meter deep into the tunnel wall. The configuration was

such that two geophones were positioned on either side of the tunnel at an angle of 130°

(Fig. 2.9). Each pair of receivers was active for 15 m of excavation and then reinstalled 2

m behind the cutter head with a source-receiver offsets of 8 to 20 m, allowing the direct

surface wave to occur within a small travel time interval. A total of 38 rods were installed

between -6478.7 m and -6185 m, on either tunnel side (Fig. 2.9), with three interruptions

that were caused by logistic problems.
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Figure 2.10: Configuration of the ISIS hardware on a tunnel-boring machine and schematic
illustration of the wave-field propagation during the measurements in the Glendoe Tunnel
(compilated based on Jetschny, 2010 and pers. communication Well, 2010). Two 3-
component receivers and one pneumatic hammer were installed at either side of the
tunnel. (1) The wave field is excited at the tunnel wall by one of the pneumatic hammers.
Important for the prediction ahead of the tunnel is (2) the TS-wave, that is propagating
along the tunnel wall to the cutter head where (3) it is converted to body-waves. (4) The
converted P- and S-waves travel through the rock and are reflected e.g. at a fault zone. (5)
The reflected waves are back-scattered and couple at the tunnel face, called TSST-waves
after their travel path, and are recorded at the receivers. For the P- and S-wave velocities
along the profile, the direct P- and S-waves were picked.

The processing of the seismic data was done using the ISIS-software. A detailed description

of all possible processing steps can be found in Giese and Lüth (2008). Götz (2008)

developed a heterogeneous seismic velocity model for the Glendoe survey based on seismic

tomography with Singular Value Decomposition (SVD). Compared to the Faido survey,

the geophone array and shot-point density were greatly reduced in this setup for TBM-

integrated measurements. Thus, the data is noisier and of lower quality than the data in

the Faido Adit. The grid for the SVD was defined along a 1D scatter-plot, by imaging the

seismic velocities between the tunnel wall and a receiver depth of 1 m. The data in the

near field showed a strong velocity dependence on the offset of the P- and S-waves so that

a separation of S- and P-waves for offsets smaller than 2 m was not possible (Götz, 2008).

Thus, only offsets greater than two meters were used for the velocity model. The model

reliability of the SVD-tomograms is good for a cell size of 8 m, but acceptable results also

were achieved with a cell size of 4 m. The results from the four-meter cell size were used for

the rock-mass classification. The lower resolution of the eight-meter cell size, taking into
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account the data gaps for the velocities mentioned above and the exclusion of noisy and

time-shifted data, would reduce the size of the dataset too strongly for an implementation

into a pattern recognition system. This means that the support vector machine introduced

in Section 1.7 could not be trained sufficiently to allow for generalization on unknown data

points, and thus a prediction would not be possible. Furthermore, a lower resolution would

greatly reduce the possibility of detecting correlations between local geological structures

and the velocities. This is especially important because of the small-scale nature of the

structural inventory along the Glendoe survey (cf. Sec. 2.1.2).

Figure 2.11: Seismic P- and S-wave velocities along the seismic profile in the Glendoe
Tunnel. The seismic P- and S- wave velocities are depicted separately for the right (black)
and the left (red) tunnel wall with locally strong variations. The data gaps are caused by
three interruptions in the measurements and the exclusion of noisy and time-shifted data
(source: Götz, 2008).

In general, the velocities lie within the expected range, with the exception of a few outliers.

The S-wave and the P-wave velocities show an average of 2500 m
s

and 3700 m
s

, respectively.

Thus, the gneisses of the Faido Adit produced higher velocities than the quartz-mica

schists of Glendoe. With a centre frequency around 250 Hz, the S-wave has a wave length

of about λ = ν
f

≈ 8 to 10 m Götz (2008). The seismic velocities in Figure 2.11 are shown

separately for the left and the right tunnel wall. Locally strong variations in the velocities



Field Investigations Page 53

of the same wave type from the left to the right tunnel wall are apparent. These variations,

as interpreted by Götz (2008), are caused indirectly by the Excavation Damage Zone

(EDZ) because the EDZ comprises increased microcracking that in conjunction with the

small offsets in this study cause variations in the seismic velocities. Thus, only the average

velocities were regarded in this work, to reduce the influence of the EDZ on the seismic

data.

The velocity models from Glendoe and Faido are of different resolutions. Because the

geology along the profiles was determined by defining homogeneous areas throughout the

surveys, and each point in a homogeneous unit is defined by the same value (cf. Sec.

2.1.1), the seismic resolution was the limiting factor for the data-point density. The

different cell sizes of the two surveys do not allow for a direct correlation of the data.

Consequently, the datasets are treated separately in the following chapters, meaning that

independent Support Vector Machines are developed for both surveys (cf. Chap. 4).

For the implementation of a routine prediction system, it is desirable to unify the data

acquisition such that results become available at smaller grid point intervals.
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2.3 Acquisition of Tunnel-Driving Data in the Glendoe

Tunnel

The close correlations between the thrust force, cutter head torque, cutter head speed,

power consumption, penetration and advance speed parameters have been shown in Section

1.5.

The headrace tunnel in the Glendoe project has been excavated by an open single gripper-

TBM. Its machine data was continuously measured and stored along the entire tunnel

section investigated. The selection of the parameters regarded in this work is based on the

interaction of the parameters outlined previously and the following considerations: The

net advance speed as [mm/min], that is often equated with the drillability of a formation

or homogeneous rock mass unit (Thuro and Brodbeck, 1998) is the net product of the

penetration [mm
rev

] and the cutter head speed [ 1

min
]. Therefore, penetration and advance

speed do not need to be considered separately. Because of its independence to the cutter

head speed, the penetration is preferred to the advance speed as a preliminary step for

the transferal of the results of this study to other construction sites. The direct relation

between power consumption pc [kW], and cutter head speed cs [ 1

min
] and cutter head

torque ct [kNm] is described by:

pc =
2 × PI × cs × ct

60
. (2.3.1)

This relationship implies that only the power consumption or the cutter head speed and

torque need to be taken into account. Maintaining the power consumption only would

keep the feature matrix for the SVM small, which is desirable but may lead to a loss of

information at the same time. Therefore, the parameters were explored statistically in

Section 3.2 before the decision making.

The data collected in 10 s steps were sorted in Excel spreads for each day. Consequently,

the concatenation of the data requires a considerable amount of sorting. Furthermore,

data points collected during machine downtime were deleted from the dataset, as they

represent zero values rather than actual geological conditions, and would create errors in

the subsequent steps. To suppress noise and outliers, a Fast Fourier Transformation (FFT)

and low pass filter were applied. All values were verified as positive, because negative

values indicate measurement errors. It should be noted that the re-sorting process is

specific to one project, as it depends on the recording process of the data and the hard-

and software used. Further processing was restricted to the parameters enlarged upon in

Section 1.5, to obtain a comparable dataset.
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Figure 2.12: Tunnel-driving parameters along the survey in the Glendoe Tunnel were
automatically acquired and stored. The advance speed is not considered further, as it was
calculated directly from the penetration rate. The seismic survey area is highlighted light
gray. Darker gray bars mark faulted to densely faulted areas.

As the data for the tunnel-boring machine was acquired in the time domain, the data

needs to be converted to the space domain before further interpretation or processing can

be carried out. The simplest way would be to use the penetration [mm/rev] in reference to

the survey start. However, the values for penetration show a systematic error in the range

of factor 3. Subsequently, this parameter could not be used for the determination of the

tunnel meter achieved. Thus, all available specifications regarding the tunnel face position

at a given time were considered (~every two meters, which is the length of a stroke) and

further tunnel positions were linearly interpolated. In order to transform the data for the

tunnel-boring machine from the time- into the space domain, the data was divided into

bins in the next step. This way, a data-set of technical parameters with a sample grid of

four meters cell length, in regard to the seismic tomogram, was created and incorporated
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into the feature matrix (for the SVM) with the seismic data. However, the data point

density for technical data is much greater than the seismic data so that information may

be lost. Thus, a second dataset for the Glendoe Tunnel was created for a separate SVM

construction with a smaller bin size of one meter.



3 Statistical Evaluation

The Rock Quality Designation Index (RQD) is easily obtained during tunnel construction

(cf. Sec. 1.6 and 2.1) and provides a good first estimate of the rock-mass quality in terms

of geotechnical applications. The discontinuity spacing that builds the basis for the RQD

calculation is strongly related to seismic velocities; however, in contrast to the Rock Mass

Rating System (RMR), the RQD lacks the incorporation of further parameters, such as

the estimation of the discontinuity properties or the uniaxial compressive strength σc,

necessary for thorough rock-mass characterization. One aim in this study is therefore

to investigate whether the simpler RQD or the more elaborate RMR is better suited for

a classification based on seismic velocities and tunnel-driving data. The RMR and the

RQD data obtained in the field surveys are individually discussed and separately used as

target variables for a rock-mass classification via support vector machines (SVMs). Before

training the SVM, the data is analyzed with statistical methods to determine the data

quality, to investigate the feasibility of the target variables (RQD and RMR) and to detect

possible data correlations in the feature space.

3.1 Statistical Evaluation of the Faido Data Set

As the Faido Adit was excavated using the drill-and-blast method, no TBM data was

collected for the Faido survey. Thus, the seismic P- and S-wave velocities (Vp and Vs,

respectively) of seven seismic profiles constitute the data base for the classification of the

rock into RMR or RQD classes. The data set contains a total of 897 samples with a grid

spacing of 0.5 m along the tunnel wall.

The value distribution for all parameters is visualized as boxplots in Figure 3.1. Boxplots

are non-parametric, i.e. they display differences between populations without making any

assumptions of the underlying statistical distribution. The edges of the boxes are the

25th and 75th percentiles, P25 and P75, and the distance between those edges is called the

interquartile range that contains 50 % of the data. From both edges, so called whiskers

extend outwards by up to 1.5 times the interquartile distance (1.5xIQD); their exact length

is determined by the most extreme data point in the 1.5xIQD range. Data points outside

this range are likely to be outliers and are plotted individually as red crosses.

57
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Figure 3.1: Boxplots of (a-b) the seismic velocities, (c) the RQD and (d) the RMR from
the Faido Adit data set. The edges of the boxes are the 25th and 75th percentiles,P25 and
P75. The whiskers extend to the most extreme data points not considered outliers. Data
points considered as potential outliers are plotted individually as red crosses.

For the seismic P-wave velocity Vp, the measured values lie in the range of 4.91 and

6.89
[

km
s

]

with a median at 5.63
[

km
s

]

, a low skewness of 0.5 and a kurtosis nearing 3 (Tab.

3.1). The skewness describes the asymmetry of a distribution:

skewness =

(

N
∑

i=1

(xi − x)3

s3

)

,

and is 0 for a symmetric normal distribution. How peaked or flattened a distribution is in

relation to the normal distribution is described by the kurtosis:

kurtosis =
N

∑

i=1

(xi − x)4

s4
.

A distribution more strongly peaked than the normal distribution has a kurtosis of > 3,

while a kurtosis < 3 marks a flat distribution with heavy wings. Thus, the distribution

of Vp is close to normal distribution. The skewness is also visualized in the boxplots by

the position of the mean value with regard to the box edges, while the kurtosis can be



Statistical Evaluation Page 59

approximately determined by regarding the box width (Fig. 3.1). The seismic S-wave

velocity Vs ranges between 2.61 and 3.58
[

km
s

]

with a mean value of 3.2
[

km
s

]

. Similar to

Vp, the S-wave velocity exhibits nearly normal distribution, expressed in a small skewness

of -0.53 and a kurtosis of 2.6 (Tab. 3.1).

Min Max Mean Median Std. Dev. Skew Kurt P25 P75

Vp [km
s

] 4.91 6.89 5.64 5.63 0.4 0.5 3.09 5.34 5.89
Vs [km

s
] 2.61 3.58 3.16 3.2 0.23 -0.53 2.6 3.01 3.35

RQD 0 99 90.12 95 16.22 -4.11 21.99 92 98
RMR 27 62 56.75 57 7.17 -1.9 7.27 54 62

Table 3.1: Basic statistics of the Faido Adit data. The sample distribution of the
geotechnical parameters, especially the RQD, are strongly peaked and exhibit negative
tails. P25, P50, P75 are the 25, 50 and 75 percentiles.

The defined range of 0 to 100 [%] RQD is nearly covered completely by the data samples

in the Faido Adit (c.f. Sec. 1.4). Nonetheless, there is a wide gap in the range between

1 and 51 [%] (Fig. 3.1 c), while an extreme peakdness is observed in the narrow range

between the 25th and 75th percentiles (Fig. 3.1 c and Tab. 3.1). Subsequently, a generally

low degree of jointing can be assumed for the rocks in the Faido Adit. A significant

number of samples with values < 86 [%] RQD are outside of the 1.5xIQD range, causing a

strong negative tail that is expressed in a skewness of −4.11. These data points are not

interpreted as outliers as they are caused by locally increased fracturing or faulting.

The major goal of this study is to find out whether rock mass that exhibits geotechnically

important structures can be identified using SVMs. Consequently, data samples with low

RQD values should be regarded separately, if possible. 58 out of 897 samples in the Faido

Adit data set are assigned to RQD values ≤ 75 [%]. After Deere and Deere (1988), rocks

with a RQD ≤ 75 [%] are assumed to have a quality between “very poor” to “fair”; above

that boundary, the rock is either “good” or “excellent” (c.f. Tab 1.1). The few samples in

the range between 0 and 75 [%] RQD thus describe those rocks along the adit that are

geotechnically most important; however, if the classes are extremely small, the self-learning

algorithm is prone to over- or underfitting (c.f. 4). Thus, the data points that correspond
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to classes of low rock-mass quality are merged in one class, while the distinction between

RQD classes ”good” and ”excellent” remains:

• Class 1: “very poor” to ”fair” rock-mass quality described by RQD values from 0 to

75 [%].

• Class 2: “good” rock-mass quality described by RQD values from 76 to 90 [%].

• Class 3: “excellent” rock-mass quality described by RQD values from 91 to 100 [%].

In comparison, the RMR exhibits less strong peakedness with a kurtosis of 7.27 (Tab. 3.1),

even though the interquartile range that spans between 54 and 62 RMR (Fig. 3.1 d) is

not significantly larger than that of the RQD. The upper whisker in the RMR boxplot is

completely amiss so that the 75th percentile coincides with the maximum value, which

indicates that 25 % of all data points are assigned to RMR = 62. Additionally, the range

of values below the 25th percentile extends to RMR = 27, causing a negative skewness

of -1.9. In consequence, most data points lie in the ”fair” or ”good” classes of the RMR

classification scheme. Thereby, the peak of the distribution is in strong proximity to the

corresponding class boundary (c.f. 1.4). The low variance in conjunction with the small

range in the data distribution leads to the distinction of two classes for the RMR in the

Faido Adit with the separating class boundary at RMR = 60:

• Class 1: low rock-mass quality including data points of the class ”fair” and lower,

described by RMR values from 0 to 60.

• Class 2: high rock-mass quality including data points of the class ”good” and higher,

described by RMR values from 61 to 100.

The challenge in this classification task is to distinguish between two neighboring classes

on the basis of a real and therefore noised data set, in which the majority of samples lies

close to the class boundary.

As described in Section 1.6 by Equation 1.6.4 and 1.6.5, a logarithmic correlation resides

between the RQD and the Young´s modulus Edyn, as much as a linear correlation exists

between the RMR and Edyn. These relationships are determined as null hypothesis for

RQD or RMR with Edyn, respectively. The Young´s modulus Edyn is calculated based

on the in-situ bulk density ρb and the Poisson´s ratio ν that in turn is calculated from

the seismic body-wave velocities (Eq. 1.6.2 to 1.6.3). Constant values of ρb for either

gneisses and quartz-mica schists –given by Telford et al. (1990)–, where used to calculate

the Poisson´s ratio ν. In consequence, the variance in the Young´s modulus Edyn is solely

caused by the seismic velocities. The null hypothesis for the RQD correlation to Edyn

could not be rejected, as the correlation coefficient r = 0.0518 nears 0. The same holds

true for the null hypothesis of a linear correlation between Edyn and RMR. Here, the
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correlation coefficient r = 0.2432 is also far below the significance level selected at 0.95

(Fig. 3.2). In addition to the regression curves between Edyn and the measured RQD or

RMR values, the Young´s modulus Edyn is additionally plotted against the theoretically

determined RQD and RMR values, respectively, obtained by Equation 1.6.4 and 1.6.5

(Fig. 8.1). For both, RQD and RMR, the theoretically determined values are much higher

than the actually measured values, even though the slopes are similar. Moreover, the

theoretically determined RQD values are outside the defined range between 0 to 100 [%].

The relationship described by El-Naqa (1996) could thus not be verified for the Faido Adit.

Figure 3.2: Relationship between elastic dynamic modulus Edyn and rock-mass quality
descriptive parameters RQD (left) and RMR (right). No correlation was detected during
regression of the collected data (regression line ym) and Edyn. The RQD or RMR values
calculated using the Equations set by El-Naqa (1996) are significantly larger than the
measured values but the curve trends exhibit similar slopes. In case of the RQD, the
theoretically determined values lie outside of the defined range between 0 to 100 [%] RQD.

The regression curves for the seismic velocities and the RQD and RMR are given in 8.1 in

the Appendix. From the discussion in Section 1.6 and Table 1.2 for both, RQD and RMR,

a logarithmic correlation with the seismic body-wave velocities is determined as the null

hypothesis. The correlation coefficient r did not exceed 0.51 for none of the correlations

and was thus far beneath the significance level of 0.95. Even though, the correlation

coefficient r is higher for either RQD and RMR with Vs compared to Vp.

For the visualization of interaction patterns between more than two parameters, parallel

coordinate plots were used. In this manner, the correlations between the input parameters

and the single classes can be visualized at the same time. The polylines that belong to

the above selected RQD classes show different mean gradients. For the RMR classes, the

medians depict a marked differences in their y-axis intercepts but with similar gradients.

Hence, the classes show no distinctive, unique pattern neither for the RQD, nor for the
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RMR. It is thus assumed that the data is not linearly separable for either RQD or RMR

in the data space (Figure 8.2 to 8.3 in the Appendix). As a result, a simple correlation

cannot be determined between seismic velocities and rock quality; however, unknown

relationships may reside between the parameters in the data base and the RQD or RMR

that are detectable by the self-learning algorithm of the support vector machine.

3.2 Statistical Evaluation of the Glendoe Data Set

The seismic velocities in the Glendoe survey were determined by the use of a 1D-tomography

with a 4-m grid spacing between tunnel meter -6478.7 and -6185, while data acquisition of

geological and tunnel-driving parameters continued until tunnel meter -6079. As a result,

seismic velocities are available for 293.7 m at a 4-m spacing, while the RQD, the RMR and

the tunnel-driving parameters where determined for a total of 401 meters. Furthermore,

the data gaps mentioned in Chapter 2.2 further reduce the data-point density of the

seismic velocities. The entire data set thus discloses a large number of missing points in

the seismic data. In comparison, the data-point density of the tunnel-driving parameters

is much higher because of the continuous sampling interval of 10 s. The rock-mass quality

is influenced by a number of different parameters (cf. Sec. 1.4). As the complexity of the

classification task is high, it can be assumed that a large number of samples is needed to

identify the unknown underlying patterns in the data (cf. Sec. 1.3). In consequence, to

fully exploit the the information contained in the tunnel-driving data on the rock-mass

quality, the tunnel-driving parameters are first regarded separately at a 1 m grid spacing.

A draw-back of this classification attempt is the discussed ambiguity of the relationship

between very high and very low values for TBM parameters and the targets (RQD, RMR)

(cf. Sec. 1.6.2). The SVM training is therefore repeated with integrated seismic velocities,

leading to a second data set, which is restricted to a 4 m sampling interval by the cell

size of the seismic tomogram (cf. Sec. 2.2). The results from the “1-m data set” and the

“4-m data set” will be compared to determine the influence of the data set size and the

contribution of single parameters on the classification.

The boxplot in Figure 3.3 a clearly shows that 50 % of all samples of the thrust force lie

in the range of 4538 to 4975 [kN]. The slight negative skewness (-1.28) and high kurtosis

(6.95) in conjunction with the broad scattering of values between 1781 and 6159.8 [kN]

suggest a large number of outliers at small values (Tab. 3.2).
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Min Max Mean Median Std. Dev. Skew Kurt P25 P75

Thr [kN ] 1781 6159.8 4708 4866.6 658.4 -1.28 6.95 4538 4975
Tor [kNm] 9.72 1791 709.07 691.64 229.27 0.56 5.33 574 824
Pen [mm

rev.
] 2.69 148.84 30.04 18.41 29.4 1.83 6.06 10.9 38.8

Spe [ 1

min
] 6.59 9.94 9.54 9.58 0.24 -7.94 81.91 9.56 9.61

Vp [km
s

] 1.15 3.67 2.4 2.45 0.36 0.14 2.84 3.01 3.85
Vs [km

s
] 1.01 5.43 3.44 3.38 0.62 0.46 3.16 2.18 2.61

RQD 0 100 86 100 27.95 -1.94 5.2 94 100
RMR 28 82 62 67 12.32 -1.03 3.19 57 70

Table 3.2: Basic statistics of the tunnel-driving parameters thrust force (thr), cutter-
head torque (tor), penetration rate (pen), and cutter-head speed (dri) as well as for the
geotechnical targets at a 1-m sample spacing and the seismic velocities at a 4-m sample
spacing.

Similarly, the other tunnel-driving parameters also show broad scattering, a large number

of potential outliers and high kurtosis values. Especially the distribution of the cutter-head

speed is extremely peaked, expressed by the extreme kurtosis of 81.91 and the narrow

box with short whiskers in Fig. 3.3 d. The high negative skewness clearly indicates a

wide scattering of outliers for small values. Given this distribution, it is very unlikely that

the parameter has explanatory power about the variance of the target parameters. By

enlarging the sample interval to 4 m, a reduction of outliers and noise is achieved for the

tunnel-driving parameters (cf. Fig. 3.3 and Tab. 8.6 in the Appendix).

The seismic velocities, on the other hand, feature skewness and kurtosis values that indicate

normal distribution (Tab. 3.2 and Fig. 3.4). The unusually low minimum value 1.15

[km
s

] of Vp, as much as all other Vp values < 1.5[km
s

] are not correlated to any geological

structure and are interpreted as extreme outliers.

Similar as to the Faido Adit, the RQD samples cover the whole range of possible values in

the Glendoe Tunnel, with a marked gap in the interval between 29 to 52 [%] RQD. The

median at 100 [%] RQD coincides with the 75th percentile P75, which indicates that at

least 25 % of all data points are assigned to the largest possible value.

The P25 at 94 [%] RQD exceeds the mean value by 8 [%] RQD, which indicates that a

large number of values is statistically regarded as outliers. This, however, is attributed to

the strong representation of rocks with few to no jointing in the Glendoe Tunnel (c.f. Sec.

2.1). Just as for the Faido Adit, the rock-mass class ”excellent” (Deere and Deere, 1988)

is regarded separately because of its strong representation in the data set.
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Figure 3.3: Boxplots of the tunnel-driving parameter and the target parameters, RQD
and RMR, of the Glendoe Tunnel ”1-m data set”. The boxplots of the tunnel-driving
parameters indicate peaked distributions for (a) the thrust force, (b) the cutter-head
torque, (c) the penetration, and (d) an extremely peaked distribution for the cutter-head
speed. The RMR (f) is concentrated within the ”fair” to ”good” classes and the RQD
values (e) are peak in the Class ”excellent”.
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Because the remaining data is distributed evenly between the classes ”very poor” to

”good”, a class with solely poor rock-mass quality data is distinguished from the classes

with medium rock-mass quality for the SVM approach:

• Class 1: “very poor” to ”poor” rock-mass quality described by RQD values from 0

to 50 [%].

• Class 2: “fair” to ”good” rock-mass quality described by RQD values from 51 to

90 [%].

• Class 3: “excellent” rock-mass quality described by RQD values from 90 to 100 [%].

This class separation is slightly different than that of the RQD classification in the Faido

Adit because of the more unbalanced data distribution at the latter test site.

Figure 3.4: Boxplots of the seismic velocities of the Glendoe Tunnel data set. The seismic
S- and P-wave velocities in (a) and (b), respectively, are sampled at a 4-m sampling
interval according to the 4-m cell size of the 1-D seismic tomogram instead of the 1-m
interval depicted for all other parameters in Fig. 3.3.

The RMR shows a similar distribution as in the Faido Adit, with the classes “fair” and

“good” being the best represented in the data set. When the extreme classes are absent

(Fig. 3.3 f) the distribution shows a nearly normal peakedness and a short negative tail,

expressed by a skewness of -1.03 for the RMR (Tab. 3.2). Thus, the definition of classes

for the Glendoe Tunnel and Faido Adit data sets are the same, with the class boundary

for both test sites being set to RMR = 60:

• Class 1: low rock-mass quality, expressed in RMR values from 0 to 60.

• Class 2: high rock-mass quality, expressed in RMR values > 60.

The correlation matrix in Figure 3.5 a gives an overview on the correlation coefficients r

between all tunnel-driving parameters themselves as much as for the RMR and RQD.

From the discussion on the correlation of the tunnel-driving parameters in Chapter 1.5, a

linear correlation between the thrust force, penetration and cutter-head torque may be

expected. The result, however, still suggests little to no linear correlation between the
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tunnel-driving parameters with r being < 0.6. This could be interpreted as a result of the

strong peakedness in the distributions described above, which in turn might be caused by

low variability in the geology. As expected, the highest correlation coefficient r is achieved

between the thrust force and the cutter-head torque, as the torque is directly related to

the thrust force. Given the direct relationship between the two parameters, it might be

argue that either the thrust force or the cutter-head torque should be eliminated from the

data base for the SVM, as no new information is contributed to the classification task;

however, preliminary tests with SVM constructions proved to provide more stable results

when both parameters were included. This was interpreted as a result of noise reduction.

Figure 3.5: Correlation matrix for the Glendoe Tunnel ”1-m data set” exhibits the
Pearson’s correlation coefficient r between each pair of variables. The linear correlations
between the tunnel-driving parameters and the rock-mass quality seems generally negligible
between the rock-quality, expressed as RQD or RMR, and the penetration (pen), thrust
force (thr), cutter-head torque (tor) and cutter-head speed (dri).

The cutter-head speed stays constant for both, the RQD and RMR, though a quality

change in the rock conditions should entail a response of the cutter-head speed. This is

interpreted to be caused by the regulations done by the machine driver (Sec. 1.5), which

aims to keep the cutter-head speed at a predefined high level to maintain a high level of

performance of the machine. It is concluded that the parameter has no explanatory power

on the variance in the RQD or RMR. Thus, the cutter-head speed is eliminated from the

data base for the SVM.

Based on the discussion in Section 1.6, it is assumed that a non-linear relationship persists

between the tunnel-driving parameters and the rock-mass quality expressed in RQD or
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RMR, respectively. Thus, a non-linear relationship tunnel-driving parameters and the

rock-mass quality is set as the null hypothesis. The regression curves in Figure 3.6 illustrate

the strong concentration of data points at high RQD values. This restriction of samples

to a small subspacedo not lead to a general conclusion about the correlation behavior

between tunnel-driving parameters and RQD. The null hypothesis must also be rejected

for the RMR because of the strong scattering of samples in Figure 3.7 a-c.

Figure 3.6: Regression curves between tunnel-driving parameters and the RQD from the
Glendoe Tunnel data set. The black circles mark single data points, the red dashed lines
mark the 95 % confidence bounds, and the blue line is the regression curve. Generally,
there is no correlation detectable between the tunnel-driving parameters and the RQD.

In Figure 3.8 the Young´s modulus Edyn is plotted against the RQD and the RMR,

respectively. The null hypothesis of a logarithmic correlation between RQD and Edyn is

rejected as much as the null hypothesis of a linear correlation between RMR and Edyn.

The theoretically determined regression curves for both, RQD and RMR, deviate from

the measured curve trends in the gradients and the y-axis intercepts. It is concluded

that the relationship established by El-Naqa (1996) cannot be verified. The RQD values
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again exceed a 100 [%] RQD and are thus outside the defined range. It can therefore

be concluded that the equation set by El-Naqa (1996) does not sufficiently describe the

relationship between Edyn and RQD.

Figure 3.7: Regression curves between tunnel-driving parameters and the RMR from the
Glendoe Tunnel data set. The black circles mark single data points, the red dashed lines
mark the 95 % confidence bounds, and the blue line is the regression curve. Generally,
there is no correlation detectable between the tunnel-driving parameters and the RMR.

Inspection of the parallel coordinate plots revealed that no specific patterns in the feature

space could be visually determined for the RQD or the RMR classes (Fig. 8.5 in the

Appendix). The extremely peaked distribution of the cutter-head speed is also reflected

in the parallel coordinates plots of the RQD and the RMR. In this visualization of

dependencies between several parameters, the cutter-head speed bundles all lines into one

point, disregarding a few strong outliers (cf. Fig. 8.6 in the Appendix). The parameter

was removed from the data set before training of the algorithm to save computational

time.

In the parallel coordinate plots of the “4m-data set” 8.5 and 8.6, which include tunnel-
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Figure 3.8: Relationship between elastic dynamic modulus Edyn and rock-mass quality
descriptive parameters RQD (left) and RMR (right). No correlation was detected during
regression of the collected data (regression line ym in red) and Edyn. The RQD or RMR
values calculated using the equations set by El-Naqa (1996) are significantly larger than
the measured values tough the curve trends (regression line yc in blue) exhibit similar
slopes.

driving parameters as much as seismic velocities, the sparse character of the data base

and the high amount of missing values in the seismic data becomes apparent.

3.2.1 Final Remarks

For both target parameters, the majority of the data indicates good rock quality, which

was expected from the general geological setting at both test sites. Few data points are

realized in the low rock-quality classes. The narrow value range and the concentration of

values for high to middle rock-mass quality requires the merging of RQD classes (Deere

and Deere, 1988) and RMR classes (Bieniawski, 1989).

Neither linear correlations between the geotechnical parameters nor logarithmic correlations

between seismic velocities and rock-mass quality could be verified in the statistical analysis.

In Chapter 1.6.1, the theoretical correlations among the parameters involved have been

discussed; however, the correlations have often been determined during laboratory studies

with only one or two parameters changing at a time. Apart from complex interaction

patterns that may not be detected by classical statistical evaluation, the causes for the

weak correlation might be:

• the small size of the data sets,

• the over-representation of rocks with high rock-mass quality in the available data

sets,
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• noise or possible errors during data acquisition.

The lithology along the surveyed tunnel sections did not change significantly, given that

jointed, unweathered hard rock was excavated during both surveys. Accordingly, the RMR

values vary especially within the Classes “fair” to “good”, while the mean RQD is slightly

higher than expected. The restricted size of the available data sets and the limited number

of samples for low rock-mass quality present a the major challenge for the automated

classification via SVMs.



4 Development of a Support Vector

Machine for Rock-Mass Classification

The classification of the rock-mass quality, expressed in RMR or RQD classes, along the

Faido Adit and the Glendoe Tunnel by Support Vector Machines (SVM) is based on

seismic velocities and tunnel-driving data. The set-up of the seismic surveys was adapted

to the specifics of the tunnel construction at each site, resulting in different cell sizes of the

tomographies for the Faido and the Glendoe survey and subsequently to unequal resolutions

of the datasets. The tunnels were excavated using different tunnel-excavation modes –

TBM in the Glendoe Tunnel and drill-and-blast in the Faido Adit– and reinforcement

layouts. Because of the different preconditions, a joint interpretation of the datasets would

not be valid; however, the SVM approach developed in this chapter should be applicable

to all classification tasks in the present study, and also for application to a wider range of

future data sets.

The surveyed tunnel sections are relatively short and the rock masses exposed in each

tunnel do not include a wide variety, such that there is a tight grouping of rock-mass class

and a lack of a range of data falling into each of the classes integral in the RMR or RQD.

In Chapter 3 it was shown that in the Faido and Glendoe datasets, two and three classes

are distinguished in the RMR and RQD, respectively. Thus, two different classification

problems are set:

(a) a binary classification for the RMR and

(b) a multi-class classification for the RQD.

It follows that the approach developed in this chapter should be capable to deal with

multi-class classification problems, as well as binary classification tasks. Therefore, despite

the fact that a binary classification approach would probably suffice for the RMR in this

study, the type of SVM and the work flow for its construction are kept constant by usage of

a multi-class SVM. This is possible as the multi-class classification approach pursued here

is also able to deal with the simpler case of a binary classification. Hence, the consistent

handling of data for RQD and RMR classification is ensured.

Taking into account the two different sampling intervals for the Glendoe Tunnel (cf.
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Chap. 3) and the aforementioned necessity to evaluate the Glendoe and Faido datasets

independently, a total of 6 classification tasks are set that are summarized in Table 4.1.

Survey Area Resolution [m] Label Feature Matrix

Faido 0.5 RQD Vp, Vs

Faido 0.5 RMR Vp, Vs

Glendoe 1.0 RQD pen, thr, tor
Glendoe 1.0 RMR pen, thr, tor
Glendoe 4.0 RQD pen, thr, tor,Vp, Vs

Glendoe 4.0 RMR pen, thr, tor,Vp, Vs

Table 4.1: Overview on the classification tasks for the Faido and Glendoe survey. The
classification tasks differ in either target or feature matrix. The parameters appearing in
the feature matrix are the penetration rate (pen), the thrust force (thr), the cutter head
torque (tor), the P-wave velocity Vp, and the S-wave velocity Vs.

The process of SVM construction is depicted in Figure 4.1. Firstly, training and testing

subsets are created from the data base. The following step is the training process, which

includes a grid search on the SVM-parameters. Afterwards, a SVM-model is created that

contains information on the support vectors and the spatial position of each separating

hyperplane between the respective classes. The model is then tested to determine the

generalization ability and the model with highest generalization ability is selected as the

best model for further predictions.

Feature Selection

Before the actual SVM construction, features in the input space are selected. The focus in

feature selection lies on the reduction of the size of the feature matrix, in order to save

computational time and to reduce noise in the prediction performance. Features that have

a low impact on the explanatory power of the feature matrix are omitted. Tools for feature

selection are, e.g., principal component analysis or graphical models. Applied to rock-mass

classification, the latter could, e.g., automatically select the tunnel-driving parameters to

be included, depending on the mode of excavation. In this study, the parameter selection

has been based on the availability of the data (number of seismic features that can be

integrated), theoretical considerations (cf. Sec. 1.5) and statistical evaluation (Sec. 3).
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Figure 4.1: Work flow of the implemented multi-class SVM. Firstly, training and testing
subsets are created from the data base. In the subsequent step, the training process follows
that includes a grid search on the SVM-parameters. The grid search includes a fivefold
cross-validation in which the data is mixed randomly to reduce neighboring effects. Then
a multi-class SVM is created that contains information on the support vectors and the
spatial position of each separating hyperplane between the respective classes. Subsequently,
the model is tested to determine its generalization ability. Finally, the model with the
highest generalization ability is selected as the best model for further predictions.

Data Subset Generation

In Figure 4.2 the construction of the label vector y and the corresponding feature matrix X

is depicted. The rock-mass class at a specific tunnel location is called a label yi that belongs

to the label or target vector y. The values of all measured seismic and tunnel-driving

parameters build the feature vector xi for the label yi. All feature vectors xi in a dataset

or data subset build the feature matrix X. A feature vector xi in conjunction with its

corresponding label yi is a data sample.
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Figure 4.2: Construction of the label vector and the feature matrix from a dataset. The
rock-mass class at a specific tunnel location is called label yi of the label or target vector y.
The values of all measured seismic and tunnel-driving parameters built the feature vector
xi for the label yi. The feature matrix X includes all feature vectors xi in the dataset.
The illustration is based on data sampled at a 4-m interval from the Glendoe project.

In the present study the data base is small so that it should be entirely used for training;

however, data points that have been used for training cannot also be used for testing,

because the generalization ability cannot be tested by using already known data samples.

This problem is overcome by using a kind of cross-validation with the leave-one-out

technique. Using this technique, the dataset is subdivided into equally sized subsets of

data. Apart from one subset S that is used for testing, the data is used for training. A

SVM model is created that is independent from the subsequent steps where the part of

the data used for testing is shifted to the next data subset S+N and again all other data
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samples are used for training. This procedure is then repeated until the whole dataset has

been used for testing once (Fig. 4.3 a).

Figure 4.3: Generation of data subsets for training and testing: (a) By using the leave-

one-out technique, the dataset is subdivided into equally sized subsets of data. One subset
(marked black) is used for testing and the rest of the data is used for training (highlighted
gray). The method in (b) is a variation of the leave-one-out method, where the size of
the test dataset depends on the distribution of the rock-mass classes (labels) along the
surveyed tunnel section. The test dataset is chosen according to the largest homogeneous
label region to avoid overfitting as a consequence of the influence of neighboring values.

The data collection along a tunnel wall is usually continuous, such that the two consecutively

collected data points are neighboring values. In Chapter 2, the idea of regionalization of

the rock mass along geological cross sections was introduced. Along a tunnel wall, several

consecutive data samples can comprise the same label, e.g., the same RMR-class. These

data samples thus constitute homogeneous regions that are reflected in the label vector

y; however the independence of the data samples in the feature matrix is required to

counteract overfitting of the algorithm. Due to the nature of the datasets available (small

size, continuous logging), this dilemma remains.

To reduce the influence of neighboring values, the size of the test dataset can be chosen
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according to the largest region that continuously comprises the same labeling (cf. Fig.

4.3b). In doing so, it is guaranteed that at least one region has to be predicted without

forming part of the training data. This way, the generalization ability and, subsequently,

the predictive performance of the model can be tested. Otherwise, the unvarying ”rock

block” will be present in the test and training dataset, leading to misconceivingly high test

results on the prediction performance of the model. The repetition of the process is then

in accordance with the leave-one-out method, but the number of iterations depends on the

size of the longest encountered homogeneous region of the SVM target and consequently

on the size of the test dataset. The length of the training and test dataset as well as the

number of iterations for SVM construction thus depend upon the distribution and the

variance in the labels that are the equivalent to the rock-mass classes here.

After the subsets are generated, the feature matrices for both test and training data are

transformed to sparse format to save computational time (Fig. 4.2). The training data is

then scaled to [0,1] and the test data is scaled relative to the maximal and minimal values

of the training data.

Kernel Selection

In the next step, the SVM is trained by using the kernel-trick that was introduced in

Section 1.8. The kernel functions are crucial to the performance of the SVM as they

explicitly define the feature space and the capacity of the model. The most common kernel

functions are:

• Linear kernel: K (xi, xj) = xT
i xj.

• Polynomial kernel: K (xi, xj) =
(

γxT
i xj + r

)d
, γ > 0.

• Gaussian (RBF) kernel: K (xi, xj) = exp
(

−γ ‖ xi − xj ‖
2
)

, γ > 0.

• Sigmoid kernel: K (xi, xj) = tanh
(

γxT
i xj + r

)

.

With, γ, r and d being the kernel parameters (Hsu et al., 2010) , xi is being the feature

vector (Fig. 4.2) and yi the label of the observational point i. For the SVM implementation

in this study, the RBF kernel was chosen because:

1. The RBF is able, unlike the linear kernel, to map the feature vectors into a higher

dimensional space, so that classifications with non-linear relationships between the

class labels and their attributes can be handled. Furthermore, the linear kernel

might be regarded as a special case of the RBF kernel (Keerthi and Lin, 2003).

2. In comparison to the polynomial kernel, the RBF kernel needs fewer hyper-parameters

(leading to a reduced model complexity) and has fewer numerical difficulties (Hsu
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et al., 2010).

3. The RBF matrix is semi-positive, as required, under most conditions, unlike the

matrix of the sigmoid kernel (Lin and Lin, 2003). Furthermore, the sigmoid kernel

does not usually lead to better results than the RBF kernel.

A case where the application of an RBF-kernel might become difficult is for very large

feature spaces combined with a small kernel bandwidth γ. Under these conditions the use

of an RBF kernel might lead to overfitting because it is distance-based (Kanevski et al.,

2009).

Training

The term ”training” describes the process of optimizing the coefficients of the SVM in

Equation 1.8.13 by using the quadratic programming problem (QP) in Equations 1.8.8

to 1.8.9. To solve the QP problem, the LIBSVM-package uses the sequential minimal

optimization algorithm first proposed by Platt (1998). The quadratic function in Equation

1.8.8 is iteratively minimized by sequentially updating a couple of variables in each iteration

Kanevski et al. (2009). Using the RBF kernel, the variables that have to be updated in

the QP are:

1. the kernel bandwidth γ from Equation 4 and

2. the trade-off constant C , which regulates the impact of training errors on the margin

boundaries and which is also called penalty parameter.

With increasing values of C , both the tolerance against training errors and the margin

around the separating hyperplane decrease. In Section 1.8 it was also noted that the

selection of the penalty parameterC is arbitrary. This is also true for the kernel bandwidth

γ. Subsequently, a parameter grid search over a user defined interval, where the grid-points

are defined by pairs of C and γ values, is carried out.

SVMs were originally designed for binary classification, and their application to multi-class

problems is still a field of ongoing research (Platt et al., 2000; Wu et al., 2004). Of the

multi-class methods the one-against-one approach(Knerr et al., 1990) and the directed

acyclic graph SVM (Platt et al., 2000) have shown the best performance in practical

applications (Hsu and Lin, 2002). The two approaches (Fig. 4.5) share the same training

algorithm that is also used in this study.

For training, n (n − 1) /2 binary SVMs are constructed at each grid-point in the parameter

grid search, where n is the number of classes in the classification. A voting tournament

scheme is established after the ”winner-takes-all” principle. This means, the winning class
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for the training sample x is usually taken according to the maximum response of the

binary classifiers, in consideration of the actual decision function. Uncertainty regions,

however, might occur when two classes have been assigned to the same data example

during the binary-classifications (Fig. 4.5 b) . In this case, the usual way of determining

the winner class is to choose the class with the smaller index, making the selection process

arbitrary (Huang et al., 2006). The pair of C and γ values that is selected as the best fit

to the optimization problem is than applied to the n (n − 1) /2 binary classifiers developed

during model construction. This means, the decision functions of all binary classifiers in

the constructed model share the same values of C and γ.

In the LIBSVM-package, the performance of the algorithm during training is calculated

for each grid-point in the parameter grid search by calculating the average accuracy over

all classes At:

At =
1

(

Tc

Nx

) · 100, (4.0.1)

with Tc being the sum of correctly classified labels over all classes and Nx being the number

of all feature vectors in the training data set. This calculation of the SVM performance

does not take into account the class size. Therefore, classes which are strongly represented

in the training data can lead to falsely high training accuracies. The binary classifications

that are carried out for each pair of classes often lead to differently well defined class

boundaries, especially when classes including few data points are present. As a result,

the finally constructed SVM may show a high total accuracy Tc but rarely classifies the

labels of small classes correctly; however, the selection of the best fit SVM is based on

the average accuracy Lc. Thus, the test labels are also assigned to the largest class. As a

result, the average accuracy Lc can be relatively high while the generalization ability is

extremely low because the smaller or less well defined classes are omitted. To avoid this

behavior a new calculation of the model accuracy, which takes into account the weighting

of the classes, has been programmed during this study and is calculated by:

Aw =
1

n
·

((

TAc1

Nc1

)

+
(

TAc2

Nc2

)

+ ... +
(

TAcn

Ncn

))

· 100, (4.0.2)

with Aw being the weighted averaged accuracy over all classes, TAci
being the number

of correctly classified labels in each single class (i = 1, 2, ..., n) and Nci is the number of

feature vectors in each single class. It is especially important to use Aw if only small

datasets are available, as is the case in the present study. Moreover, the training function

now also provides the percentage of correctly classified feature vectors with respect to the

number of feature vectors in each class
(

Lci

Aci

)

· 100.
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To achieve a stable result, a five-fold cross-validation (Fig. 4.1) is carried out for each point

in the grid search. During the cross-validation, the data is randomly mixed to counteract

neighboring effects. The selection the number of cross-validation iterations is arbitrary

and has been set to five here after several test runs showed that increasing the number of

iterations further did not lead to better results.

The generalization ability, or performance of the model, is influenced by the two parameters

C and γ in the following way:

1. The higher γ and the smaller C, the greater the tendency to underfit. The

stronger the tendency to underfit, the simpler the model. In the case of severe

underfitting, the entire data space is assigned to the majority class.

2. The smaller γ and the higher C, the stronger the tendency to overfit. The

overfitting is additionally characterized by high training accuracies, a high number of

SVs and poor generalization ability, leading to low prediction accuracies in the test

phase. In the case of severe overfitting the model creates small regions around the

training examples of the minority class, while the rest of the data space is classified

as the majority class. Large values of C constrain the weights α less and allow the

model to follow the data samples exactly and even fit the noise and outliers if they

exist, expressing a belive in the quality of data.

Thus, an optimal classification is achieved with intermediate values of the parameters C

and γ (Fig. 4.4); however, there are no definite criteria as to when the parameters are

to be regarded as ”high” , ”intermediate” or ”low” (Kanevski et al., 2009). Moreover,

numerical problems might arise for large or very small C and γ values (Keerthi and Lin,

2003).

The training time is strongly influenced by the cross-validation process. This dependence

cannot be described analytically but the training time in a Gaussian RBF kernel generally

increases for increasing C and γ values. To save computational time, a rough grid search

was carried out first. As an example: For the RMR classification of the Glendoe Tunnel

dataset at 1-m sample spacing, which contains exclusively tunnel-driving parameters in

the feature matrix, a parameter search in the range of log(C) = [-5:1:15] and log(γ) =

[-15:1:5] takes about 4h ,where the first and the last value detail the first and the last

value in the search space, respectively. The second value denotes the incremental step size.

In comparison, the cross validation for a grid in the rangelog(C) = [-10:1:20] and log(γ)

= [-10:1:20] takes around 12h.

In the next step the whole training set is trained with the best found set of C and γ values

and a final model for the present run is generated (Fig. 4.1). The SVM model includes

the decision values and the location of the support vectors for each class. Therefore, the
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Figure 4.4: The selection of values for penalty parameter C and kernel bandwidth γ
influences the model complexity and can lead underfitting, overfitting or good model
generalization ability. To find the best fit parameter set, a 2-D grid is constructed and the
binary classifiers are trained on each pair of C and γ at uniform incremental steps in this
grid. This grid search is the step in model construction that takes most computational time.
Comparatively large γ values lead to underfitting, while large C values, in comparision to
γ, lead to overfitting (Soure: Keerthi and Lin, 2003).

spatial location of the hyperplane can be obtained from the model.

Testing

The testing is the last part of the process, where the ability of generalization of the

constructed model to new data points is checked. It was mentioned above that the

one-against-one approach is implemented in the LIBSVM-package by default and that the

directed acyclic graph of the DAGSVM showed similar results in practical applications (Hsu

and Lin, 2002); however, the DAGSVM has one major advantage over the one-against-one

approach during testing because it avoids uncertainty regions during prediction by using a

rooted binary directed acyclic graph, while the one-against-one approach uses the same

scheme as described for the training process. The rooted binary directed acyclic graph

exhibits n (n − 1) /2 internal nodes and leaf nodes (Platt et al., 2000) (Fig. 4.5), each node

standing for a binary SVM. Given a test sample x, starting at the root node, the binary

decision function is evaluated. In accordance with the winning class of the binary SVM,

the next binary classifcation to be evaluated is chosen.
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Figure 4.5: Comparison of the DAGSVM to the one-against-one SVM method. (a) Sketch
of a directed acyclic graph from the DAGSVM to find the most fitting class out of four
classes. The numbers beside the nodes stand for the classes which have yet to be decided
on. (b) In the one-against-one approach, a binary classifier (SVM) is constructed for each
pair of classes. A voting scheme is constructed to combine all the pairs of classifiers. In
the region highlighted gray, each class has 2 wins and the final decision has to be resolved
choosing the class with merely the smaller index (Figure modified after (a) Platt et al.,
2000 and (b) Kanevski et al., 2009).

Subsequently, a path is run through until the leaf node indicating the actual predicted

class is reached. This way, no uncertainty regions occur because no double assignement

can take place. Another advantage of using the DAGSVM approach is that some analysis

of generalization can be established. Such theoretical results are not established for similar

binary multi-class approaches like the one-against-one. Just as for the training accuracy,

the calculation of the overall prediction accuracy was reprogrammed according to Equation

4.0.2.

4.1 Programming Environment

The code for the presented SVM was programmed using algorithms from the LIBSVM-

library (Chang and Lin, 2010) in the version 2.89-3. This library is one of the most widely

used for SVM applications (Scheidler, 2008; Welle, 2009; Yao et al., 2008; Kanevski et al.,

2009) and freely available on the Internet. It can be integrated into applications under C,

Java, Matlab, R and several other coding languages. Here, the interactive programming

environment Matlab was used. It allows for the development of programs and algorithms
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for the analysis and visualization of data and numerical calculations. The code can be

used in the programming environment as algorithms and programs or it can be compiled

in stand-alone programs or integrated into applications (e.g. Excel Add-Ins). There

are also various toolboxes, with libraries of custom-designed functions, that expand the

programming environment. A major advantage is, that the code written in Matlab can be

easily translated to C/C++, FORTRAN, Java and other programming environments. The

LIBSVM-code is also programmed in C/C++ and afterwards translated to Matlab. The

described re-programming of the calculation for the training accuracy was therefore done

in the C-code of the training function. Thus, the code used here can be easily implemented

into an interpretation system for seismic data and tunnel driving data.



5 Results of Rock-Mass Classification

using SVMs

The data set of the Faido Adit (FA) is composed of 897 data samples at a 0.5 m sample

spacing. The samples are distributed along seven seismic profiles that are separated from

each other by a few tens to hundreds of meters. The feature matrix, for both the RQD

and the RMR classification task in the Faido Adit, comprises the normalized seismic S-

and P-wave velocities.

The data sets for the RMR and RQD classifications along the seismic profile in the Glendoe

Tunnel (GT) between -6490 to -6040 m consist of 401 or 103 samples at either a 1 m or

4 m sampling interval, respectively. The 1-m data set includes exclusively tunnel-driving

parameters in the feature matrix, while results from seismic velocity measurements add to

the feature matrix in the 4-m data set. The classification tasks thus differ from each other

either in the target or the sampling interval, as well as in the size of the feature matrix.

From the general remarks on over- and underfitting in Chapter 4, it follows that a selection

of intermediate values for the parameters C and γ is desirable in order to achieve an optimal

classification result; however, there are no definite criteria as to when the parameters are

to be regarded as ”high” , ”intermediate”, or ”low”. Discussions in literature are usually

about ”sufficiently” large or small values (e.g., Kanevski et al., 2009 or Keerthi and Lin,

2003). To determine the search space for the grid search on penalty parameter C and

kernel bandwidth γ, values from literature were taken into account, as well as examples

from the LIBSVM-webpage. The values indicate that the range in a normal search space

does not exceed values of log(C) between -5 to 15 and of log(γ) between -15 to 5. To test

the adequacy of this grid size, several test runs with wider and smaller grids at different

incremental steps were carried out on the available data sets. The results showed that the

above mentioned grid size is sufficiently large and no better classification results are to be

expected for a wider search. The grid search is thus carried out in the interval log(C) =

[-5:1:15] and log(γ) = [-5:1:15], where the first and the last value detail the first and the

last value in the search space, respectively. The second value denotes the incremental step

size.

The share of each class on the total amount of training or test labels varies between the

data subsets generated in preparation for the SVM construction (cf. Chap. 4). Of those,

only the training subset that provided best training results and the corresponding test

83
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subset of each classification task are detailed in Table 5.1 for the FA and in Table 5.3 for

the GT.

5.1 RQD Prediction on the Faido Adit Data Set

For the RQD classification in the Faido Adit (FA-RQD), there are 376 training data points

and 521 test data points (Tab. 5.1). Thus, the test data set is larger than the training

data set, which results from the homogeneity of the rock-mass quality over large distances

of the tunnel alignment.

The weighted training accuracy Aw is 85 %, which suggests a good overall classification

result (Tab. 5.2). In comparison to Classes 2 and 3 that comprise 146 and 176 samples,

respectively, Class 1 is slightly underrepresented with 54 samples. Class 1, however, achieves

an extremely high training accuracy of 96 % . For Class 2 and Class 3, classification results

of 70 % and 90 % training accuracy, respectively, are achieved. The weighted training

accuracy Aw is used to determine the penalty parameter C and kernel bandwidth γ for the

final construction of the binary classifiers for the multi-class classification by automatically

selecting the smallest parameter set C/γ achieving the highest Aw (Fig. 5.1).

Notation Unit RQD RMR

Interval [m] 0.5 0.5
Nx [No.] 376 609
NC1 [No.] 54 298
NC2 [No.] 146 311
NC3 [No.] 176 -

Px [No.] 521 288
PC1 [No.] 4 169
PC2 [No.] 4 119
PC3 [No.] 513 -

Table 5.1: Description of the training and test data set for the RQD and RMR classification
tasks in the Faido Adit, respectively. The number of feature vectors in the training set
is specified as Nx, the number of feature vectors in each class as NC1−3, the number of
feature vectors in the test set is Px and the number of feature vectors of each single class
in the test set are named PC1−3.
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Notation Unit RQD RMR

Interval [m] 0.5 0.5
log(C) 14 15
log(γ) -15 -15
Aw [%] 85 76
TAC1

[%] 96 70
TAC2

[%] 70 81
TAC3

[%] 90 -

s [%] 80 74
sC1 [%] 100 76
sC2 [%] 78 72
sC3 [%] 75 -

Pw [%] 74 70
PAC1

[%] 0 97
PAC2

[%] 100 43
PAC3

[%] 73 -

Table 5.2: Details on the training and test results of the RQD and RMR classification
tasks in the Faido Adit. The notation includes the logarithm of the kernel bandwidth
log(γ), the logarithm of the penalty parameter log(C), the weighted averaged training
accuracy Aw, the number of correctly classified labels in each respective class TAC1−3

,
the number of support vectors for all classes s and for each class separately sC1−3. The
weighted average prediction accuracy is denominated Pw and the prediction accuracy of
each single class is listed as PAC1−3

.

All binary classifiers are constructed with the same set of parameters by anewed training.

In the case that classifiers would be trained with different parameter sets, they would

not map to the same feature space (cf. Sec. 1.8) and could therefore not be compared.

The binary classifiers are stored in the model, which is then tested on the corresponding

test data subset. Information on the generalization ability of the model is obtained by

considering the number and distribution of support vectors of each class and the complexity

of the optimal hyperplane H. In conjunction with the prediction performance tested on

the test data, the model performance can be evaluated.

The weighted training accuracy Aw increases steadily with increasing penalty parameter C,

for fixed values of the kernel bandwidth γ (Fig. 5.1), which suggests that an optimal

solution is not found. The latter provides knowledge on the prediction performance, and

thus, on the generalization ability of the model. The grid-search does not show the expected

”good region” from Figure 4.4 in Chapter 4 even at test runs with larger C or larger γ.

The grid-search result thus provides extreme values of log(C) = 14 and log(γ) = −15 (Fig.

5.1 and Tab. 5.2). It should be noted that the optimal set of parameters C and γ is not

only dependent on the weighted training accuracy Aw, but is also influenced by the model
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complexity and the prediction result. The automated selection of a parameter set C/γ

has been carried out by first evaluating the weighted training accuracy Aw during the

grid-search over all created subsets. If the weighted training accuracy Aw increases, the

weighted prediction accuracy Pw on the corresponding test data set is determined and in

case that Pw also increases, the parameter set C/γ is stored. Thus, the weighted prediction

accuracy Pw is regarded only if an increase in the weighted training accuracy Aw has been

measured previously. To check the validity of this approach, more balanced parameter

sets (e.g., log(C)/log(γ) = (4, 0) ) were selected at the expense of the weighted training

accuracy Aw; however, none of these tests lead to better prediction performance or lower

model complexity. In contrast, the constructed model and the prediction performance

are exactly the same as before. This was not expected, as the selection of the optimal

parameter set C/γ is supposed to have great influence on the generalization ability of the

model.

Figure 5.1: Results from the grid search on C and γ for the RQD classification based
on the data set of the Faido Adit. The weighted training accuracy Aw increases steadily
with increasing penalty parameter C, but remains constant for the kernel bandwidth
γ. The parameter set C/γ with the smallest values for the highest achieved accuracy is
automatically selected as best-fit parameter set for model construction (yellow star).

In Table 5.2 the number of support vectors si in each class is detailed together with

the percentage of support vectors with respect to the entire size of the respective class.

Between 75 %, for Class 3, and 100 %, for Class 1, of the training data was used as support

vectors. These are extremely high values.

In the test data set, Classes 1 and 2 are underrepresented because they are only composed

of 4 samples each, in comparison to the 513 test samples that comprise Class 3 (Tab. 5.2).

The best fit model construction was carried out in the first run, which uses the largest

homogeneous label area as the test data set (Fig. 5.2). This explains the overwhelming

representation of Class 3 in the test data. While none of the Class 1 data samples was
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correctly predicted, Class 2 reached 100 % and Class 3 achieved 73 % of correctly predicted

data samples (Tab. 5.2).

Figure 5.2: Spatial distribution of training and correctly or incorrectly classified test
samples in the RQD classification along the tunnel alignment of the Faido Adit. The seven
seismic profiles are highlighted as gray bars, the exact measured RQD is shown as a black
line and the training samples are tagged as black circles. The test samples are tagged as
either correctly (green dots) or incorrectly (red dots) predicted labels.

To get an insight on the model complexity, the distribution of the support vectors from

two classes are highlighted in Figure 5.3. The optimal hyperplane H cannot be visualized

as such but to give an insight in the model complexity it is sufficient to determine the

decision boundary BCi between two classes in the input space. The optimal hyperplane H

is defined as a decision boundary in the higher dimensional feature space. The decision

boundary is calculated by using the euclidean norm of the support vectors to the grid

points of an equidistant 2-D grid in the input space. Subsequently, the corresponding

class label is allocated to this grid point. For the RQD classification discussed here, the

model complexity is rather low, because the areas assigned to the classes stretch out over

large connected parts of the space. Well defined areas for the class boundaries Class 1 vs.

Class 2 (C1-C2), Class 1 vs. Class 3 (C1-C3) and Class 2 vs. Class 3 (C2-C3) are depicted

in Figures 5.3 a-c, particularly in the upper right-hand sides.

For the definition of the optimal decision boundary BC1−C2 of the binary classification

task C1-C2 in Figure 5.3 a, a large number of densely packed support vectors are necessary

above and below Point 1 to define BC1−C2. Moreover, the support vectors of the opposing

classes, indicated by black circles for support vectors of Class 1 and green circles for

those of Class 2, are situated at an extremely short distance, so that the margin becomes

extremely small in this subspace. At Point 2 in Figure 5.3 b, a segment of the optimal

decision boundary BC1−C3 is not sufficiently defined by support vectors. The predictability
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of samples from the test data set situated in this subspace would be low. Figure 5.3 b at

Point 3 and in Figure 5.3 c at Point 4 illustrate two areas with strong accumulation of

support vectors. These support vectors are composed of either Classes 1 and 3 (Fig. 5.3

b) or Classes 2 and 3 (Fig. 5.3 c) for BC1−C3 and BC2−C3, respectively. It can be assumed

that in these areas strong noise blurs the class boundaries. For better understanding, the

reader should remember that the support vectors are feature vectors of a specific class, and

that not all feature vectors are necessarily support vectors. The values of the parameters

contained in the feature vectors can determine the location of the feature vector in the

data space and in the feature space (cf. Fig. 1.3 in Sec. 1.8 and Fig. 4.2 in Chap. 4). In

case a parameter is especially noisy, or patterns in the feature matrix of different classes

are similar, more support vectors are needed to define optimal decision boundary B. As

B is mapped to a lower dimension, the support vectors may appear to lie within the class

area (e.g., Point 5 in Fig. 5.3), rather than at the edges; however, the scope here is to

determine the model complexity and to elaborate on the quality of the definition of the

class boundaries.

The model complexity is relatively simple, even though the number of support vectors is

high and the penalty parameter C is large in comparison to the kernel bandwidth γ. A

large number of support vectors and large C values are indicators of overfitting. In the

case of overfitting, the model complexity increases because the model is strongly fitted to

the data. The prediction performances of Classes 2 and 3 are high. As a result, it can be

assumed that a RQD classification based on seismic velocities is generally possible; however,

the generalization ability on Class 1 is low. In fact, the small Class 1 was completely

assigned to the large Class 3. Note that the decision boundary between Classes 1 and 3 is

partially, imprecisely defined. Moreover, the Class 1 feature vectors in the training data

were completely used as support vectors for this class. It is, therefore, obvious that the

binary classifier between Classes 1 and 3 did not generalize well. This might have been

expected instead for neighboring classes like RQD Classes 1 and 2 that express very poor

to fair rock-mass quality and good rock-mass quality, respectively. The interrelationship

of the discontinuity spacing and, consequently, the RQD with the seismic velocities is

acknowledged in literature (e.g.,Deere and Deere, 1988). Additionally, the distinction

between Classes 2 and 3 is feasible. Therefore, it may be speculated here that either the

size of Class 1 is crucial or that the samples labeled as Class 1 do not contain combinations

of features that are specific to this class. Class 1 contains the widest range of values

between 0-75 [%] RQD and, moreover, the geotechnically most significant low rock-mass

quality data. In contrast to the rock in Class 3 that exhibits few discontinuities, the Class 1

rock contains discontinuities of various kinds and conditions. It might be interpreted that

the resulting variability in the data reduces the ability of the algorithm to generalize rules
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from the data further in addition to the small class size.

5.2 RMR Prediction on the Faido Adit Data Set

With 609 samples, the training data set of the RMR classification on the Faido Adit

data set (FA-RMR) is significantly larger than that of the FA-RQD classification. Class 1

contains 298 data samples of low rock-mass quality with RMR values ≤ 60 and is thus in

balanced with Class 2, which contains 311 samples of high rock-mass quality expressed in

RMR values > 60 (Tab. 5.3). The weighted training accuracy Aw achieves an acceptable

value of 76 % during the grid-search; however, Aw increases steadily with increasing penalty

parameter C until log(C) = 12 , at which point it then decreases slightly until it shows

an increase of a few percent in Aw at log(C) = 15 . Changing the kernel bandwidth

γ does not influence the result at all. The accuracies of the single classes are slightly

higher for Class 2 with 81 % in comparison to Class 1, which has 70 % correctly classified

feature vectors (Tab. 5.2). Equal to the RQD classification task, the automatically stored

parameter set C/γ exhibits extreme values, with C being much larger than γ (log(C) = 15

and log(γ) = −15; Fig. 5.4). Again, test runs for verification of the parameter selection

process were carried out but again the model construction was not affected. As a result, it

is assumed that the model construction and the prediction performance are not influenced

at all by the training result or the parameter selection.

Figure 5.4: Results from the grid search on C and γ for the RMR classification based
on the Faido Adit data set. The weighted training accuracy Aw increases with increasing
penalty parameter C but is constant for increasing kernel bandwidth γ. The parameter set
C/γ with the smallest values for the highest achieved accuracy is automatically selected
as best-fit parameter set for model construction (yellow star).

For both classes, around 2

3
of the training samples were used as support vectors (Tab.

5.2). The larger the number of support vectors, the more complex the model becomes.
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Figure 5.5: Spatial distribution of training and correctly or incorrectly classified test
samples in the RMR classification along the tunnel alignment of the Faido Adit. The
seven seismic profiles are highlighted as gray bars, the exact measured RQD is shown as
a black line and the training samples are tagged as black circles. The test samples are
tagged as either correctly (green dots) or incorrectly (red dots) predicted labels.

The usage of 2

3
of training as support vectors indicates that the generalization process is

not optimal; however, an acceptable weighted prediction accuracy Pw of 70 % is achieved

for the FA-RMR classification, so that Pw is nearly as high as the weighted training

accuracy Aw, which could be regarded as a sign of successful generalization. Nonetheless,

the prediction accuracy varies strongly between the single classes, with 97 % correctly

predicted Class 1 labels and 43 % correctly predicted Class 2 labels (Fig. 5.5). It may be

interpreted that despite the implementation of a directed acyclic graph for the test phase,

the weight put on the class that contained more training samples is much stronger than

for the smaller class.

From Figure 5.5 it is obvious that all falsely classified Class 2 samples are situated in the

seismic profiles a and b, whereas all correctly predicted Class 2 labels are encountered in

the seismic profile g. For the seismic profiles a and b, the total discontinuity spacing st

appears to be generally lower and the uniaxial compressive strength σc generally higher

than those for seismic surveys c-g (cf. Fig. 2.3 in Sec. 2.1.1), which may have influenced

the result, because the seismic velocities are sensitive to changes in the total discontinuity

spacing st and the uniaxial compressive strength σc.

In Figure 5.6 the support vectors of both classes are mainly restricted to a small subspace,

where a large number of support vectors is necessary to define the optimal decision

boundary B with a very small margin, and ”node points”. Examples of such node points

are Points 1 to 3 in Figure 5.6. These indicate that the optimal decision boundary B is
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not well defined in these areas, which could be caused by noise in the data. In Chapter 3

, the low variability of the data and the proximity of a large number of data points to

the class boundary at RMR = 60 are discussed and might be the cause of the poorly

defined optimal decision boundary B. In these classification results, all information from

the model construction indicates an overfitted model. Some connection between the RMR

classes and the seismic velocities is evident but not sufficient in the Faido Adit data set

for an automated rock-mass classification.

Figure 5.6: 2-D plot of the binary classifier (C1-C2-boundary) between Class 1 (green
area) and Class 2 (yellow area) of the RMR classification based on the Faido Adit data
set. The separating optimal decision boundary B is visualized in 2-D by calculating the
euclidean norm of the support vectors in reference to the grid points of an equidistant
2-D grid over the normalized input space and by allocating the class label of the nearest
support vector to the grid point in question. The support vectors of Class 1 are sketched
as black circles and those of Class 2 as purple circles.
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5.3 RQD Prediction in the Glendoe Tunnel 1-m Data Set

The training set of the RQD classification of the 1-m data set from the Glendoe Tunnel

(GT-1-m-RQD) is composed of 332 samples. Of these, 50 samples are assigned to Class 1,

36 samples are assigned to Class 2 and the remaining 246 samples are categorized as

Class 3 (Tab. 5.3). Both, Classes 1 and 2, were not correctly classified during training but

Class 3 had a training accuracy of 100 %, which leads to a weighted training accuracy Aw

of 33 %. The weighted training accuracy Aw remained more or less constant over the whole

search space with variations of < 0.5% . These variations are solely caused by increasing

penalty parameter C at already high values of log(C) > 8. Similar to the two classification

tasks based on the FA data set, increasing γ values have no impact on the training result

(Fig. 5.7). As a result, the smallest possible value for penalty parameter C (log(C) = −5)

is selected in the automated parameter selection (Tab. 5.4). Because all samples were

classified as Class 3 in the training phase, severe underfitting or overfitting is conjectured

for the classification task. Just as for the previous classifications, no variability in model

construction and prediction accuracy were detected in test runs with different parameter

sets C/γ .

Notation Unit RQD RMR RQD RMR

Interval [m] 1.0 1.0 4.0 4.0
Nx [No.] 332 364 29 29
NC1 [No.] 50 139 1 8
NC2 [No.] 36 225 5 21
NC3 [No.] 246 - 23 -

Px [No.] 69 37 12 14
PC1 [No.] 16 9 2 3
PC2 [No.] 7 28 0 9
PC3 [No.] 46 - 10 -

Table 5.3: Description of the training and test data set for the RQD and RMR classification
tasks in the Glendoe Tunnel. The number of feature vectors in the training set is specified
as Nx, the number of feature vectors in each class in the training subset Nc1−3, the number
of feature vectors in the test set is Px and the number of feature vectors of each single
class in the test set are named Pc1−3.
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Notation Unit RQD RMR RQD RMR

Interval [m] 1.0 1.0 4.0 4.0
log(C) -5 15 -5 -5
log(γ) -15 -15 -15 -15
Aw [%] 33 50 34 50
TAC1

[%] 0 7 0 0
TAC2

[%] 0 93 20 100
TAC3

[%] 100 - 83 -

s [%] 60 78 66 72
sC1 [%] 60 96 100 100
sC2 [%] 91 68 100 62
sC3 [%] 53 - 57 -

Pw [%] 33 50 33 50
PAC1

[%] 0 0 0 0
PAC2

[%] 0 100 0 100
PAC3

[%] 100 - 100 -

Table 5.4: Details on the training and test results of the RQD or RMR classification
tasks in the Glendoe Tunnel. The notation includes the logarithm of the kernel bandwidth
log(γ), is the logarithm of the penalty parameter log(C), the weighted averaged accuracy
over all classes Aw, the number of correctly classified labels in each respective class TAC1−3

,
the number of support vectors for all classes s and for each class separately sC1−3. The
weighted prediction accuracy is denominated Pw and the prediction accuracy of each single
class is listed as PAC1−3

.

Figure 5.7: Results from the grid search on the parameter set C/γ for the GT-1-m-RQD.
The Aw varies by about 33 % over the whole search space with with less than 0.5 %
variation. The parameter set C/γ with the smallest values for the highest achieved accuracy
is automatically selected as best-fit parameter set for model construction (yellow star).

Figure 5.8 reveals that the training data points of all 3 classes are distributed over several

homogeneous areas. The faulted tunnel segment that is situated between tunnel meter

-6329 and -6319, where the TBM-gripper sank into the tunnel wall, is both part of the
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training data and the test data sets; even though this homogeneous area exhibits samples

in both, the training and the test data set, none of the test samples at this location was

correctly predicted, nor any other samples from Class 1 or Class 2 (Tab. 5.4). This was,

however, expected as the training result had not entailed any correctly classified labels

in one of these classes. The predicted labels stored during the test phase further reveal

that all the incorrectly classified data points from Classes 1 and 2 were assigned to Class 3

during the prediction. This is a strong indicator for an extremely low generalization ability

of the model.

Figure 5.8: Spatial distribution of training and correctly or incorrectly classified test
samples in the RQD classification along the tunnel alignment of the 1-m data set from
the Glendoe Tunnel. The seven seismic profiles are highlighted as gray bars, the exact
measured RQD is shown as a black line and the training samples are tagged as black
circles. The test samples are tagged as either correctly (green dots) or incorrectly (red
dots) predicted labels.

The percentage of support vectors in the total number of training samples in each respective

class is largest for Class 2 with 91 %, and second largest for Class 1 with 60 %. Class 3

exhibits a relatively low percentage of 53 % of support vectors, compared to all other

classification (Tab. 5.2 and Tab. 5.4). The data space covered by the support vectors is

depicted in Figure 5.9 a-c for each of the binary classifiers. For each of these classifiers,

most support vectors are situated in a small subspace visible in the upper right quarters

of each subplot. The lower parts of these plots are defined by only a small fraction of

the support vectors, and the decision boundaries seem much simpler in this lower area;

however, in the upper right corner of Figure a-c, the model is highly complex and fits

strongly to the support vectors. This clearly indicates strong overfitting of the model in

conjunction with over-representation of the data samples in this subspace. Thus, strong

overfitting of the model is deduced from:
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1. the training algorithm assigns the majority samples to the largest class; the number

of correctly classified Class 1 labels, expressing low rock-mass quality, is insignificant,

2. the highly complex decision boundaries that create small regions around the support

vectors of both Classes 1 and 2 in small subspaces of the model and

3. assignment of the rest of the data space to the majority class.

The confidence in the data is, thus, high and the model even follows outliers and noise.

These findings suggest that no significant information on the RQD classes is contained in

the feature matrix that is built up by tunnel-driving parameters.

5.4 RMR Prediction on the Glendoe Tunnel 1-m Data

Set

Just as for the FA-RMR classification task, the RMR values along the Glendoe Tunnel were

categorized into 2 classes that contain either low values of ≤ 60RMR or RMR values > 60.

During the grid search in the RMR classification in the Glendoe Tunnel at a 1-m sample

interval (GT-1-m-RMR), Aw did not exceed 50 %. Similar to the classification tasks

discussed so far, Aw was not influenced by changing values of the kernel bandwidth γ.

Moreover, no changes in the Aw value occurred for values of log(C) < 7. For log(C) ≥ 7,

the Aw marginally decreased (Fig. 5.10); however, the variations do not exceed 1 % Aw

and were therefore not regarded as significant. Nonetheless, the small increase in training

accuracy for log(C) = 15 leads to a much larger automatically selected penalty parameter

C value for the GT-1-m-RMR classification, in comparison to the cross-validation result

of the GT-1-m-RQD. For a variability of weighted training accuracy Aw < 1% in the grid

search, the choice of an optimal parameter set for C and γ seems arbitrary. Tests on

model construction with different, balanced parameter sets C/γ had no impact, which is

in accordance with the results in the classification tasks discussed this far.
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Figure 5.10: Results from the grid search on penalty parameter C and kernel bandwidth
γ for the GT-1-m-RMR classification. The weighted training accuracy Aw only changes
by 1 % between 49 to 50 % over the entire search space. The parameter set C/γ with
the smallest values for the highest achieved accuracy is automatically selected as best-fit
parameter set for model construction (yellow star).

Class 1 is smaller than Class 2 in the training data with 139 samples compared to 225

samples, respectively. Only 7 % of the Class 1 labels were correctly classified, while the

training accuracy of Class 2 TAC2
was 97 % (Tab. 5.4).

During model construction, 287 out of 364 training samples were used as support vectors.

Of these, 134 support vectors belonged to Class 1 and 153 support vectors belonged to

Class 2, which were 96 % and 68 % of the training samples in the respective classes. It is

pointed out here that the class containing fewer data points, even though not strongly

under-represented, again produced most support vectors. These comprised nearly all the

available data points in the class, which suggests strong fitting of the model to the data

points and consequently low generalization ability.

The test data set was comparatively small as it contained just 37 samples of which 9 and

28 data points belonged to Classes 1 and 2, respectively (Tab. 5.3). During the test phase

solely Class 2 was predicted correctly and all Class 1 labels were additionally assigned to

Class 2.
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Figure 5.11: Spatial distribution of training and test samples along the tunnel alignment
for the GT-1-m-RMR classification. The black line highlights the exact RMR values, and
the dark gray bars designate tunnel segments, where geotechnically important fractured or
faulted rock was mapped. The data samples are tagged as either green dots, for accurately
predicted class labels, or red dots for incorrectly predicted class labels in the test data set.
Black dots are assigned to training data points.

Similar to the GT-1-m-RQD classification, most support vectors are positioned in a small

subspace in the upper right corner (Fig. 5.12). The pattern of support vectors from both

classes is nearly chaotic. In this subspace, small regions are created around the support

vectors of both classes. The model is defined by only a small number of support vectors

in the remaining regions, and appears extremely simple in these areas, such that the

connected areas assigned to one class increase in size, particularly for Class 2. It must be

assumed that the feature space is not equally well defined by support vectors.
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Figure 5.12: 2-D plot of the binary classifier (C1-C2-boundary) between Class 1 (green
area) and Class 2 (yellow area) of the RMR classification based on the 1-m data set of
the Glendoe Tunnel. The separating decision boundary is visualized in 2-D by calculating
the euclidean norm of the support vectors in reference to the grid points of an equidistant
2-D grid over the normalized input space and by allocating the class label of the nearest
support vector to the grid point in question. The support vectors of Class 1 are sketched
as black circles and those of Class 2 as purple circles.

The support vector machine created in this classification task, thus, shows every sign of

severe overfitting. Strong indicators of severe overfitting of the model include:

1. The training result,

2. the extreme percentage of 94 % of support vectors for Class 1,

3. the prediction result where all available test samples are assigned to Class 2, and

4. the complex model that creates small areas around the training samples of the

minority Class 1.

One reason for the overfitting could lie in the proximity of the Class 1 test samples to the

class boundary, which is documented in Figure 5.11 between tunnel meter -6485 and -6445.

The variance in the data could thus be too small for proper separation of the classes as

the noise level is quite high in the tunnel-driving parameters.
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5.5 RQD Prediction on the Glendoe Tunnel 4-m Data

Set

The 4-m data set comprises an exceptionally large number of missing values in the seismic

P- and S- wave velocities, as described in Chapter 3. Matlab is generally able to deal

with missing values, but numerical problems arise using the LIBSVM-package such that

the feature vectors containing missing values need to be omitted from the data set. As a

result, the size of the feature matrix discussed here is reduced to 41 samples, containing

both tunnel-driving data and seismic P- and S-wave velocities. Taking into account the

results from the classification tasks described and discussed thus far, it is likely that the

database is not large enough for the complex task of RQD or RMR classification; however,

the results of the FA classifications based on seismic measurements are superior to those

of the GT classifications at 1-m sample spacing that are based on tunnel-driving data.

The additional use of seismic velocities in the 4-m data set of the GT could thus positively

influence the generalization ability of the model that is to be constructed.

The training data for the GT data set at 4-m sampling interval (GT-4-m-RQD ) classifica-

tion consists of 29 training samples of which 1 data point is labeled Class 1, 5 data points

are labeled Class 2, and the remaining 23 data points are members of Class 3. During

training, nearly all feature vectors from the minority Classes 1 and 2 were incorrectly

classified (Tab. 5.4). One exception was encountered, composed of one single feature vector

that was correctly assigned to Class 2. The Aw decreases with increasing log(C) from 30 %

to 0 % training accuracy and is constant for varying values of the kernel bandwidth γ.

The automatically selected log(C)/log(γ) values are equal to the smallest pair of values in

the search space (Fig. 5.13), which could be an indicator for underfitting. The model was

not sensitive to and remained constant for varying log(C)/log(γ) values, in accordance

with previous findings in the classifications discussed above.
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Figure 5.13: Results from the grid search on C and γ for the GT-4-m-RQD. The Aw

decreases with increasing log(C) from 30 % to 0 % training accuracy. The parameter set
C/γ with the smallest values for the highest achieved accuracy is automatically selected
as best-fit parameter set for model construction (yellow star).

In Figure 5.14 the number of missing values in the seismic data becomes especially apparent

when compared to Figure 5.8 in Section 5.3. Class 2 is not included in the test data set

because the seismic data is missing for the data points between tunnel meter -6451 and

-6439.

Figure 5.14: Spatial distribution of training and test samples along the tunnel alignment
for the GT-4-m-RMR classification. The black line highlights the exact RMR values, and
the dark gray bars designate tunnel segments, where geotechnically important fractured or
faulted rock was mapped. The data samples are tagged as either green dots, for accurately
predicted class labels, or red dots for incorrectly predicted class labels in the test data set.
Black dots are assigned to training data points.

Class 3 is the only class, with 13 out of 23 training samples, for which not all feature

vectors were used as support vectors (Tab. 5.4). At the same time, Figure 5.15 a-c show
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that wide areas of the data space are assigned to one class, while the optimal decision

boundary B is very poorly defined by the feature vectors.

In the test phase, all test data points were assigned to Class 3, which is another strong

indicator of low generalization ability; however no test labels of Class 2 are included and

Class 1 is composed of two samples in the test data set so that a statistical basis for a sound

interpretation is not feasible. From the low model complexity shown in Figure 5.15 a-c

and the training and test results, an underfitted model could be interpreted. Considering

the data set size, as well as the poor data quality of the seismic data (1-D tomography,

cf. Sec. 2.2), the strong noise in the tunnel-driving data, and the semi-quantitatively

geological data collection, discussed in Section 2.1.2, it seems likely that the database is

too small and noised for the task of RQD classification.

5.6 RMR Prediction on the Glendoe Tunnel 4-m Data

Set

The RMR classification of the Glendoe Tunnel data set at 4-m sampling interval (GT-

4-m-RMR) shows strong similarities to that of the GT-4-m-RQD classification. Of the

Classes 1 and 2, Class 2 is the larger, with 21 training samples and 9 test samples, and

was correctly classified to a 100 % TAC2
during training and also to a 100 % PAC2

during

testing (Tab. 5.4) . Class 1 contains 8 training samples and 3 test samples, and was

neither correctly classified during training nor correctly predicted during testing. On the

contrary, all Class 1 test samples were incorrectly assigned to Class 2 during prediction

instead. The automatically selected parameter set C/γ is, again, equal to the smallest

pair of values in the search space (Fig. 5.13) and, as observed in all the other classification

tasks, the kernel bandwidth γ has no impact on the weighted training accuracy Aw. Also

similar to each of the previous tasks, the selection of balanced parameter sets C/γ did not

influence model construction and prediction results.
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Figure 5.16: Results from the grid search on C and γ for the GT-4-m-RMR. The Aw

changes with increasing log(C) but is constant for all log(γ) values. The parameter set
C/γ with the smallest values for the highest achieved accuracy is automatically selected
as best-fit parameter set for model construction (yellow star).

The data gaps and the sole correct prediction of Class 2 are apparent in Figure 5.14. Note

that the data set only contains data points between tunnel meter -6487 and -6207, where

the seismic survey took place.

Figure 5.17: Spatial distribution of training and test samples along the tunnel alignment
for the GT-4-m-RMR classification. The black line highlights the exact RMR values and
the dark gray bars designate tunnel segments, where geotechnically important fractured
or faulted rock has been mapped. The data samples that have been measured along the
seismic profile are tagged as either green dots, for accurately predicted class labels, or red
dots for incorrectly predicted class labels in the test data set. Black dots are assigned to
training data points.

As expected from the results in Sections 5.1 to 5.4, all training samples of Class 1 are used

as support vectors but only 62 % of Class 2 training samples. Similar to the GT-4-m-RQD
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classification, the decision boundary seems poorly defined and the support vectors appear

to be randomly distributed (Fig. 5.18), while the areas assigned to either Class 1 or 2 are

continuous over wide areas of the data space. The model that was constructed for the

GT-4-m-RMR classification is therefore regarded to be based on an insufficient number of

data examples which results in an extremely underfitted model.

Figure 5.18: 2-D plot of the binary classifier (C1-C2-boundary) between Class 1 (green
area) and Class 2 (yellow area) of the RMR classification based on the 4-m data set of
the Glendoe Tunnel. The separating decision boundary is visualized in 2-D by calculating
the euclidean norm of the support vectors in reference to the grid points of an equidistant
2-D grid over the normalized input space and by allocating the class label of the nearest
support vector to the grid point in question. The support vectors of Class 1 are sketched
as black circles and those of Class 2 as purple circles.



6 Discussion

The aim of this study was to establish and evaluate an expert system for rock-mass

classification based on high-resolution data that was gathered during tunnel construction.

From various pattern recognition algorithms considered, the support vector machines

(SVMs) have been selected because of their straight forward nature, applicability to

small data sets, secure convergence to the global optimum, robustness against overfitting.

Moreover, SVMs work well for future updating processes, as only the support vectors need

to be stored in the memory.

Parameters included in the data base for training and testing of the SVMs, the so called

features, are seismic body-wave velocities obtained with the Integrated Seismic Imaging

System (ISIS) and tunnel-driving parameters that are automatically stored during tunnel

advance. The classes to be predicted, also called targest, are based on the Rock Quality

Designation (RQD) index and the Rock Mass Rating (RMR) factor, respectively. Three

classes, from low to high rock-mass quality, are distinguished for the RQD and two for the

RMR in both available data sets, the Faido Adit (FA) and the Glendoe Tunnel (GT). The

statistical evaluation of the two data sets unveiled low correlation between the features

and the targest of the classification in the input-space. An interrelation between the RQD

or RMR, respectively, and the Young´s modulus was not verified. Taking into account

that SVMs can detect hidden relationships in data by mapping into a higher dimensional

feature space, this approach was followed up onto.

For SVM construction, the available data sets need to be separated into training and test

subsets without overlap. Generating a new procedure of data subset generation for training

and testing was inevitable, as several features are inherent to the data, such as the small

number of available samples, the strong homogeneity of the rock-mass that resulted in a

strongly peaked value distribution and, in consequence, unequally sized RQD and RMR

classes. This procedure of separating the data set into subsets for training and testing,

orientates itself on the size of the largest homogeneous area along the surveyed tunnel

segment. Thus, it can be largely avoided that homgeneous units are present during both,

training and testing. This is mandatory to reduce neighboring effects and to increase the

stability of the prediction performance. The distribution pattern of rock-mass classes along

the tunnel, consequently, influenced the size of training and test subsets. In both, the

Faido Adit and the Glendoe Tunnel, large homogeneous areas of high rock-mass quality

are separated by small areas of low rock-mass quality, where the rock exhibits a dense
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pattern of structures. This afflicts very small numbers of either training or test samples

in the minor classes if the class distribution, which can reduce the significance of the

prediction result, as observed during the Class 1 prediction in the RQD classification of

the Faido Adit. This class was underrepresented during testing and showed zero effective

prediction. To investigate these relationships, the code of the corresponding algorithms

in the used LIBSVM-library (Chang and Lin, 2010) was reprogrammed, such that the

training and test accuracy of each single class is specified. Moreover, the procedure for

performance evaluation of training and testing was changed. Instead of the averaged

accuracy, the weighted averaged training- Aw and prediction accuracy Pw constitute the

basis for the model assessment. This way, the effect of unequal success in the n (n − 1) /2

binary classifications of a multi-class classification was accounted for.

Most importantly, however, the general applicability of the classification approach of the

support vector machines to rock-mass classification in tunneling has to be evaluated. To

this end, the model performance of each trained support vector machine is assessed and the

factors that may contribute to the model behavior are analyzed. The model performance

can be evaluated by regarding the interaction of several model features:

1. the weighted average training accuracy Aw and the training accuracy of the single

classes TACi
,

2. the weighted average prediction accuracy Pw and the prediction accuracy of the

single classes PACi
,

3. the best-fit parameter set C/γ,

4. the amount of support vectors in reference to the class size, and

5. the model complexity.

The weighted average prediction accuracy Pw in respect to the weighted average training

accuracy Aw gives information on how well the model was able to deduce general rules

from the data set (generalization ability). If the weighted average prediction accuracy Pw is

similar to the weighted average training accuracy Aw, the probability that the classification

did work out well is high. The smaller the weighted average prediction accuracy Pw is in

respect to the weighted average training accuracy Aw, the lower is the ability to assign

the test samples to the correct class based on the rules learned from the training data

set. Both classifications, RQD and RMR, of the Faido Adit showed high values for the

weighted average training accuracy Aw and similarly high weighted average prediction

accuracies Pw. These findings indicate generally successful classification, even though

the prediction performance on Class 1 in the FA-RQD classification was low. A quite

different picture is drawn from the training and prediction results of the Glendoe Tunnel
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classifications. Here, the weighted average training accuracy Aw does not exceed 34 %

for the RQD classifications based on either the 1-m or the 4-m data set (GT-1-m-RQD

and GT-4-m-RQD), and 50 % for the 1-m or 4-m RMR classifications (GT-1-m-RMR

and GT-4-m-RMR), respectively. The test samples of the minority and intermediate

classes –the smallest class and the second largest class, respectively– were assigned to

the majority class –the largest class and, simultaneously, the class containing highest

rock-mass quality samples– throughout during prediction in both FA and GT. Class 1 of

the FA-RQD exhibits stronger similarity to the prediction results of the Glendoe Tunnel

as Class 1 was also completely assigned to the majority class, Class 3, during prediction;

however, unlike the results for the minority and intermediate classes in each of the Glendoe

Tunnel classifications, Class 1 in the FA-RQD showed high training accuracy. This is not

necessarily conclusive for a better generalization ability of the model but it should be

taken into account that the number of test samples of FA-RQD Class 1 is extremely small.

Thus, the zero prediction accuracy could be a side effect of the subset generation discussed

above.

The values of the penalty parameter C and the kernel bandwidth γ that are selected during

the cross-validation before training also contain information on the model performance.

The higher C and the smaller γ, the less are the Lagrange multipliers α constrained. The

model than follows the data increasingly, which entails high model complexity and a high

number of support vectors. This in turn leads to low generalization ability and thus

decreasing prediction accuracy: A so called overfitting takes place. In the opposite case,

with decreasing C and increasing γ, the model becomes simpler, leading to an underfitting

of the model. In severe cases of both, overfitting and underfitting, the test data is likely

to be assigned to the largest class in the data set during prediction. For each of the

classification tasks carried out in this study, the parameter set C/γ exhibited extreme

values with only one distinction:

1. For the FA-RQD, the FA-RMR and the GT-1-m-RMR, the penalty parameter C is

extremely high the kernel bandwidth γ is extremely low.

2. For the GT-1-m-RQD, the GT-4-m-RQD and the GT-4-m-RMR, the penalty pa-

rameter C and the kernel bandwidth γ are both extremely low.

From the high penalty parameter C and the extremely low kernel bandwidth γ overfitting

might be inferred. The prediction accuracy for single classes in the FA-RQD and FA-RMR

is smaller than the training accuracy but still on a level of 70 % for the RQD and 74 %

for the RMR that indicates that a successful learning process has taken place.

Class 1 is of major interests in each classification, as it contains the rock samples exhibiting

lowest self-support of the rock mass. In case of the RQD classification this means the
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lowest discontinuity spacing. A different reason for the poor classification of FA-RQD

Class 1 might be the selection of a non-optimal set of parameters C/γ. In Chapter 4

the concept of a multi-class classifier is described, where each class is trained separately

against all other classes. This leads to the construction of n (n − 1) /2 binary classifiers.

For each of the constructed n (n − 1) /2 binary classifiers in a multi-class classification

there exists a pair of optimal parameters. This parameter set is not necessarily the same

for all of the binary classifiers. For the model construction, however, the same set of

parameters has to be used for all of the binary classifiers constructed. Otherwise, the

decision boundaries of the n (n − 1) /2 binary classifiers would not be compatible. To

check on the robustness of the training and prediction accuracy of the single classes, TACi

and PACi
, the models were trained anew with randomly selected sets of parameters C/γ.

The test with arbitrary selection of C and γ caused no effect in none of the models, even

for C and γ that exhibited different Aw in the average training accuracy Aw surface.

Different publications on the matter, however, discuss a strong influence of C and γ (e.g.,

Chang and Lin, 2010). This behavior should therefore be investigated further in future

studies.

In the Glendoe Tunnel classifications the training and prediction accuracy of the single

classes, TACi
and PACi

, as much as weighted average training accuracy Aw and the weighted

average prediction accuracy Pw already suggest that all available samples are assigned

to the majority class. Except for the RQD classification on the 4-m data set, where Aw

even goes down to 0 %, the average training accuracy Aw surface (e.g., Fig. 5.7) exhibit

variations below 1 %. It is concluded that no optimal parameter set C/γ was detectable in

the search space of the grid search, even though the chosen grid size is large (e.g., Keerthi

and Lin, 2003; Kanevski et al., 2009). The evaluation of all classifications of the Glendoe

Tunnel, therefore, suggest that the data base does not explain the variance in the target

variables RQD and RMR.

The number of support vectors adds information to the foundation of the assessment on

the prediction performance of a model. The support vectors are those data points that

are closest to the class boundaries and whose removal from the data set would influence

the orientation in space of the optimally separating hyperplane. In all classifications in

this study, the number of support vectors in respect to the number of training samples is

generally large. The model complexity, however, differs between the classification tasks.

For model visualization, the support vectors of each class were used to allocate the space

taken by each class in the data space on a 2-D plot by usage of the euclidean norm. This,

of course, is a very restricted picture of the model but nevertheless allows for an insight

on the model complexity. Thus, the more general term decision boundary is used in the

discussen, rather than the term hyperlpane that is defined as a decision boundary in the
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higher dimensional feature space.

The most prominent differences in model complexity are visible between the classifications

based on different data sets (FA, GT-1-m and GT-4-m), while the RQD and RMR

classification based on the same data set are more similar. The classes from the Faido

Adit classification tasks exhibit high training and sufficient prediction accuracy (FA-RQD

Class 2 and 3 as well as both FA-RMR classes) and are marked by a percentage of support

vectors around 2

3
of the training samples. Both classifications, FA-RQD and FA-RMR,

also exhibit decision boundaries that are well defined by support vectors over large areas

of the feature space. Nonetheless, some node points, where support vectors of two classes

are densely packed, exist as much as smaller areas of uncertainty that do not appear to be

defined by support vectors. The areas that are densely packed by support vectors might

be caused by noise and overlap in the feature space of neighboring classes so that the

progression of the decision boundary becomes complex. A non-severe case of overfitting

is therefore assumed for Faido Adit classifications. Here, additional parameters with

explanatory power regarding the variance in the target variables, RQD and RMR, might

be needed for further contouring of the decision boundary. In comparison, the GT-1-m

classification on RQD and RMR exhibit extremely complex separating hyperplanes. The

support vectors are accumulated in a small subspace of the feature space, where small

areas around spatially strongly limited clusters of support vectors are created. Outside of

this subspace, wide areas with few to no support vectors are identifiable, leading to regions

of uncertainty. Because the size of the feature space depends on the normalized data,

these regions could either be caused by a large number of outliers or they could reflect real

variability within the data that is sparsely covered by example vectors. If the latter, the

data does not consistently reflect the possible combinations of features for one class, which

negatively influences the generalization ability, and thus, the prediction performance of a

SVM.

For the Glendoe Tunnel, those classes that achieved the poor result of 0 % prediction

accuracy PACi
also generally exhibit extremely high percentages of support vectors on

the number of training samples. This also holds true for the Class 1 in the FA-RQD

classification. The complete assignation of smaller classes to the largest available class is

also a sign of low generalization ability and occurs at extreme over- or underfitting.

Most training samples in the GT-4-m-RQD and GT-4-m-RMR are assigned to be support

vectors and appear to be distributed randomly in the feature space. Thus, the decision

boundaries of the extremely simple models are insufficiently determined, leading to the

incapacity of the algorithm to separate classes during training or testing. It is concluded

that the size of the data base for the GT-4-m data set is too small for rock-mass quality

classification.
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For the Faido Adit, the RQD and RMR classes were similarly well predicted. In Chapter

3 it was shown that the RMR values in the Faido Adit peak close to the class boundary at

RMR = 60 and that the range of values is generally strongly restricted in the small data

set. Nonetheless, it was possible to correctly distinguish high from low RMR labels to

70 % Pw. All falsely classified Class 2 labels in the FA-RMR classification are situated in

the first two seismic profiles, whereas all correctly predicted Class 2 labels are encountered

in the last seismic profile (cf. seismic profile g in Figure 5.5 in Sec. 5.2). The incorrectly

predicted test samples comprise generally lower total discontinuity spacing st and high

uniaxial compressive strength σc in comparison to the training and correctly predicted

Class 2 samples (cf. Fig. 2.3 in Sec. 2.1.1). Seismic velocities are known to be sensitive

to changes in the total discontinuity spacing st and the uniaxial compressive strength σc,

which is one reason why they are expected to be sensitive to RMR classes. A similar

result was achieved for the FA-RQD classification, where the RQD class ”good” was

separable from the RQD class ”excellent” based on seismic body-wave velocities. The high

training accuracy for poor rock-mass quality samples combined in Class 1, whose decision

boundaries do not appear more simple or complex than the C2-C3 decision boundary, may

indicate that the poor prediction result for this class is attributed to the very small number

of test samples available. This Class 1 (FA-RQD) contains samples of rock mass with

increased fracturing or faulting. Such a decrease in the discontinuity spacing, however,

is mostly evoked in tectonically stressed rocks and faulted zones, and those, in turn, are

affected by a high variability in rock-mass features, such as water content, discontinuity

conditions and microstructures. Seismic velocities are known to be sensitive to such

rock-mass features; however, these features are not accounted for in the RQD, which may

explain the erroneously assigned Class 1 labels and the large number of support vectors in

this class.

In Chapter 4 the separation of the data set into training and test data was discussed. It

was explained that the use of samples from one homogeneous area in the test and training

set will decrease the generalization ability of the algorithm because the samples are not

independent from each other. By implementing the modified leave-one-out technique

that orientates the test and training size on the size of the largest homogeneous area

along the tunnel, the independency of the samples was increased. Yet, if one class is very

large and another is very small, the apportionment can become problematically unequal,

as is the case in the FA-RQD for Class 1. A larger data set with more variability in

the data would solve this problem. One might argue that the modified leave-one-out

technique would not be needed in the Faido Adit because the data was sampled along seven

separated seismic profiles; however, this would require the knowledge on the extension

of homogeneous rock-mass units outside the profiles. In fact, in case of the Faido Adit,
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the RQD and RMR has been mapped outside of the seismic profiles. From Figure 2.3

it can be deduced that RQD and RMR values from different seismic profiles do belong

partly to the same homogeneous units. It is thus justified to treat the data set as if it

was connected. Nonetheless, the spatial distance between data samples of several seismic

profiles might have influenced the generalization ability of the support vector machine in

the Faido Adit in a positive way.

A general factor that might decrease the predictability of both RQD and RMR based on

seismic velocities, is that seismic velocities contain 3-D information, whereas the rock-mass

characteristics are mapped along a 2-D profile. Nonetheless, the structures mapped along

the tunnel wall take effect in the rock mass perpendicular to the tunnel wall as well, which

is one of the basic assumptions made during geological mapping in general. Even though,

undetected structures, such as faults or lithological boundaries, which are not accounted

for in the geological mapping, might occur and influence the seismic velocities.

The tunnel-driving data in this study did not provide feasible SVMs for rock-mass classifica-

tion. It was already pointed out in Chapter 6, however, that this might be a case-sensitive

effect and that tunnel-driving parameters should be further investigated as possible input

parameters for automated rock-mass classification. Apart from that, large data sets of

tunnel-driving parameters are collected during TBM-advance of which some have not been

regarded in this work but might proof to contain valuable information for the classification

task. In Section 1.6.2, it was shown that very low and very high rock strength, an important

factor for the estimation of the rock-mass quality, similarly influence the tunnel-driving

parameters, which could lead to ambiguities in the rules underlying the classification

between low and high rock-mass quality.

It might be speculated here that seismic velocities are more sensitive to the rock-mass

quality than tunnel-driving parameters. A consideration adding to this speculation is that

strongly fractured rock has a similar effect on the performance of a TBM in comparison

to unfaulted rocks with high rock strength. Seismic velocities, however, should decrease

constantly with decreasing discontinuity spacing, if no acoustic closure or increasing stress

counteracts the effect. Moreover, economic considerations could have influenced the style

of driving of the TBM-operator. Nevertheless, no tunnel-driving data is available for the

Faido Adit data set, so that no direct comparison can be performed and the hypothesis

that seismic velocities are better fit for rock-mass classification cannot be validated. The

comparatively high quality and the small cell size extremely enhanced the explanatory

power of the seismic velocities in the Faido Adit in comparison to those in the Glendoe

Tunnel. As a result, the usage of receiver arrays with small intervals between the receivers,

similar to the Faido Adit survey, is proposed for future investigations. Securing constantly

high seismic data quality should therefore be one focus of attention in further research
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projects.

The description (Chap. 2) and statistical evaluation of the RMR and RQD (Chap.3) showed

peaked distribution and small variance in the data as well as large homogeneous areas of

high rock-mass quality, divided by small areas of low rock-mass quality. In conjunction

with the small size of the GT-1-m data set, these factors might add to the low prediction

performance of the RMR and RQD on the GT-1-m data sets. The classifications on the

Faido Adit data set contains 897 data samples, more than twice as many data points as

the GT-1-m data set.



7 Conclusion

Two fundamentally different results are achieved during rock-mass classification based on

the data sets from the Faido Adit and the Glendoe Tunnel:

1. Based on high-resolution seismic data from the Faido Adit, the classification of RQD

or RMR (FA-RQD and FA-RMR) classes proofed feasible.

2. Based on either tunnel-driving data, or else tunnel-driving and seismic data combined,

from the Glendoe Tunnel with lower resolution, the RQD and RMR classification

did not provide satisfying results.

The classification of the RQD class containing poor rock-mass quality data samples, Class 1,

from the Faido Adit exhibit strong similarities to the results of the Glendoe Tunnel.

Note that the variability in the rock-mass quality, expressed either as RQD or RMR, is

extremely low for the Faido Adit data set and that most data samples show strong proximity

to the class boundaries as a result. The mere fact that patterns, linking RQD or RMR to

the seismic velocities were detected in the Faido Adit is therefore remarkable, especially for

the small number of training samples available. With an extremely small kernel bandwidth

γ and a high value for penalty parameter C, a relatively high weighted average training

accuracy Aw and a large number of support vectors, the RQD and RMR classification

of the Faido Adit show a strong tendency to overfit; however, the generalization ability

in both classifications is acceptable, as the weighted average prediction accuracy Pw is

only slightly reduced in comparison to the weighted average training accuracy Aw. This

indicator for a successful model construction is aided by the balanced appearance of the

model complexity over wide areas in the data space. It might be speculated, that including

additional seismic parameters in the data base, such as the squared amplitudes, which is

a measure for the reflectivity at a certain tunnel location, could enhance the prediction

performance and, consequently, the ability to better describe the rock-mass quality.

For the Glendoe Tunnel, the training accuracies of the single classes reveal that the

classes where not or poorly classified. The large number of support vectors and the high

model complexity, where small regions are created around the training samples exhibit all

characteristics of severe overfitting in the classifications on the GT-1-m data set; however,

this conclusion is valid only for the small subspace which contains the large number of

support vectors. The part of the feature space that contains few support vectors and low

model complexity with poorly defined decision boundaries cannot be included. This area
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was interpreted to reflect true variability in the data but insufficient samples. It is assumed

that no rules were learned from the data set and, therefore, the prediction failed. The

statistical evaluation presented in Chapter 3 showed that there exists little to no linear

correlations in the Glendoe Tunnel data set. The models based exclusively on tunnel-

driving parameters show severe cases of overfitting and extremely low generalization ability.

These results do not rule out that higher order correlations exist between tunnel-driving

parameters and rock-mass classes in general, but no evidence on this had been discovered

in this study. It is, therefore, concluded that the tunnel-driving parameters do not contain

information on the rock-mass classes, neither for the RQD, nor for the RMR; however,

this does not necessarily mean that information on the rock mass cannot be inferred from

tunnel-driving parameters, in general.

The additional use of seismic body-wave velocities in the GT-4-m data base has been

inevitably accompanied by a significant reduction of the data set. Adding the seismic

velocities to the data base did not influence the classification result positively. The

observations on the GT-4-m classifications led to the conclusion that the data set is by far

too small for a proper classification approach, such that no rules were learned from the

data set and the prediction failed in consequence. The quality and spatial resolution of the

seismic observations is, therefore, crucial for the reliability of the prediction of rock-mass

classes. The classification results showed that the cell-size of the seismic tomography and,

consequently, the source-receiver offset of the seismic set-up is crucial for the explanatory

power of the P- and S-wave velocities for rock-mass quality, especially in yet small data sets.

The careful planning of the seismic survey is, therefore, determined as a key requirement

for the success of a fast and automated rock-mass classification and the detection of

hazardous zones in the rock mass. Nevertheless, even with the limited size of the available

data sets it was possible to show that SVMs are a powerful tool in real time expert systems

for geotechnical applications. It is proven within this study that it is possible to predict

rock-mass classifications out of high resolution seismic data with high accuracy.



8 Outlook

Several steps need to be taken in order to reach the long term aim of an automated

rock-mass classification for tunneling based on seismic data and tunnel-driving parameters.

First, the (seismic) data acquisition and the prediction via support vector machines should

be integrated into one system and a user friendly interface should be developed. To this

end, results from different test sites need to be comparable. Concepts and strategies to

reach such conditions should include:

• the influence of the tunnel diameter,

• different layouts of tunnel boring machines,

• changes in the overburden,

• standardization of the seismic set-up and the seismic processing flow,

• standardization of the sampling interval.

It was shown in this study that the size of the receiver array and the frequency of shot

points along the tunnel influences the explanatory power of the seismic velocities in regard

to rock-mass classification. The comparatively high quality and the small grid cell size

extremely enhanced the explanatory power of the seismic velocities in the Faido Adit in

comparison to those in the Glendoe Tunnel. As a result, the usage of receiver arrays with

small intervals between the receivers, similar to the Faido Adit survey, is proposed for

future investigations. Securing constantly high seismic data quality should therefore be

one focus of attention in further R&D projects.

In tunneling, the acquisition geometry of the seismic systems is restricted to the one-

dimensional shape of the tunnel, leading to a restricted informative value on the spatial

distribution of structures. Thus, structures with strongly oblique angles to the tunnel axis

might not be detected. In consequence, the correlation to the true rock-mass conditions

decreases. A receiver spread at 90° angles around the tunnel would increase the detection

of structure and their spatial distributions.

Scientific advances pursued to achieve this aim currently include the integration of TBM-

noise as a seismic source, because TBM-noise exhibits the highest possible spatial coverage

of seismic signals, and wireless data loggers that are able to continuously log the full wave

field of these signals. It is further recommended to investigate whether additional seismic

parameters, as the squared amplitudes, the wave-polarities (kind of reflectors), or the S1
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and S2-wave (rock anisotropy) contribute to more precise conclusions on the rock-mass

behavior. High reliability and testability of continuous acoustic coupling between rock

and seismic receivers is necessary, especially for the integration of the squared amplitudes,

a parameter that is sensitive to the degree of jointing. To this end test methods need

to be developed. Furthermore, the incorporation of a heterogeneous velocity model is a

prerequisite for the application of SVMs to the prediction of rock-mass classes ahead of

tunneling.

The tunnel-driving data in this study did not provide feasible SVMs for rock-mass classifica-

tion. It was already pointed out in Chapter 6, however, that this might be a case-sensitive

effect and that tunnel-driving parameters should be further investigated as possible input

parameters for automated rock-mass classification. Apart from that, large data sets of

tunnel-driving parameters are collected during TBM-advance of which some have not been

regarded in this work but might proof to contain valuable information for the classification

task.

Another field of tasks that should be looked into further, especially when exploring new

parameters in regard to their viability for rock-mass classification, is the automated

parameter selection. Here, e.g., the combination of graphical models (GM) and, in a

subsequent step, principal component analysis (PCA) replace the time consuming manual

pre-selection.

The implementation of SVMs is also conceivable for other applications in rock engineering

and in the wider field of geology, such as the determination of primary rock-mass properties,

like the elastic moduli. This would open a wide field of practical and scientific applications

beyond tunneling.
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A Nomenclature

TAci Training accuracy for a single class

sCi Number of support vectors in a class

(X) Training dataset

Aw Weighted averaged training accuracy

At Average accuracy over all classes (default in LIBSVM)

BCi Decision boundary between two classes

CFep Correction factor for engineering purpose, e.g., tunneling

CFod Correction factor for orientation of discontinuities with respect to the

direction of construction

Cd Condition of discontinuities

DS Discontinuity (plane or surface that marks a change in physical or

chemical characteristics in a soil or rock mass) spacing

Edyn Young´s modulus

H Hyperplane

K Kernel function

L Length of the considered interval

LD Dual formulation of the optimization problem

Lp Lagrangian formulation of the optimization problem

Pw Weighted prediction accuracy

Nci Number of samples in a class

Nx Size of training data set

PAci Weighted prediction accuracy
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Px Size of test set

Q Water inflow (into the underground constructionl)

RN Feature space

TAci Weighted prediction accuracy

Tc Sum of correctly classified labels over all classes

Vp Seismic compressional wave velocity

VpF
Seismic compressional wave velocity measured in the field

VpL
Seismic compressional wave velocity measured in the laboratory

Vs Seismic shear wave velocity

W Weathering of discontinuities

Φ Mapping function

αl Percentage of occurences of a specific rock variety

λ Mean discontinuity frequency

µ Shear modulus

ν Poisson´s ratio

ρ Maximal margin

ρb In-situ bulk density

σc Uniaxial (also: unconfined) compressive strength

ξi Slack variables

b Offset of the decision surface

dA Discontinuity set A

dB Discontinuity set B

e Aperture of discontinuities

f Infilling of discontinuities
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i Index

k Bulk modulus

l Any given location

p Persistence of discontinuities

r Roughness of discontinuities

si Support vectors

st Total discontinuity spacing

t Threshold value in the determination of the TRQD

w Normal vector on the decision surface

x Feature vector

xti The length of the ith piece of drill core that exceeds the threshold value

y Label vector

Rx Rating value

ANN Artificial neural network

DAGSVM Directed acyclic graph support vector machine

FA Faido Adit

GBT Gotthard Base Tunnel

GT Glendoe Tunnel

IQD Interquartile distance

ISIS Integrated Seismic Imaging System

ISRM International Society for Rock Mechanics

LeG Leventina Gneiss

LIBSVM A library for support vector machines

LuG Lucomagno Gneiss
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QP Quadratic programming problem

RBF Gaussian radial basis function

SVM Support vector machine

TBM Tunnel-boring machine

TRQD Theoretical Rock-Mass Quality Designation index



B Field Surveys

Technical Specifications

The Faido Adit

Tunnel Name Faido Adit

Purpose support and escape (GBT)
Rock Type gneiss
Tunnel Excavation Method drill-and-blast
Tunnel Length [m] 2600
Tunnel Diameter [m] 5
Total Surveyed Section Length [m] 594
Tunnel Slope in Surveyed Section [%] 12

Table 8.1: Details of construction of the Faido Adit.

The Glendoe Tunnel

Name Glendoe Tunnel

Purpose Hydro Electric Power Plant
Rock type Hard rock: quartz-mica-schist, quartz-schist
Tunnel length [m] 7524
Tunnel diameter [m] 5.03/4.8
Length of survey [m] 293.2
Tunnel slope along survey [%] 0.080
Tunnel excavation method TBM
Machine type Open gripper TBM
Stroke [mm] 1830
Cutter diameter [mm] 5030
Number of cutters No. Single: 27 double: 4 total: 35
Cutter spacing [mm] Unknown
Cutter-head power [kW] 2200
Cverage cutter-head speed [ rev.

min
] 9.55

Max. applicable thrust force [MN] 241 bar on 4 thrust cylinders
Max. applicable torque [kNm] 2105

Table 8.2: Description of the Glendoe Tunnel and specifications of the TBM layout.
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Mineralogic Composition

The Faido Adit

Minerals Leventina Gneiss

Orthogneiss [%]
Quartz 25-43
Feldspar 38-60
Mica 9-24
Accessories 1-5

Table 8.3: Mineralogic composition of the Leventina Gneiss in the Faido Adit Schneider
(1997).

The Glendoe Tunnel

Minerals Lucomagno Gneiss

Orthogneisses [%] Paragneisses [%]
Quartz 20-55 20-70
Alkali-feldspar 0-45 -
Plagioclase 0-70 10-35
Sericite, Muscovite 0-20 0-30
Biotite 0-6 3-30
Garnet - 0-15

Table 8.4: Mineralogic composition of the Lucomagno Gneiss in the Faido Adit with
differentiation in sedimentary or granitic origin Schneider (1997).

Minerals Tarff Banded Formation

[%]
Quartz 69.38 ± 11.58
Mica 42.50 ± 20.77)
Garnet 10.00
Accessories 22.14 ± 8.81

Table 8.5: Mineral composition of the Tarff Banded Formation(Jacobs, 2004). Accessories,
such as pyrite, chlorite and calcite are mainly encountered in joint fillings.



C Statistics

The Faido Adit

Figure 8.1: Linear regression between geotechnical and seismic variables from the Faido
Adit data set. Black circles mark single data points, red dashed lines mark the 95 %
confidence bounds and the blue line is the regression line. Generally, there is no linear
correlation detectable between the targets of the SVM construction, which are either RMR
or RQD, and the seismic velocities.
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Figure 8.2: Parallel coordinate plot of the seismic velocities and the RQD classes in
the Faido Adit. Each observational point in the n-dimensional space is represented as a
polyline for which the intercepts with the vertical axes are the seismic velocities. The
observational points are colored according to the class label attributed to the specific data
points. Each feature is scaled to have a mean of 0 and a standard deviation of 1. (a) The
values in Class 1 range from 0 to 75. (b) Class 2 includes values between 75 and 90, while
(c) values contained in Class 3 range from 91 to 100. In (d) the median curve of each class
and their 95 % confidence boundaries are depicted. The parallel coordinate plot does not
reveal distinctive, unique patterns but different mean gradients of the polylines.
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Figure 8.3: Parallel coordinate plot of the seismic velocities and the RMR classes in
the Faido Adit. Each observational point in the n-dimensional space is represented as a
polyline for which the intercepts with the vertical axes are the seismic velocities. The
observational points are colored according to the class label attributed to the specific data
points. Each feature is scaled to have a mean of 0 and a standard deviation of 1. (a) Class
1 comprises RMR values up to 60 and (b) Class 2 RMR values above 60. (c) The medians
of both classes show a marked difference in their y-axis intercepts but similar gradients
and no distinctive, unique patterns.
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The Glendoe Tunnel

Min Max Mean Median Std. Dev. Skew Kurt.

Penetration [mm
rev.

] 5.19 59.22 23.47 21.11 13.11 0.81 3.19
Thrust Force [kN ] 2875.6 6114.9 4530.8 4866.8 485.13 -1.46 4.58
C. Torque [kNm] 25.82 1225.1 639.76 658.06 109.94 -0.73 2.87
C. Speed [ 1

min
] 8.54 9.74 9.51 9.59 0.26 -3.15 11.51

Vs[
km
s

] 1.01 5.43 3.44 3.38 0.62 0.46 3.16
Vp[km

s
] 1.15 3.67 2.4 2.45 0.36 0.14 2.84

RQD 0 100 86 100 27.88 -1.93 5.32
RMR 28 81 63 67 12.24 -1.03 3.2

Table 8.6: Basic statistics evaluation of the Glendoe Tunnel data set at a 4-m sample
spacing. By enlarging the sample interval to 4 m, the outliers in the tunnel-driving
parameters are reduced, as is concluded from the reduced skew and thus smaller tails,
the closeness of the kurtosis to the normal distribution as compared to the 1-m sample
spacing, and the convergence of the mean and median values (cf. Table 8.6).
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Figure 8.4: Boxplots of the tunnel-driving parameter and the target parameters, RQD
and RMR, of the Glendoe Tunnel ”4-m data set”.
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Figure 8.5: Parallel coordinate plots for the RQD classification on the Glendoe tunnel
survey at (a) 1-m and (b) 4-m sample interval. Each observational point in the n-
dimensional space is represented as a polyline for which the intercepts with the vertical
axes are the seismic velocities. The observational points are colored according to the class
label attributed to the specific data points. Each feature is scaled to have a mean of 0 and
a standard deviation of 1. In (a) the tunnel-driving parameters are the intercepts with the
vertical axes because they form the basis for the classification tasks on the GT-1-m data
set. The patterns in (a) show only slight differences between the classes. The cutter-head
drive bundles nearly all parallels into one point, with the exception of a few outliers. In (b)
both tunnel-driving parameters and seismic velocities are included in the feature matrix
and show thus intercepts with the vertical axes. The sparse character of the data base
and the high amount of missing values in the seismic data is visible.
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Figure 8.6: Parallel coordinates for the RMR classification on the Glendoe Tunnel data
set for both 1-m and 4-m sample interval. Each observational point in the n-dimensional
space is represented as a polyline for which the intercepts with the vertical axes are
the seismic velocities. The observational points are colored according to the class label
attributed to the specific data points. Each feature is scaled to have a mean of 0 and a
standard deviation of 1. Only one ”low” class (RMR ≤ 60 and one high class (RMR > 60)
were defined because of the concentration of the values close to RMR = 60 classes. (a)
Even though the data is separated in merely 2 classes, the parallel coordinate plot for the
1-m sample interval does not show distinct patterns for Class 1 or Class 2 in the features.
In (b) both tunnel-driving parameters and seismic velocities are included in the feature
matrix and show thus intercepts with the vertical axes. The sparse character of the data
base and the high amount of missing values in the seismic data is visible, just as for the
GT-4-m-RQD classification.
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